www.pudn.com > 7894509matlab.rar > ldpc_generate.c, change:2000-05-09,size:8984b

```/* Generate H for  LDPC*/
/* Based on sparse.c by Matt Davey <mcdavey@mrao.cam.ac.uk> with his permission*/
#include <math.h>
#include "mex.h"

/* Input Arguments: parameters*/
#define	M_IN	prhs[0]          /* number of parity checks */
#define	N_IN	prhs[1]          /* blocklength */
#define	T_IN	prhs[2]          /* mean column weight */
#define	Q_IN	prhs[3]          /* GF base  */
#define	SEED_IN	prhs[4]          /* seed for random generator */

/* Output Arguments: matrices*/
#define	H_OUT	plhs[0]

void mexFunction(
int nlhs,       mxArray *plhs[],
int nrhs, const mxArray *prhs[]
)
{
short	**M_list, **N_list, *M_target;
double *pp,*sr,*s,*ss;
int N,M,q,i,j,k,nzmax,*irs,*jcs,l,
tr,tm,tc,done,redo,tmp,regime,tr_max,t_max, m_low;
float t;
long seed;
void adjust(int *, int *, int *, int *);
unsigned int K2,M2;
char c;
mxArray *arg_in[2], *arg_out[1]; /* to call rand generator of Matlab*/

/* Check for proper number of arguments */
if (nrhs != 5) {
mexErrMsgTxt("GENERATE requires five input arguments.");
} else if (nlhs > 1) {
mexErrMsgTxt("GENERATE requires one output argument.");
}

pp = mxGetPr(N_IN);    N = (int) (*pp);
pp = mxGetPr(M_IN);    M = (int) (*pp);
pp = mxGetPr(T_IN);    t = (float) (*pp);
pp = mxGetPr(Q_IN);    q = (int) (*pp);
pp = mxGetPr(SEED_IN); seed = (int) (*pp);

arg_in[0] = mxCreateString("state");
arg_in[1] = mxCreateDoubleMatrix(1, 1, mxREAL);
s = mxGetPr(arg_in[1]);
s[0] = seed; /* this will be used to call rand*/

/* initialize random generator */
mexCallMATLAB(0, NULL, 2, arg_in, "rand"); /* rand('state',seed) */
s[0] = 1; /* use s to store "1"*/

/* I have no idea about the details of the following - please
ask the author - :).  igor*/

/* Generate some sparse matrices for error-correcting codes.  Supply
* the following parameters:
* 	N: Blocklength
* 	M: Number of parity checks
* 	t: Mean column weight.
*
* If t<3, then we generate weight 2 columns systematically in the
* form of blocks of identity matrices to reduce probability of
* getting short cycle lengths.  Can't have more than M weight 2
* columns, though.
*
* Having generated any weight 2 columns, we fill the rest.  Calculate
* number of columns to fill with floor(t) and number with ceiling(t).
* Find mean row weight and calculate number of rows to fill with
* floor(r) and ceiling(r).
*
* We fill rows as follows:
* (Regime 0): Fill so that rows contain <= tr ones until M-tm rows
* 	    contain tr ones.
* (Regime 1): Fill so that rows contain <= (tr+1) ones until tm rows
* 	    contain (tr+1) ones.
* (Regime 2): Fill remaining rows containing < tr ones until done.
*/

/* N=6112;M=4512;t=2.3;*/

t_max=(int)ceil(t);
M_list=(short **)mxMalloc(N*sizeof(short *));
M_target=(short *)mxMalloc(M*sizeof(short *));
N_list=(short **)mxMalloc(M*sizeof(short *));
for(i=0;i<N;i++){
M_list[i]=(short *)mxMalloc((t_max+1)*sizeof(short));
}
i=0;
/* Do we have any weight 2 columns?
*
* If so, do this first.  Remember that M mightn't have a large
* power of two as a divisor, so might need to find some M'<M to use
* as unit length.
*/
K2=0;
if(t<3){
K2=ceil((double)N*(3-t));
if(K2>M)
mexErrMsgTxt("GENERATE: Can't have more than M weight 2 columns.");
j=2;
done=0;
for(i=0;!done;i++){
M2=floor((double)M/(double)j);
if((M2*(j-1))>=K2) done=1;
j*=2;
}
M2*=(j/4);
}
/*
* i contains number of identity blocks we'll need.... */
tr=((short)floor((double)(t*N)/(double)M));
/* Now we want `tr' to be final minimum row weight, `tr_max' to be
* final maximum row weight, `tm' to be number of rows which will
* have weight greater than `tr'.  'tc' will be a running count of
* how many rows we still have to fill up to weight `tr'.  Once we
* hit this many, we can start overfilling rows.
*/
if (i>tr){
tr_max=i;
/* If identity blocks make overheavy rows, we need to calculate
* the minimum row weight.
*/
done=0;
k=1;
j=floor((double)t*N)-2*K2; /* Number of ones left to distribute */
for(i=0;!done;i++){
/* (M-2*M2) rows will be empty after identity blocks */
j-=((M-2*M2)+(2*M2*(k-1))/k);
if(j<0) {
done=1;
}
else {
k*=2;
}
}
tr=i-1;
tm=M+j;
}
else {
/* This is easier! */
tr_max=tr+1;
tm=(int)floor((((double)t*N)/(double)M-tr)*M +0.5);
}
tc=M-tm;
for(i=0;i<M;i++){
N_list[i]=(short *)mxMalloc((tr_max+1)*sizeof(short));
}
for(i=0;i<M;i++){
N_list[i][0]=0;
}

regime=0;
/* Generate weight 2 columns.  First create two identity matrices on
* top of each other, then two 1/2 size ones in the lower rows of
* the matrix, and so on.
*
* j:   length of current identity block
* k:   base of this block
* i:   current column position
*/
j=M2;
k=0;
i=0;
while(i<K2){
for(;(i-k)<j && i<K2;i++){
M_list[i][0]=2;
M_list[i][1]=i;
M_list[i][2]=i+j;
N_list[i][0]++;
N_list[i][N_list[i][0]]=i;
N_list[i+j][0]++;
N_list[i+j][N_list[i+j][0]]=i;
}
k=i;
j/=2;
}

/* Now fill the unsystematic columns, ensuring weight per row as even as poss. */
i=K2;
if(K2==0){
/* Fill low weight columns */
for(i=0;i<(int)(N*(t_max-t)+0.5);i++){
for(k=1;k<=(int)floor(t);k++){
done=0;
do {
mexCallMATLAB(1, arg_out,1 , &arg_in[1], "rand"); /* ss = rand(1) */
ss = mxGetPr(arg_out[0]);
j=(short)floor(M*ss[0]);
mexCallMATLAB(1, arg_out,1 , &arg_in[1], "rand");
ss = mxGetPr(arg_out[0]);
if((ss[0])<(1-(double)N_list[j][0]/(double)tr)) {
done=1;
for(l=1;l<k;l++) if(j==M_list[i][l]) done=0;
}
} while(!done);
N_list[j][0]++;
N_list[j][N_list[j][0]]=i;
M_list[i][k]=j;
}
M_list[i][0]=k-1;
}
}
redo=1;
for(;i<N;i++){
fprintf(stderr,"%d\r",i);
for(k=1;k<=t_max;k++){
done=0;
do {
/* find the lowest weight rows, and fill one of them */
if(redo){
l=tr_max;
for(j=0;j<M;j++) if (N_list[j][0]<l) l=N_list[j][0];
m_low=0;
for(j=0;j<M;j++) if (N_list[j][0]==l) {M_target[m_low]=j; m_low++;}
}
mexCallMATLAB(1, arg_out,1 , &arg_in[1], "rand");
ss = mxGetPr(arg_out[0]);
j=M_target[tmp=(short)floor(m_low*ss[0])];
/*	if(ss[0]<(1-(double)N_list[j][0]/(double)tr)) {*/
done=1;
for(l=1;l<k;l++) if(j==M_list[i][l]) done=0;
if(done==1){
if(m_low==1) redo=1;
else {
for(;tmp<(m_low-1);tmp++) M_target[tmp]=M_target[tmp+1];
m_low--;
redo=0;
}
}
/*	}*/

} while(!done);
N_list[j][0]++;
N_list[j][N_list[j][0]]=i;
M_list[i][k]=j;
}
M_list[i][0]=k-1;
}
tr=((short)ceil((double)(3*N-K2)/(double)M));

for(i=0;i<M;i++){
mxFree(N_list[i]);
}
mxFree(N_list);

/* done generating H matrix - positions only */

/* Allocate space for sparse matrix */
nzmax=0; for(j=0 ; j<N ; j++) nzmax +=M_list[j][0];
mexPrintf("%d \n",nzmax);
/* NOTE: The maximum number of non-zero elements cannot be less
than the number of columns in the matrix. */
if (N>nzmax){
nzmax=N;
}
plhs[0] = mxCreateSparse(M,N,nzmax,mxREAL);
sr  = mxGetPr(plhs[0]);
irs = mxGetIr(plhs[0]);  /* row */
jcs = mxGetJc(plhs[0]);  /* column */

/* Copy nonzeros */
/* elements of GFq are substitudet randomply */
k = 0;
for (j=0; (j<N ); j++) {
jcs[j] = k;
for (i=1; (i<=M_list[j][0] ); i++) {
mexCallMATLAB(1, arg_out,1 , &arg_in[1], "rand"); /* ss = rand(q) */
ss = mxGetPr(arg_out[0]);
sr[k] = floor(1 + ss[0]*(q-1));
irs[k] = M_list[j][i];
k++;
}
}
jcs[N] = k;

for(i=0;i<N;i++){
mxFree(M_list[i]);
}
mxFree(M_list);

return;
}

void adjust(int *tm, int *tr, int *tc, int *regime){
switch(*regime){
case 0:
(*tc)--;
if((*tc)==0){
*regime=1;
(*tr)++;
}
break;
case 1:
(*tm)--;
if((*tm)==0){
*regime=2;
(*tr)--;
}
break;
}
}

```