www.pudn.com > deepmat-master-for-spectral.zip > TODO.txt, change:2014-07-28,size:1725b




To-do:

 - rbm_pt.m, grbm_pt.m: merge
 - rbm_pt.m: use CUDA (matlab parallel computing toolbox)
 - rbm.m, rbm_pt.m: merge
 - dbm.m: support parallel tempering or cast
 - Progress display for DBM, DAE

Done:

 - rbm.m, grbm.m: merge => rbm.m only, grbm.m obsolete now
 - rbm.m: use CUDA (matlab parallel computing toolbox)
 - dbm.m: use CUDA (matlab parallel computing toolbox)
 - dbm.m: adaptive learning rate
 - dae.m, dae_get_hidden.m, default_dae.m: a single-layer DAE
 - dae.m: contractive, soft-sparsity regularizations
 - sdae.m: deep autoencoder (tied weights)
 - dae_get_hidden.m: explicit sparsification
 - sdae_get_hidden.m: explicit sparsification
 - dbn.m: up-down learning algorithm for deep belief net
 - mlp.m default_mlp.m classify_mlp.m: MLP (stochastic backpropagation, no fancy thing)
 - rbm.m: Fast PCD
 - dbm.m: centering trick (fixed centering variables only)

Implemented Features:

 - GPU Computing: Matlab Parallel Computing Toolbox

 - (Denoising) Autoencoder
    + Shallow one: sparsity, contractive regularization
    + Deep one: stochastic backprop
    + Binary/Gaussian visible and hidden units
    + Soft-sparsity regularization (Gaussian-Gaussian case)

 - Multi-layer Perceptron
    + Stochastic Backpropagation, Adagrad
    + tanh/sigm nonlinearities

 - Restricted Boltzmann Machines & Deep Belief Networks
    + Binary, Gaussian
    + Enhanced Grad., Adaptive Learning Rate
    + Contrastive Divergence, (Fast) Persistent Contrastive Divergence
    + Parallel Tempering
    + Deep belief networks: up-down learning algorithm

 - Deep Boltzmann Machines
    + Binary, Gaussian
    + Enhanced Grad., Adaptive Learning Rate
    + Contrastive Divergence, Persistent Contrastive Divergence