WirelessMAN®

Inside the IEEE 802.16™ Standard for Wireless Metropolitan Area Networks

Carl Eklund
Roger B. Marks
Subbu Ponnuswamy
Kenneth L. Stanwood
Nico J.M. van Waes

Published by Standards Information Network
IEEE Press
Trademarks and Disclaimers

IEEE believes the information in this publication is accurate as of its publication date; such information is subject to change without notice. IEEE is not responsible for any inadvertent errors.

Library of Congress Cataloging-in-Publication Data

<table>
<thead>
<tr>
<th>WirelessMAN : Inside the IEEE 802.16 standard for wireless metropolitan area networks / Carl Eklund ... [et al.].</th>
</tr>
</thead>
<tbody>
<tr>
<td>p. cm. -- (IEEE standards wireless networks series)</td>
</tr>
<tr>
<td>Includes bibliographical references and index.</td>
</tr>
<tr>
<td>ISBN 0-7381-4842-3</td>
</tr>
</tbody>
</table>

TK5105.85.W57 2006
621.384--dc22
2006041723

IEEE
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2006 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published May 2006. Printed in the United States of America.

No part of this publication may be reproduced in any form, in an electronic retrieval system, or otherwise, without the prior written permission of the publisher.

IEEE, 802, and WirelessMAN are registered trademarks in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics Engineers, Incorporated (www.ieee.org/).
IEEE Standards designations are trademarks of the IEEE (www.ieee.org/).
DOCSIS is a registered trademark of Cable Labs (http://www.cablelabs.org).
Wi-Fi is a registered trademark of the Wi-Fi Alliance (http://www.wi-fi.org/).
WiMAX Forum is a registered trademark of the WiMAX Forum (http://www.wimaxforum.org).
The following figures in this book are the property of Doceotech, Incorporated, and are reprinted with permission: 1-1, 3-5, 6-3 through 6-7, 6-9 through 6-11, 6-21, 6-22, and 9-4.

Jennifer McClain Longman, Managing Editor
Linda Sibilia, Cover Designer
Review Policy

Standards Information Network/IEEE Press publications are not consensus documents. Information contained in this and other works has been obtained from sources believed to be reliable and reviewed by credible members of IEEE Technical Societies, Standards Committees, and/or Working Groups, and/or relevant technical organizations. Neither the IEEE nor its authors guarantee the accuracy or completeness of any information published herein, and neither the IEEE nor its authors shall be responsible for any errors, omissions, or damages arising out of the use of this information.

Likewise, while the authors and publisher believe that the information and guidance given in this work serve as an enhancement to users, all parties must rely upon their own skill and judgment when making use of this information and guidance. Neither the authors nor the publisher assumes any liability to anyone for any loss or damage caused by any error or omission in the work, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

This work is published with the understanding that the IEEE and its authors are supplying information through this publication, not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought. The IEEE is not responsible for the statements and opinions advanced in the publication.

The information contained in Standards Information Network/IEEE Press publications is reviewed and evaluated by peer reviewers of relevant IEEE Technical Societies, Standards Committees and/or Working Groups, and/or relevant technical organizations. The authors addressed all of the reviewers’ comments to the satisfaction of both the Standards Information Network/IEEE Press and those who served as peer reviewers for this document.

The quality of the presentation of information contained in this publication reflects not only the obvious efforts of the authors, but also the work of these peer reviewers. The IEEE Press acknowledges with appreciation their dedication and contribution of time and effort on behalf of the IEEE.

To order IEEE Press Publications, call 1-800-678-IEEE.

Print: ISBN 0-7381-4842-3 SP1146

See other IEEE standards and standards-related product listings at http://standards.ieee.org/
Dedication

The authors dedicate this effort to the many members of, and participants in, the IEEE 802.16 Working Group on Broadband Wireless Access. Their tireless efforts since 1998 have led to the completion of a dozen standards with the potential to bring the world closer together. At the very least, the project has already brought a world of participants closer together.
Acknowledgments

The authors acknowledge the detailed reviews provided by Dr. David R. Smith and Dr. Claude Weil of the (U.S.) National Institute of Standards and Technology (NIST), as well as the assistance of several anonymous reviewers.

Portions of this work were contributed by NIST and are not subject to copyright protection in the United States.

The authors further acknowledge Doceotech, Incorporated, which provided some of the figures in this book. These figures, reprinted with permission, are drawn from one of the company’s courses providing training for engineers on wireless technologies.
Authors

Carl Eklund received his M.S. in engineering physics from Helsinki University of Technology in 1996. He joined the Communication Systems Laboratory of Nokia Research Center in 1998, working mainly on radio protocol design and standardization. In the IEEE 802.16 effort, he chaired the MAC Task Group that developed the IEEE 802.16 medium access control layer (MAC) protocol for IEEE Std 802.16-2001. He also served as the technical editor for the protocol implementation conformance statement (PICS) and test suite structure and test purposes (TSS&TP) specifications for IEEE Std 802.16-2001. Eklund currently is a principal engineer in the Radio Communications Laboratory of Nokia Research Center, Helsinki, Finland. Since October 2005, he has been heading the research and standardization program for WiMAX and IEEE 802.16 in Nokia.

Roger B. Marks initiated, in 1998, the effort leading to the formation of the IEEE 802.16 Working Group on Broadband Wireless Access, chairing it since inception and serving as Technical Editor of the group’s first two standards. He also serves actively on the IEEE 802 Executive Committee and holds the position of China Liaison Official. Marks is a physicist with the (U.S.) National Institute of Standards and Technology (NIST) in Boulder, Colorado, USA. He received his A.B. in physics in 1980 from Princeton University and his Ph.D. in applied physics in 1988 from Yale University. A Fellow of the IEEE and an IEEE Distinguished Lecturer, Marks developed the IEEE Radio and Wireless Conference and chaired it from 1996 through 1999. He is the author of over 90 publications and the recipient of numerous awards, including the Individual Governmental Vision Award from the Wireless Communications Association and the IEEE Technical Field Award in measurement technology. He has received the U.S. Department of Commerce Gold, Silver (three times), and Bronze Medals.
Subbu Ponnuswamy was one of the early participants in the IEEE 802.16 Working Group and a contributor to the IEEE 802.16 and IEEE 802.11 standards. He is also a coauthor of a WiMAX course for development engineers, offered by Doceotech. He has many years of industry experience in the design and development of wireless local area network (LAN) and metropolitan area network (MAN) products, including those based on the IEEE 802.16 and IEEE 802.11 standards. As the director of engineering at Kiwi Networks, Ponnuswamy led the design and development of interference-resilient IEEE 802.16 and IEEE 802.11 systems in the license-exempt bands for indoor and outdoor applications. He also led IEEE 802.11 MAC application-specific integrated circuit (ASIC) and software development at Vivato for smart antenna systems. During his tenure at Malibu Networks, he designed and developed a quality-of-service-centric broadband wireless MAC. He has also held various technical positions with Honeywell, Sequent Computer Systems, and Lincom Wireless. He is currently with Aruba Networks. Ponnuswamy is the author of many publications and patents in the areas of wireless communication, real-time systems, and multiprocessor communication networks. He graduated with an M.S. in computer engineering from Wayne State University and a B.E. in electronics and communication engineering from the University of Madras, India. He is a member of the Association for Computing Machinery (ACM) and the IEEE Communications Society.

Kenneth L. Stanwood is president and chief executive officer of Cygnus Communications, which makes products for wireless multimedia distribution. He was previously chief technology officer of Ensemble Communications, which produced local multipoint distribution services (LMDS) equipment and provided key technology to IEEE 802.16 and WiMAX. As a representative of Ensemble, Stanwood was one of the founders of the WiMAX Forum® and served on its board of directors. Stanwood is vice-chair of the IEEE 802.16 Working Group and has been involved with IEEE 802.16 and the European Telecommunications Standards Institute (ETSI) Broadband Radio Access Networks (BRAN) Technical Committee for over 6 years. He was a primary designer of the
IEEE 802.16 MAC. He holds 11 patents and has numerous patent applications, all related to broadband wireless access. He received his master’s degree from Stanford University.

Nico J.M. van Waes received an M.S.E.E from the Technical University Delft in the Netherlands in 1994 and a Ph.D. from New Jersey Institute of Technology in 1998. He joined the Wireless Router Division of Nokia Networks in 1999 as a systems engineer, working primarily on physical layer (PHY) and radio frequency (RF) issues as well as standardization. From 1999 till 2004, van Waes held various standards-related public positions such as chief technical editor of IEEE Std 802.16a™, IEEE P802.16.2a, and early versions of IEEE P802.16d; area coordinator and editor for ETSI BRAN HiperMAN; and chair of the OFDM Forum’s fixed wireless access (FWA) working group. From 2004 till 2005, he led Nokia Research Center’s efforts in IEEE P802.11n standardization. Since early 2006, van Waes has been a manager with Nokia IPR, responsible among others for the IEEE 802.16 and IEEE 802.11 portfolios. He has half a dozen patents filed and is the author of several published papers.
Foreword

Because of the explosive global growth of the Internet and its applications, this authoritative, comprehensive, and well-written insider’s guide to broadband wireless standards is truly a book whose time has come. Published by the Standards Information Network/IEEE Press, a unit of the Institute of Electrical and Electronics Engineers (IEEE), WirelessMAN serves as a companion to IEEE Std 802.16, the WirelessMAN standard for broadband wireless metropolitan area networks. This book provides an overview of the technology, explaining the rationale behind the choices made. This overview of the complex technical specification is valuable for the tens of thousands of engineers involved in R&D and deployment of relevant technologies—as well as to less technical opinion leaders in related fields of marketing, sales, finance, government affairs, and media/public relations. WirelessMAN is so clearly organized and written that it can be a rewarding reading experience even for those with no formal technical training.

The authors are and have been leaders of the related standardization projects. IEEE Std 802.16 was developed by the IEEE 802.16 Working Group on Broadband Wireless Access, beginning in 1999. The book’s authors include the IEEE 802.16 founding chair, Dr. Roger B. Marks; its vice chair, Kenneth L. Stanwood; and three of its most visionary and dedicated practitioners, Carl Eklund, Subbu Ponnuswamy, and Nico J.M. van Waes. Those involved in standards work can appreciate that it is a process whose success depends upon far more than just vision and technical expertise. That’s only the beginning. To be as successful as the WirelessMAN standards effort has been, it’s necessary also to draw on the skill sets commonly associated with master politicians and corporate strategists because the stakes can be so huge—especially in this instance, where the goal is nothing short of gradually replacing multibillion-dollar proprietary technologies with lower cost, standards-based interoperable products. If the upside is high for some players, so is the downside for others. In other words, creating a successful standard is
not in everyone’s interest, and so whatever method of collegial input is used may also be abused.

The IEEE 802.16 Working Group has made impressive progress in its standards effort, as measured by objective data. It has held more than 43 weeklong sessions around the world, from the group’s official founding in 1999 to the publication of this book in 2006. By working cooperatively, the group has developed and advanced its standards in near-record time. The current version of its fixed wireless standard was most recently updated as IEEE Std 802.16-2004 [B20], and an amendment adding mobility support (IEEE Std 802.16e™-2005 [B24]) was published in late 2005. The IEEE 802.16 standard is at the core of the fast-growing certification effort by the WiMAX Forum®, whose expanding activities have been generating news and magazine articles at the rate of six hundred a month at times.

By attending the organizational strategy meeting in July 1998 of the predecessor group that led to the IEEE 802.16 Working Group, I had the privilege of observing the growth of this process right from the beginning despite my lack of any formal training in the relevant technology. Fortunately, I did have good advice from my mentor in this area, Dr. Weston E. Vivian, the longtime University of Michigan professor who holds the distinction of being the first person ever elected to the U.S. Congress with a doctorate in either engineering or science. His counsel was to “sit in on every technical meeting you can – and don’t say much.” The assumption was that over time, even I would learn something. That strategy meeting was called by Roger Marks at the Boulder, Colorado, offices of the National Institute of Standards and Technology (NIST) to create what became known as the National Wireless Electronic Systems Testbed before its assimilation the next year into the IEEE standards process. The few others at the meeting had enormous subject-matter expertise, most with doctorates in electronic engineering and affiliations with major companies. Despite the additional handicap of not being in a position to make substantive commitments because Wireless Communications Association International (WCA) is technology neutral, I attended as an observer, encouraged by knowledge that standards were regarded by our members as potentially vital, but also extremely difficult to achieve in practice.
We at WCA have been extremely impressed by the dedication of the WirelessMAN pioneers, including its founding chair. Although WCA continues to adhere to a technology-neutral standpoint in order to showcase all relevant technologies on a fair basis, it seems appropriate nevertheless to share a few personal observations at this juncture: First, the leadership of this group is particularly dedicated, well-organized, and enthusiastic about creating new networks. These standards meetings are all-day, weeklong affairs, and more than once I have called upon leaders in the middle of their night to learn of developments. Second, and more important, WirelessMAN, an authoritative insider’s account, is certain to prove valuable as a guide to understanding the history and implications of the technology—not just the IEEE 802.16 version, but in the context of competing and complementary broadband technologies, both wireless and wireline. The book is highly recommended for designers of components, systems, and test equipment based on the WirelessMAN standards, plus a variety of other telecommunications professionals and students. This is an important and useful book for anyone in this fast-exploding field.

Andrew Kreig
President and Chief Executive Officer
Wireless Communications Association International
1333 H Street, NW; Suite 700 West
Washington, DC 20005
United States of America
Preface

Broadband access has become a critical bottleneck in the ongoing information technology revolution across the globe. The growing popularity of multimedia applications has made the requirements on broadband access even more demanding. In order to serve this growing market need, the reach of existing broadband networks needs to be extended, and new broadband infrastructures need to be deployed in developing nations where no wired broadband infrastructures exist.

The advent of standards-based and interoperable wireless local area networks (WLANs) and wireless personal area networks (WPANs) has resulted in widespread adoption of wireless networks in homes as well as in consumer and enterprise markets. The productivity gains and increased flexibility that comes with wireless have transformed the way many businesses operate.

Broadband wireless access (BWA) is the next logical step in extending fiber optic backbone networks to enhance broadband proliferation and to provide broadband access in areas where no other methods are available. BWA is also attractive as a network infrastructure that can be deployed much more quickly than its wired counterparts. Moreover, broadband wireless has the potential to offer capacity on demand.

Proprietary BWA solutions have existed for some time, with limited market penetration in licensed and license-exempt bands. However, the lack of a global standard and lack of multivendor interoperable equipment have hampered widespread adoption. Given the infrastructure-intensive nature of broadband wireless deployments, widespread adoption requires interest from a wide range of service providers. All of the potential providers, large or small, are seeking standardized rather than proprietary solutions. With nomadic and mobile systems, roaming operations force questions of cross-vendor interoperability to the forefront. However, even for non-nomadic fixed broadband wireless networks, in which roaming is virtually nonexistent, operators are hesitant to accept unnecessary risk in the current economic conditions.
climate, and the use of proprietary equipment from a small number of vendors is an unnecessary risk. Good standards activities, such as those that are well established in IEEE 802®, not only bring operators reasonably priced equipment but also put them on a curve of declining costs and growing performance. The IEEE 802.16 standard for wireless metropolitan area networks (MANs) has been developed by the IEEE 802.16 Working Group to address this BWA market. The activity has been in progress since 1999; it has been highly productive, and the standard continues to evolve.

As you will find in this book, IEEE 802.16 is quite different from other IEEE 802 standards. The technology is more oriented toward carrier-class services whose infrastructure development is designed and deployed by professionals affiliated with experienced telecommunications operators. Also, compared to some other IEEE 802 standards, IEEE 802.16 leaves more of the implementation decisions to the implementor, particularly at the base station (BS) side. This provides the system developer with the opportunity to develop a simple, low-cost system or to apply extra effort to create a substantially better performing system that may fetch a higher price. The goal is a wide deployment of a broad range of IEEE 802.16-based systems that are interoperable but highly differentiated. This should help to keep the market dynamic and innovative and provide many attractive options to the carriers.

Objective

The objective of this book is to provide a detailed overview of the IEEE 802.16 standard for fixed BWA, including detailed descriptions of the IEEE 802.16 medium access control layer (MAC) and physical layer (PHY) operation, with emphasis on the design and the technology behind the standard. This book explains why certain design choices were made and how recent technological developments, real-world experience, and lessons learned from previous projects were used throughout the IEEE 802.16 development process to make critical tradeoffs.

The book also reviews the chronological development of the IEEE 802.16 MAC and PHY and the rationale behind the development decisions. It provides a summary of ongoing projects, related standards, and future extensions to IEEE 802.16. The optional and mandatory parts of the
IEEE 802.16 standard are clearly identified and explained throughout the book, wherever applicable.

Organization

Chapter 1 provides an introduction to BWA and identifies the key market segments and basic requirements. Chapter 2 overviews the IEEE 802.16 Working Group, including the organizations under which it works and the procedures it uses, summarizing the history of the group and its past and current projects. Chapter 3 defines the basic MAC, PHY, radio frequency (RF) and other protocol concepts necessary for understanding the IEEE 802.16 standard. The final introductory chapter, Chapter 4, describes the overall architecture of IEEE 802.16 and introduces various components and key features of IEEE 802.16 in detail.

The rest of the book describes the components of the IEEE 802.16 architecture in a top-down fashion. Chapter 5 describes the asynchronous transfer mode (ATM) convergence sublayer (CS) and packet convergence sublayer (PCS) of IEEE Std 802.16. In Chapter 6, the basic concepts of the IEEE 802.16 MAC, supporting all of the IEEE 802.16 PHY alternatives, are covered. Chapter 7 provides details of the IEEE 802.16 MAC operation, including network entry, initialization, PHY support, automatic repeat request (ARQ) and quality of service (QoS). The security sublayer, including encryption methods and key exchange mechanisms, is described in Chapter 8. Chapter 9 describes the mesh extensions to the IEEE 802.16 MAC and the additional scheduling methods defined to support the mesh option.

The next three chapters describe three major PHY alternatives specified in IEEE 802.16. Chapter 10 addresses the single-carrier (WirelessMAN-SC) PHY specified for use above 10 GHz. Chapter 11 describes the orthogonal frequency division multiplexing (WirelessMAN-OFDM) PHY for frequencies below 11 GHz, and Chapter 12 describes the orthogonal frequency division multiple access (WirelessMAN-OFDMA) PHY for the same frequencies.

Chapter 13 explores the IEEE 802.16 standard’s support for multiple antenna systems, including adaptive antenna systems (AAS), as an extension of the IEEE 802.16 point-to-multipoint (PMP) topology. Chapter 14 addresses the
Preface

performance of the MAC and various PHYs. A summary of the IEEE 802.16 conformance standards and an introduction to the interoperability work being done by the WiMAX Forum are given in Chapter 15. Chapter 16 provides a summary of related standards and standardization activities.

Appendix A provides a list of IEEE 802.16 headers, subheaders, and MAC management messages for ready reference.

Reading and style

This book is intended for anyone who wishes to understand the IEEE 802.16 standard and operation, including designers, engineers, students, and deployment professionals. This book is self-contained, and no specific knowledge of any other wireless protocols is assumed. However, a basic knowledge of communication protocols and concepts is necessary for understanding the key MAC and PHY chapters of this book. An extensive bibliography is given at the end for anyone who would like to read more on specific topics that are not covered here in detail.

While the introductory chapters provide basic information for all types of readers, the MAC- and PHY-specific chapters can be treated independently, with the exception of the MAC-PHY interface, by designers who are interested in designing only the MAC or PHY portion of a IEEE 802.16 system. The mesh and AAS chapters require the understanding of the MAC architecture and PHY interface defined in earlier chapters. This book can be used for self-study of the IEEE 802.16 standard, as a reference, or as a designer’s handbook.

Advanced readers should look at the book as a companion to IEEE Std 802.16. Readers should note that IEEE 802 standards are available for free download through the Get IEEE 802® program <http://standards.ieee.org/getieee802>. Readers may also wish to consult the web pages of the IEEE 802.16 Working Group on Broadband Wireless Access <http://WirelessMAN.org>, which include thousands of working group and contributed documents upon which the standard, including its amendments, are based.
Table of Contents

List of Figures ... xxvii

List of Tables ... xxxi

Acronyms and abbreviations .. xxxiii

Chapter 1 Broadband wireless access (BWA):

Applicable market segments and requirements 1
 - Commercial fixed broadband wireless: fiber extension 6
 - Residential fixed broadband wireless: digital subscriber line (DSL) and cable modem alternative .. 8
 - Quality of service (QoS) .. 11
 - Throughput requirements .. 11

Chapter 2 IEEE 802.16 standards:

The working group and documents .. 13
 - Background .. 13
 - IEEE Standards Association (IEEE-SA) ... 13
 - IEEE 802® LAN/MAN Standards Committee (LMSC) 15
 - Standards development in IEEE 802 ... 16
 - Study group stage .. 16
 - Working group development of draft ... 16
 - IEEE 802.16 Working Group: Overview ... 19
 - IEEE 802.16 Working Group: History .. 19
 - Technical progress in IEEE 802.16 Working Group 21
 - Air interface: IEEE Std 802.16 ... 23
 - Conformance: IEEE 802.16/Conformance0X 26
 - Coexistence: IEEE Std 802.16.2™ ... 27

Chapter 3 Basic concepts and definitions:

Wireless protocol and communication concepts 29
 - Frequency bands .. 30
 - Channels ... 30
 - Licensed and license-exempt spectrum .. 30
 - Spectrum and standardization ... 32
 - Coexistence .. 32
 - Types of wireless networks .. 33
Table of Contents

Fixed and mobile networks ... 33
Nomadic and portable networks 34
Wireless network topologies .. 34
RF propagation .. 36
LOS and NLOS ... 36
Multipath ... 38
Fading ... 39
Antennas ... 40
Antenna parameters ... 41
Directional and sectorized antennas 42
Diversity ... 42
Temporal diversity .. 43
Frequency diversity .. 43
Spatial diversity .. 43
Polarization diversity ... 44
Angle diversity .. 45
Multiple antenna systems ... 45
Adaptive antenna systems (AAS) 45
Multiple-input, multiple-output (MIMO) 46
Impact of antenna technologies on protocol design 47
Antenna design for fixed and mobile devices 47
Physical layer (PHY). .. 48
Forward error correction (FEC) 48
Single carrier and multicarrier 49
Duplexing, multiplexing, and multiple access 49
Duplexing ... 50
Multiplexing ... 52
Centralized and distributed multiple access schemes 52
Time division multiple access (TDMA) and
frequency division multiple access (FDMA) 53
Orthogonal frequency division multiple access (OFDMA) 53
Code division multiple access (CDMA) 55
Data units .. 56
Quality of service (QoS) ... 57
Per-flow and per-class QoS ... 60
Wireless QoS .. 61
Medium access control layer (MAC) 62
Fragmentation and packing ... 62
Automatic repeat request (ARQ) 64
Table of Contents

Chapter 4 IEEE 802.16 architecture:
Overview and key features 67
 - Reference model .. 68
 - Base station (BS) and subscriber station (SS) 71
 - Convergence sublayer (CS) architecture 73
 - Framing and duplexing 74
 - Physical slots (PS) and mini-slots 76
 - TDD framing .. 76
 - FDD framing .. 78
 - Time relevance 81
 - Subscriber-level adaptive PHY 84
 - Fixed TDD vs ATDD 84
 - Framed PHY ... 85
 - MAC efficiency .. 85
 - Mesh .. 87
 - Directed mesh .. 88
 - Quality of service (QoS) 88
 - Security sublayer 89
 - Automatic repeat request (ARQ) 90
 - Hybrid automatic repeat request (HARQ) 92
 - Physical layer (PHY) 93
 - Multipath mitigation 94
 - Mandatory and optional components 94
 - Bit ordering ... 98

Chapter 5 Convergence sublayers (CSs):
Support for multiple protocol transport 99
 - ATM CS .. 99
 - Packet convergence sublayer (PCS) 101
 - Classification 102
 - Payload header suppression (PHS) 104

Chapter 6 MAC basics:
Concepts, connections, formats, and headers 107
 - Connections and addressing 107
 - Service flows and service flow identifiers (SFIDs) ... 109
 - CID allocation 109
 - MAC headers and subheaders 113
 - Stand-alone MAC headers 113
 - BW request header 114
 - MPDU header 115
Table of Contents

Generic MAC header ... 115
MAC header demultiplexing ... 118
MAC subheaders ... 119
 Fragmentation subheader (FSH) 120
 Packing subheader (PSH) ... 121
 Grant management subheader (GMSH) 122
 Mesh subheader (MSH) .. 123
 Fast-feedback allocation subheader (FFSH) 124
ARQ feedback ... 125
Data and management PDU construction 125
 Simple MPDU .. 125
 Subheader ordering .. 126
 ARQ blocks .. 127
 Fragmentation .. 129
 Fragmentation without ARQ .. 130
 Fragmentation with ARQ ... 130
 Packing .. 131
 Packing of fixed-length SDUs 131
 Packing of variable-length SDUs 132
 Packing with fragmentation ... 132
 Packing and ARQ .. 134
 Packing of ARQ payload ... 134
 Concatenation .. 135
 MPDU encryption and CRC .. 135
 MAC management .. 136
ARQ ... 137
 ARQ block-based retransmissions 137
 ARQ Feedback information element (IE) 139
 ARQ feedback payload ... 143
Hybrid automatic repeat request (HARQ) 143
 Compact MAP IE ... 144
 HARQ Control IE ... 144
 Construction of HARQ packets 145
 Reduced connection identifier (RCID) 145
 HARQ acknowledgments ... 147

Chapter 7 MAC operation:
Radio control, QoS, and ARQ .. 149
 Network entry and initialization 149
 Scanning and synchronization to the DL 149
 Initial ranging .. 149
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS basic capability negotiation</td>
<td>150</td>
</tr>
<tr>
<td>Authorization, security association (SA) establishment, and key exchange</td>
<td>152</td>
</tr>
<tr>
<td>Registration</td>
<td>153</td>
</tr>
<tr>
<td>Establish IP connectivity</td>
<td>153</td>
</tr>
<tr>
<td>Dynamic service establishment</td>
<td>154</td>
</tr>
<tr>
<td>PHY maintenance</td>
<td>155</td>
</tr>
<tr>
<td>MAPs and channel descriptors</td>
<td>156</td>
</tr>
<tr>
<td>Periodic ranging</td>
<td>163</td>
</tr>
<tr>
<td>Burst profile changes</td>
<td>167</td>
</tr>
<tr>
<td>QoS and service flows</td>
<td>171</td>
</tr>
<tr>
<td>Dynamic service establishment and deletion</td>
<td>171</td>
</tr>
<tr>
<td>QoS model</td>
<td>172</td>
</tr>
<tr>
<td>QoS and traffic parameters</td>
<td>173</td>
</tr>
<tr>
<td>SFID and CID</td>
<td>173</td>
</tr>
<tr>
<td>Service class name</td>
<td>173</td>
</tr>
<tr>
<td>QoS parameter set type</td>
<td>174</td>
</tr>
<tr>
<td>Traffic priority</td>
<td>176</td>
</tr>
<tr>
<td>Maximum sustained traffic rate</td>
<td>176</td>
</tr>
<tr>
<td>Maximum traffic burst</td>
<td>177</td>
</tr>
<tr>
<td>Minimum reserved traffic rate</td>
<td>177</td>
</tr>
<tr>
<td>Minimum tolerable traffic rate</td>
<td>177</td>
</tr>
<tr>
<td>Vendor-specific QoS parameters</td>
<td>178</td>
</tr>
<tr>
<td>Service flow scheduling type</td>
<td>178</td>
</tr>
<tr>
<td>Request/transmission policy</td>
<td>179</td>
</tr>
<tr>
<td>Tolerated jitter</td>
<td>179</td>
</tr>
<tr>
<td>Maximum latency</td>
<td>179</td>
</tr>
<tr>
<td>Fixed-length vs variable-length SDU indicator</td>
<td>180</td>
</tr>
<tr>
<td>SDU size</td>
<td>180</td>
</tr>
<tr>
<td>Interactions between QoS, CAC, and adaptive PHY</td>
<td>181</td>
</tr>
<tr>
<td>Determining available bandwidth</td>
<td>181</td>
</tr>
<tr>
<td>Bandwidth on demand setting the basis for CAC</td>
<td>182</td>
</tr>
<tr>
<td>Adaptive CAC philosophies for adverse conditions</td>
<td>187</td>
</tr>
<tr>
<td>Multicast connections</td>
<td>189</td>
</tr>
<tr>
<td>BW request/grant</td>
<td>190</td>
</tr>
<tr>
<td>Scheduling</td>
<td>193</td>
</tr>
<tr>
<td>Unicast polling</td>
<td>197</td>
</tr>
<tr>
<td>Broadcast polling</td>
<td>199</td>
</tr>
<tr>
<td>Multicast polling groups</td>
<td>200</td>
</tr>
<tr>
<td>Clock comparison</td>
<td>201</td>
</tr>
<tr>
<td>ARQ operation</td>
<td>203</td>
</tr>
<tr>
<td>ARQ parameters and timers</td>
<td>203</td>
</tr>
</tbody>
</table>
Table of Contents

ARQ protocol messages ... 206
ARQ Feedback management message 206
ARQ Discard management message 206
ARQ Reset management message 206
BSN comparison .. 207
ARQ transmitter ... 207
 ARQ feedback processing ... 210
ARQ receiver .. 210
 ARQ feedback generation 213
ARQ state machine reset and resynchronization 213
Interaction with scheduler ... 215
HARQ operation .. 216
HARQ parameters ... 216
Subpacket transmission and acknowledgment generation ... 216
Performance and QoS implications 217

Chapter 8 Security:
PKM protocol and cryptographic methods 219
 Security associations (SAs) and cryptographic suites 219
 Encrypted MPDUs .. 220
 Data encryption with DES in CBC mode 220
 AES-CCM ... 221
Key management .. 224
 AK management .. 224
 TEK management .. 226

Chapter 9 Mesh:
MAC and PHY extensions for mesh 229
 Introduction .. 229
Logical mesh .. 232
 Mesh connections and addressing 234
 Network configuration ... 234
Network entry ... 236
 Scanning for active networks and coarse synchronization . 237
 Obtaining network parameters 237
 Opening sponsor channel 238
Distributed scheduling ... 239
Centralized scheduling .. 241
Directed mesh and point-to-point (PtP) 244
Table of Contents

Chapter 10 PHY: WirelessMAN-SC:
Single-carrier PHY for 10–66 GHz .. 247
 Frame structure ... 248
 DL channel encoding ... 252
 UL channel encoding ... 256
 Control mechanisms .. 259
 WirelessMAN-SCa .. 260

Chapter 11 PHY: WirelessMAN-OFDM:
Multicarrier PHY for frequencies below 11 GHz 261
 Waveform construction .. 261
 Selection of the OFDM waveform 261
 Selection of FFT size ... 262
 The OFDM waveform .. 265
 Subchannelization ... 266
 Preambles ... 270
 Frame structure .. 272
 Point-to-multipoint (PMP) .. 272
 Mesh ... 275
 Channel encoding ... 277
 Randomization ... 277
 Forward error correction (FEC) 278
 Reed-Solomon concatenated with convolutional coding (RS-CC) . 278
 Block turbo codes (BTCs) .. 279
 Convolutional turbo codes (CTCs) 280
 Interleaving ... 281
 Modulation ... 281
 Control mechanisms ... 282
 Ranging .. 282
 BW requests ... 284
 Power control ... 285

Chapter 12 PHY: WirelessMAN-OFDMA:
Multicarrier PHY for frequencies below 11 GHz 287
 Introduction ... 288
 Selection of OFDMA waveform 288
 Time-frequency mapping .. 290
 Permutation examples ... 294
 FUSC .. 294
 PUSC, DL ... 296
 PUSC, UL ... 298
Table of Contents

Frame structure .. 300
Point-to-multipoint (PMP) ... 300
Preambles ... 301
Channel encoding .. 302
Randomization .. 302
Forward error correction (FEC) 302
 Convolutional coding (CC) 303
 BTCs and CTCs .. 303
 LDPCC .. 303
Interleaving ... 305
Modulation ... 305
Control mechanisms ... 306
Fast-feedback ... 306
CDMA ranging and BW requests 306
PAPR reduction/safety zone 308
HARQ support ... 309

Chapter 13 Multiple antenna systems:
Support for advanced antennas 311
 Adaptive antenna systems (AAS) 311
 AAS support in IEEE Std 802.16 313
 DL and UL framing .. 314
 MAC service and control functions 316
 AAS MAC management messages 316
 Channel state information 317
 AAS DL synchronization and initial ranging 317
 AAS BW requests .. 318
 AAS support in OFDM PHY 319
 AAS support in OFDMA PHY 320
Open-loop transmit diversity 321
 STC support in OFDM PHY 322
 STC, FHDC, and MIMO support in OFDMA PHY 323
Closed-loop transmit diversity 324
 Precoding ... 325
 Antenna selection ... 326
 Antenna grouping .. 326

Chapter 14 Performance analysis:
MAC and PHY performance and throughput 327
 Introduction .. 327
 WirelessMAN-OFDM, fixed operation 327
Table of Contents

Capacity analysis .. 327
MAC performance .. 329
 Full-duplex with single burst profile 331
 Mixed full-duplex/half-duplex with burst profiles case 335
WirelessMAN-OFDM, mobile operation 338
 Basic PHY performance 338
 Capacity analysis ... 340
WirelessMAN-OFDMA, mobile operation 343
 Overhead and capacity 343
 WirelessMAN-OFDMA vs high-speed DL packet access (HSDPA) . 348
Basic WirelessMAN-OFDMA PHY performance 349
MIMO capacity ... 355

Chapter 15 Conformance and interoperability:
Conformance standards and testing 357
 The WiMAX Forum ... 357
 Conformance test standards for WirelessMAN-SC 360
 The WiMAX Forum’s move to lower frequencies 360
 Lower frequency profiles and test specifications 361
 WiMAX Forum conformance testing for fixed access 362
 WiMAX Forum and mobile broadband wireless access ... 363

Chapter 16 Related standards:
Other wireless standards with similar applications 365
 IEEE Std 802.11 .. 365
 IEEE 802.11 MAC ... 366
 Medium access control layer (MAC) 366
 MAC overhead ... 367
 MAC summary ... 368
 IEEE 802.11 PHY ... 369
 IEEE 802.11 extensions 370
 Using IEEE Std 802.11 as a MAN 371
 Quantitative comparison of IEEE Std 802.11 and IEEE Std 802.16 . 371
 IEEE 802.20 Working Group 373
 IEEE 802.22 Working Group 374
 ETSI BRAN .. 375
 ETSI BRAN HiperACCESS 376
 ETSI BRAN HiperMAN 377
 Other regional standards activities 378
 Korean Telecommunication Technology Association (TTA) and WiBro 378
Table of Contents

China Communications Standards Association (CCSA) 379
International Telecommunications Union (ITU) 379

Appendix A IEEE 802.16 headers, subheaders, and management messages ... 383

Bibliography ... 387

Index ... 393
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–1</td>
<td>Typical IEEE 802.16 deployment scenarios</td>
<td>7</td>
</tr>
<tr>
<td>2–1</td>
<td>IEEE 802.16 Working Group attendance</td>
<td>20</td>
</tr>
<tr>
<td>2–2</td>
<td>IEEE 802.16 project timeline</td>
<td>22</td>
</tr>
<tr>
<td>3–1</td>
<td>Fresnel zone</td>
<td>37</td>
</tr>
<tr>
<td>3–2</td>
<td>TDD illustration</td>
<td>50</td>
</tr>
<tr>
<td>3–3</td>
<td>Full-duplex FDD illustration</td>
<td>51</td>
</tr>
<tr>
<td>3–4</td>
<td>H-FDD illustration</td>
<td>51</td>
</tr>
<tr>
<td>3–5</td>
<td>OFDM and OFDMA</td>
<td>54</td>
</tr>
<tr>
<td>3–6</td>
<td>PDUs, SDUs and SAPs</td>
<td>57</td>
</tr>
<tr>
<td>4–1</td>
<td>IEEE 802.16 reference model</td>
<td>69</td>
</tr>
<tr>
<td>4–2</td>
<td>IEEE 802.16 framing</td>
<td>74</td>
</tr>
<tr>
<td>4–3</td>
<td>PMP TDD frame structure</td>
<td>77</td>
</tr>
<tr>
<td>4–4</td>
<td>PMP FDD frame structure</td>
<td>79</td>
</tr>
<tr>
<td>4–5</td>
<td>H-FDD framing</td>
<td>80</td>
</tr>
<tr>
<td>4–6</td>
<td>Full-duplex FDD framing</td>
<td>80</td>
</tr>
<tr>
<td>4–7</td>
<td>Maximum time relevance of UL and DL MAPs for TDD</td>
<td>81</td>
</tr>
<tr>
<td>4–8</td>
<td>Minimum time relevance of UL and DL MAPs for TDD</td>
<td>82</td>
</tr>
<tr>
<td>4–9</td>
<td>Maximum time relevance of DL and UL MAPs for FDD</td>
<td>83</td>
</tr>
<tr>
<td>4–10</td>
<td>Minimum time relevance of DL and UL MAPs for FDD</td>
<td>83</td>
</tr>
<tr>
<td>5–1</td>
<td>ATM CS PDU format</td>
<td>100</td>
</tr>
<tr>
<td>5–2</td>
<td>CS PDU format for VP-switched ATM connections</td>
<td>100</td>
</tr>
<tr>
<td>5–3</td>
<td>CS PDU format for VC-switched ATM connections</td>
<td>100</td>
</tr>
<tr>
<td>5–4</td>
<td>MSDU format for PCS</td>
<td>101</td>
</tr>
<tr>
<td>5–5</td>
<td>Classification and CID mapping (SS to BS)</td>
<td>102</td>
</tr>
<tr>
<td>5–6</td>
<td>PHS operation, with masking</td>
<td>105</td>
</tr>
<tr>
<td>6–1</td>
<td>BW request header</td>
<td>114</td>
</tr>
<tr>
<td>6–2</td>
<td>Generic MAC header</td>
<td>116</td>
</tr>
<tr>
<td>6–3</td>
<td>FSHs</td>
<td>120</td>
</tr>
<tr>
<td>6–4</td>
<td>PSHs</td>
<td>122</td>
</tr>
<tr>
<td>6–5</td>
<td>GMSHs</td>
<td>123</td>
</tr>
<tr>
<td>6–6</td>
<td>MSH</td>
<td>124</td>
</tr>
<tr>
<td>6–7</td>
<td>FFSH</td>
<td>124</td>
</tr>
<tr>
<td>6–8</td>
<td>MPDU structure</td>
<td>125</td>
</tr>
<tr>
<td>6–9</td>
<td>MPDU with subheaders</td>
<td>126</td>
</tr>
<tr>
<td>6–10</td>
<td>Ordering of MAC subheaders</td>
<td>128</td>
</tr>
<tr>
<td>6–11</td>
<td>ARQ blocks</td>
<td>129</td>
</tr>
</tbody>
</table>
Figure 6–12: MPDU with fragmentation ... 130
Figure 6–13: Packing of fixed-length SDUs 131
Figure 6–14: Packing of variable-length SDUs 132
Figure 6–15: Packed MPDU with two fragments 133
Figure 6–16: Packed MPDU with one fragment 133
Figure 6–17: ARQ feedback and packing 134
Figure 6–18: Concatenation of MPDUs ... 135
Figure 6–19: Format of the MAC management message 136
Figure 6–20: ARQ blocks and retransmissions 138
Figure 6–21: ARQ Feedback IE .. 140
Figure 6–22: Block sequence acknowledgment MAP formats 143
Figure 6–23: Construction of HARQ packet 145
Figure 6–24: RCID decoding .. 146
Figure 7–1: SS basic capability negotiation 151
Figure 7–2: SS registration ... 154
Figure 7–3: DSA message flow (BS-initiated) 155
Figure 7–4: TDD frame format .. 157
Figure 7–5: FDD frame format .. 158
Figure 7–6: FDD DL subframe structure 159
Figure 7–7: Practical TDD UL minimum-maximum relevance 161
Figure 7–8: FDD logical offset ... 162
Figure 7–9: Periodic ranging opportunity allocation at BS 164
Figure 7–10: Periodic ranging receiver processing at BS 165
Figure 7–11: Periodic ranging at SS .. 166
Figure 7–12: CDMA periodic ranging ... 168
Figure 7–13: Transition to more robust burst profile 170
Figure 7–14: Transition to less robust burst profile 170
Figure 7–15: DSA message flow—SS initiated 171
Figure 7–16: Provisioned authorization model 174
Figure 7–17: Dynamic authorization model 175
Figure 7–18: Two terminals with same planned PHY mode 189
Figure 7–19: Clock comparison .. 202
Figure 7–20: ARQ block states at the transmitter 208
Figure 7–21: ARQ block reception ... 211
Figure 7–22: Transmitter-initiated reset 214
Figure 7–23: Receiver-initiated reset .. 215
Figure 8–1: Encrypted payload format in AES-CCM mode 222
Figure 8–2: Initial CBC block and nonce 223
Figure 8–3: Counter blocks .. 223
Figure 8–4: AK management in BS and SS 225
Figure 8–5: TEK management in BS and SS 227
Figure 9–1: Three BSs required for full coverage 231
Figure 9–2: Two BSs required with mesh SS 231
Figure 9–3: Neighborhood definitions 233
Figure 9–4: Mesh CIDs ... 234
Figure 9–5: Mesh network entry: Opening a sponsor channel 238
Figure 9–6: Distributed scheduling 241
Figure 9–7: Centralized scheduling 242
Figure 9–8: Addition of PtP ... 245
Figure 9–9: Physical or directed mesh 246
Figure 10–1: TDD DL subframe structure 249
Figure 10–2: FDD DL subframe structure 251
Figure 10–3: DL MAP usage with shortened FEC blocks—TDM case 253
Figure 10–4: Format of DL transmission CS PDU 254
Figure 10–5: Conceptual block diagram of DL PHY 255
Figure 10–6: UL subframe structure 257
Figure 10–7: Conceptual block diagram of UL PHY 258
Figure 11–1: OFDM symbol structure 263
Figure 11–2: OFDM frequency description 265
Figure 11–3: Subchannel subcarrier allocations 268
Figure 11–4: DL and network entry preamble structure 271
Figure 11–5: Example OFDM structure with TDD 273
Figure 11–6: DL burst and MPDU mapping 274
Figure 11–7: Mesh frame structure 276
Figure 11–8: RS-CC encoding process 279
Figure 11–9: BTC encoding block 280
Figure 11–10: CTC encoder .. 280
Figure 11–11: Initial ranging formats 283
Figure 12–1: Schematic indication of logical mapping elements 291
Figure 12–2: FUSC mapping example 295
Figure 12–3: PUSC DL mapping example 297
Figure 12–4: PUSC UL mapping example 299
Figure 12–5: Frame structure (TDD) 301
Figure 12–6: General shift index matrix structure 304
Figure 12–7: Single-slot initial ranging transmission for OFDMA 307
Figure 13–1: Example beam-forming network 312
Figure 13–2: TDD framing for AAS Systems 315
Figure 13–3: FDD framing for AAS systems 315
Figure 13–4: Open-loop transmit diversity schemes 321
Figure 13–5: Four-antenna STC and SM 324
Figure 14–1: WirelessMAN-OFDM throughput per 5 MHz channel 328
Figure 14–2: WirelessMAN-OFDM outage relative to 1.5 Mbit/s 329
Figure 14–3: Average throughput delay vs offered load 330
Figure 14–4: DL, IP traffic mean transfer delay 332
Figure 14–5: UL, IP traffic mean transfer delay 332
Figure 14–6: UL, Average transmit opportunities per frame 333
Figure 14–7: UL load and utilization of transmit opportunities 334
Figure 14–8: FCH + MAP overhead ... 334
Figure 14–9: UL, full-duplex SSs, VoIP mean transfer delay 335
Figure 14–10: UL, half-duplex SSs, VoIP mean transfer delay 336
Figure 14–11: DL, half-duplex SSs, HTTP mean transfer delay 337
Figure 14–12: UL, half-duplex SSs, HTTP mean transfer delay 337
Figure 14–13: UL, half-duplex SSs, HTTP mean transfer delay w/ARQ 338
Figure 14–14: OFDM CBLERs—ITU VehA 3 km/h 339
Figure 14–15: OFDM CBLERs—ITU VehA 30 km/h 340
Figure 14–16: Channel utilization as function of offered load 341
Figure 14–17: Modulation/coding utilization as function of offered load 341
Figure 14–18: Call blocking (C/I < 1 dB) as function of offered load 342
Figure 14–19: DL sector capacity per cell radius—ITU VehA (60 km/h) 344
Figure 14–20: UL sector capacity per cell radius—ITU VehA (60 km/h) 344
Figure 14–21: DL sector capacity per cell radius (ITU outdoor-indoor) 345
Figure 14–22: UL sector capacity per cell radius (ITU outdoor-indoor) 345
Figure 14–23: Delay for VoIP using rtPS, UGS, and ertPS 347
Figure 14–24: Average cell throughput for various schemes 347
Figure 14–25: CBLER, UL PUSC, ITU VehA 3 km/h, CC, ideal 349
Figure 14–26: CBLER, UL PUSC, ITU VehA 3 km/h, CC, estimated ... 350
Figure 14–27: CBLER, UL PUSC, ITU VehA 120 Km/h, CC, ideal 351
Figure 14–28: CBLER, UL PUSC, ITU VehA 120 km/h, CC, estimated 351
Figure 14–29: CBLER, UL PUSC, ITU VehA 3 km/h, CTC, ideal 352
Figure 14–30: CBLER, DL PUSC, ITU VehA 3 km/h, CC, ideal 353
Figure 14–31: CBLER, DL PUSC, ITU VehA 3 km/h, CC, ideal 354
List of Tables

Table 2–1: IEEE 802.16 members by geography, as of January 2006 21
Table 4–1: Key IEEE 802.16 features and their status 95
Table 6–1: CID allocation and well-known CID.s 113
Table 6–2: BW request header fields . 115
Table 6–3: Generic MAC header fields . 117
Table 6–4: Generic HT encodings . 118
Table 6–5: MAC header demultiplexing. 119
Table 6–6: FSH fields . 121
Table 6–7: Fast-feedback allocation feedback type encodings 124
Table 6–8: Subheader and special payload ordering. 127
Table 6–9: DSA-RSP message format . 137
Table 6–10: Acknowledgment types . 141
Table 6–11: RCID field interpretation . 147
Table 7–1: Mapping of ATM CoS concepts to WirelessMAN 183
Table 7–2: ARQ parameters and timers . 204
Table 12–1: Subchannel allocations . 289
Table 14–1: Cell-ranges DL PUSC . 354
Table 14–2: Relative performance benefit of MIMO and virtual MIMO . . 355
Table 14–3: Performance using MIMO . 356
Table 15–1: WirelessMAN-SC system profiles . 359
Table 16–1: Comparison of IEEE Std 802.11 and IEEE Std 802.16 372
Table 16–2: IEEE 802.20 performance targets . 373
Table A–1: MAC headers, subheaders and special payloads 383
Table A–2: Management messages. 384
Acronyms and abbreviations

The following acronyms and abbreviations are used in this book:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DES</td>
<td>triple data encryption standard</td>
</tr>
<tr>
<td>AAS</td>
<td>adaptive antenna systems</td>
</tr>
<tr>
<td>ABR</td>
<td>available bit rate</td>
</tr>
<tr>
<td>ACID</td>
<td>ARQ channel identifier</td>
</tr>
<tr>
<td>ACK</td>
<td>acknowledgment</td>
</tr>
<tr>
<td>AES</td>
<td>advanced encryption standard</td>
</tr>
<tr>
<td>AISN</td>
<td>ARQ identifier sequence number</td>
</tr>
<tr>
<td>AK</td>
<td>authorization key</td>
</tr>
<tr>
<td>AMC</td>
<td>adaptive modulation and coding</td>
</tr>
<tr>
<td>AoA</td>
<td>angle of arrival</td>
</tr>
<tr>
<td>AoD</td>
<td>angle of departure</td>
</tr>
<tr>
<td>AP</td>
<td>access point</td>
</tr>
<tr>
<td>ARQ</td>
<td>automatic repeat request</td>
</tr>
<tr>
<td>ASIC</td>
<td>application-specific integrated circuit</td>
</tr>
<tr>
<td>ATDD</td>
<td>adaptive time division duplexing</td>
</tr>
<tr>
<td>ATM</td>
<td>asynchronous transfer mode</td>
</tr>
<tr>
<td>ATS</td>
<td>abstract test suite</td>
</tr>
<tr>
<td>BCC</td>
<td>block convolutional code</td>
</tr>
<tr>
<td>BE</td>
<td>best effort</td>
</tr>
<tr>
<td>BER</td>
<td>bit error rate</td>
</tr>
<tr>
<td>BPSK</td>
<td>binary phase shift keying</td>
</tr>
<tr>
<td>BRAN</td>
<td>Broadband Radio Access Networks (ETSI Technical Committee)</td>
</tr>
<tr>
<td>BRS</td>
<td>broadband radio service</td>
</tr>
<tr>
<td>BS</td>
<td>base station</td>
</tr>
<tr>
<td>BSN</td>
<td>block sequence number</td>
</tr>
<tr>
<td>BTC</td>
<td>block turbo code</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>BW</td>
<td>bandwidth</td>
</tr>
<tr>
<td>BWA</td>
<td>broadband wireless access</td>
</tr>
<tr>
<td>CAC</td>
<td>call admission control</td>
</tr>
<tr>
<td>CAZAC</td>
<td>constant amplitude zero autocorrelation</td>
</tr>
<tr>
<td>CBC</td>
<td>cipher block chaining</td>
</tr>
<tr>
<td>CBLER</td>
<td>coded block error rate</td>
</tr>
<tr>
<td>CBR</td>
<td>constant bit rate</td>
</tr>
<tr>
<td>CC</td>
<td>convolutional coding</td>
</tr>
<tr>
<td>CCM</td>
<td>counter with CBC-MAC</td>
</tr>
<tr>
<td>CDMA</td>
<td>code division multiple access</td>
</tr>
<tr>
<td>C/I</td>
<td>carrier to interference ratio</td>
</tr>
<tr>
<td>CID</td>
<td>connection identifier</td>
</tr>
<tr>
<td>CINR</td>
<td>carrier to interference-plus-noise ratio</td>
</tr>
<tr>
<td>CIR</td>
<td>channel impulse response</td>
</tr>
<tr>
<td>CLR</td>
<td>cell loss ratio</td>
</tr>
<tr>
<td>CP</td>
<td>cyclic prefix</td>
</tr>
<tr>
<td>CoS</td>
<td>class of service</td>
</tr>
<tr>
<td>CPE</td>
<td>customer premises equipment</td>
</tr>
<tr>
<td>CPS</td>
<td>common part sublayer</td>
</tr>
<tr>
<td>CRC</td>
<td>cyclic redundancy check</td>
</tr>
<tr>
<td>CS</td>
<td>convergence sublayer</td>
</tr>
<tr>
<td>CSCF</td>
<td>centralized scheduling configuration</td>
</tr>
<tr>
<td>CSCH</td>
<td>centralized scheduling</td>
</tr>
<tr>
<td>CSMA/CA</td>
<td>carrier sense multiple access/collision avoidance</td>
</tr>
<tr>
<td>CTC</td>
<td>convolutional turbo code</td>
</tr>
<tr>
<td>CTS</td>
<td>clear to send</td>
</tr>
<tr>
<td>DAMA</td>
<td>demand-assigned multiple access</td>
</tr>
<tr>
<td>DBPC</td>
<td>downlink burst profile change</td>
</tr>
<tr>
<td>DCD</td>
<td>downlink channel descriptor</td>
</tr>
<tr>
<td>DCF</td>
<td>distributed coordination function</td>
</tr>
<tr>
<td>DES</td>
<td>data encryption standard</td>
</tr>
<tr>
<td>DFS</td>
<td>dynamic frequency selection</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
</tbody>
</table>
DIUC downlink interval usage code
DL downlink
DLFP downlink frame prefix
DMZ diversity MAP zone
DOCSIS® data over cable service interface specification
DSA dynamic service addition
DSC dynamic service change
DSCH distributed scheduling
DSCP differentiated services code point
DSD dynamic service deletion
DSL digital subscriber line
DVB digital video broadcast
EAP Extensible Authentication Protocol
EDCA enhanced distributed channel access
EGC equal gain combining
EIRP effective isotropic radiated power
EKS encryption key sequence
FC fragment control [field]
FCH frame control header
FDD frequency division duplexing
FDE frequency-domain equalizer
FDM frequency division multiplexing
FDMA frequency division multiple access
FEC forward error correction
FFSH fast-feedback allocation subheader
FFT fast Fourier transform
FHDC frequency-hopped diversity coding
FHSS frequency-hopping spread spectrum
FIFO first-in, first-out
FSDD frequency shift division duplexing
FSH fragmentation subheader
FSN fragment sequence number
FTP File Transfer Protocol
FUSC full usage of subchannels
GBN go-back-n
GF Galois field
GFR guaranteed frame rate
GMSH grant management subheader
GP guard period
GPS global positioning system
GSM Global System for Mobile Communications
HARQ hybrid automatic repeat request
HCCA HCF coordinated channel access
HCF hybrid coordination function
HCS header check sequence
H-FDD half-duplex frequency division duplexing
HSDPA high-speed downlink packet access
HT header type
HTTP Hypertext Transfer Protocol
I in-phase
ID identifier
IE information element
IFFT inverse fast Fourier transform
IP Internet Protocol
ISI intersymbol interference
IUC interval usage code
IV initialization vector
KEK key encryption key
LAN local area network
LDPCC low-density parity check coding
LLC logical link control
LMDS local multipoint distribution service
LMSC LAN/MAN Standards Committee
LOS line-of-sight
LSB least significant bit
MAC medium access control layer
MAN metropolitan area network
MBS maximum burst size
MIB management information base
MIMO multiple-input, multiple-output
MMDS multichannel multipoint distribution service
MPDU MAC protocol data unit
MPLS multiprotocol label switching
MRC maximum ratio combining
MSB most significant bit
MSDU MAC service data unit
MSH mesh subheader
MS mobile station
NACK negative acknowledgment
NLOS non-line-of-sight
nrtPS nonreal-time polling service
nrtVBR nonreal-time variable bit rate
OFDM orthogonal frequency division multiplexing
OFDMA orthogonal frequency division multiple access
O-FUSC optional full usage of subchannels
O-PUSC optional partial usage of subchannels
OSI Open System Interconnection
PAN personal area network
PAPR peak to average power ratio
PAR project authorization request
PCF point coordination function
PCR peak cell rate
PCS packet convergence sublayer
PDU protocol data unit
PER packet error rate
PHS payload header suppression
PHSF payload header suppression field
PHSI payload header suppression index
PHSM payload header suppression mask
PHSS payload header suppression size
PHSV payload header suppression valid
PHY physical layer
PICS protocol implementation conformance statement
PKM privacy key management
PM poll-me
PMP point-to-multipoint
PN packet number
PoS point of sale
PRBS pseudo-random binary sequence
PS physical slot
PSH packing subheader
PtP point-to-point
PUSC partial usage of subchannels
Q quadrature
QAM quadrature amplitude modulation
QoS quality of service
QPSK quadrature phase-shift keying
RCID reduced connection identifier
RCT radio conformance test
RF radio frequency
RLC radio link control
RS Reed-Solomon
RS-CC Reed-Solomon concatenated with convolutional coding
RSSI received signal strength indicator
RSV or Rsv reserved
RTG receive-transmit transition gap
rtPS real-time polling service
RTS request to send
rtVBR real-time variable bit rate
SA security association
SAID security association identifier
SAP service access point
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>single carrier</td>
</tr>
<tr>
<td>SCR</td>
<td>sustained cell rate</td>
</tr>
<tr>
<td>SDMA</td>
<td>spatial division multiple access</td>
</tr>
<tr>
<td>SDO</td>
<td>standards developing organization</td>
</tr>
<tr>
<td>SDU</td>
<td>service data unit</td>
</tr>
<tr>
<td>SFID</td>
<td>service flow identifier</td>
</tr>
<tr>
<td>SHA-1</td>
<td>Secure Hash Algorithm 1</td>
</tr>
<tr>
<td>SI</td>
<td>slip indicator</td>
</tr>
<tr>
<td>S/I</td>
<td>signal to interference ratio</td>
</tr>
<tr>
<td>SISO</td>
<td>single-input, single-output</td>
</tr>
<tr>
<td>SLA</td>
<td>service-level agreement</td>
</tr>
<tr>
<td>SM</td>
<td>spatial multiplexing</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SNR</td>
<td>signal to noise ratio</td>
</tr>
<tr>
<td>SOHO</td>
<td>small office/home office</td>
</tr>
<tr>
<td>SPID</td>
<td>subpacket identifier</td>
</tr>
<tr>
<td>SR</td>
<td>selective repeat</td>
</tr>
<tr>
<td>SS</td>
<td>subscriber station</td>
</tr>
<tr>
<td>SSRTG</td>
<td>subscriber station receive-transmit transition gap</td>
</tr>
<tr>
<td>SSTG</td>
<td>subscriber station transition gap</td>
</tr>
<tr>
<td>SSTTG</td>
<td>subscriber station transmit-receive transition gap</td>
</tr>
<tr>
<td>STBC</td>
<td>space-time block coding</td>
</tr>
<tr>
<td>STC</td>
<td>space-time coding</td>
</tr>
<tr>
<td>STTD</td>
<td>space-time transmit diversity</td>
</tr>
<tr>
<td>TCM</td>
<td>trellis-coded modulation</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TDD</td>
<td>time division duplexing</td>
</tr>
<tr>
<td>TDM</td>
<td>time division multiplexing</td>
</tr>
<tr>
<td>TDMA</td>
<td>time division multiple access</td>
</tr>
<tr>
<td>TEK</td>
<td>traffic encryption key</td>
</tr>
<tr>
<td>TFTP</td>
<td>Trivial File Transfer Protocol</td>
</tr>
<tr>
<td>TLV</td>
<td>Type-Length-Value</td>
</tr>
<tr>
<td>ToS</td>
<td>type of service</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TSS&TP</td>
<td>test suite structure and test purposes</td>
</tr>
<tr>
<td>TTG</td>
<td>transmit-receive transition gap</td>
</tr>
<tr>
<td>UBR</td>
<td>unspecified bit rate</td>
</tr>
<tr>
<td>UCD</td>
<td>uplink channel descriptor</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UGS</td>
<td>unsolicited grant service</td>
</tr>
<tr>
<td>UIUC</td>
<td>uplink interval usage code</td>
</tr>
<tr>
<td>UL</td>
<td>uplink</td>
</tr>
<tr>
<td>VC</td>
<td>virtual channel</td>
</tr>
<tr>
<td>VCI</td>
<td>virtual channel identifier</td>
</tr>
<tr>
<td>VLAN</td>
<td>virtual local area network</td>
</tr>
<tr>
<td>VoIP</td>
<td>voice over Internet Protocol</td>
</tr>
<tr>
<td>VP</td>
<td>virtual path</td>
</tr>
<tr>
<td>VPI</td>
<td>virtual path identifier</td>
</tr>
<tr>
<td>Wi-Fi®</td>
<td>wireless fidelity</td>
</tr>
<tr>
<td>WiMAX</td>
<td>Worldwide Interoperability for Microwave Access</td>
</tr>
<tr>
<td>WLAN</td>
<td>wireless local area network</td>
</tr>
<tr>
<td>WPAN</td>
<td>wireless personal area network</td>
</tr>
<tr>
<td>WRAN</td>
<td>wireless regional area network</td>
</tr>
</tbody>
</table>
Chapter 1 Broadband wireless access (BWA)

Applicable market segments and requirements

The IEEE 802.16 Working Group on Broadband Wireless Access has been developing IEEE Std 802.16™ since 1999. Its original air interface standard was completed in 2001, but it has continued to evolve and will continue to evolve. The basic goal of the standard is to provide specific technologies and protocols to specify the air interface of BWA systems.

The central aim of IEEE 802.16 technology is to support broadband access; that is, to support access (i.e., connection to core networks) at broadband rates (which, according to a popular International Telecommunication Union (ITU) definition, means providing service at a rate of at least 1.544 Mbit/s, although we take the definition somewhat more loosely). Since IEEE 802.16 provides broadband access with a wireless connection, it could perhaps be said to provide “wireless broadband access.” In the early days, the IEEE 802.16 Working Group considered this word order, finally settling on “broadband wireless access.” It appears that this might emphasize that the work involved a broadband extension of the wireless access concept rather than a wireless implementation of broadband access concepts. In fact, because this standard does both, it exemplifies the ongoing trends toward convergence in telecommunications and data communications. The final choice of word order was rather arbitrary.

As the world’s backbone telecommunications networks flourished in the twentieth century, vast data-carrying capacity is now available in fiber-optic lines. Unfortunately, this bandwidth is directly available only to those with direct access to the infrastructure, which is a very small fraction of the potential users. In the developed world, powerful fiber infrastructure may connect large commercial buildings but not the neighboring medium-sized commercial facilities. In many parts of the developing world, connection to
the world’s fiber infrastructure is still only a plan, or perhaps only a dream. When such a connection does take place, it will initially be at a single port of entry for an entire country. Distribution is critical.

Broadband access is about bridging the gap between the core infrastructure networks and the user’s networks. This bridge can itself be built with wires or fibers, but the basic structure of the problem means that this requires a massive proliferation of cabling in order to serve users in a wide variety of places. This is a fundamental barrier to cabling. It is costly to install and maintain. Cabling hung from utility poles requires a series of permissions and rights-of-way. It is costly to deploy and subject to damage caused by everything from weather to traffic accidents. Buried cabling is more reliable (although still subject to cuts), but trenching is expensive and slow, or even prohibitive, due to the disruption to communities and traffic patterns. Doug Lockie, a veteran of the BWA business, has noted many times that “backhoes don’t follow Moore’s Law.” His point is that no amount of exponential improvement in cost and performance of network equipment will enable cost-effective network deployment as long as cable installation is the fundamental limitation.

If broadband access is wireless, many of these construction problems can be bypassed. Compared to wired broadband access, wireless broadband access leans more heavily on technological innovation and less heavily on the physical plant. This is one reason it seems to hold more promise for the future. Of course, the wireless medium has its own limitations and costs; these are associated primarily with spectrum access, restrictions, and limitations. It remains to be seen how the costs and benefits of the wired and wireless cases will balance. It seems clear that cabling will be the leader at the core network side, where data are massively consolidated, and wireless will shine nearer the user, where data are more user-specific. The details of which technologies will be most competitive in various market segments will depend on many details, including the local infrastructure and regulatory environment.

Competition, of course, is driven by demand, and demand cannot always be satisfied by a single technical solution. If all homes and enterprises in an area have direct access to wired broadband, many of the consumers will probably be satisfied. On the other hand, some might still be willing to consider
alternative providers based on price, performance, features, or reliability; therefore, alternatives such as wireless broadband access may see an opportunity. But demand in the telecommunications world can also come from another direction: from the top down. Namely, many operators of core networks intend to provide service to retail customers. If these operators lack access networks, they are forced into leasing or partnership arrangements with the access provider. In an area with only one access provider (or only very few), the network operator may be forced into an unfavorable position. In such cases, demand for alternative access may be driven in top-down fashion by the operators.

In many cases, governments are seeking to foster more players and more competition in the broadband network marketplace. The market is sometimes slow to respond to demand, frequently because of natural barriers. For instance, the wired access market is difficult to penetrate, not only because it is slow and costly but, as noted earlier, because the development of local wired access facilities is burdened by regulation, especially because it is disruptive to environments (such as, for example, cities that cannot tolerate streets being trenched, or rural areas in which power lines affect wildlife migration). Barriers to wireless access networks are generally less prohibitive; therefore, wireless networks can be erected relatively inexpensively and also quite quickly. This, of course, depends heavily on spectrum availability and conditions.

One aspect of cabled infrastructure that is hard to avoid is its stationary nature. It is difficult to imagine cable being so densely deployed that it is readily available everywhere in a region the size of a city, or larger. Cable operators pick and choose their locations. Wireless signals, on the other hand, have the ability to cover a metropolitan-sized (or larger) area quite densely so that signals are broadly available, even to moving users. This allows for usage models that simply cannot be accommodated with cabled systems. The great technological and marketplace achievements of the mobile telephone business have helped to demonstrate the appeal of such a system and the flexibility it offers. Meanwhile, the success of portable computers, especially those networked with wireless local area networks (WLANs) (based on IEEE Std 802.11™) have demonstrated the appeal of untethered broadband access. This background points to a future in which broadband access moves toward
an increasingly portable, nomadic, and mobile usage model. The possibility of this evolution strengthens the hand of wireless broadband access relative to its wired alternatives.

As already noted, IEEE Std 802.16 is an evolutionary standard. The standard was designed originally for the support of stationary, enterprise-class deployments. However, the long-term goal was always to evolve the standard along with the developing technology to the point at which it could be economically feasible to move deeper into the access network and closer to the user. As of 2003, the standard was first enhanced with technology suitable for residential-class applications. Around the same time, work began to evolve the technology further, toward systems that could support mobile as well as stationary terminals. The IEEE 802.16e amendment, approved in December 2005, brings support for mobile as well as fixed terminals. We do not significantly discuss IEEE Std 802.16e™ in this book. However, in the standard’s evolution, it continues to build on the foundations that were previously laid. Therefore, understanding the stationary (“fixed”) technology is an essential basis for understanding the fixed/mobile advances.

As IEEE Std 802.16 has grown (see [B13] and [B38]), much of the evolution has occurred in the physical layer (PHY), which is the primary arbiter of the physical environment in which the technology can operate. All of this development, however, is based on the essence of the standard: its medium access control layer (MAC) specification. This MAC, which supports all of the standard’s PHY options, was originally designed for the first application: carrier-quality, enterprise-based telecommunications services. Because of this history, the IEEE 802.16 standard can support the most demanding service requirements, even as it evolves toward more consumer-friendly applications. This is a key factor in the applicability of the standard. One of the primary MAC-related features of the standard’s technology is its support for differentiated quality of service (QoS) among its users. An IEEE 802.16 base station (BS) can simultaneously support a variety of customer service requirements, for example, very demanding services such as real-time video.

1 Numbers in brackets refer the reader to additional resources listed in the bibliography of this book.
conferencing along with T1/E1 service, voice over Internet Protocol (VoIP), and best-effort Internet.

Spectrum, as the wireless medium, is a very precious infrastructure commodity. Any standard intended to support wireless communications, in any application, must be critically conservative in its use of this resource. IEEE 802.16 takes pains to conserve spectrum and emphasize spectral efficiency, at the expense of protocol complexity. This approach generally enhances its applicability, although perhaps some applications might be better suited to lower complexity protocols with lower efficiency.

IEEE Std 802.16 is called the WirelessMAN standard for wireless metropolitan area networks. “Metropolitan” in this sense indicates not the target geography but instead the target scale. The standard supports networks that are about the size of a city. It is by no means limited to urban applications. Some of the most likely applications are in rural areas in which high-quality broadband access is not readily available. The term metropolitan area network (MAN) predates the term WirelessMAN by many years. IEEE 802®, under which IEEE 802.16 is chartered, is formally known as the “LAN/MAN Standards Committee.” It was called the “LAN Standards Committee” when formed in 1980, but the name grew with the group’s portfolio.

IEEE 802.16 is an air interface standard, not a manual for service deployment. It is intended to support transport of any higher layer network requirement and in any application in which someone sees fit to apply it. The goal is flexibility. The developers of the standard may have had some applications in mind, but a good, open standard can be put to a variety of users by people who did not develop it. If a developing area is seeking to install a unified wireless network for voice, data, and video services, thereby obviating the need for a multiplicity of more narrowly focused systems as would be seen in a developed city, then IEEE 802.16 may be a good choice. Likewise, if a city is seeking to enhance the availability of broadband services to its population by constructing a public wireless data network, then IEEE 802.16 may also be an excellent candidate, serving either as a backhaul network supporting the ready deployment of WLAN access points (APs) or as an access network bringing a connection directly to a user. Some operators may seek to provide service to a fixed antenna, either on the outside of a building or indoors. Other operators
may seek to communicate directly with portable computers with on-board IEEE 802.16 radios.

In some cases, IEEE Std 802.16 might be a pure consumer system, with no commercial operator. Such use could be, for example, purely inside a home or enterprise, where the standard’s QoS support gives it a leg up on alternative technologies. Or perhaps hobbyist or quasi-professional users will set up license-exempt systems for neighborhood communications. The applications are limitless, as they were intended to be.

Given this flexibility, it is difficult to completely address the specific market applications to which IEEE Std 802.16 may be applied. An amalgam of typical deployment scenarios is sketched in Figure 1-1. Many services are supported, consumer as well as commercial, mobile as well as fixed, and backhaul-only as well as directly to the end user. Such a mixed set of services signifies a mature and successful MAN. Perhaps we shall someday see such a network based on IEEE Std 802.16.

Below, we continue this introductory chapter, providing examples of how IEEE Std 802.16 might be applied to some idealized market situations.

COMMERCIAL FIXED BROADBAND WIRELESS: FIBER EXTENSION

In large metropolitan areas throughout much of the developed world, commercial office towers are connected to core networks by high-capacity fiber optic links, with broadband network services provided to the tenants. In the meantime, other smaller businesses, even those located across the street or on the next block, go without proper network facilities for a lack of fiber connectivity. IEEE 802.16 networks can fairly easily extend the reach of the fiber links. Suitable spectrum is available for this purpose in many areas. For example, the United States licensed 1150 MHz of spectrum in the 28–31 GHz range in 1998 for a service called local multipoint distribution service (LMDS); since then, additional higher frequency spectrum has become available on a license-exempt basis or with a low-cost license. Supply for spectrum at such frequencies outweighs demand primarily because of the less favorable propagation properties of electromagnetic radiation in this band. In particular, attenuation in air is rather high so that propagation distances are
typically limited to around 3 km to 5 km. Also, attenuation increases dramatically in the presence of rainfall so that power control over a significant range is required. Diffraction is limited so that only line-of-sight (LOS) propagation is practical for communications. Furthermore, electronic components at these frequencies are relatively expensive. On the other hand, spectrum is plentiful enough for massive bandwidth, and short propagation distances and LOS propagation (supported by the compact, high-gain directional antennas available at these short wavelengths) allow for high frequency reuse.

Tall towers, which often have fiber connectivity, are good platforms for LOS BS antennas because the view from the top typically includes hundreds of
Chapter 1: Broadband wireless access (BWA)

prospective customers. Commercial buildings allow for rooftop antennas, the cost of which (both the hardware and the professional installation) is spread over a number of commercial customers. In LOS links, multipath propagation is usually minimal; therefore, relatively simple modulation schemes may be effective. The extension of fiber requires the ability to support high data rates (> 100 Mbit/s), with high reliability and service-level guarantees. The ability to transport voice, video, and data traffic with appropriate quality is also an important requirement.

The first version of IEEE Std 802.16, approved in 2001, included a PHY specification, called single-carrier WirelessMAN (WirelessMAN-SC), suitable for use in the high-frequency bands associated with fiber extension. At the time, prospects for the deployment of the standard seemed rosy. However, the bursting of the “telecom bubble” early in the twenty-first century put an end to many promising plans. Currently, conditions are becoming more favorable for reconsideration of these applications. If so, then the WirelessMAN-SC air interface will be a good candidate to support such deployments. It supports the requirements, and it allows for stepped investment commensurate with market capacity requirements.

RESIDENTIAL FIXED BROADBAND WIRELESS: DIGITAL SUBSCRIBER LINE (DSL) AND CABLE MODEM ALTERNATIVE

In the developed world, broadband access has become a virtual necessity in the residential market. Homes are frequently the site of full-time or off-duty business, and broadband Internet access is in demand for education, information, voice, video, shopping, and entertainment. Cable modem and DSL networks have become the primary technologies addressing these home markets in many countries. However, such networks do not extend everywhere. Not all areas are served by cable television networks, and not all have been upgraded for cable modem service. While telephone networks are widely deployed in the developed world, not all lines have been upgraded for DSL service, and many homes are too far from the central office for DSL transmission.

Where DSL and/or cable modem service is available, BWA may nevertheless play a role. Customers may be seeking alternatives based on price,
performance, and/or reliability. Also, wireless service may have advantages, such as, in some cases, the ability to move a portable terminal throughout a service area. As previously noted, network operators who are dissatisfied with their inability to directly access their retail customers except through a local access provider may also be motivated to deploy a wireless access alternative.

In the developing world, and in many rural areas of the developed world, broadband access is simply unavailable. Wireless access may be particularly attractive in sparsely populated rural areas in which the cost of cabling is prohibitive.

Different design considerations may apply in rural and urban areas. For instance, in rural areas, economic considerations may require that a BS cell size be quite large, up to tens of kilometers. In these cases, LOS propagation with rooftop-mounted directional antennas may be appropriate. On the other hand, urban and suburban applications typically assume non-line-of-sight (NLOS) operation due to the proliferation of obstacles, the high incidence of multipath propagation, and the carrier frequency used (typically under 11 GHz). These networks may use licensed or license-exempt bands.

Attractive licensed frequencies are available in the United States in the broadband radio service (BRS) bands [formerly known as multichannel multipoint distribution service (MMDS)] at around 2.5 GHz to 2.69 GHz. Outside the United States, other licensed bands, such as 3.5 GHz, are more common.

License-exempt operation has some additional challenges in MANs. Popular WLANs, which similarly operate in license-exempt 2.4 GHz and 5 GHz bands, are typically deployed in buildings and other areas under the control of a single entity deploying the network. This controlled environment is similar to a licensed deployment, since interference is limited to neighbors normally isolated to some degree by space and walls. However, license-exempt outdoor BWA deployments bring a different set of challenges, as a single entity cannot enforce its rules on other legal transmitters that may interfere. Any BWA solution has to take this into account.

In all of these cases, operators favor solutions that allow self-installation of customer equipment, since professional installation significantly affects the cost. Ideally, the customer equipment is in the form of a portable device that
can be placed indoors. Such installation not only reduces the deployment cost but also offers the advantage of portability.

With residential customers becoming more technologically demanding, a competitive residential service offering is becoming suitable to small businesses as well. Because IEEE Std 802.16 is designed to support mixed services, it has no problem supporting such a customer mix. We can easily envision a multitude of applications for such a system. For instance, T1/E1 customers could be provisioned, and commercial WLAN hot spots, which typically require backhaul by 10BaseT (often over DSL), could be made entirely wireless using IEEE 802.16 backhaul. This would allow greatly increased flexibility in the placement of the IEEE 802.11 APs. Backhaul of other devices, such as cellular BSs, is another likely service.

IEEE Std 802.16 added support for a PHY at frequencies below 11 GHz beginning in 2003 with IEEE Std 802.16a™. This work, further refined in IEEE Std 802.16-2004 [B20] (the most recent revision of the standard), includes the specification of three PHY alternatives, known as orthogonal frequency division multiplexing (WirelessMAN-OFDM), orthogonal frequency division multiple access (WirelessMAN-OFMDA), and single carrier below 11 GHz (WirelessMAN-SCa). The first two, in particular, are well suited to NLOS operation in a multipath environment.

While IEEE Std 802.16-2004 specifies a standard for fixed access, the actual applications may allow a significant level of flexibility. For example, the user device may be nomadic, meaning that it can move as long as it does not operate while doing so. Such operation, as would be typical of a portable terminal such as a laptop computer equipped with wireless fidelity (Wi-Fi®), is well within the target market of deployments based on IEEE Std 802.16-2004. Even a certain amount of movement during operation is tolerable. Intercell handover, however, is beyond the scope of IEEE Std 802.16-2004. For this, users should turn to the IEEE 802.16e specification that was approved by IEEE as an amendment in December 2005.

At the time of publication, a number of companies have announced products claiming compliance to IEEE Std 802.16-2004.
QUALITY OF SERVICE (QoS)

In order to be competitive in a modern networking environment in which a single BS must support a multiplicity of widely varying transport demands over an inherently fluctuating wireless medium, a BWA network must include rigorous support for differentiated QoS as a fundamental design feature.

This requires support for flexible MAC and PHY framing to optimally use the available airtime adaptively. A centrally controlled MAC is also a necessity for BWA systems because distributed access methods, such as carrier sense multiple access (CSMA), cannot work efficiently in environments where some user devices are unable to hear other ones, due to distance, directional antennas, intervening terrain, etc.

The higher probability of errors in wireless environments introduces another challenge to the wireless QoS problem, especially in NLOS environments. The impact of errors on QoS can be minimized with sophisticated adaptive modulation and coding, error correction, error detection, and retransmission algorithms at both the MAC and PHY.

It is unnecessary, and in fact inappropriate, for a standard to enforce a specific QoS scheduling algorithm. However, a practical standard must define scheduling behaviors that allow the system to enforce uniform QoS. IEEE Std 802.16 does so by use of techniques analogous to those of the asynchronous transfer mode (ATM), where different scheduling behaviors are defined without specifying any particular scheduling algorithm.

The ability to provide QoS in both directions is also a critical requirement for efficiently managing the available spectrum and to support bidirectional applications such as voice and video conferencing.

THROUGHPUT REQUIREMENTS

Apart from basic QoS and reliability requirements, BWA systems must provide support a sufficiently high data transmission rate in order to be commercially successful. For backhaul systems, these throughput requirements are generally higher; depending on the load, systems should be able to carry a significant fraction of a fiber optic network’s traffic. Moreover,
given the nature of the aggregated traffic over backhaul networks, the throughput requirements may be symmetrical [i.e., identical in both uplink (UP) and downlink (DL) directions], depending on the configuration.

On the other hand, the last-mile access or edge networks have to provide throughput comparable to that of competing technologies, such as DSL or cable. If BWA is used to support business needs, then the networks should be capable of supporting multiple business-class links such as T1, T3, DS3, or OC-3. Most importantly, the ability of the BWA network to scale efficiently with reasonable per-subscriber throughput is a critical requirement.

The increasing popularity of various multimedia, on-demand, and interactive applications is likely to increase the demand for network throughput and scalability in all application scenarios. IEEE Std 802.16 foresees the need for this evolution and is designed to support it.
Bibliography

[B17] ETSI TS 121 101, Universal Mobile Telecommunications System (UMTS); Technical Specifications and Technical Reports for a UTRAN-based 3GPP system.

Additional Books in the IEEE Standards Wireless Networks Series

This is the second edition of Bob O'Hara and Al Petrick's *IEEE 802.11 Handbook*. It has been referred to as the "LAN Bible". The new edition covers IEEE 802.11d, 802.11e, 802.11F, 802.11g, 802.11h, 802.11i, 802.11j, 802.11n, and more! The book is 365 pages, includes a Preface written by Stuart J. Kerry, Chairman of 802.11, a comprehensive list of abbreviations and acronyms, and handy index.

This handy pocket guide provides over 250 definitions for the jargon used in today's wireless industry. Written by Dr. James P.K. Gilb, Technical Editor of IEEE 802.15™, the dictionary is the perfect companion to the other handbooks in our Standards Wireless Networks Series and to the IEEE 802 wireless standards. Individuals who need to have a broad view of the wireless landscape will find that this book covers the most important topics and terms in today's market.*

*The authors of these books are also teaching courses based on IEEE wireless standards. For a deeper understanding of IEEE 802.16™, consider attending DoceoTech’s instructor-led course called, “WiMAX and 802.16: Broadband Wireless Access.” For more information, see http://www.doceotech.com.

http://standards.ieee.org/standardspress/
More Titles in the IEEE Standards Wireless Networks Series

Wireless Multimedia: A Handbook to the IEEE 802.15.3™ Standard clarifies the IEEE 802.15.3 standard for individuals who are implementing compliant devices and shows how the standard can be used to develop wireless multimedia applications.*

Low-Rate Wireless Personal Area Networks: Enabling Wireless Sensors with IEEE 802.15.4™ is an excellent companion to the standard for those interested in the field of “simple” wireless connectivity with a further focus on wireless sensors and actuators for the industry in general.

Please visit http://standards.ieee.org/standardspress/

- Learn more about our products and authors
- Sign up to peer review future publications
- Submit a proposal and become an IEEE Author yourself!