Smart Integration of Renewable Energy into Electrical Supply Systems

E. Ortjohann, A. Schmelter, N. Hamsic, P. Wirasanti

South Westphalia University of Applied Sciences / Campus Soest, Germany

Long Beach, CA, USA, 17th - 21st March 2013
Agenda

- Status of the Renewable Energy in Germany
- Problems and Strategies for Grid Integration
- System Architecture and Control Methodology of Smart Inverter
- Implementation and Verification of Smart Inverter
- Conclusion
Agenda

- Status of the Renewable Energy in Germany
- Problems and Strategies for Grid Integration
- System Architecture and Control Methodology of Smart Inverter
- Implementation and Verification of Smart Inverter
- Conclusion
Status of the Renewable Energy in Germany

- German Government's Renewable Energy Target
 - 18% Renewable energy share in total primary energy consumption of Germany up to 2020
 - Renewable energy share in the electricity supply system of Germany:
 - 35.0% up to 2020,
 - 50.0% up to 2030,
 - 65.0% up to 2040,
 - 80.0% up to 2050.
Installed capacity of grid tied PV systems and wind turbines

- **2012**
 - Wind non valid values
 - PV approx. 7,3 GW

Source: BMU, Prognos AG
Installed capacity of grid tied PV systems and wind turbines

2012: distribution grids
- Wind approx. 95%
- PV approx. 90%

Source: BMU, Prognos AG
Status of the Renewable Energy in Germany

- Estimated electrical capacity of RES in Germany up to 2020
 - approx. 110 GW

- Biomass: 9.3 GW
- Photovoltaic: 39.5 GW
- Wind: 55.0 GW

Source: BEE Branchenprognose2020
Status of the Renewable Energy in Germany

- Offshore wind development

Alpha Ventus: 12 turbines 60 MW
Source: http://www.alpha-ventus.de/

Baltic 1: 21 turbines 48.3 MW
Source: http://www.enrw.de

BARD Offshore 1: 80 turbines 400 MW (2013)
Source: http://www.bard-offshore.de/
Status of the Renewable Energy in Germany

- Repowering is already in process

2011
- 47 TWh
- 7.7% of electricity demand

2020
- 150 TWh
- 25.0% of electricity demand

- Goals of Germany:
 - Halving the number of wind turbines
 - Double the installed wind power
 - Triple the electricity generation related to 2011

Agenda

- Status of the Renewable Energy in Germany
- Problems and Strategies for Grid Integration
- System Architecture and Control Methodology of Smart Inverter
- Implementation and Verification of Smart Inverter
- Conclusion
Problems and Strategies for Grid Integration

- Conventional power systems

[Diagram showing a grid system with active and passive controlled areas, illustrating the integration of offshore wind parks and pumped hydro systems.]
Problems and Strategies for Grid Integration

- Moving towards decentralized power systems

![Diagram of power grid integration]

- Active Controlled Area
- Bidirectional supply process

Diagram details:
- 220 kV / 380 kV
- 110 kV
- 10 to 30 kV
- 400 V
- Offshore Wind Park
- Pumped Hydro
- Regional Grid
- Special Loads or Suppliers
- Power Plant
Transfer of the conventional control schemas into all grid levels

Conventional control schemas of transmission networks must be extended to distribution networks!
Problems and Strategies for Grid Integration

- Grid Code for decentralized generators in Germany

 - Power reduction (supervisory side)
 - Frequency and voltage droop (unit side)
 - Fault Right Through (unit side)

Source: VDN, German Grid Code

Long Beach, 21.03.2013
Inverter as Flexible Grid Interface for Integration of DERs

Inverter is the **Essential Device** for optimal integration of DERs
Agenda

- Status of the Renewable Energy in Germany
- Problems and Strategies for Grid Integration
- System Architecture and Control Methodology of Smart Inverter
- Implementation and Verification of Smart Inverter
- Conclusion
System Architecture and Control Methodology of Smart Inverter

- Technical requirements of inverter as grid integration of DERs
 - DERs integration into *Active Network*
 - Symmetrical active network
 - Asymmetrical active network
System Architecture and Control Methodology of Smart Inverter

- Technical requirements of inverter as grid integration of DERs
 - DERs integration into *Passive Network*
 - Symmetrical passive network
 - Asymmetrical passive network
Inverter feeding modes at grid side (Unit Control)

- ECS Driven Feeding
 - Grid Parallel
 - Symmetrical
 - Asymmetrical
 - Grid Forming
 - Symmetrical
 - Asymmetrical

- Grid Driven Feeding
 - Grid Supporting
 - Symmetrical
 - Asymmetrical
System Architecture and Control Methodology of Smart Inverter

- Inverter feeding modes at grid side (Unit Control)
 - Grid forming: f- and V-control with nominal reference values (grid side driven)
 - Grid supporting: P- and Q-control with external reference values from load dispatcher (grid side driven)
 - Grid supporting: P- and V-control with external reference values from load dispatcher (grid side driven)
 - Coupling: $\Delta f/\Delta P$ and $\Delta V/\Delta Q$ droop (grid side driven)
 - Coupling: $\Delta P/\Delta f$ and $\Delta Q/\Delta V$ droop (grid side driven)
 - Grid parallel: P- (and Q-) control with reference values from source (unit side driven)
Symmetrical grid forming mode inverter

Inverter Feeding Modes at Grid Side

- ECS Driven Feeding
 - Grid Parallel
 - Symmetrical
 - Asymmetrical

- Grid Driven Feeding
 - Grid Forming
 - Symmetrical
 - Grid Supporting
 - Symmetrical
 - Asymmetrical
Symmetrical current control inverter

- System Architecture and Control Methodology of Smart Inverter

\[\text{Inverter} = 3\sim \]

\[V_{dc} \]

\[L_f \]

\[C_f \]

\[V_{\alpha_{ref}} \]

\[V_{\beta_{ref}} \]

\[V_q \]

\[V_d \]

\[I_{q_{act}} \]

\[I_{d_{act}} \]

\[I_{q_{ref}} \]

\[I_{d_{ref}} \]
Symmetrical grid forming mode inverter
System Architecture and Control Methodology of Smart Inverter

- Symmetrical grid forming mode inverter with primary control

![Diagram of inverter system architecture and control methodology](image)
Symmetrical grid forming mode inverter with primary control

Proposed control schemas fulfill the requirement of decentralized generators Grid Code !!
System Architecture and Control Methodology of Smart Inverter

- Asymmetrical grid forming mode inverter

Inverter Feeding Modes at Grid Side

ECS Driven Feeding
- Grid Parallel
 - Symmetrical
 - Asymmetrical

Grid Driven Feeding
- Grid Forming
 - Asymmetrical
- Grid Supporting
 - Symmetrical
 - Asymmetrical
System Architecture and Control Methodology of Smart Inverter

- Asymmetrical grid forming mode inverter

![Diagram of system architecture and control methodology of a smart inverter](image)

- SVM
- PLL
- Inverter $= 3\sim$
- Local Grid
- Grid
- Positive sequence
- Negative sequence
- Zero sequence

Long Beach, 21.03.2013
System Architecture and Control Methodology of Smart Inverter

- Asymmetrical grid forming mode inverter with primary control
Agenda

- Status of the Renewable Energy in Germany
- Problems and Strategies for Grid Integration
- System Architecture and Control Methodology of Smart Inverter
- Implementation and Verification of Smart Inverter
- Conclusion
Developed smart inverter: technical specifications

- **Total Power**: 100.0 kVA
 - 2 x Module: 12.5 kVA
 - 1 x Module: 25.0 kVA
 - 1 x Module: 50.0 kVA
- **Max. Input Voltage**: 800 V (DC)
- **Output Voltage**: 3 x 400 V (AC)
- **Max. Efficiency**: 95%
Implementation and Verification of Smart Inverter

- 50.0 kVA inverter module
Implementation and Verification of Smart Inverter

- AC Connection module
Implementation and Verification of Smart Inverter

- Developed smart inverter
 - 50 kVA inverter module

- AC Connection module
Implementation and Verification of Smart Inverter

- Verification of proposed control methodology of smart inverter

Parallel operation of 2 Asymmetrical Grid Forming with Primary Control inverters are examined.

- Inverter Parameters:
 - $V_{dc} = 780$ V
 - $V_{ref} = 230$ V
 - $f_{ref} = 50$ Hz
 - $V_{droop} = 4\%$
 - $f_{droop} = 4\%$
Implementation and Verification of Smart Inverter

- Asymmetrical Grid Forming with Primary Control
 - Asymmetrical load; \(R_A = 20\, \Omega \), \(R_B = 40\, \Omega \), \(R_C = 60\, \Omega \)

- Load Voltages

- Load Currents
Asymmetrical Grid Forming with Primary Control

- Symmetrical load; \(R_A = R_B = R_C = 16 \Omega \)

Load Voltages

Load Currents
Agenda

- Status of the Renewable Energy in Germany
- Problems and Strategies for Grid Integration
- System Architecture and Control Methodology of Smart Inverter
- Implementation and Verification of Smart Inverter
- Conclusion
Conclusion

- Characteristics of the proposed smart inverter control architectures:
 - The introduced control architectures enable reliable, fast and efficient control of future oriented power systems
 - Increase the flexibility and adaptability for DERs grid integration into conventional grids
 - Support the conventional control schemas, which are consequently down sized to the low voltage level
 - Give an opportunity to establish an advance control function down to local level
Conclusion

- Change the ordinary DERs integration to be a part of the dynamic grid control and management

- Empower and turn distribution network to be the active control area with Smart Inverter
Acknowledgement

- This research work is supported by

Federal Ministry of Education and Research
Thank You For Your Attention!

Paramet Wirasanti

South Westphalia University of Applied Sciences, Division Soest
Department of Electrical Engineering
Laboratory of Power Systems and Power Economics

Email: wirasanti@fh-swf.de