
Using Simulink® and StateflowTM

in Automotive Applications

SIMULINK-STATEFLOW TECHNICAL EXAMPLES

This book includes nine examples that represent typical design tasks of an automotive engineer. It

shows how The MathWorks modeling and simulation tools, Simulink® and Stateflow,TM facilitate

the design of automotive control systems. Each example explains the principles of the physical sit-

uation, and presents the equations that represent the system. The examples show how to proceed

from the physical equations to the Simulink block diagram.  Once the Simulink model has been

completed, we run the simulation, analyze the results, and draw conclusions from the study.
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INTRODUCTION

Summary Automotive engineers have found simulation to be a vital tool in the timely and cost-effective

development of advanced control systems. As a design tool, Simulink has become the standard for

excellence through its flexible and accurate modeling and simulation capabilities. As a result of its open

architecture, Simulink allows engineers to create custom block libraries so they can leverage each other’s

work. By sharing a common set of tools and libraries, engineers can work together effectively within

individual work groups and throughout the entire engineering department.

In addition to the efficiencies achieved by Simulink, the design process can also benefit from Stateflow, an

interactive design tool that enables the modeling and simulation of complex reactive systems. Tightly

integrated with Simulink, Stateflow allows engineers to design embedded control systems by giving them

an efficient graphical technique to incorporate complex control and supervisory logic within their

Simulink models.

This booklet describes nine automotive design examples that illustrate the strengths of Simulink and

Stateflow in accelerating and facilitating the design process.

Examples The examples cited in this booklet consist of application design tasks typically encountered in

Description the automotive industry. We present a variety of detailed models including the underlying

equations, block diagrams, and simulation results.  The material may serve as a starting point for the

new Simulink user or as a reference  for the more experienced user. In the models, we propose approaches

for model development, present solutions to challenging problems, and illustrate some of the most

common design uses of Simulink and Stateflow today.

The applications and models described in this booklet include the following examples using Simulink

alone:

I. Engine Model

engine.mdl — open-loop simulation
enginewc.mdl — closed-loop simulation

II. Anti-Lock Braking System

absbrake.mdl

III. Clutch Engagement Model

clutch.mdl

IV. Suspension System

suspn.mdl

V. Hydraulic Systems

hydcyl.mdl — Pump and actuator assembly

hydcyl4.mdl — Four-cylinder model

hydrod.mdl — Two-cylinder model with load constraints
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The following applications and models use Simulink enhanced with Stateflow:

VI. Fault-Tolerant Fuel Control System

fuelsys.mdl

VII. Automatic Transmission Control

sf_car.mdl

VIII. Electrohydraulic Servo Control

sf_electrohydraulic.mdl

IX. Modeling Stick-Slip Friction

sf_stickslip.mdl

Simulink The models used in this book are available via ftp at

Model Files ftp://ftp.mathworks.com/pub/product-info/examples/autobook.zip. This zip file contains the set

of MDL, MAT, and M-files containing Simulink models that users can explore and build upon.  The

included files require MATLAB® 5.1, Simulink 2.1, and Stateflow 1.0. Models for these applications can be

opened in Simulink by typing the name of the model at the MATLAB command prompt.  MATLAB,

Simulink, and Stateflow are not included with this booklet.  To obtain a copy of MATLAB, Simulink, and

Stateflow, or for a diskette containing the model files, please contact your representative at The

MathWorks.

Acknowledgments The engine model is based on published findings by Crossley and Cook (1991)(1). We’d like to thank

Ken Butts and Jeff Cook of the Ford Motor Company for permission to include this model and for

subsequent help in building the model in Simulink.

The clutch and hydraulic cylinder models are based on equations provided by General Motors. We’d like

to thank Eric Gassenfeit of General Motors for permission to include these models.

The vehicle suspension model was written by David MacClay of Cambridge Control Ltd.

The simple three-state engine model and the set of icons that are relevant for automotive modeling were

provided by Modular Systems. A far more detailed engine model may be purchased directly from Modular

Systems.

Contact The MathWorks technical personnel specializing in automotive solutions can be reached via e-mail

Information at the following addresses:

Stan Quinn squinn@mathworks.com

Andy Grace agrace@mathworks.com

Paul Barnard pbarnard@mathworks.com

Larry Michaels lmichaels@mathworks.com

Bill Aldrich baldrich@mathworks.com
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Or contact any of our international distributors and resellers directly. See the back page for additional

contact information.

Both Modular Systems and Cambridge Control Ltd. offer consulting services in automotive modeling.

They can be reached as follows:

Attention: Robert W. Weeks

Modular Systems

714 Sheridan Road

Evanston, IL 60202-2502   USA

Tel: 708-869-2023

E-mail: bobweeks@ix.netcom.com

Attention: Sham Ahmed

Cambridge Control Ltd.

Newton House

Cambridge Business Park

Cowley Road

Cambridge, DB4 4WZ    UK

011/44-1223-423-2

E-mail: Sham@camcontrol.co.uk
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System Models in Simulink
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I.  ENGINE MODEL

Summary This example presents a model of a four-cylinder spark ignition engine and demonstrates Simulink’s

capabilities to model an internal combustion engine from the throttle to the crankshaft output. We used

well-defined physical principles supplemented, where appropriate, with empirical relationships that

describe the system’s dynamic behavior without introducing unnecessary complexity.

Overview This example describes the concepts and details surrounding the creation of engine models with emphasis

on important Simulink modeling techniques.  The basic model uses the enhanced capabilities of

Simulink 2 to capture time-based events with high fidelity.  Within this simulation, a triggered

subsystem models the transfer of the air-fuel mixture from the intake manifold to the cylinders via

discrete valve events.  This takes place concurrently with the continuous-time processes of intake flow,

torque generation and acceleration.  A second model adds an additional triggered subsystem that provides

closed-loop engine speed control via a throttle actuator.

These models can be used as standalone engine simulations. Or, they can be used within a larger system

model, such  as an integrated vehicle and powertrain simulation, in the development of a traction control

system.

Model Description
This model, based on published results by Crossley and Cook (1991), describes the simulation of a four-

cylinder spark ignition internal combustion engine. The Crossley and Cook work also shows how a

simulation based on this model was validated against dynamometer test data.

The ensuing sections (listed below) analyze the key elements of the engine model that were identified by

Crossley and Cook:

• Throttle

• Intake manifold

• Mass flow rate

• Compression stroke

• Torque generation and acceleration

Note:  Additional components can be added to the model to provide greater accuracy in simulation and to

more closely replicate the behavior of the system.

Analysis THROTTLE

and Physics The first element of the simulation is the throttle body. Here, the control input is the angle of the throttle

plate. The rate at which the model introduces air into the intake manifold can be expressed as the product

of two functions—one, an empirical function of the throttle plate angle only; and the other, a function of

the atmospheric and manifold pressures. In cases of  lower manifold pressure (greater vacuum), the flow

rate through the throttle body is sonic and is only a function of the throttle angle. This model accounts for



USING S IMULINK AND STATEFLOW IN AUTOMOTIVE APPLICATIONS 9

this low pressure behavior with a switching condition in the compressibility equations shown in

Equation 1.1.
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Intake Manifold
The simulation models the intake manifold as a differential equation for the manifold pressure. The

difference in the incoming and outgoing mass flow rates represents the net rate of change of air mass with

respect to time.  This quantity, according to the ideal gas law, is proportional to the time derivative of the

manifold pressure.  Note that, unlike the model of Crossley and Cook, 1991(1) (see also references 3

through 5), this model doesn’t incorporate exhaust gas recirculation (EGR), although this can easily be

added.
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Intake Mass Flow Rate
The mass flow rate of air that the model pumps into the cylinders from the manifold is described in

Equation 1.3 by an empirically derived equation. This mass rate is a function of the manifold pressure

and the engine speed.

    
˙ . . . .m NP NP N Pao m m m= − + − +0 366 0 08979 0 0337 0 0001

2 2 Equation 1.3
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where,

    

N

Pm

=
=

 engine speed (rad/s)

 manifold pressure (bar)    

To determine the total air charge pumped into the cylinders, the simulation integrates the mass flow rate

from the intake manifold and samples it at the end of each intake stroke event. This determines the total

air mass that is present in each cylinder after the intake stroke and before compression.

Compression Stroke
In an inline four-cylinder four-stroke engine, 180° of crankshaft revolution separate the ignition of each

successive cylinder.  This results in each cylinder firing on every other crank revolution.  In this model,

the intake, compression, combustion, and exhaust strokes occur simultaneously (at any given time, one

cylinder is in each phase).  To account for compression, the combustion of each intake charge is delayed

by 180° of crank rotation from the end of the intake stroke.

Torque Generation and Acceleration
The final element of the simulation describes the torque developed by the engine. An empirical

relationship dependent upon the mass of the air charge, the air/fuel mixture ratio, the spark advance, and

the engine speed is used for the torque computation.
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where,

J  = Engine rotational moment of inertia (kg-m2)

Ṅ = Engine acceleration (rad/s2)
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Modeling — We incorporated the model elements described above into an engine model using Simulink. The

The Open-Loop following sections describe the decisions we made for this implementation and the key Simulink elements

Simulation used. This section shows how to implement a complex nonlinear engine model easily and quickly in the

Simulink environment. We developed this model in conjunction with Ken Butts, Ford Motor Company (2).

Figure 1.1 shows the top level of the Simulink model.  Note that, in general, the major blocks correspond

to the high-level list of functions given in the model description in the preceding summary. Taking

advantage of Simulink’s hierarchical modeling capabilities, most of the blocks in Figure 1.1 are made up

of smaller blocks. The following paragraphs describe these smaller blocks.

choose Start from
the Simulation 

menu to run

Engine Timing Model in Simulink 2
A Demonstration of Triggered Subsystems

1

crank speed
(rad/sec)

Nedge180

valve timing

throttle deg (purple)
load torque Nm (yellow)

throttle
(degrees)

30/pi

rad/s
to

rpm

Teng

Tload

N

Vehicle
Dynamics

Throttle Ang.

Engine Speed, N

Mass Airflow Rate

Throttle & Manifold

Mux

s

1

Intake

Engine
Speed
(rpm)

Load

Drag Torque

mass(k+1)

mass(k)

trigger

Compression

Air Charge

N

Torque

Combustion

Figure 1.1: The top level of the Simulink engine model

Throttle/Manifold
Simulink models for the throttle and intake manifold subsystems are shown in Figure 1.2. The throttle

valve behaves in a nonlinear manner and is modeled as a subsystem with three inputs. Simulink

implements the individual equations, given in Equation 1.1 as function blocks. These provide a

convenient way to describe a nonlinear equation of several variables. A Switch block determines whether

the flow is sonic by comparing the pressure ratio to its switch threshold, which is set at one half (Equation

1.1).  In the sonic regime, the flow rate is a function of the throttle position only.  The direction of flow is

from the higher to lower pressure, as determined by the Sign block.  With this in mind, the Min block

ensures that the pressure ratio is always unity or less.
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The intake manifold is modeled by the differential equation as described in Equation 1.2 to compute the

manifold pressure. A Simulink function block also computes the mass flow rate into the cylinder, a

function of manifold pressure and engine speed (Equation 1.3).

Throttle Manifold Dynamics

1

Mass Airflow Rate

Throttle Angle, theta (deg)
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mdot Input  (g/s)
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Manifold Pressure, Pm (bar)

Intake Manifold

1.0

Atmospheric
Pressure, Pa

(bar)

2

Engine Speed, N

1

Throttle Ang.

Throttle Flow vs. Valve Angle and Pressure

1
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Flow, mdot
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2*sqrt(u - u*u)

g(pratio)

flow direction

2.821 - 0.05231*u + 0.10299*u*u - 0.00063*u*u*u
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1.0

Sonic Flow 

min

3

Atmospheric Pressure,
Pa (bar) 

2

Manifold Pressure,
Pm (bar)

1

Throttle Angle,
theta (deg)

pratio

Intake Manifold Vacuum
2

Manifold Pressure,
Pm (bar)

1

mdot to 
Cylinder

 (g/s)

s

1

p0 = 0.543 bar

0.41328

RT/Vm -0.366 + 0.08979*u[1]*u[2] - 0.0337*u[2]*u[1]*u[1] + 0.0001 *u[1]*u[2]*u[2]

Pumping

Mu

2

N (rad/sec)

1

mdot Input 
(g/s)

Figure 1.2: The Throttle and Intake Manifold Subsystems



USING S IMULINK AND STATEFLOW IN AUTOMOTIVE APPLICATIONS 13

Intake and Compression
An integrator accumulates the cylinder mass air flow in the Intake block.  The Valve Timing block issues

pulses that correspond to specific rotational positions in order to manage the intake and compression

timing. Valve events occur each cam rotation, or every 180° of crankshaft rotation.  Each event triggers a

single execution of the Compression subsystem.  The output of the trigger block within the Compression

subsystem then feeds back to reset the Intake integrator.  In this way, although both triggers conceptually

occur at the same instant in time, the integrator output is processed by the Compression block immediately

prior to being reset.  Functionally, the Compression subsystem uses a Unit Delay block to insert 180° (one

event period) of delay between the intake and combustion of each air charge.

Consider a complete four-stroke cycle for one cylinder.  During the intake stroke, the Intake block

integrates the mass flow rate from the manifold.  After 180° of crank rotation, the intake valve closes and

the Unit Delay block in the Compression subsystem samples the integrator state. This value, the

accumulated mass charge, is available at the output of the Compression subsystem 180° later for use in

combustion.  During the combustion stroke, the crank accelerates due to the generated torque.  The final

180°, the exhaust stroke, ends with a reset of the Intake integrator, prepared for the next complete 720°

cycle of this particular cylinder.

For four cylinders, we could use four Intake blocks, four Compression subsystems, etc., but each would be

idle 75% of the time.  We’ve made the implementation more efficient by performing the tasks of all four

cylinders with one set of blocks.  This is possible because, at the level of detail we’ve modeled, each function

applies to only one cylinder at a time.

Combustion
Engine torque is a function of four variables. The model uses a Mux block to combine these variables into

a vector that provides input to the Torque Gen block. Here, a function block computes the engine torque,

as described empirically in Equation 1.4.  The torque which loads the engine, computed by step functions

in the Drag Torque block, is subtracted in the Vehicle Dynamics subsystem.  The difference divided by the

inertia yields the acceleration, which is integrated to arrive at the engine crankshaft speed.

Results We saved the Simulink model in the file engine.mdl which can be opened by typing engine at the

MATLAB prompt.  Select Start from the Simulation menu to begin the simulation.  Simulink scope

windows show the engine speed, the throttle commands which drive the simulation, and the load torque

which disturbs it.  Try adjusting the throttle to compensate for the load torque.

Figure 1.3 shows the simulated engine speed for the default inputs:
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Figure 1.3:  The simulated engine speed

Note the behavior as the throttle angle and load torque change.

Modeling — SPEED CONTROL

The Closed-Loop The following enhanced model demonstrates the flexibility and extensibility of Simulink models. In the

Simulation enhanced model, the objective of the controller is to regulate engine speed with a fast throttle actuator,

such that changes in load torque have minimal effect. This is easily accomplished in Simulink by adding

a  discrete-time PI controller to the engine model as shown in Figure 1.4.

The model is stored in the file enginewc.mdl, which can be opened by typing enginewc at the MATLAB

command prompt.  This represents the same engine model described previously but with closed-loop

control.
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Closed Loop Engine Speed Controlchoose Start from
the Simulation 

menu to run

1

crank speed
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load torque Nm (yellow)
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Controller
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Figure 1.4: A discrete-time PI controller is added to the engine model
to regulate speed

We chose a control law which uses proportional plus integral (PI) control.  The integrator is needed to

adjust the steady-state throttle as the operating point changes, and the proportional term compensates for

phase lag introduced by the integrator.

θ = − + −

=

=

∫K N N K N N dt

N

K

K

p set I set

set

p

I

( ) ( ) ,

 speed set point

 =  proportional gain

 integral gain

 Equation 1.6

A discrete-time controller, suitable for microprocessor implementation, is employed.  The integral term in

Equation 1.6 must thus be realized with a discrete-time approximation.

As is typical in the industry, the controller execution is synchronized with the engine’s crankshaft

rotation. The controller is embedded in a triggered subsystem that is triggered by the valve timing signal

described above. The detailed construction of the Controller subsystem is illustrated in Figure 1.5.  Of note

is the use of the Discrete-Time Integrator block with its sample time parameter set (internally) at -1.  This

indicates that the block should inherit its sample time, in this case executing each time the subsystem is

triggered.  The key component that makes this a triggered subsystem is the Trigger block shown at the

bottom of Figure 1.5.  Any subsystem can be converted to a triggered subsystem by dragging a copy of this

block into the subsystem diagram from the Simulink Connections library.
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Triggered PI Controller

1
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Figure 1.5: Speed Controller Subsystem

Results Typical simulation results are shown in Figure 1.6.  The speed set point steps from 2000 to 3000 RPM

at t = 5 sec.  The torque disturbances are identical to those used in the previous example.  Note the quick

transient response, with zero steady-state error.

Several alternative controller tunings are shown.  These can be adjusted by the user at the MATLAB

command line.  This allows the engineer to understand the relative effects of parameter variations.
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Figure 1.6: Typical simulation results
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Conclusions The ability to model nonlinear, complex systems, such as the engine model described here, is one of

Simulink’s key features.  The power of the simulation is evident in the presentation of the models above.

Simulink retains model fidelity, including precisely timed cylinder intake events, which is critical in

creating a model of this type.  The two different models, the basic engine and complete speed control

system, demonstrate the flexibility of Simulink.  In particular, the Simulink modeling approaches allow

rapid prototyping of an interrupt-driven engine speed controller.
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II.  ANTI-LOCK BRAKING SYSTEM

Summary This example describes a simple model for an Anti-Lock Braking System (ABS).  The model

absbrake.mdl simulates the dynamic behavior of a vehicle under hard braking conditions. The model

represents a single wheel, which may be replicated a number of times to create a model for a multi-wheel

vehicle. The Simulink block diagram is shown in Figure 2.1.

ABS Braking Model

Developed by Larry Michaels
The MathWorks, Inc

s

1

stopping distance

Double click
to run model

mu slip
friction curve
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ctrl

Brake
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controller
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brake torques
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1

Figure 2.1: Simulation of the dynamic behavior of a vehicle under hard braking conditions

Analysis and The wheel rotates with an initial velocity corresponding to the vehicle speed before the brakes are applied.

Physics We used separate integrators to compute wheel speed and vehicle speed. The two speeds are used to

calculate slip, which is determined by

    

ω
ω
ω

v v r

w

v

V R

slip

=

= −

/

1
Equation 2.1

where,   

    

ω
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v

v
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=
=
=
=

vehicle speed, in terms of the corresponding wheel angular velocity          

vehicle linear velocity

wheel radius

wheel angular velocity

From these relationships we see that slip is 0 when wheel speed (ωw) and the corresponding vehicle speed

(ωv ) are equal, and slip is 1 when the wheel is locked (ωw = 0).  A desirable slip value is 0.2, which means

that the number of wheel revolutions equals 0.8 times the number of revolutions under nonbraking
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conditions with the same vehicle velocity.  This maximizes the adhesion between the tire and road to

minimize the stopping distance with the available friction.

Modeling The symbol µ, representing the friction coefficient between the tire and the road surface, is an empirical

function of slip, known as the µ-slip curve. We created µ-slip curves using MATLAB variables that were

brought into the block diagram using a Simulink lookup table. The model multiplies the friction

coefficient, µ, by the weight on the wheel, W, to yield the frictional force, Ff , acting on the circumference of

the tire. Ff is divided by the vehicle mass to give the vehicle deceleration, which the model integrates to

obtain vehicle velocity. In this model, we used an ideal anti-lock braking controller, that uses “bang-

bang” control based upon the error between actual slip and desired slip.  We set the desired slip to the

value of slip at which the µ-slip curve reaches a peak value, this being the optimum value for minimum

braking distance1.

By subtracting slip from desired slip, and feeding this signal into a bang-bang control (+1 or -1,

depending on the sign of the error), the model controls the rate of change of brake pressure. This on/off

rate passes through a first-order lag that  represents the delay associated with the hydraulic lines of the

brake system. The model then integrates the filtered rate to yield the actual brake pressure.  The resulting

signal, multiplied by the piston area and radius with respect to the wheel (Kf), is the brake torque applied

to the wheel.  The model also multiplies the frictional force on the wheel by the wheel radius, Rr, to give the

accelerating torque of the road surface on the wheel.  The brake torque is subtracted to give the net torque

on the wheel. Dividing the net torque by the wheel rotational inertia, I, yields the wheel acceleration,

which is  then integrated to provide wheel velocity. In order to prevent wheel speed and vehicle speed from

going negative, limited integrators are used in this model.

Results Figure 2.2 and Figure 2.3 plot the results of a simulation run for a given set of parameters. Figure 2.2

shows the wheel angular velocity, ωw, and corresponding vehicle angular velocity, ωv , which shows that

ωw  stays below ωv   without locking up, with vehicle speed going to zero in less than 15 seconds.

                                                
1 In an actual vehicle, slip cannot be measured directly, so this control algorithm is not practical.  It was

used in this example to illustrate the conceptual construction of  such a simulation model.  The real

engineering value of a simulation like this is in demonstrating the potential of the control concept prior

to addressing the specific issues of implementation.
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Figure 2.2: Simulation showing the wheel and corresponding
vehicle angular velocities, ωw and ωv
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Figure 2.3: Normalized wheel slip

To make the results more meaningful, consider the vehicle behavior without ABS.  At the MATLAB

command line, set the model variable ctrl = 0.  As can be seen in Figure 2.1, this disconnects the slip

feedback from the controller, resulting in maximum braking.  The results are shown in Figures 2.4

and 2.5.
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In Figure 2.4 observe that the wheel locks up in about seven seconds and the braking, from that point on,

is applied in a less-than-optimal part of the slip curve.  That is, when slip = 1, as seen in Figure 2.5, the tire

is skidding so much on the pavement that the friction force between the two has dropped off.
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This is, perhaps, more meaningful in terms of the comparison shown in Figure 2.6.  The distance traveled

by the vehicle is plotted for the two cases.  Without ABS, the vehicle skids about an extra 100 feet, taking

about three seconds longer to come to a stop.
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Figure 2.6: Simulated performance comparison

Conclusions This model demonstrates how Simulink can be used to simulate a braking system under the action of an

ABS controller. The controller in this example is idealized, but any proposed control algorithm can be

used in its place to evaluate the system’s performance.

The Real-Time Workshop may be used with Simulink as a valuable tool for rapid prototyping of the

proposed algorithm.  C code is generated and compiled for the controller hardware to test the concept in a

vehicle.  This significantly reduces the time needed to prove out new ideas by enabling actual testing early

in the development cycle.

For a hardware-in-the-loop braking system simulation, we would remove the bang-bang controller and

run the equations of motion on real-time hardware to emulate the wheel and vehicle dynamics. We

would do this by generating real-time C code for this model using the Real-Time Workshop. We could

then test an actual ABS controller by interfacing it to the real-time time hardware which would run the

generated code. In this scenario, the real-time model would send the wheel speed to the controller, and the

controller would send brake action to the model.
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III.  CLUTCH ENGAGEMENT MODEL

Summary This example demonstrates the use of  Simulink to model and simulate a rotating clutch system.

Although modeling a clutch system is difficult because of topological changes in the system dynamics

during lockup, this example shows how Simulink’s enabled subsystems feature easily handles such

problems.  We illustrate how to employ important Simulink modeling concepts  in the creation of the

clutch simulation. Designers can apply these concepts to many models with strong discontinuities and

constraints that may change dynamically.

The clutch system in this example consists of two plates that transmit torque between the engine and

transmission.  There are two distinct modes of operation: slipping, where the two plates have differing

angular velocities; and lockup, where the two plates rotate together. Handling the transition between these

two modes presents a modeling challenge. As the system loses a degree of freedom upon lockup, the

transmitted torque goes through a step discontinuity.  The magnitude of the torque drops from the

maximum value supported by the friction capacity to a value that is necessary to keep the two halves of

the system spinning at the same rate. The reverse transition, break-apart, is likewise challenging, as the

torque transmitted by the clutch plates exceeds the friction capacity.

There are two methods for solving this type of problem:

1. Compute the clutch torque transmitted at all times, and employ this value directly in the model

2. Use two different dynamic models and switch between them at the appropriate times

Because of its overall capabilities, Simulink can model either method. In this example, we  describe a

simulation for the second method.  In the second method, switching between two dynamic models must

be performed with care to ensure that the initialized states of the new model match the state values

immediately prior to the switch. But, in either approach, Simulink facilitates accurate simulation due to

its ability to recognize the precise moments at which transitions between lockup and slipping occur.

Analysis and The clutch system was analyzed using a lumped-parameter model, according to the configuration shown

Physics in Figure 3.1.

Figure 3.1: The clutch system, analyzed using a lumped-parameter model

Ie Iv
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ωv
Tin  ωe
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The following variables are used in the analysis and modeling.
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The state equations for the coupled system are derived as follows:
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The torque capacity of the clutch is a function of its size, friction characteristics, and the normal force that

is applied.
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When the clutch is slipping, the model uses the kinetic coefficient of friction and the full capacity is

available, in the direction that opposes slip.

T RF

T T

fmaxk n k

cl e v fmaxk

=

= −

2
3

µ

ω ωsgn( )
Equation 3.3

When the clutch is locked, ωe  = ωv = ω and the system torque acts on the combined inertia as a single

unit.  So, we combine the differential equations (Equation 3.1) into a single equation for the locked state.

( ) ˙ ( )I I T b be v in e v+ = − +ω ω Equation 3.4

Solving  (Equation 3.1) and (Equation 3.4), the torque transmitted by the clutch while locked is:

Equation 3.2
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Equation 3.5

The clutch thus remains locked unless the magnitude of Tf  exceeds the static friction capacity, Tfmaxs , where

  
T RFfmaxs n s= 2

3
µ Equation 3.6

A state diagram describes the overall behavior.

Figure 3.2:  A state diagram describing the friction mode transitions

Modeling The simulation model for the clutch system (clutch.mdl) makes use of enabled subsystems, a

particularly useful feature in Simulink.  The simulation can use one subsystem while the clutch is

slipping and the other when it is locked.  A diagram of the Simulink model appears in Figure 3.3.
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Clutch Model in Simulink 2
A Demonstration of Enabled Subsystems
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Figure 3.3: The top level S imulink model

The first subsystem, Unlocked, models both sides of the clutch, coupled by the friction torque.  It is

constructed around the integrator blocks which represent the two speeds, as shown in Figure 3.4.  The

model uses gain, multiplication, and summation blocks to compute the speed derivatives (acceleration)

from the states and the subsystem inputs of engine torque, Tin,  and clutch capacity, Tfmaxk.

Enabled subsystems, such as Unlocked, feature several other noteworthy characteristics.  The Enable

block at the top of the diagram in Figure 3.4 defines the model as an enabled subsystem.  To create an

enabled subsystem, we group the blocks together like any other subsystem.  We then insert an Enable

block from the Simulink Connections library.  This means that:

1. An enable input appears on the subsystem block, identified by the pulse-shaped symbol used on the

Enable block itself.

2. The subsystem executes only when the signal at the enable input is greater than zero.

In this example, the Unlocked subsystem executes only when the supervising system logic determines

that it should be enabled.
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Figure 3.4: The Unlocked subsystem

There is another important consideration when using systems that can be enabled or disabled. When the

system is enabled, the simulation must reinitialize the integrators to begin simulating from the correct

point.  In this case, both sides of the clutch are moving at the same velocity the moment it unlocks.  The

Unlocked subsystem, which had been dormant, needs to initialize both integrators at that speed in order

to keep the system speeds continuous.

The simulation uses From blocks to communicate the state of the locked speed to the initial condition

inputs of the two integrators.  Each From block represents an invisible connection between itself and a

Goto block somewhere else in the system.  The Goto blocks connect to the state ports of the integrators so

that the model can use these states elsewhere in the system without explicitly drawing in the connecting

lines.

The other enabled block seen in the top-level block diagram is the Locked subsystem, shown in Figure 3.5.

This model uses a single state to represent the engine and vehicle speeds. It computes acceleration as a

function of the speed and input torque.  As in the Unlocked case, a From block provides the integrator

initial conditions and a Goto block broadcasts the state for use elsewhere in the model.  While simulating,

either the Locked or the Unlocked subsystem is active at all times.   Whenever the control changes, the

states are neatly handed off between the two.
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Figure 3.5: The Locked subsystem

The simulation uses other blocks in the system to calculate the friction capacity and to supply the logic

that determines which of the Locked or Unlocked subsystems should be enabled.

The Friction Model subsystem computes the static and kinetic friction according to Equation 3.7, with the

appropriate friction coefficient.

T RFfmax n= 2
3

µ Equation 3.7

The remaining blocks calculate the torque required for lockup (Equation 3.5), and implement the logic

described in Figure 3.2.  One key element is located in the Lockup Detection subsystem within the Friction

Mode Logic subsystem.  This is the Simulink Hit Crossing block which precisely locates the instant at

which the clutch slip reaches zero.  This places the mode transition at exactly the right moment.

The system inputs are normal force, Fn ,  and engine torque, Tin.  Each of these is represented by a matrix

table in the MATLAB workspace and plotted in Figure 3.6 below. The Simulink model incorporates these

inputs by using From Workspace blocks.
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Results The following parameter values are used to demonstrate the simulation.  These are not meant to represent

the physical quantities corresponding to an actual system, but rather to facilitate a meaningful baseline

demonstration.
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For the inputs shown above, the system velocities behave as shown in Figure 3.7 below.  The simulation

begins in the Unlocked mode, with an initial engine speed flare as the vehicle side accelerates its larger

inertia.  At about t = 4 seconds, the velocities come together and remain locked, indicating that the clutch

capacity is sufficient to transmit the torque.  At t = 5, the engine torque begins to decrease, as does the

normal force on the friction plates.  Consequently, the onset of slip occurs at about t = 6.25 seconds as

indicated by the separation of the engine and vehicle speeds.
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Figure 3.7: Behavior of the system velocities

Notice that the various states remain constant while they are disabled.  At the time instants at which

transitions take place, the state handoff is both continuous and smooth.  This is a result of supplying each

integrator with the appropriate initial conditions to use when the state is enabled.

Conclusions This example shows how to use Simulink and its standard block library to model, simulate, and analyze a

system with topological discontinuities. This is a powerful demonstration of the Hit Crossing block and

how it can be used to capture specific events during a simulation. The Simulink model of this clutch

system can serve as a guide when creating models with similar characteristics. In any system with

topological discontinuities, the principles used in this example may be applied.
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IV.  SUSPENSION SYSTEM

Summary This example describes a simplified half-car model (suspn.mdl) that includes an independent front and

rear vertical suspension as well as body pitch and bounce degrees of freedom.  We provide a description of

the model  to show how simulation can be used for investigating ride and handling characteristics.  In

conjunction with a powertrain simulation, the model could investigate longitudinal shuffle resulting

from changes in throttle setting.

Analysis and The diagram in Figure 4.1 illustrates the modeled characteristics.

Physics

Figure 4.1: A free-body diagram of the half-car model

In this example, we model the front and rear suspension as spring/damper systems. A more detailed

model would include a tire model as well as damper nonlinearities such as velocity-dependent damping

with greater damping during rebound than compression. The vehicle body has pitch and bounce degrees

of freedom, which are represented in the model by four states: vertical displacement, vertical velocity, pitch

angular displacement, and pitch angular velocity. A full six degrees of freedom model can be implemented

using vector algebra blocks to perform axis transformations and force/displacement/velocity calculations.

The front suspension influences the bounce, or vertical degree of freedom, according to the relationships

in Equation 4.1.
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The pitch contribution of the front suspension follows directly.

    

M L Ffront f front= −

=

,

 pitch moment due to front suspension      
 Equation 4.2

Similarly, for the rear suspension:
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 Equation 4.3

The forces and moments result in body motion according to Newton.
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 Equation 4.4

Modeling We saved the Simulink suspension model as suspn.mdl and opened it by typing suspn at the MATLAB

 prompt.

Vehicle Suspension Model

Developed by David Maclay
Cambridge Control, Ltd.

rev. 8/20/97, SQ

-9.81acceleration 
due to gravity

1/s
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Rear Force
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-Front Pitch Moment

Front Force

THETA, THETAdot, Z, Zdot

4.2: The Simulink two degree of freedom suspension model
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There are two inputs to the Vehicle Suspension model shown in Figure 4.2. The first input is the road

height. A step input here corresponds to the vehicle driving over a road surface with a step change in

height. The second input is a horizontal force acting through the center of the wheels that results from

braking or acceleration maneuvers.  Since the longitudinal body motion is not modeled, this input

appears only as a moment about the pitch axis.

The spring/damper subsystem that models the front and rear suspensions is shown in Figure 4.3.  The

block is used to model Equation 4.1 through 4.3.  The equations are implemented directly in the Simulink

diagram through the straightforward use of Gain and Summation blocks.  The differences between front

and rear are accounted for as follows.  Because the subsystem is a masked block, a different data set (L, K

and C) can be entered for each instance.  Furthermore, L is thought of as the Cartesian coordinate x, being

negative or positive with respect to the origin, or center of gravity.  Thus, Kf , Cf  and -Lf  are used for the

front and Kr, Cr and Lr for the rear.

Two DOF Spring/Damper Model

2

Vertical
Force
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stiffness

2*C

damping

L

MomentArm3
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Figure 4.3: The Spring/Damper suspension subsystem

Results To run this model, first set up the required parameters in the MATLAB workspace.  Run the following

M-file by typing suspdat, or from the MATLAB command line, enter the data by typing:

Lf = 0.9; % front hub displacement from body CG
Lr = 1.2;       % rear hub displacement from body CG
Mb = 1200;      % body mass in kg
Iyy = 2100; % body moment of inertia about y-axis in kgm^2
kf = 28000;     % front suspension stiffness in N/m
kr = 21000; % rear suspension stiffness in N/m
cf = 2500; % front suspension damping in N/(m/s)
cr = 2000; % rear suspension damping in N/(m/s)

To run the simulation, select Start from the Simulink Simulation menu or type the following at the

MATLAB command line:

[t,x] = sim('suspn2',10);  %  run a time response
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Figure 4.4 shows the plotted output results. You can automate setting the parameters, running the

simulation, and plotting these graphs by typing suspgrph at the MATLAB command line prompt.
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Figure 4.4: A summary of the suspension simulation output results

Conclusions The Vehicle Suspension model allows you to simulate the effects of changing the suspension damping

and stiffness,  thereby investigating the tradeoff between comfort and performance. In general, a racing

car has very stiff springs with a high damping factor, whereas a passenger vehicle designed for comfort

has softer springs and a more oscillatory response.
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V.  HYDRAULIC SYSTEMS

Summary This example considers several hydraulic systems.  The general concepts apply to suspension, brake,

steering, and transmission systems. We model three variations of systems employing pumps, valves, and

cylinder/piston actuators.  The first features a single hydraulic cylinder which we develop, simulate and

save as a library block.  In the next model, we use four instances of this block, as in an active suspension

system.  In the final model, we model the interconnection of two hydraulic actuators, held together by a

rigid rod which supports a large mass.

In some cases we treat relatively small volumes of fluid as incompressible.  This results in a system of

differential-algebraic equations (DAEs). Simulink solvers are well-suited to handle this type of problem

efficiently.  The masking and library reference capabilities add extra power and flexibility. The creation of

custom blocks enables the implementation of important subsystems with user-defined parameter sets.

The Simulink library keeps a master version of these blocks so that models using a master block

automatically incorporate any revisions and refinements made to it.

Analysis and Figure 5.1 shows a schematic diagram of the basic model. The model directs the pump flow Q to

Physics supply pressure p1 from which laminar flow q1ex leaks to exhaust.  The control valve for the

piston/cylinder assembly is modeled as turbulent flow through a variable-area orifice.  Its flow q12 leads to

intermediate pressure p2 which undergoes a subsequent pressure drop in the line connecting it to the

actuator cylinder.  The cylinder pressure p3 moves the piston against a spring load, resulting in position x.

q12q1ex

p1 p2

C2

C1

x

p3

v3

A

Q

q23

Figure 5.1: Schematic diagram of the basic hydraulic system

At the pump output, the flow is split between leakage and flow to the control valve.  The leakage, q1ex  is

modeled as laminar flow.

pump

control valve

cylinder
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Equation 5.1

We modeled turbulent flow through the control valve with the orifice equation.  The sign and absolute

value functions accommodate flow in either direction.
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12 1 2 1 2
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2
= − −

=
=
=
=

sgn( )
ρ

ρ

 orifice discharge coefficient

 orifice area

 pressure downstream of control valve

 fluid density

Equation 5.2

The fluid within the cylinder pressurizes due to this flow, q12 = q23, less the compliance of the piston

motion.  We also modeled fluid compressibility in this case.
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β

β
 piston pressure

 fluid bulk modulus

 fluid volume at 

 cylinder cross – sectional area

 fluid volume at 

Equation 5.3

We neglected the piston and spring masses due to the large hydraulic forces.  Force balance at the piston

gives:

    

x p A K

K
c=

=
3 /

 spring rate              
Equation 5.4

cylinder cross–sectional area
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We complete the system of equations by differentiating this relationship and incorporating the pressure

drop between p2 and p3.  The latter models laminar flow in the line from the valve to the actuator.

    

˙ ˙ /

( )

/

x p A K

q q

C p p

p p q C

C

c=
=
= −

= +
=

3

23 12

1 2 3

2 3 12 1

1 laminar flow coefficient     

Equation 5.5

Modeling Figure 5.2 shows the basic model, stored in the file hydcyl.mdl.  Simulation inputs are the pump

flow and the control valve orifice area.  The model is organized as two subsystems — the pump and the

actuator assembly.

Hydraulic Cylinder Model

p1

A

p

x

qin

valve/cylinder/piston/spring assembly

pump

pressures
p1 (yellow)
p2 (purple)
p3 (blue)

Mux

piston position

control valve
orifice area

Double click to run the 
Simulation for 0.1 seconds

Double click to see
a 4 cylinder model.

Qout p1

Figure 5.2: The basic pump/valve/actuator model

Pump
The pump model computes the supply pressure as a function of the pump flow and the load (output) flow

(Figure 5.3).  A From Workspace  block provides the pump flow data, Qpump. This is specified by a matrix

with column vectors of time points and the corresponding flow rates [T, Q].  The model subtracts the

output flow, using the difference, the leakage flow, to determine the pressure p1, as indicated above in

Equation 5.1.  Since Qout = q12 is a direct function of p1 (via the control valve), this forms an algebraic

loop.  An estimate of the initial value, p10, enables a more efficient solution.

We mask the subsystem in Simulink to facilitate ready access to the parameters by the user.  The

parameters to be specified are T, Q, p10 and the leakage flow coefficient, C2. For easy identification, we then

assigned the masked block the icon shown in Figure 5.2, and saved it in the Simulink library hydlib.mdl.
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Figure 5.3: Hydraulic Pump Subsystem
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Figure 5.4:  Hydraulic Actuator Subsystem

In Figure 5.4, a system of differential-algebraic equations models the cylinder pressurization with the

pressure p3, which appears as a derivative in Equation 5.3 and is used as the state (integrator).  If we

neglect mass, the spring force and piston position are direct multiples of p3 and the velocity is a direct

multiple of ṗ3
.  This latter relationship forms an algebraic loop around the bulk modulus Gain block,

Beta .  The intermediate pressure p2  is the sum of p3  and the pressure drop due to the flow from the valve to

the cylinder (Equation 5.5).  This relationship also imposes an algebraic constraint through the control

valve and the 1/C1 gain.

The control valve subsystem computes the orifice (equation 5.2), with the upstream and downstream

pressures as inputs, as well as the variable orifice area.  A lower level subsystem computes the “signed

square root,” 
    
y (u) u= sgn .  Three nonlinear functions are used, two of which are discontinuous.  In

combination, however, y is a continuous function of u.
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Results BASELINE MODEL

We simulated the model with the following data.
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3

3

3

3
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We specified the pump flow as:

         sec.       m3/sec

[T,  Q]  =  

0 0.005

0.04 0.005

0.04 0

0.05 0

0.05 0.005

0.1 0.005



























 The system thus initially steps to a pump flow of 0.005 m3/sec = 300 l/min, abruptly steps to zero at t =

0.04, then resumes its initial flow rate at t = 0.05.

The control valve starts with zero orifice area and ramps to 1e-4 m2 during the 0.1 second simulation

time.  With the valve closed, all of the pump flow goes to leakage so the initial pump pressure jumps to

p10 = Q/C2 = 1667 KPa.

As the valve opens, pressures p2 and p3 build up while p1 dips in response to the load increase as shown in

Figure 5.5.  When the pump flow cuts off, the spring and piston act like an accumulator and p3, though

decreasing, is continuous.  The flow reverses direction, so p2, though relatively close to p 3, falls abruptly.

At the pump itself, all of the backflow goes to leakage and p 1 drops radically.  This behavior reverses as the

flow is restored.
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Figure 5.5: Pressures in baseline simulation

The piston position is directly proportional to p3 , where the hydraulic and spring forces balance as shown

in Figure 5.6.  Discontinuities in the velocity at 0.04 and 0.05 seconds indicate negligible mass.  The model

reaches a steady state when all of the pump flow again goes to leakage, now due to zero pressure drop

across the control valve.  That is, p3 = p2 = p1 = p10.
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Figure 5.6: Baseline hydraulic cylinder piston position
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We have now tested the pump and actuator blocks and determined that they perform according to design.

We created a Simulink library and copied these blocks into it.  After saving the library (hydlib.mdl), we

replaced the blocks in the original model with library copies.  The model file, hydcyl.mdl, now contains

references to the library blocks rather than all of the details of the subsystems.  This demonstrates how we

build master libraries of important system components.  Other designers can now employ identical copies

of these blocks in other systems.  Whenever improvements are made to the library blocks, Simulink

automatically incorporates the changes into each individual model.

Four Cylinder Model
We now construct a new model with a single pump and four actuators (Figure 5.7). The same pump

pressure p1 drives each cylinder assembly and the sum of their flows loads the pump.  Although each of

the four control valves could be controlled independently, as in an active suspension system, in this case

all four receive the same commands, a linear ramp in orifice area from zero to 0.002 m2.

Four Cylinder Model
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valve/cylinder/piston assembly 4
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valve/cylinder/piston assembly 3

p1

A

p

x

qin
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supply
pressure

p1

pump
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positions
x1 (yellow)
x2 (purple)
x3 (blue)
x4 (red)

load
flow

control
valve

command

Double click for a model
 with two hydraulic cylinders

  interconnected by a rigid rod
Double click to run the 

Simulation for 0.1 seconds

Figure 5.7: A single pump driving four actuators

The pump flow begins at 0.005 m3/sec again for this system, then drops to half that value at t = 0.05 sec.

The parameters C1, C2, Cd, ρ and V30 are identical to the previous model.  However, by assigning
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individual values for K, Ac and, in one case, β, each of the four cylinders exhibit distinctive transient

responses.  In relationship to the parameter values used above, the model characterizes the four actuators

according to Table 5.1.

Table 5.1: Parameter comparison for individual actuators

The ratio of area/spring rate remains constant, so each case should have the same steady-state output.

The dominant time constant for each subsystem is proportional to Ac
2/K, so we can expect case two to be

somewhat faster than the case one, and case three somewhat slower.  In case four, the effective bulk

modulus of the fluid is significantly lower, as would be the case with entrained air. We thus expect this

softer case to respond more sluggishly than case one.  The simulation results support these predictions.
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Figure 5.8:  Actuator Positions for Four-Cylinder Model

The initial jolt of flow at t = 0 responds like a pressure impulse, as seen by the four actuators (in Figure

5.8).  The pump pressure p1 , which is initially high, drops rapidly as all four loads combine to make a

high flow demand.  During the initial transient (about four milliseconds), distinctive responses identify

the individual dynamic characteristics of each unit.

parameter actuator 1 actuator 2 actuator 3 actuator 4

spring rate K K/4 4K K

piston area Ac Ac/4 4Ac Ac

bulk modulus β β β β/1000
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As predicted by the differences in parameter values, actuator two responds much faster than the baseline,

actuator one.  The third and fourth devices are much slower because they require more oil to move the

same distance.  In case three, the piston displaces more volume due to its larger cross-sectional area.  In

case four, although the displaced volume is the same as in case one, the device requires more oil because it

is subsequently compressed.

The distinctions in behavior are blurred, however, as the pump pressure falls to the level within the

cylinders (in Figure 5.9).  The individual responses blend into an overall system response which

maintains the flow balance between the components.  At t = 0.05 seconds, the pump flow drops to a level

that is close to equilibrium and the actuator flows are nearly zero.  The individual steady-state piston

positions are equal, as predicted by design.
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Figure 5:9: Individual flow rates in four cylinder model

Two Cylinder Model with Load Constraints
In the final model (Figure 5.10), a rigid rod which supports a large mass interconnects two hydraulic

actuators.  The model eliminates the springs as it applies the piston forces directly to the load. These forces

balance the gravitational force and result in both linear and rotational displacement.
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Two Cylinder Model with Connecting Rod
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Figure 5.10: Two hydraulic cylinders with connecting rod

The load subsystem shown in Figure 5.11 solves the equations of motion, which we compute directly with

standard Simulink blocks.  We assume the rotation angle is small.
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The positions and velocities of the individual pistons follow directly from the geometry.
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Figure 5.11: Mechanical load subsystem

The parameters used in the simulation are identical to the first model, except:

    

L

Q

F M
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ext

=
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=
=

1.5m

M 2500 kg

I 100 kg- m

0.005 m /sec (constant)  

C2 3e- 10 m /sec/Pa

-9.81   N

2

3

3

Although pump flow is constant in this case, the model controls the valves independently according to the

following schedule in Figure 5.12:
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Figure 5.12: Complementary actuator control action

Figure 5.13 and Figure 5.14 show the simulation outputs of rod displacement and angle, respectively.  The

response of z is typical of a type-one (integrating) system. The relative positions and the angular

movement of the rod illustrate the response of the individual actuators to their out-of-phase control

signals.
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Conclusions Simulink provides a productive environment for simulating hydraulic systems, offering enhancements

that provide enormous productivity in modeling and flexibility in numerical methods. The use of masked

subsystems and model libraries facilitates structured modeling with automatic component updates.  That

is, as users modify library elements, the models that use the elements automatically incorporate the new

versions. Simulink can use differential-algebraic equations (DAEs) to model some fluid elements as

incompressible and others as compliant, allowing efficient solutions for complex systems of

interdependent circuits.

Models such as these will ultimately be used as part of overall plant or vehicle systems.  The hierarchical

nature of Simulink allows independently developed hydraulic actuators to be placed, as appropriate, in

larger system models, for example, adding controls in the form of sensors or valves.  In cases such as

these, tools from the MATLAB Control System Toolbox can analyze and tune the overall closed-loop

system.  The MATLAB/Simulink environment can thus support the entire design, analysis, and modeling

cycle.



USING S IMULINK AND STATEFLOW IN AUTOMOTIVE APPLICATIONS 49

System Models in Simulink with Stateflow Enhancements
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VI. FAULT-TOLERANT FUEL CONTROL SYSTEM

Summary The following example illustrates how to combine Stateflow with Simulink to efficiently model hybrid

systems.  This type of modeling is particularly useful for systems that have numerous possible

operational modes based on discrete events.  Traditional signal flow is handled in Simulink while

changes in control configuration are implemented in Stateflow.

The model described below represents a fuel control system for a gasoline engine.  The system is highly

robust in that individual sensor failures are detected and the control system is dynamically reconfigured

for uninterrupted operation.

Analysis and Similar to the engine model described earlier in this document,  physical and empirical relationships

Physics form the basis for the throttle and intake manifold dynamics of this model.  The mass flow rate of air

pumped from the intake manifold, divided by the fuel rate which is injected at the valves, gives the air-fuel

ratio.  The ideal, or stoichiometric mixture ratio provides a good compromise between power, fuel

economy, and emissions.  A target ratio of 14.6 is assumed in this system.

Typically, a sensor determines the amount of residual oxygen present in the exhaust gas (EGO).  This

gives a good indication of the mixture ratio and provides a feedback measurement for closed-loop control.

If the sensor indicates a high oxygen level, the control law increases the fuel rate. When the sensor detects

a fuel-rich mixture, corresponding to a very low level of residual oxygen, the controller decreases the fuel

rate.

Modeling Figure 6.1 shows the top level of the Simulink model (fuelsys.mdl).   The controller uses signals from

the system’s sensors to determine the fuel rate which gives a stoichiometric mixture.  The fuel rate

combines with the actual air flow in the engine gas dynamics model to determine the resulting mixture

ratio as sensed at the exhaust.

The user can selectively disable each of the four sensors (throttle angle, speed, EGO and manifold absolute

pressure [MAP]), to simulate failures.  Simulink  accomplishes  this with Manual Switch blocks.  Double-

click on the block itself to change the position of the switch.  Similarly, the user can induce the failure

condition of a high engine speed by toggling the switch on the far left. A Repeating Table block provides the

throttle angle input and periodically repeats the sequence of data specified in the mask.
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Figure 6.1: Simulink fuelsys model

The controller uses the sensor input and feedback signals to adjust the fuel rate to give a stoichiometric

ratio (Figure 6.2). The model uses four subsystems to implement this strategy: control logic, sensor

correction, airflow calculation, and fuel calculation.  Under normal operation, the model estimates the

airflow rate and multiplies the estimate by the reciprocal of the desired ratio to give the fuel rate.  Feedback

from the oxygen sensor provides a closed-loop adjustment of the rate estimation in order to maintain  the

ideal mixture ratio.
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Control Logic
A single Stateflow chart, consisting of a set of six parallel states, implements the control logic in its

entirety.  The four parallel states shown at the top of Figure 6.3 correspond to the four individual sensors.

The remaining two parallel states at the bottom consider the status of the four sensors simultaneously

and determine the overall system operating mode.  The model synchronously calls the entire Stateflow

diagram at a regular sample time interval of 0.01 sec.  This permits the conditions for transitions to the

correct mode to be tested on a timely basis.

Oxygen_Sensor_Mode Pressure_Sensor_ModeO2_normal
entry: o2State = 0

O2_warmup
entry: o2State = 1 press_fail

entry: pressState = 1
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[throt >  min_throt & throt < max_throt]
/ Sens_Failure_Counter.DEC

[speed > 0] /
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When execution begins, all of the states start in their “normal” mode with the exception of the oxygen

sensor.  The O2_warmup state is entered initially until time has exceeded the o2_t_thresh.  The system

detects throttle and pressure sensor failures when their measured values fall outside their nominal

ranges.  A manifold vacuum in the absence of a speed signal indicates a speed sensor failure.  The oxygen

sensor also has a nominal range for failure conditions but, because zero is both the minimum signal

level and the bottom of the range, failure can be detected only when it exceeds the upper limit.

Regardless of which sensor fails, the model always generates the directed event broadcast

Sens_Failure_Counter.INC.  In this way the triggering of the universal sensor failure logic is

independent of the sensor.  The model also uses a corresponding sensor recovery event,

Sens_Failure_Counter.DEC. The Sens_Failure_Counter state keeps track of the number of failed

sensors.  The counter increments on each Sens_Failure_Counter.INC event and decrements on each

Sens_Failure_Counter.DEC event.  The model uses a superstate, MultiFail, to group all cases where

more than one sensor has failed.

The bottom parallel state represents the fueling mode of the engine.  If a single sensor fails, operation

continues but the air/fuel mixture is richer to allow smoother running at the cost of higher emissions.  If

more than one sensor has failed, the engine shuts down as a safety measure, since the air/fuel ratio

cannot be controlled reliably.

During the oxygen sensor warm-up, the model maintains the mixture at normal levels.  If this is

unsatisfactory, the user can change the design by moving the warm-up state to within the Rich_Mixture

superstate.   If a sensor failure occurs during the warm-up period, the Single_Failure state is entered

after the warm-up time elapses.  Otherwise, the Normal state is activated at this time.

We easily added a protective overspeed feature by creating a new state in the Fuel_Disabled superstate.

Through the use of  history junctions, we assured that the chart returns to the appropriate state when the

model exits the overspeed state. As the safety requirements for the engine become better specified, we can

add additional shutdown states to the Fuel_Disabled superstate.

Sensor Correction
The Fault Correction block determines which sensors to use and which to estimate. Figure 6.4 shows the

block diagram for this subsystem.  The failures input is a vector of  logic signals that trigger the

application of estimates to each particular sensor.  When a component of the signal is nonzero, it enables

the appropriate estimation subsystem and causes the switch relating to that signal to send the estimate as

the output.  Since the estimation routines are within enabled subsystems, they do not introduce any

computational overhead when they are not needed.
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6.4: Sensor correction and fault redundancy

The sensors input to the Correction block is the vector of raw sensor values.  When there are no faults, the

input  simply passes on as the output signal.  When a fault exists, the appropriate estimation block uses

this signal to recover the missing component.  Figure 6.5 shows an estimation example of  the algorithm

for the manifold pressure sensor.
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Figure 6.5: Manifold absolute pressure reconstruction
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Airflow Calculation
The Airflow Calculation block (Figure 6.6) is the location for the central control laws.  The block estimates

the intake air flow to determine the fuel rate which gives the appropriate air/fuel ratio.  Closed-loop

control adjusts the estimation according to the residual oxygen feedback in order to maintain the mixture

ratio precisely.  Even when a sensor failure mandates open-loop operation, the most recent closed-loop

adjustment is retained to best meet the control objectives.
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Figure 6.6: Airflow Estimation and Correction

The engine’s intake air flow can be formulated as the product of the engine speed, the manifold pressure

and a time-varying scale factor.
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Cpump  is computed by a lookup table and multiplied by the speed and pressure to form the initial flow

estimate.   During transients, the throttle rate, with the derivative approximated by a high-pass filter,

corrects the air flow for filling dynamics.  The control algorithm provides additional correction according

to Eqs. 6.2:
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 Equation 6.2

The nonlinear oxygen sensor, modeled with a hyperbolic tangent in the engine gas Mixing and

Combustion subsystem, provides a meaningful signal when in the vicinity of 0.5 volt.  The raw error in

the feedback loop is thus detected with a switching threshold, as indicated in Equation 6.2.  If the value is

low (the mixture is lean), the original air estimate is too small and needs to be increased.  Conversely,

when the oxygen sensor output is high, the air estimate is too large and needs to be decreased.  Integral

control is utilized so that the correction term achieves a level that brings about zero steady-state error in

the mixture ratio.

The normal closed-loop operation mode, LOW, adjusts the integrator dynamically to minimize the error.

The integration is performed in discrete time, with updates every 10 milliseconds.  When operating open-

loop however, in the RICH or O2 failure modes, the feedback error is ignored and the integrator is held.

This gives the best correction based on the most recent valid feedback.

Fuel Calculation
The Fuel Calculation subsystem (Figure 6.7) sets the injector signal to match the given airflow

calculation and fault status.  The first input is the computed airflow estimation.  This is multiplied with

the target fuel/air ratio to get the commanded fuel rate.  Normally the target is stoichiometric, 1/14.6.

         e2  =  closed–loop correction

e0, e1,  e2 = intermediate  error signals
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When a sensor fault occurs, the Stateflow control logic sets the mode input to a value of 2 or 3 (RICH or

DISABLED) so that the mixture is either slightly rich of stoichiometric or is shut down completely.

Fuel Rate Calculation
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4
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2

correction

1

est.
air

flow

Figure 6.7: Fuel Calculation Subsystem

The Fuel Calculation subsystem (Figure 6.7) employs adjustable compensation (Figure 6.8) in order to

achieve different purposes in different modes.  In normal operation, phase lead compensation of the

feedback correction signal adds to the closed-loop stability margin.  In RICH mode and during EGO

sensor failure (open loop), however, the composite fuel signal is low-pass filtered to attenuate noise

introduced in the estimation process.  The end result is a signal representing the fuel flow rate which, in

an actual system, would be translated to injector pulse times.
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Figure 6.8: Switchable compensation

Results and Simulation results are shown in Figure 6.9 and Figure 6.10.  The simulation is run with a throttle input

Conclusions that ramps from 10 to 20 degrees over a period of two seconds, then back to 10 degrees over the next two

seconds.  This cycle repeats continuously while the engine is held at a constant speed so that the user can

experiment with different fault conditions and failure modes.  To simulate a sensor failure, double-click

on its associated switch (see Figure 6.1).  Repeat this operation to toggle the switch back for normal

operation.

Figure 6.9 compares the fuel flow rate under fault-free conditions (baseline) with the rate applied in the

presence of a single failure in each sensor individually.  Note, in each case, the nonlinear relationship

between fuel flow and the triangular throttle command (shown qualitatively on its Simulink icon).  In

the baseline case, the fuel rate is regulated tightly, exhibiting a small ripple due to the switching nature of

the EGO sensor’s input circuitry.  In the other four cases the system operates open loop.  The control

strategy is proven effective in maintaining the correct fuel profile in the single-failure mode.  In each of

the fault conditions, the fuel rate is essentially 125% of the baseline flow, fulfilling the design objective of

80% rich.

Figure 6.10 plots the corresponding air/fuel ratio for each case.  The baseline plot shows the effects of

closed-loop operation.  The mixture ratio is regulated very tightly to the stoichiometric objective of 14.6.

The rich mixture ratio is shown in the bottom four plots of Figure 6.10.  Although they are not tightly

regulated, as in the closed-loop case, they approximate the objective of air/fuel = 0.8(14.6) = 11.7.
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The transient behavior of the system is shown in Figure 6.11.  With a constant 12° throttle angle and the

system in steady-state, a throttle failure is introduced at t = 2 and corrected at t = 5.  At the onset of the

failure, the fuel rate increases immediately.  The effects are seen at the exhaust as the rich ratio propagates

through the system.  The steady-state condition is then quickly recovered when closed-loop operation is

restored.
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Figure 6.11: Transient response to fault detection

During simulation, this behavior can also be observed from the Stateflow perspective.  By enabling

animation in the Stateflow debugger, the state transitions are highlighted in Figure 6.3 as the various

states are activated. The sequence of activation is indicated by changing colors.  This closely coupled

synergy between Stateflow and Simulink fosters the modeling and development of complete control

systems.  An engineer’s concepts can develop in a natural and structured fashion with immediate visual

feedback reinforcing each step.
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VII.  AUTOMATIC TRANSMISSION CONTROL

Summary In this example, Simulink is used to model an automotive drivetrain.  Stateflow enhances the Simulink

model with its  representation of the transmission control logic.  Simulink provides a powerful

environment for the modeling and simulation of dynamic systems and  processes. In many systems,

though, supervisory functions like changing modes or invoking new gain schedules must respond to

events that may occur and conditions that develop over time. As a result, the environment requires a

language capable of managing these multiple modes and developing conditions.  In the following

example, Stateflow demonstrates its strength in this capacity by performing the function of gear selection

in an automatic transmission.  This function is combined with the drivetrain dynamics in a natural and

intuitive manner by incorporating a Stateflow block in the Simulink block diagram.

Figure 7.1: Drivetrain system block diagram

Figure 7.1 shows the power flow in a typical automotive drivetrain. Nonlinear ordinary differential

equations model the engine, four-speed automatic transmission, and vehicle.  The model directly

implements these as modular Simulink subsystems.  On the other hand, the logic and decisions made in

the transmission controller (TCU) do not lend themselves to well-formulated differential or difference

equations; these are better suited to a Stateflow representation.  Stateflow monitors the events which

correspond to important relationships within the system and takes the appropriate action as they occur.

Analysis and The engine receives input in the form of the throttle opening, as commanded by the driver.  It is connected

Physics to the impeller of the torque converter which couples it to the transmission

.
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 Equation 7.1

The input-output characteristics of the torque converter can be expressed as functions of the engine speed

and the turbine speed. In this example, the direction of power flow is always assumed to be from impeller

to turbine.
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The transmission model is expressed as static gear ratios, assuming small shift times.
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The final drive, inertia, and a dynamically varying load constitute the vehicle dynamics.
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 Equation 7.4

The load torque includes both the road load and brake torque. The road load is the sum of frictional and

aerodynamic losses.
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Equation. 7.5

The model programs the shift points for the transmission according to a schedule, such as is shown in

Figure 7.2.  For a given throttle in a given gear, there is a unique vehicle speed at which an upshift takes

place; the simulation operates similarly for a downshift.

=  capacity or K–factor
Equation 7.2
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Figure 7.2: Shift Schedule

Modeling The Simulink model (sf_car.mdl) is composed of modules which represent the engine, transmission

and vehicle, with an additional shift logic block to control the transmission ratio.  User inputs to the

model are in the form of throttle (%) and brake torque (ft-lb).  The diagram in Figure 7.3 shows the

overall model.

Choose Start from
the Simulation menu

to run the simulation.
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transmission speed

vehicle
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Figure 7.3: Overall simulation model

The Engine subsystem consists of a two-dimensional table that interpolates engine torque vs. throttle and

engine speed.  In accordance with Equation 7.1, the model subtracts the impeller torque, divides the

difference by the inertia and then numerically integrates the quotient to compute the engine speed.

Figure 7.4 shows the composite engine subsystem.
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The torque converter and the block which implements the various gear ratios make up the transmission

subsystem, as shown in Figure 7.5.
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Figure 7.5: Transmission subsystem

The torque converter is a masked subsystem, under which the model computes the relationships of

Equation 7.2.  The parameters entered into the subsystem are a vector of speed ratios (Nin/Ne ) and vectors

of K-factor (f2) and torque ratio (f3) corresponding to the speed ratio data.  Figure 7.6 shows the subsystem

implementation.
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Figure 7.6:  Torque converter subsystem

The transmission ratio block determines the ratio RTR(gear), shown in Table 7.1 and computes the

transmission output torque and input speed, as indicated in Equation 7.3.  The ratios used progress from

low to another underdrive ratio, one-to-one and overdrive.
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gear RTR

1 2 393

2 1 450

3 1 000

4 0 677

.

.

.

.

Table 7.1: Transmission Gear Ratios

Figure 7.7 shows the block diagram for the subsystem that realizes this ratio in torque and speed.
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Figure 7.7:  Transmission gear ratio subsystem

The Stateflow block labeled shift_logic implements gear selection for the transmission.  The Stateflow

Explorer is utilized to define the inputs as throttle and vehicle speed and the output as the desired gear

number.  Two dashed AND states keep track of the gear state and the state of the gear selection process.   The

overall chart is executed as a discrete-time system, sampled every 40 mSec. The Stateflow diagram shown

in Figure 7.8 illustrates the functionality of the block.

The shift logic behavior, explained in the following, can be observed during simulation by enabling

animation in the Stateflow debugger.  The selection_state, which is always active, begins by

performing the computations indicated in its during function.  The model computes the upshift and

downshift speed thresholds as a function of the instantaneous values of gear and throttle (see Figure 7.2).

While in steady_state, the model compares these values to the present vehicle speed to determine if a

shift is required.  If so, it enters one of the confirm states (upshift_confirm or downshift_confirm),

which records the time of entry.

If the vehicle speed no longer satisfies the shift condition, while in the confirm state, the model ignores the

shift and it transitions back to steady_state.  This prevents extraneous shifts due to noise conditions.  If

the shift condition remains valid for a duration of Tconfirm, the model transitions through the lower

junction and, depending on the current gear, it broadcasts one of the shift events.  Subsequently, the model

again activates steady_state after a transition through one of the central junctions.  The shift event,

which is broadcast to the gear_selection state, activates a transition to the appropriate new gear.
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Figure 7.8: Stateflow diagram of the transmission shift logic

For example, if the vehicle is moving along in second gear with 25% throttle, the state second is active

within gear_state, and steady_state is active in the selection_state.  The during function of the latter

finds that an upshift should take place when the vehicle exceeds 30 mph.  At the moment this becomes

true, the model enters the upshift_confirm state and sets the local variable tup to the current time by its

entry action.  While in this state, if the vehicle speed remains above 30 mph until the elapsed time (t -

tup) reaches Tconfirm (0.1 Sec), the model satisfies the transition condition leading down to the lower

right junction.  This also satisfies the condition [gear == 2] on the transition leading from here to

steady_state, so the model now takes the overall transition from upshift_confirm to steady_state

and broadcasts the event UPSHIFT23 as a transition action.  Consequently, the  transition from second to

third is taken in gear_state which completes the shift logic.

The vehicle dynamics (Figure 7.9) use the net torque to compute the acceleration and integrate it to

compute the vehicle speed, per Equation 7.4 and Equation 7.5. In this example, we again use a masked

subsystem for the vehicle submodel.  The parameters entered in the mask menu are the final drive ratio,

the polynomial coefficients for drag friction and aerodynamic drag, the wheel radius, vehicle inertia, and

initial transmission output speed.
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Figure 7.9: Vehicle dynamics subsystem

Results The engine torque map, torque converter characteristics, and road load data used in the simulations are

shown in the three plots which follow (Figure 7.10, Figure 7.11, and Figure 7.12).
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The first simulation uses the following throttle schedule:
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The first column corresponds to time; the second column corresponds to throttle opening in percent.  In

this case we do not apply the brake  (0 ft-lb).  The vehicle speed starts at zero and the engine at 1000 RPM.

Figure 7.13 shows the plot for the baseline results, using the default parameters.  As the driver steps to

60% throttle at t = 0, the engine immediately responds by more than doubling its speed.  This brings

about a low speed ratio across the torque converter and, hence, a large torque ratio (see Figs. 7.6 and 7.11).

The vehicle accelerates quickly (no tire slip is modeled) and both the engine and the vehicle gain speed

until about t = 2, at which time a 1-2 upshift occurs.  The engine speed characteristically drops abruptly,

then resumes its acceleration.  The 2-3 and 3-4 upshifts take place at about four and eight seconds,

respectively.  Notice that the vehicle speed remains much smoother due to its large inertia.
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Figure 7.13: Initial simulation time history

At t = 15, the driver steps the throttle to 100% as might be typical of a passing maneuver.  The

transmission downshifts to third gear and the engine jumps from about 2600 to about 3700 RPM.  The

engine torque thus increases somewhat, as well as the mechanical advantage of the transmission.  With
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continued heavy throttle, the vehicle accelerates to about 100 mph and then shifts into overdrive at about t

= 21.  The vehicle cruises along in fourth gear for the remainder of the simulation.

Figure 7.14 shows the results of a second simulation.  The behavior for the first fifteen seconds is the same

as above, but the throttle subsequently drops to about 5% at 40 seconds.  This is followed by a step in brake

torque at t = 50.  Again, the large vehicle inertia dominates the dynamics as it eventually slows down to a

crawl.  The engine speed downshifts occur at about 72, 80 and 90 seconds, ending in first gear.
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Figure 7.14: Vehicle simulation with acceleration and braking

Conclusions We can easily enhance this basic system in a modular manner, for example, by replacing the engine or

transmission with a more complex model. We can thus build up large systems within this structure via

step-wise refinement.  The seamless integration of Stateflow control logic with Simulink signal

processing enables the construction of a model which is both efficient and visually intuitive.
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VIII.  ELECTROHYDRAULIC SERVO CONTROL

Summary In this example we develop a Simulink model for a hydraulic servomechanism controlled by a pulse-

width modulated (PWM) solenoid.  This might represent a motion control system in an industrial or

manufacturing setting, or a subsystem that controls the position of a valve in an automotive or aerospace

application.  Nonlinear differential equations are used to model the magnetic, hydraulic and mechanical

components; discrete-time difference equations represent the controller.  A behavioral model in Stateflow

implements the electronic circuit which generates the PWM waveforms and regulates the solenoid

current.  Although a detailed power electronic model could be developed in Simulink, the Stateflow

description provides the required functionality and speeds development.

Figure 8.1 shows a hydraulic schematic for the mechanism. The objective of the system is to position the

load xp so that it follows commands issued in the form of a time-varying set point rset .  An electronic

controller compares these commands to feedback measurements of xp and generates a PWM control

signal at a rate of 50 Hz.  The PWM duty cycle is the percentage of the 20 millisecond period for which the

valve directly supplies oil to the control pressure developed in the cylinder behind the piston, pc.  For the

remainder of the period, the valve vents pc to exhaust.  The composite flow qnet thus controls pc which

develops an actuating force against the piston.  This forces the spring-loaded piston to its position xp such

that it follows the reference trajectory rset .

Figure 8.1: Solenoid valve and hydraulic actuator

We chose PWM control to regulate the net valve flow with its on/off duty ratio rather than relying on the

strict mechanical tolerances of a continuous valve.  This  sequentially turns the solenoid completely on or

off , rather than attempting to control it to a precise intermediate position. The tradeoff is that a

disturbance is introduced into the system at the PWM frequency.  As a result, we must take care that this

is adequately attenuated by the low-pass response of the mechanical system.  We can evaluate this

requirement by constructing a simulation at the design phase rather than waiting for experimental parts.

Analysis  and PWM SOLENOID

Physics The model of the solenoid-controlled PWM valve includes three parts:

Magnetic circuit

Armature motion

Valve flows

pc Ap

Ps

Ksp

qnet

xp

PWM
Solenoid
Valve

Cylinder and Piston
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Figure 8.2 shows a cross-sectional view of a typical solenoid valve of this type.  The enclosure, armature

and pole piece are steel, and the coil is wound around the armature/pole axis.  With no current, the

internal spring forces the armature and ball to the right against the hydraulic force.  This blocks the

supply pressure Ps and opens a path from control pressure to exhaust.  When the solenoid is energized, the

armature and pole come together and the pressure force shuttles the ball to open the supply port and block

the exhaust port.

Figure 8.2: Pulse-Width Modulated Solenoid Valve

Consider first the magnetic circuit. Faraday’s law determines the flux.  We assume that fringing and

leakage flux  are negligible, as are eddy currents.
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The magnetomotive force required to develop this flux is broken up into components for the steel and the

air gap.  Although the majority of the circuit’s reluctance is concentrated at the air gap, the nonlinear

properties of the steel components, such as saturation and hysteresis, can limit performance.
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 magnetomotive force

 magnetic field intensity

g = length of air gap

 magnetic circuit length in steel            

Equation 8.1

Within the steel, the flux density, B, is a nonlinear function of H, dependent upon the material properties.

We also assume that the area, A, which relates φ and B at the air gap, applies uniformly for the steel path.
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The solenoid force, Fsol , and current that result are:
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The armature responds to the solenoid force, as well as the hydraulic and spring forces.
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Equation 8.2

The net oil flow directed from the valve to the actuator, qnet , is the supply flow less the exhaust flow.
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Actuator Dynamics
The actuator assembly moves the piston against a spring as a function of the control pressure developed

behind it.  Assuming negligible leakage,

    

˙ ˙ ,p
V

q x A

V  x A

x
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c net p p

p p

p

p

= −( )
=
=

=
=

=

β

β  fluid bulk modulus

 fluid volume

 piston position

 actuator (piston) area       

Equation 8.4

The actuator’s equation of motion, dominated by the relatively large hydraulic and spring forces, is

simply:

    

M x p A K x
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=

=

 net actuator mass           

 spring rate

Equation 8.5

Electronic Controls
We employ a discrete-time PI (proportional + integral) control law to

1.  Achieve zero steady-state error to step changes in the position set point, and

2.  Compensate for the low-frequency actuator dynamics to improve response speed.

    
dutycycle K

K

z
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I
set p = +

−




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−
1

( ) Equation 8.6

The integral term is essential because the null duty cycle, or equilibrium control input, is subject to

uncertainty and will change with the system’s operating point.  The proportional part contributes phase

lead at low frequency which is essential for stability.

Equation 8.6 computes the PWM duty cycle as a function of position error.  The duty cycle is applied to a

50 Hz pulse train and the power electronics convert the pulse signal to solenoid current.   Digital and

analog integrated circuits are available to perform these functions, so we use a behavioral model, rather

than a highly detailed physical model.  The behavior is best described in terms of the circuit’s reaction to

the commands it receives and the response of its load.  Figure 8.3 shows an idealized example.

At the beginning of each 20 millisecond period, the PWM pulse turns on and must pull the solenoid

armature up against the pole piece to open the valve to supply pressure.  Hence, the driver circuit applies

the full supply voltage to achieve the fastest initial rise in current.  The solenoid maintains this condition

until the current has risen to the level at which the magnetic and hydraulic forces overcome the spring

and move the armature.
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Once the armature has been pulled in, the air gap is very small and somewhat less current is needed to

hold the armature in place.  The driver thus regulates the current at a lower level for the remainder of the

“on” portion of the cycle.  Typically, a switch-mode regulator controls the “hold” current.  This technique

alternatively applies the supply voltage to the solenoid and then allows the field to collapse slowly

(shunted by a freewheel diode). This is significantly more efficient, in terms of power, than linear

regulation.

At the end of each pulse, the armature releases so that the ball returns to its original position and the

valve opens to exhaust.  We achieve this by opening the solenoid circuit so that the magnetic field

collapses quickly.  Typically, we employ a zener diode to limit the large negative EMF while still allowing

a fast decay.  The current then remains at zero for the duration of the “off” time until the next cycle

begins.

In this way, we divide the “on” portion of each pulse into two phases: “pull-in” and “hold.” The “off”

portion is characterized by the initial rapid decay, followed by zero voltage and current.  The diagram in

Figure 8.3 illustrates this scenario.

Figure 8.3: Current control within pulses

Modeling Figure 8.4 shows the top-level system block diagram (sf_electrohydraulic.mdl).  The set point block

consists of a signal generator and a step function which are added to give wide flexibility to the user in

specifying the set point.  The controller is a straightforward discrete-time subsystem. We implemented the

PWM driver circuit in Stateflow, but it functions just like the other subsystems at the block diagram level.

We refined the solenoid valve into three parts, as described above.  The actuator model, consisting of the

cylinder pressurization and piston motion subsystems, completes the overall system model.
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Ihold

vol tage

current
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Figure 8.4: Servo model using Simulink and Stateflow

Controller
The controller samples the position error and generates a new solenoid duty cycle every 20 milliseconds.

The duty cycle consists of a component that is proportional to the error plus a component that is

proportional to the integral of the error.  The model realizes the integration in the z domain with feedback

around a 1/z block that places a pole at z = 1.  The integral gain, as labeled in the diagram, (Figure 8.5) is

fixed with respect to the proportional gain.  An overall loop gain, Ka, adjusts both while keeping their

ratio, hence the transfer function zero, constant.  While in the linear operating range:
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Equation 8.7

The model limits the computed duty cycle so that it never falls below the minimum time to open the

valve, nor exceeds the time at which the valve remains continuously open.  Whenever it reaches either of

these limits, the integrator holds constant (zero input) until the error is of the appropriate sign to pull it

away from the limit.

proportional + integral control

controller
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nothold
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2 feedback

1
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Figure 8.5: Discrete-time controller subsystem
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PWM Driver Circuit
The solenoid driver circuit uses the computed duty cycle to generate the PWM waveform.  The solenoid

voltage is applied in order to achieve the desired current, force, and hence, valve flow.  We modeled this

with a Stateflow block, which uses duty cycle and solenoid current as inputs and computes voltage as an

output.  Figure 8.6 shows the Stateflow diagram for the model.

energize_solenoid

pull_in_current/
entry : v = Vs;

solenoid_off/
entry : v = -(i > 0)*Vz;
during: v = -(i > 0)*Vz;

regulate_hold_current

freewheel/
entry: v = -(i > 0)*Vd;
during: v = -(i > 0)*Vd;

hold/
entry : v = Vs;

/ton = 0;

/toff = ton + duty_cycle*Tpwm/100;

[t >= ton]

[i >= Ipull]

[t > toff]/ton += Tpwm;

[ i <= Ihold-deltai] [i >= Ihold + deltai]

PWM_driver_ckt

Printed 12Sep1997 12:59:58

Figure 8.6: Stateflow diagram for the PWM driver c ircuit

Each PWM cycle begins with the local variable ton equal to the current simulation time.  The

unconditional transition which begins the cycle computes toff, the time at which the “on” portion of the

pulse ends.

toff = ton + duty_cycle*Tpwm/100;  Equation 8.8

Tpwm is a MATLAB workspace variable representing the pulse period.  The system enters the

energize_solenoid state and, by default, the pull_in_current state.  As described above, the driver

circuit connects the supply voltage to the output for this phase of the pulse.  Once the current reaches

Ipull, the worst-case current required to pull in the armature, it enters the regulate_hold_current

state. A diode in the freewheel state shunts the coil which clamps the solenoid voltage at -Vd.  When the

current falls to the hold level, the system alternates between the hold and freewheel states to regulate it to

Ihold ± deltai.

When the time reaches t = toff, it exits the energize_solenoid state, regardless of which of the pull-in,

freewheel or hold states is currently active.  This is achieved by drawing the transition directly from the

superstate boundary to the solenoid_off state.  The value of ton, the beginning of the next cycle, is updated

at this time.  While in the solenoid_off state, the coil connects to the zener voltage, -Vz, until the field

collapses and the current falls to zero, as described in the entry and during actions.
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Magnetic Circuit
The model uses the applied voltage and armature position to determine the solenoid force and current.

This requires evaluating Equations 8.1 with Simulink blocks placed in the appropriate configuration. The

state variable is flux, computed by integrating the solenoid EMF.  The flux density is calculated by

dividing the flux by the cross-sectional area of the magnetic path.  The force Fsol  is computed as a gain

times the square of the flux density.

magnetic circuit
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Figure 8.7: Magnetic subsystem model

The model computes the solenoid current by determining the magnetomotive force.  In the air gap, Hair  =

B/µ0 is multiplied by the gap length to give MMFair .  The gap length is computed by subtracting the

armature position from the maximum gap.  A small additional gap is added to model additional air in

the circuit, at the armature bearing surface, for example.  The MMF required to produce the flux density in

the steel is computed by putting the material characteristics, H vs. B, in a 2-D lookup table.  Since this

curve has significant hysteresis, two curves are placed in the table, one for increasing and one for

decreasing flux.  The appropriate curve for H f Bsteel = ( )  is selected according to the sign of φ̇.  Hsteel Lsteel

is added to MMFair  and the sum is divided by N to determine the solenoid current.

Armature Motion
The model solves the equation of motion for the armature directly, as shown in Figure 8.8. The sum and

gains use standard blocks , and the subsystem Double Integrator computes the velocity and position of

the armature based on its acceleration.  The position x = 0 corresponds to the maximum air gap, gmax.
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Figure 8.8: Mechanical subsystem for the solenoid Armature

In the double integrator subsystem (Figure 8.9), the model limits the position integrator by physical stops

at x = 0 and at x = gmax - gmin (a shim typically limits the minimum gap).  When these limits are

reached, it is essential that the velocity becomes zero and remains zero while at the stops. The model

achieves this by feeding the position saturation port back to the velocity reset trigger.  In addition, the

derivative input of the velocity integrator switches to zero as long as xdotdot (force/mass) holds the

armature against the stop.  The velocity thus remains zero until the force reverses direction.

2

xdot

1

x
Switch

< <=

>

>=

OR

AND

AND

s

1

s

1

0

0

0

0

gmax-gmin

1

xdotdot

Figure 8.9: Cascaded integrators with coordinated limit logic

Valve Flows
Simulink models the turbulent flow through the valve orifices with the following subsystem, shown in

Figure 8.10.  The inputs pup and pdown are the upstream and downstream pressures and q is the flow

from pup to pdown. The square root of the absolute value of the pressure drop, multiplied by the sign of the

pressure drop and KoAo (defined in Equation 8.3) yields the flow.

Turbulent Orifice Flow

1

q

Ko*Ao
sqrt|u|

2

pdown

1
pup

Figure 8.10: Individual orifice subsystem
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The valve model shown in Figure 8.11 uses this subsystem twice, to model the flow from the supply to the

control pressure and to model the flow from the control pressure to the exhaust.  The net flow to the

control pressure is the supply flow, when x > 0, and negative one times the exhaust flow, when x <

balltravel.  The maximum ball travel is less than the armature travel in order to assure that the ball seats

against the exhaust port when the armature is pulled in.  During the brief time in which the ball is at

intermediate positions, with neither port blocked, flow occurs at both orifices.
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Figure 8.11: Overall valve flow subsystem

Cylinder Pressurization
The model for cylinder pressurization is a direct realization of Equation 8.4 in the actuator dynamics

section (see Figure 8.12).  Oil volume is the product of the piston position and its cross-sectional area.  The

division operator uses a function block within a masked subsystem and the other blocks are standard

gains, a sum, and an integrator.
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Figure 8.12: Hydraulic cylinder subsystem
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Piston Motion
Equation 8.5 is the differential equation for piston motion in the previously stated actuator dynamics

section.  The Simulink implementation is straightforward, as shown in Figure 8.13.  We again use the

double integrator subsystem, described above in the armature motion section, to insure that zero velocity

is indicated when the actuator is being held against its physical stops.
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1
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Figure 8.13: Actuator mechanical subsystem

Results Figure 8.14 below shows the set point and piston position for a baseline simulation.  During the first 0.1

second, and again from 1.0 to 1.1 seconds, the output is slew rate limited by the maximum flow available

to the actuator.  At other times, the 3 Hz sinusoid is tracked closely.  Although the solenoid goes through a

complete on/off cycle each PWM period, the 50 Hz dither superimposed on the actuator position is

relatively small.
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Figure 8.14: Simulated piston motion

Figure 8.15 below depicts the solenoid current control, under the authority of the Stateflow model.  The

diagram shows two cycles with about 47% and about 55% duty cycle, respectively.  During the pull-in

phase, as the flux builds and the current approaches its 2.5A target, the current drops abruptly at about t =

2 milliseconds.  This is the instant at which the armature is pulled in.  This pull-in generates so much

back EMF that the current drops appreciably.  The notch in current is so distinct that it is often used in the

laboratory to measure solenoid response time.

When the current reaches the conservative 2.5A target, more than enough to achieve armature pull-in,

the solenoid enters the hold phase of its energized state.  The model regulates the average current  to 1A by

chopping the voltage as described in the Stateflow diagram.  The chopping takes place at a rate somewhat

higher than 1 kHz in order to regulate the current within ±0.1 A.  The freewheel state uses a value of Vd =

0.5 V to slow the decay of energy in the magnetic field.  When the completion of each energized state turns

off the solenoid, the negative voltage is limited by Vz = 50 V.  The model achieves a rapid decay in current

without subjecting the semiconductor devices to extreme voltages.
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Figure 8.15: Simulated solenoid current

Conclusions Simulink and Stateflow combine to provide a powerful modeling environment for dynamic systems.  In

this case, Simulink enables the direct construction of block diagram subsystems which represent the

nonlinear differential equations of the physical system and the difference equations of its discrete-time

controller.  A Stateflow model captures the behavior of the electronic PWM driver circuit, without

resorting to the complexity of a detailed circuit model.  The clear and natural logic of Stateflow facilitates

rapid model development and debugging.  The overall model develops in a structured, hierarchical

manner, amenable to careful documentation
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IX.  MODELING STICK-SLIP FRICTION

Summary The model in this example consists of a block sliding along a surface and compressing a spring under the

influence of a user-designated input force.  In the absence of friction, this behaves like a classical spring-

mass system with the steady-state block position proportional to the applied force.  When friction is taken

into account, the model becomes considerably more complicated.  Friction between the block and surface

tends to resist motion; however, the friction force changes with velocity and tends to be greatest when

stationary.  This results in motion which alternately “sticks” and “slips” as the overall force balance

requires.  This “stiction” phenomenon is common in many mechanical systems.

In this simulation, Stateflow is used to represent some of the physical states of the system.  As noted above,

the friction force between two surfaces is intrinsically tied to their instantaneous relative velocity.  The

continuous trajectory of velocity and position is subject to abrupt changes in acceleration, however,

corresponding to transitions between the discrete states of “stuck” and “sliding.”  Simulink provides a

powerful tool for modeling the continuous dynamics, and Stateflow is a natural and intuitive setting for

modeling the discrete physical states.

Analysis and The diagram in Figure 9.1 shows the mechanical system.

Physics

Figure 9.1: Spring-Mass-Friction System

The basic equation of motion for the block is:

Mx F F F

M

x

F

in spring friction

in

˙̇

˙̇

= − −

=
=
=

block mass

acceleration                               

input force

Equation 9.1

The model for the linear spring (of negligible mass) is:

 x

Fin
K

M
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Equation 9.2

The friction force is more complex, however.
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In many applications the friction capacity is described by its static and kinetic magnitudes.  This

approach is used in the present model, also assuming a constant normal force.
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The following logic determines Fstationary  .  Whenever the velocity is nonzero, an impulsive force would be

needed to make it zero instantaneously. This always exceeds the capacity, Fsliding , so the latter magnitude is

used.  When the velocity is already zero, however, Fstationary  is the force which maintains this condition by

making the acceleration zero.
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Equation 9.5

The friction force can thus be expressed as
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Equation 9.6

Modeling Figure 9.2 illustrates a Simulink model that demonstrates this behavior (sf_stickslip.mdl).  The two

main components are the block labeled Mechanical Motion and the block labeled state_logic . The former is

composed of conventional hierarchical Simulink subsystems and the latter is implemented in Stateflow.

Simulink is ideal for solving ordinary differential equations and the associated linear and nonlinear

signal flow calculations. Stateflow demonstrates its power in its ability to recognize system events which

require changes in the mode of operation.
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To run, choose Start from the Simulation menu.

Timekeeping

sf_stickslip.mdl

Stickslip Friction Simulation

With the default parameters, the natural 
frequency is much higher than that of the 

excitation force.  For contrast, change 
the parameter values to: 

M = 0.1 kg and Fsliding = 0.1 N.

force and
position
vs. timeThe input force linearly compresses 

the spring, but friction resists this 
movement.  The magnitude of

friction depends on the state of motion.

zero threshold

 novelocity

 Fsum

stuck 

state_logic

position
vs.

force

Fin

stuck

position

velocity

Fsum

mechanical
motion

t

edit
parameters

Mu

Mux

Input
Force

         0

Figure 9.2: Simulink block diagram

As described in Equation 9.2, the model implements the fundamental equation of motion,  in the

Mechanical Motion block.  Double-clicking on this block shows the underlying subsystem, pictured in

Figure 9.3.  The sum of the forces divided by the mass determines the block acceleration.  The acceleration

is integrated twice to compute the velocity and position.

Mechanical Motion

3

Fsum

2

velocity

1

position

K

spring

Fsum

xdot

stuck

Ffriction

friction force

s

1

s

11/M

2

stuck

1

Fin

Figure 9.3: Mechanical subsystem

The friction force subsystem shown in Figure 9.4 performs a number of nonlinear operations on the

signals in order to model the relationships of Equation 9.6.  Standard Simulink blocks implement the
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functions of absolute value, sign, minimum, and product.  The switch block selects the appropriate value

for the friction force, under control of the signal labeled “stuck.”  This is the output of the Stateflow

control_logic block.  Note that it is also used in the Mechanical Motion block as a reset input to the first

integrator.  This is to ensure that, at the onset of the zero velocity mode, any infinitesimal value is cleared

from the velocity state.

friction forces

fstatic

fsliding

1

Ffriction

Sign1

min

MinMax

Fstatic

Fsliding

|u|

Abs

3

stuck

2

xdot

1

Fsum

Figure 9.4: Friction Subsystem

The Stateflow diagram in Figure 9.5 below describes the behavior of the system states.  The block input

signals are Fsum and novelocity.  Fsum as defined in Figure 9.4 and novelocity is a binary signal that

becomes one the instant the velocity crosses through zero.  The Stateflow block output is the control signal

stuck, as described above.  The parameter Fstatic is taken from the MATLAB workspace.

state_of_motion

stuck/
entry: stuck = 1;

sliding/
entry: stuck = 0;

[fabs(Fsum) > Fstatic]

[novelocity & (fabs(Fsum)<= Fstatic)]

state_logic

Printed 14 Nov 1997 14:52:39

Figure 9.5: Stateflow diagram for stick-slip motion
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Two mutually exclusive (OR) states are used to represent the conditions of stuck and sliding.  The

system, assumed to initially be at rest, first enters the stuck state via a default transition.  The transition

out of the stuck state, the upper arc from left to right, is activated when the external forces exceed the static

friction.  The sliding state remains active as long as the block is moving, its velocity is nonzero.  When

the velocity reaches zero, its direction of travel will reverse, unless the net external force is lower in

magnitude than the static friction force.  Hence, a transition from the sliding state to the stuck state is

made when the logical and of these two conditions, zero velocity and force less than static friction, is

satisfied.

The output signal of the machine, stuck, is a binary representation of the state.  The entry function of the

stuck state sets it to one, and the entry function of the sliding state clears it to zero.  It can then be used as

a control signal in the other Simulink blocks, as indicated above.  The ultimate value of the state machine

in this example is to model the state transitions of the system in accordance with physical laws while

using the appropriate frictional force in the acceleration computations at each instant.

Results The default parameters used in this model are:

    

M

K

F

F
static

sliding

=
=
=
=

0 001

1

1

1

.  kg

 N/m

 N

 N

The input force ramps linearly from zero to 5 N and back to zero, with a period of 5 seconds.  Two

noteworthy characteristics of the parameters are:

1. The natural frequency of the system

ωn K M= =/ .31 6 rad/sec 

is much higher than that of the excitation (2π/10 rad/sec).  As is typical in the laboratory, the model

employs a very low excitation frequency in order to determine the static response characteristics of the

system.

2. The static and kinetic friction magnitudes are equal.

Figure 9.6 and Figure 9.7 show plots of the simulation results. Figure 9.6 shows the time histories of the

input force and the resulting position.  The input force must exceed that of the static friction in order to

begin motion at t = 1.  From 1 < t < 5, the position tracks the spring force less the kinetic friction force, with

small oscillations showing changes in velocity at the natural frequency ωn .  The input force then begins

to decrease.  The mass immediately comes to a halt and sticks until t = 7, when the net force again exceeds

the static friction force, now in the reverse direction.
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Figure 9.6: Simulated time histories

Similar behavior follows as the input force decreases to zero and repeats another cycle. Figure 9.7 shows

the input-output characteristics of the system, position vs. force.  The plot forms a hysteresis loop as the

position lags the force.  The static input-output characteristics cannot be represented by a single-valued

function because the system has memory.
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Figure 9.7: Simulated hysteresis loop
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The continuous states, position and velocity, have memory in the sense that the model stores the energy

according to their magnitudes.  The potential energy in the spring is proportional to the square of position

and the kinetic energy of the mass is proportional to the square of its velocity.  They represent memory in

that they cannot change instantaneously if power flow is assumed to be finite.

The static behavior relies, not only on the spring rate (force vs. position), but also on the position and

velocity at the instant of the last state transition.  While in the stuck state, the position will remain

constant at the point where it entered the state.  In the sliding state, the position depends on the spring

characteristics, the direction of the velocity, and the position of the mass at the moment it began to slide.

This behavior is captured in a natural and intuitive way in the Stateflow model.

We can illustrate the dynamic behavior of “stiction,” or stick-slip friction, even more dramatically by

changing the system parameters as follows.
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Figure 9.8: Stick-slip friction behavior

With kinetic friction lower in magnitude than static friction, abrupt discontinuities in acceleration occur

at the stuck-to-sliding and sliding-to-stuck state transitions.  As the velocity reaches zero, the

acceleration is often nonzero.  If the stuck state is entered, however, the acceleration becomes zero
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immediately.  This highly nonlinear behavior is typical in many systems, making it difficult to precisely

control position.

Conclusions We can greatly simplify the modeling and simulation task by inserting a Stateflow block into the

mechanical system.  Conceptually, Stateflow captures the complex dynamic nonlinear behavior in a

graphical diagram with straightforward, easy-to-read functionality.  We can insert this diagram directly

into the Simulink diagram, and the tasks of code generation, compiling, and linking are seamlessly

automated to provide a powerful simulation environment.
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