www.pudn.com > deepmat-master-for-spectral.zip > example_faces.m, change:2014-07-28,size:1210b


% add the path of RBM code
addpath('..');

% load CBCL train
load 'faces.train.mat';
X = X_tra;

% shuffle the training data
perm_idx = randperm (size(X,1));
X = X(perm_idx, :);

% construct RBM and use default configurations
R = default_rbm (size(X, 2), 300);

% use continuous values
R.data.binary = 0;

% set grbm parameters
R.grbm.do_vsample = 1;
R.grbm.do_normalize = 0;
R.grbm.do_normalize_std = 1;
R.grbm.learn_sigmas = 1;

% max. 100 epochs
R.iteration.n_epochs = 100;

% set the stopping criterion
R.stop.criterion = 1;
R.stop.recon_error.tolerate_count = 1000;

% save the intermediate data after every epoch
R.hook.per_epoch = {@save_intermediate, {'grbm_faces.mat'}};

% print learining process
R.verbose = 1;

% display the progress
R.debug.do_display = 0;
R.debug.display_interval = 5;
R.debug.display_fid = 1;
R.debug.display_function = @visualize_grbm;

% train RBM
fprintf(1, 'Training GB-RBM\n');
tic;
R = train_rbm (R, X);
fprintf(1, 'Training is done after %f seconds\n', toc);

% grab some samples from RBM
S = grbm_sample(normrnd(zeros(10,size(X,2)), ones(10,size(X,2))), R, 30, 1000);

figure;
for i=1:10
    subplot(10, 1, i);
    visualize_adv(squeeze(S(i,:,:)), 0, 1, 30, 0, 0);
end