Say n boxes arrive in the order b_1, \ldots, b_n. Say each box b_i has a positive weight w_i, and the maximum weight each truck can carry is W. To pack the boxes into N trucks preserving the order is to assign each box to one of the trucks $1, \ldots, N$ so that:

- No truck is overloaded: the total weight of all boxes in each truck is less or equal to W.

- The order of arrivals is preserved: if the box b_i is sent before the box b_j (i.e. box b_i is assigned to truck x, box b_j is assigned to truck y, and $x < y$) then it must be the case that b_i has arrived to the company earlier than b_j (i.e. $i < j$).

We prove that the greedy algorithm uses the fewest possible trucks by showing that it “stays ahead” of any other solution. Specifically, we consider any other solution and show the following. If the greedy algorithm fits boxes b_1, b_2, \ldots, b_j into the first k trucks, and the other solution fits b_1, \ldots, b_i into the first k trucks, then $i \leq j$. Note that this implies the optimality of the greedy algorithm, by setting k to be the number of trucks used by the greedy algorithm.

We will prove this claim by induction on k. The case $k - 1$ is clear; the greedy algorithm fits as many boxes as possible into the first truck. Now, assuming it holds for $k - 1$: the greedy algorithm fits j' boxes into the first $k - 1$, and the other solution fits $i' \leq j'$. Now, for the k^{th} truck, the alternate solution packs in $b_{i'+1}, \ldots, b_i$. Thus, since $j' \geq i'$, the greedy algorithm is able at least to fit all the boxes $b_{i'+1}, \ldots, b_i$ into the k^{th} truck, and it can potentially fit more. This completes the induction step, the proof of the claim, and hence the proof of optimality of the greedy algorithm.