(a) We prove this for $f(n) = n^3$. The outer loop of the given algorithm runs for exactly n iterations, and the inner loop of the algorithm runs for at most n iterations every time it is executed. Therefore, the line of code that adds up array entries $A[i]$ through $A[j]$ (for various i's and j's) is executed at most n^2 times. Adding up array entries $A[i]$ through $A[j]$ takes $O(j - i + 1)$ operations, which is always at most $O(n)$. Storing the result in $B[i, j]$ requires only constant time. Therefore, the running time of the entire algorithm is at most $n^2 \cdot O(n)$, and so the algorithm runs in time $O(n^3)$.

(b) Consider the times during the execution of the algorithm when $i \leq n/4$ and $j \geq 3n/4$. In these cases, $j - i + 1 \geq 3n/4 - n/4 + 1 > n/2$. Therefore, adding up the array entries $A[i]$ through $A[j]$ would require at least $n/2$ operations, since there are more than $n/2$ terms to add up. How many times during the execution of the given algorithm do we encounter such cases? There are $(n/4)^2$ pairs (i, j) with $i \leq n/4$ and $j \geq 3n/4$. The given algorithm enumerates over all of them, and as shown above, it must perform at least $n/2$ operations for each such pair. Therefore, the algorithm must perform at least $n/2 \cdot (n/4)^2 = n^3/32$ operations. This is $\Omega(n^3)$, as desired.

(c) Consider the following algorithm.

\begin{verbatim}
For i = 1, 2, ..., n
 Set B[i, i+1] to A[i] + A[i+1]
For k = 2, 3, ..., n-1
 For i = 1, 2, ..., n-k
 Set j = i + k
\end{verbatim}

This algorithm works since the values $B[i, j-1]$ were already computed in the previous iteration of the outer for loop, when k was $j-1-i$, since $j-1-i < j-i$. It first computes $B[i, i+1]$ for all i by summing $A[i]$ with $A[i+1]$. This requires $O(n)$ operations. For each k, it then computes all $B[i, j]$ for $j-i = k$ by setting $B[i, j] = B[i, j-1] + A[j]$. For each k, this algorithm performs $O(n)$ operations since there are at most n $B[i, j]$'s such that $j-i = k$. There are less than n values of k to iterate over, so this algorithm has running time $O(n^2)$.

\footnote{ex474.221.961}