第一章 常用半导体器件

自测题

一、 判断下列说法是否正确，用“√”和“×”表示判断结果填入空内。

1. 在N型半导体中如果掺入足够量的三价元素，可将其改型为P型半导体。

2. 因为N型半导体的多子是自由电子，所以它带负电。

3. PN结在无光照、无外加电压时，结电流为零。

4. 处于放大状态的晶体管，集电极电流是多子漂移运动形成的。

5. 结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压，才能保证其R_{GS}大的特点。

6. 若耗尽型N沟道MOS管的U_{GS}大于零，则其输入电阻会明显变小。

解：

二、选择正确答案填入空内。

1. PN结加正向电压时，空间电荷区将

 A. 变窄 B. 基本不变 C. 变宽

2. 设二极管的端电压为U，则二极管的电流方程是

 A. I_{S}e^{U} B. U_{S}e^{U_{T}} C. I_{S}(e^{U_{T}U} - 1)

3. 稳压管的稳压区是其工作在

 A. 正向导通 B. 反向截止 C. 反向击穿

4. 当晶体管工作在放大区时，发射结电压和集电结电压应为

 A. 前者反偏、后者也反偏 B. 前者正偏、后者反偏 C. 前者正偏、后者也正偏

5. U_{GS} = 0V时，能够工作在恒流区的场效应管有

 A. 结型管 B. 增强型MOS管 C. 耗尽型MOS管

解：

1. A
2. C
3. C
4. B
5. A C
三、写出图 T1.3 所示各电路的输出电压值，设二极管导通电压 $U_D = 0.7V$。

图 T1.3

解:

$U_{O1} \approx 1.3V, U_{O2} = 0, U_{O3} \approx 1.3V, U_{O4} \approx 2V, U_{O5} \approx 1.3V, U_{O6} \approx 2V$

四、已知稳压管的稳压值 $U_Z = 6V$，稳定电流的最小值 $I_{Zmin} = 5mA$。求图 T1.4 所示电路中 U_{O1} 和 U_{O2} 各为多少伏。

图 T1.4

解:

$U_{O1} = 6V, U_{O2} = 5V$

图 T1.4

$U_{O1} = 6V, U_{O2} = 5V$
五、某晶体管的输出特性曲线如图T1.5所示，其集电极最大耗散功率
\[P_{CM} = 200 \text{mW} \]
试画出它的过损耗区。

解：根据
\[P_{CM} = 200 \text{mW} \]
可得：
\[U_{CE} = 40 \text{V} \quad I_C = 5 \text{mA} \]
\[U_{CE} = 30 \text{V} \quad I_C = 6.67 \text{mA} \]
\[U_{CE} = 20 \text{V} \quad I_C = 10 \text{mA} \]
\[U_{CE} = 10 \text{V} \quad I_C = 20 \text{mA} \]
将各点连接成曲线，即为临界过损耗线，如解图T1.5所示。临界过损耗线的左边为过损耗区。

六、电路如图T1.6所示，
\[V_{CC} = 15 \text{V} \]
\[\beta = 100 \]
\[U_{BE} = 0.7 \text{V} \]
试问：
（1）\[R_b = 50k\Omega \]时，\[u_O = ? \]
（2）若\[T \]临界饱和，则\[R_b \approx ? \]

解：
（1）\[R_b = 50k\Omega \]时，基极电流、集电极电流和管压降分别为
\[I_B = \frac{V_{BB} - U_{BE}}{R_b} = 26 \mu \text{A} \]
\[I_C = \beta I_B = 2.6 \text{mA} \]
\[U_{CE} = V_{CC} - I_C R_C = 2 \text{V} \]
\[U_O = U_{CE} = 2 \text{V} \]

（2）设临界饱和时\[U_{CES} = U_{BE} = 0.7 \text{V} \]
\[\Omega \approx \frac{4.45}{A6.28} \]
\[mA86.2 \]
\[B_{BBB} \]
\[C \]
\[C \]
\[V_{BB} \]
\[V_{BB} \]
\[I \]
\[I \]
\[R \]
\[5k\Omega \]
\[T \]
\[U_O \]

图T1.6
测得某放大电路中三个MOS管的三个电极的电位如表T1.7所示，它们的开启电压也在表中。试分析各管的工作状态（截止区、恒流区、可变电阻区），并填入表内。

<table>
<thead>
<tr>
<th>管号</th>
<th>$U_{GS}(\text{th})/V$</th>
<th>U_S/V</th>
<th>U_G/V</th>
<th>U_D/V</th>
<th>工作状态</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T₂</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>T₃</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

解：因为三只管子均有开启电压，所以它们均为增强型MOS管。根据表中所示各极电位可判断出它们各自的工作状态，如解表T1.7所示。

1.1 选择合适答案填入空内。

(1) 在本征半导体中加入元素可形成N型半导体，加入元素可形成P型半导体。
 A. 五价 B. 四价 C. 三价

(2) 当温度升高时，二极管的反向饱和电流将__。
 A. 增大 B. 不变 C. 减小

(3) 工作在放大区的某三极管，如果当I_B从12μA增大到22μA时，I_C从1mA变为2mA，那么它的β约为__。
 A. 83 B. 91 C. 100

(4) 当场效应管的漏极直流电流I_D从2mA变为4mA时，它的低频跨导g_m将__。
 A. 增大 B. 不变 C. 减小
1.2 不能。因为二极管的正向电流与其端电压成指数关系，当端电压为1.5V时，管子会因电流过大而烧坏。

1.3 电路如图P1.3所示，已知$u_i = 10\sin \omega t (V)$，试画出$u_i$与$u_o$的波形。

设二极管正向导通电压可忽略不计。

解：u_i和u_o的波形如解图P1.3所示。

1.4 电路如图P1.4所示，已知$u_i = 5\sin \omega t (V)$和$U_D = 0.7V$，试画出u_i与u_o的波形，并标出幅值。

解：波形如解图P1.4所示。
电路如图(a)所示，其输入电压u_{I1}和u_{I2}的波形如图(b)所示，二极管导通电压$U_D=0.7V$。试画出输出电压u_{O}的波形，并标出幅值。

解：u_{O}的波形如解图所示。
1.6 电路如图所示，二极管导通电压 $U_D = 0.7\text{V}$, 常温下 $U_T \approx 26\text{mV}$。

电容 C 对交流信号可视为短路；

u_i 为正弦波，有效值为 10mV。

试问二极管中流过的交流电流有效值为多少？

解：二极管的直流电流 $I_D = \frac{V - U_D}{R} = 2.6\text{mA}$

其动态电阻 $r_D \approx \frac{U_T}{I_D} = 10\text{Ω}$

故动态电流有效值 $I_d = \frac{U_i}{r_D} \approx 1\text{mA}$

1.7

现有两只稳压管，它们的稳定电压分别 为 6V 和 8V，正向导通电压为 0.7V。

试问：

(1) 若将它们串联相接，则可得到几种稳压值？各为多少？

(2) 若将它们并联相接，则又可得到几种稳压值？各为多少？

解：(1) 两只稳压管串联时可得 1.4V、6.7V、8.7V 和 14V 等四种稳压值。

(2) 两只稳压管并联时可得 0.7V 和 6V 等两种稳压值。

1.8 已知稳压管的稳定电压 $U_Z = 6\text{V}$，稳定电流的最小值 $I_{Zmin} = 5\text{mA}$。

最大功耗 $P_{ZM} = 150\text{mW}$。

试求图所示电路中电阻 R 的取值范围。

解：稳压管的最大稳定电流 $I_{ZM} = \frac{P_{ZM}}{U_Z} = 25\text{mA}$

$R = \frac{U_i - U_Z}{I_Z} = 0.36\times 1.8k\Omega = 0.654k\Omega$
1.9 图 P1.9 已知 图所示电路中稳压管的稳定电压 \(U_Z = 6V \), 最小稳定电流 \(I_{Z\text{min}} = 5mA \), 最大稳定电流 \(I_{Z\text{max}} = 25mA \)。

(1) 分别计算 \(U_I = 10V, 15V, 35V \) 三种情况下输出电压 \(U_O \) 的值；

(2) 若 \(U_I = 35V \) 时负载开路，则会出现什么现象？为什么？

解：

(1) 当 \(U_I = 10V \) 时，若 \(U_O = U_Z = 6V \)，则稳压管的电流为 \(4mA \)，小于其最小稳定电流，所以稳压管未击穿。故

\[
U_O = \frac{R_L}{R+R_L} U_I \approx 3.33V
\]

当 \(U_I = 15V \) 时，稳压管中的电流大于最小稳定电流 \(I_{Z\text{min}} \)，所以 \(U_O = U_Z = 6V \)。同理，当 \(U_I = 35V \) 时，\(U_O = U_Z = 6V \)。

(2) \(R \) 的取值范围是

\[
R \approx \frac{U_I - U_O}{I_{D\text{max}}} = 29\Omega, I_{Z\text{max}} = 25mA
\]

1.10 图 P1.10 在图 P1.10 所示电路中，发光二极管导通电压 \(U_D = 1.5V \)，正向电流在 \(5 \sim 15mA \) 时才能正常工作。试问:

(1) 开关 S 在什么位置时发光二极管才能发光?

(2) \(R \) 的取值范围是多少?

解：

(1) 当 \(S \) 闭合时，\(U_D = 1.5V \)，发光二极管才能发光。

(2) \(R \) 的范围为

\[
R = \frac{V}{I_{D\text{max}}} = \frac{5V}{15mA} \approx 333\Omega
\]

\[
R = \frac{V}{I_{D\text{min}}} = \frac{5V}{5mA} = 1000\Omega
\]

\[
\frac{V}{15mA} \leq R \leq \frac{V}{5mA}
\]

\[
700\Omega \leq R \leq 233\Omega
\]

\(R \) 的取值范围是 \(700\Omega \sim 233\Omega \)。
1.11 电路如 图 P1.11a、b、c 所示，稳压管的稳定电压 \(U_Z = 3V \)，\(R \) 的取值合适，\(u_I \) 的波形如图(c)所示。试分别画出 \(u_{O1} \) 和 \(u_{O2} \) 的波形。

解：波形如解图 P1.11 所示。

1.12 在温度 20\(^\circ\)C 时某晶体管的 \(I_{CBO} = 2 \mu A \)，试问温度是 60\(^\circ\)C 时 \(I_{CBO} \approx ? \)

解：60\(^\circ\)C 时 \(I_{CBO} \approx 32 \mu A \)。
1.13 有两只晶体管，一只的β=200, \(I_{CEO} = 200 \mu A \)；另一只的β=100, \(I_{CEO} = 10 \mu A \)。其它参数大致相同。你认为应选用哪只管子？为什么？

解: 选用 \(\beta = 100 \) 、\(I_{CEO} = 10 \mu A \) 的管子，因其 \(\beta \) 适中、\(I_{CEO} \) 较小，因而温度稳定性较另一只管子好。

1.14 已知两只晶体管的电流放大系数β分别100和50，现测得放大电路这两只管子两个电极的电流如图P1.14所示。分别求另一电极的电流, 标出其实际方向, 并在圆圈中画出管子。

解: 答案如解图P1.14所示。
1.15 测得放大电路中六只晶体管的直流电位如图所示。在圆圈中画出管子，并分别说明它们是硅管还是锗管。

解：晶体管三个极分别为上、中、下管脚，答案如解表所示。

<table>
<thead>
<tr>
<th>管号</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
<th>T₄</th>
<th>T₅</th>
<th>T₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>上</td>
<td>e</td>
<td>c</td>
<td>e</td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>中</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>下</td>
<td>c</td>
<td>e</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>管型</td>
<td>PNP</td>
<td>NPN</td>
<td>NPN</td>
<td>PNP</td>
<td>PNP</td>
<td>NPN</td>
</tr>
<tr>
<td>材料</td>
<td>Si</td>
<td>Si</td>
<td>Si</td>
<td>Ge</td>
<td>Ge</td>
<td>Ge</td>
</tr>
</tbody>
</table>

1.16 电路如图所示，晶体管导通时$U_{BE} = 0.7V$，$\beta = 50$。试分析$V_{BB} = 0V$、1V、1.5V三种情况下T的工作状态及输出电压u_o的值。

解：
(1) 当$V_{BB} = 0$时，T截止，$u_o = 12V$。
(2) 当$V_{BB} = 1V$时，因为$60mAV < 9mA$，所以T处于放大状态。
(3) 当$V_{BB} = 1.5V$时，因为$9mA < 9mA$，所以T处于放大状态。
\[
I_{BQ} = \frac{V_{BB} - U_{BEQ}}{R_b} = 160 \mu\text{A}
\]

\[
I_{CQ} = \beta I_{BQ} = 8\text{mA}
\]

\[
u_o = V_{CC} - I_{CQ}R_c / U_{BE}
\]
1.19 分别判断图P1.19所示各电路中晶体管是否可能工作在放大状态。

解：
(a) 可能
(b) 可能
(c) 不能
(d) 不能，T的发射结会因电流过大而损坏。
(e) 可能

1.20 已知某结型场效应管的 $I_{DSSS} = 2mA$, $U_{GS(\text{off})} = 4V$，试画出它的转移特性曲线和输出特性曲线，并近似画出予夹断轨迹。

解：根据方程
$$\frac{I_{DS}}{U_{GS(\text{th})}} = \frac{-U_{GS}}{U_{GS(\text{off})}}$$
逐点求出确定的u_{GS}下的i_D，可近似画出转移特性和输出特性；在输出特性中，将各条曲线上$u_{GD} = U_{GS(\text{off})}$的点连接起来，便为予夹断线；如解图P1.20所示。
已知放大电路中一只N沟道场效应管三个极①、②、③的电位分别为4V、8V、12V，管子工作在恒流区。试判断它可能是哪种管子（结型管、MOS管、增强型、耗尽型），并说明①、②、③与G、S、D的对应关系。

解：管子可能是增强型管、耗尽型管和结型管。三个极①、②、③与G、S、D的对应关系如解图P1.21所示。
1.22

已知场效应管的输出特性曲线如图P1.22所示，画出它在恒流区的转移特性曲线。

解：在场效应管的恒流区作横坐标的垂线（如解图P1.22（a）所示），读出其与各条曲线交点的纵坐标值及U_{GS}值，建立$i_D=f(u_{GS})$坐标系，描点，连线，即可得到转移特性曲线，如解图P1.22（b）所示。
1.23 电路如图所示，当 $u_I = 4V$、$8V$、$12V$ 三种情况下场效应管分别工作在什么区域。

解：根据图 P1.22 所示，T 的输出特性可知，其开启电压为 $5V$。根据图 P1.23 所示电路可知，所以 $u_{GS} = u_I$。

当 $u_I = 4V$ 时，u_{GS} 小于开启电压，故 T 截止。

当 $u_I = 8V$ 时，设 T 工作在恒流区，根据输出特性可知 $i_D \approx 0.6mA$。管压降 $u_{DS} \approx V_{DD} - i_D R_d \approx 10V$。因此，$u_{GD} = u_{GS} - u_{DS} \approx -2V$，小于开启电压，图 P1.23 说明假设成立，即 T 工作在恒流区。

当 $u_I = 12V$ 时，由于 $V_{DD} = 12V$，必然使 T 工作在可变电阻区。

1.24 分别判断图 P1.24 所示各电路中的场效应管是否有可能工作在恒流区。

解：(a) 可能，(b) 不能，(c) 不能，(d) 可能。