通过最小二乘法拟合二次曲面方程来说明计算过程的复杂程度。
化曲面方程才会唯一，否则将会拟合许多不同的曲面方程。

2.1 应用领域中用得最多，但在计算数学教材中只讲了曲线方程。
有

一次曲面方程可表为

\[z = ax + by + c \]

同理得

\[x = ay \]

由于

\[x = ay \]

\[y = az \]

使总误差

\[Q = \sum_{k=1}^{N} [z_k - (ax_k + by_k + c)]^2 \]

的三元函数，这一问题就是要确定

\[a, b, c \]

的值，可解得

\[a = \frac{\sum_{i=1}^{N} y_i \sum_{j=1}^{N} x_{ij} - \sum_{i=1}^{N} x_i \sum_{j=1}^{N} x_{ij} y_{ij}}{\left(\sum_{i=1}^{N} y_i \sum_{j=1}^{N} x_{ij} - \sum_{i=1}^{N} x_i \sum_{j=1}^{N} x_{ij} y_{ij} \right)^2} \]

\[b = \frac{\sum_{i=1}^{N} x_i \sum_{j=1}^{N} x_{ij} y_{ij} - \sum_{i=1}^{N} x_i \sum_{j=1}^{N} x_{ij} y_{ij}}{\left(\sum_{i=1}^{N} y_i \sum_{j=1}^{N} x_{ij} - \sum_{i=1}^{N} x_i \sum_{j=1}^{N} x_{ij} y_{ij} \right)^2} \]

\[c = \frac{\sum_{i=1}^{N} x_i \sum_{j=1}^{N} x_{ij} y_{ij} - \sum_{i=1}^{N} x_i \sum_{j=1}^{N} x_{ij} y_{ij} - \sum_{i=1}^{N} y_i \sum_{j=1}^{N} x_{ij} y_{ij} + \sum_{i=1}^{N} x_i \sum_{j=1}^{N} x_{ij} y_{ij} + \sum_{i=1}^{N} y_i \sum_{j=1}^{N} x_{ij} y_{ij}}{\left(\sum_{i=1}^{N} y_i \sum_{j=1}^{N} x_{ij} - \sum_{i=1}^{N} x_i \sum_{j=1}^{N} x_{ij} y_{ij} \right)^2} \]

2.1 说明到此为止
方程组才有唯一解

而得

交换求和符号，得

所示，试用最小二乘法方法来拟合曲面方程

例

由于有

个离散数据点的坐标值

c个不同的已知点

先计算各点坐标

的平方

即至

这个

∴

∴

Q=∑(z- (c0+c1x+c2y+c3xy+c4x^2+c5y^2+c6x^2y+c7xy^2+c8x^3+c9y^3+c10x^3y+c11y^3+c12x^4+c13y^4+c14xy^2+c15y^2x+c16x^2y^2+c17x^3y+c18y^3x+c19x^4+c20y^4+c21x^2y^3+c22xy^3x+c23y^3x^2+c24x^3y^2+c25x^4y+c26y^4x+c27x^2y^4+c28y^4x^2+c29xy^4x+c30y^4x^3+c31x^4y^3+c32xy^4x^3+c33y^4x^4))^2

1/2(m+1)(m+2)N 4

1/2(m+1)(m+2)N 4

N=7

z=c0+c1x+c2y+c3xy+c4x^2+c5y^2+c6x^2y+c7xy^2

x,y, z

z

2

x, y

z

3

x, y, z

x, y, z

x, y, z

2

x, y, z

x, y, z
所以原方程组为

\begin{align*}
\sum_{k=1}^{7} x_k = 5 \sum_{k=1}^{7} x_k &= 9 \sum_{k=1}^{7} x_k = 9 \sum_{k=1}^{7} y_k^2 = 19 \sum_{k=1}^{7} x_k^2 &= 11 \\
\sum_{k=1}^{7} y_k^2 &= 45 \sum_{k=1}^{7} x_k^2 &= 19 \sum_{k=1}^{7} y_k &= 11 \sum_{k=1}^{7} x_k y_k &= 9, \sum_{k=1}^{7} x_k y_k &= 23, \\
\sum_{k=1}^{7} x y_k &= -63, \sum_{k=1}^{7} x y_k &= 15 \sum_{k=1}^{7} y_k &= 41 \sum_{k=1}^{7} y_k^2 &= 27 \sum_{k=1}^{7} x_k^2 &= 12 \sum_{k=1}^{7} x_k y_k &= 3 \sum_{k=1}^{7} x_k x_k &= 14 \sum_{k=1}^{7} x_k x_k &= 8 \sum_{k=1}^{7} z_k &= 13
\end{align*}

\[19a_{10}+27a_{11}+41a_{12}+11a_{13}+15a_{14}+7c_{15}=12 \]
\[27a_{10}+41a_{11}+63a_{12}+15a_{13}+23a_{14}+9c_{15}=14 \]
\[41a_{10}+63a_{11}+115a_{12}+23a_{13}+45a_{14}+19c_{15}=31 \]
\[11a_{10}+15a_{11}+23a_{12}+7a_{13}+9c_{14}+5c_{15}=8 \]
\[15a_{10}+23a_{11}+45a_{12}+9a_{13}+9c_{14}+9c_{15}=13 \]
\[7c_{10}+9c_{11}+19c_{12}+5c_{13}+9c_{14}+7c_{15}=9 \]

拟合出来的曲面方程为

\[
\begin{align*}
z &= A + c_{10}x + c_{11}y + c_{12}x^2 + c_{13}x y + c_{14}y^2 + c_{15}x^2 y + c_{16}x y^2 + c_{17}x^2 y^2 \\
\text{MATLAB} & \\
\text{>> c = [19 0 1 0 8 1 0; 27 41 1 0 5 0; 41 63 1 0 5 0; 11 15 2 0 3 0; 15 23 4 0 5 0; 7 9 1 0 4 0; 19 23 1 0 0 0];} \\
\text{>> c = [19 0 1 0 8 1 0; 27 41 1 0 5 0; 41 63 1 0 5 0; 11 15 2 0 3 0; 15 23 4 0 5 0; 7 9 1 0 4 0; 19 23 1 0 0 0];} \\
\text{>> x = 0:0.1:10; y = 0:0.1:10; [X,Y] = meshgrid(x,y);} \\
\text{>> Z = 1.5.*X.^2 + 2.*X.*Y + 1.*Y.^2 + 0.833.*X.*Y + 0.333;} \\
\text{>> mesh (X,Y,Z); title("拟合出来的曲面图"));}
\end{align*}
\]

4

\[
\begin{align*}
\text{图 4}
\end{align*}
\]