www.pudn.com > kicILC-control.rar > fpica.m, change:2012-03-26,size:25984b


function [A, W] = fpica(X, whiteningMatrix, dewhiteningMatrix, approach, ...
			numOfIC, g, finetune, a1, a2, myy, stabilization, ...
			epsilon, maxNumIterations, maxFinetune, initState, ...
			guess, sampleSize, displayMode, displayInterval, ...
			s_verbose)
%FPICA - Fixed point ICA. Main algorithm of FASTICA.
%
% [A, W] = fpica(whitesig, whiteningMatrix, dewhiteningMatrix, approach,
%        numOfIC, g, finetune, a1, a2, mu, stabilization, epsilon, 
%        maxNumIterations, maxFinetune, initState, guess, sampleSize,
%        displayMode, displayInterval, verbose);
% 
% Perform independent component analysis using Hyvarinen's fixed point
% algorithm. Outputs an estimate of the mixing matrix A and its inverse W.
%
% whitesig                              :the whitened data as row vectors
% whiteningMatrix                       :can be obtained with function whitenv
% dewhiteningMatrix                     :can be obtained with function whitenv
% approach      [ 'symm' | 'defl' ]     :the approach used (deflation or symmetric)
% numOfIC       [ 0 - Dim of whitesig ] :number of independent components estimated
% g             [ 'pow3' | 'tanh' |     :the nonlinearity used
%                 'gaus' | 'skew' ]     
% finetune      [same as g + 'off']     :the nonlinearity used in finetuning.
% a1                                    :parameter for tuning 'tanh'
% a2                                    :parameter for tuning 'gaus'
% mu                                    :step size in stabilized algorithm
% stabilization [ 'on' | 'off' ]        :if mu < 1 then automatically on
% epsilon                               :stopping criterion
% maxNumIterations                      :maximum number of iterations 
% maxFinetune                           :maximum number of iteretions for finetuning
% initState     [ 'rand' | 'guess' ]    :initial guess or random initial state. See below
% guess                                 :initial guess for A. Ignored if initState = 'rand'
% sampleSize    [ 0 - 1 ]               :percentage of the samples used in one iteration
% displayMode   [ 'signals' | 'basis' | :plot running estimate
%                 'filters' | 'off' ]
% displayInterval                       :number of iterations we take between plots
% verbose       [ 'on' | 'off' ]        :report progress in text format
%
% EXAMPLE
%       [E, D] = pcamat(vectors);
%       [nv, wm, dwm] = whitenv(vectors, E, D);
%       [A, W] = fpica(nv, wm, dwm);
%
%
% This function is needed by FASTICA and FASTICAG
%
%   See also FASTICA, FASTICAG, WHITENV, PCAMAT

% @(#)$Id: fpica.m,v 1.7 2005/06/16 12:52:55 jarmo Exp $

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Global variable for stopping the ICA calculations from the GUI
global g_FastICA_interrupt;
if isempty(g_FastICA_interrupt)
  clear global g_FastICA_interrupt;
  interruptible = 0;
else
  interruptible = 1;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Default values

if nargin < 3, error('Not enough arguments!'); end
[vectorSize, numSamples] = size(X);
if nargin < 20, s_verbose = 'off'; end
if nargin < 19, displayInterval = 1; end
if nargin < 18, displayMode = 'off'; end
if nargin < 17, sampleSize = 1; end
if nargin < 16, guess = 1; end
if nargin < 15, initState = 'rand'; end
if nargin < 14, maxFinetune = 100; end
if nargin < 13, maxNumIterations = 1000; end
if nargin < 12, epsilon = 0.0001; end
if nargin < 11, stabilization = 'on'; end
if nargin < 10, myy = 1; end
if nargin < 9, a2 = 1; end
if nargin < 8, a1 = 1; end
if nargin < 7, finetune = 'off'; end
if nargin < 6, g = 'gaus'; end
if nargin < 5, numOfIC = vectorSize; end     % vectorSize = Dim
if nargin < 4, approach = 'defl'; end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the data

if ~isreal(X)
  error('Input has an imaginary part.');
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for verbose

switch lower(s_verbose)
 case 'on'
  b_verbose = 1;
 case 'off'
  b_verbose = 0;
 otherwise
  error('Illegal value [ %s ] for parameter: ''verbose''\n', s_verbose);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for approach

switch lower(approach)
 case 'symm'
  approachMode = 1;
 case 'defl'
  approachMode = 2;
 otherwise
  error('Illegal value [ %s ] for parameter: ''approach''\n', approach);
end
if b_verbose, fprintf('Used approach [ %s ].\n', approach); end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for numOfIC

if vectorSize < numOfIC
  error('Must have numOfIC <= Dimension!');
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the sampleSize
if sampleSize > 1
  sampleSize = 1;
  if b_verbose
    fprintf('Warning: Setting ''sampleSize'' to 1.\n');
  end  
elseif sampleSize < 1
  if (sampleSize * numSamples) < 1000
    sampleSize = min(1000/numSamples, 1);
    if b_verbose
      fprintf('Warning: Setting ''sampleSize'' to %0.3f (%d samples).\n', ...
	      sampleSize, floor(sampleSize * numSamples));
    end  
  end
end
if b_verbose
  if  b_verbose && (sampleSize < 1)
    fprintf('Using about %0.0f%% of the samples in random order in every step.\n',sampleSize*100);
  end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for nonlinearity.

switch lower(g)
 case 'pow3'
  gOrig = 10;
 case 'tanh'
  gOrig = 20;
 case {'gaus', 'gauss'}
  gOrig = 30;
 case 'skew'
  gOrig = 40;
 otherwise
  error('Illegal value [ %s ] for parameter: ''g''\n', g);
end
if sampleSize ~= 1
  gOrig = gOrig + 2;
end
if myy ~= 1
  gOrig = gOrig + 1;
end

if b_verbose,
  fprintf('Used nonlinearity [ %s ].\n', g);
end

finetuningEnabled = 1;
switch lower(finetune)
 case 'pow3'
  gFine = 10 + 1;
 case 'tanh'
  gFine = 20 + 1;
 case {'gaus', 'gauss'}
  gFine = 30 + 1;
 case 'skew'
  gFine = 40 + 1;
 case 'off'
  if myy ~= 1
    gFine = gOrig;
  else 
    gFine = gOrig + 1;
  end
  finetuningEnabled = 0;
 otherwise
  error('Illegal value [ %s ] for parameter: ''finetune''\n',finetune);
end

if b_verbose && finetuningEnabled
  fprintf('Finetuning enabled (nonlinearity: [ %s ]).\n', finetune);
end

switch lower(stabilization)
 case 'on'
  stabilizationEnabled = 1;
 case 'off'
  if myy ~= 1
    stabilizationEnabled = 1;
  else
    stabilizationEnabled = 0;
  end
 otherwise
  error('Illegal value [ %s ]for parameter:''stabilization''\n',stabilization); 
end

if b_verbose && stabilizationEnabled
  fprintf('Using stabilized algorithm.\n');
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Some other parameters
myyOrig = myy;
% When we start fine-tuning we'll set myy = myyK * myy
myyK = 0.01;
% How many times do we try for convergence until we give up.
failureLimit = 5;


usedNlinearity = gOrig;
stroke = 0;
notFine = 1;
long = 0;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for initial state.

switch lower(initState)
 case 'rand'
  initialStateMode = 0;
 case 'guess'
  if size(guess,1) ~= size(whiteningMatrix,2)
    initialStateMode = 0;
    if b_verbose
      fprintf('Warning: size of initial guess is incorrect. Using random initial guess.\n');
    end
  else
    initialStateMode = 1;
    if size(guess,2) < numOfIC
      if b_verbose
	fprintf('Warning: initial guess only for first %d components. Using random initial guess for others.\n', size(guess,2)); 
      end
      guess(:, size(guess, 2) + 1:numOfIC) = ...
					     rand(vectorSize,numOfIC-size(guess,2))-.5;
    elseif size(guess,2)>numOfIC
      guess=guess(:,1:numOfIC);
      fprintf('Warning: Initial guess too large. The excess column are dropped.\n');
    end
    if b_verbose, fprintf('Using initial guess.\n'); end
  end
 otherwise
  error('Illegal value [ %s ] for parameter: ''initState''\n', initState);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for display mode.

switch lower(displayMode)
 case {'off', 'none'}
  usedDisplay = 0;
 case {'on', 'signals'}
  usedDisplay = 1;
  if (b_verbose && (numSamples > 10000))
    fprintf('Warning: Data vectors are very long. Plotting may take long time.\n');
  end
  if (b_verbose && (numOfIC > 25))
    fprintf('Warning: There are too many signals to plot. Plot may not look good.\n');
  end
 case 'basis'
  usedDisplay = 2;
  if (b_verbose && (numOfIC > 25))
    fprintf('Warning: There are too many signals to plot. Plot may not look good.\n');
  end
 case 'filters'
  usedDisplay = 3;
  if (b_verbose && (vectorSize > 25))
    fprintf('Warning: There are too many signals to plot. Plot may not look good.\n');
  end
 otherwise
  error('Illegal value [ %s ] for parameter: ''displayMode''\n', displayMode);
end

% The displayInterval can't be less than 1...
if displayInterval < 1
  displayInterval = 1;
end


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if b_verbose, fprintf('Starting ICA calculation...\n'); end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SYMMETRIC APPROACH
if approachMode == 1,

  % set some parameters more...
  usedNlinearity = gOrig;
  stroke = 0;
  notFine = 1;
  long = 0;
  
  A = zeros(vectorSize, numOfIC);  % Dewhitened basis vectors.
  if initialStateMode == 0
    % Take random orthonormal initial vectors.
    B = orth (randn (vectorSize, numOfIC));
  elseif initialStateMode == 1
    % Use the given initial vector as the initial state
    B = whiteningMatrix * guess;
  end
  
  BOld = zeros(size(B));
  BOld2 = zeros(size(B));
  
  % This is the actual fixed-point iteration loop.
  for round = 1:maxNumIterations + 1,
    if round == maxNumIterations + 1,
      fprintf('No convergence after %d steps\n', maxNumIterations);
      fprintf('Note that the plots are probably wrong.\n');
      if ~isempty(B)
	% Symmetric orthogonalization.
	B = B * real(inv(B' * B)^(1/2));

	W = B' * whiteningMatrix;
	A = dewhiteningMatrix * B;
      else
	W = [];
	A = [];
      end
      return;
    end
    
    if (interruptible && g_FastICA_interrupt)
      if b_verbose 
        fprintf('\n\nCalculation interrupted by the user\n');
      end
      if ~isempty(B)
	W = B' * whiteningMatrix;
	A = dewhiteningMatrix * B;
      else
	W = [];
	A = [];
      end
      return;
    end
    
    
    % Symmetric orthogonalization.
    B = B * real(inv(B' * B)^(1/2));
    
    % Test for termination condition. Note that we consider opposite
    % directions here as well.
    minAbsCos = min(abs(diag(B' * BOld)));
    minAbsCos2 = min(abs(diag(B' * BOld2)));
    
    if (1 - minAbsCos < epsilon)
      if finetuningEnabled && notFine
        if b_verbose, fprintf('Initial convergence, fine-tuning: \n'); end;
        notFine = 0;
        usedNlinearity = gFine;
        myy = myyK * myyOrig;
        BOld = zeros(size(B));
        BOld2 = zeros(size(B));
	
      else
        if b_verbose, fprintf('Convergence after %d steps\n', round); end
	
        % Calculate the de-whitened vectors.
        A = dewhiteningMatrix * B;
        break;
      end
    elseif stabilizationEnabled
      if (~stroke) && (1 - minAbsCos2 < epsilon)
	if b_verbose, fprintf('Stroke!\n'); end;
	stroke = myy;
	myy = .5*myy;
	if mod(usedNlinearity,2) == 0
	  usedNlinearity = usedNlinearity + 1;
	end
      elseif stroke
	myy = stroke;
	stroke = 0;
	if (myy == 1) && (mod(usedNlinearity,2) ~= 0)
	  usedNlinearity = usedNlinearity - 1;
	end
      elseif (~long) && (round>maxNumIterations/2)
	if b_verbose, fprintf('Taking long (reducing step size)\n'); end;
	long = 1;
	myy = .5*myy;
	if mod(usedNlinearity,2) == 0
	  usedNlinearity = usedNlinearity + 1;
	end
      end
    end
    
    BOld2 = BOld;
    BOld = B;
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Show the progress...
    if b_verbose
      if round == 1
        fprintf('Step no. %d\n', round);
      else
        fprintf('Step no. %d, change in value of estimate: %.3g \n', round, 1 - minAbsCos);
      end
    end
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Also plot the current state...
    switch usedDisplay
     case 1
      if rem(round, displayInterval) == 0,
	% There was and may still be other displaymodes...
	% 1D signals
	icaplot('dispsig',(X'*B)');
	drawnow;
      end
     case 2
      if rem(round, displayInterval) == 0,
	% ... and now there are :-)
	% 1D basis
	A = dewhiteningMatrix * B;
	icaplot('dispsig',A');
	drawnow;
      end
     case 3
      if rem(round, displayInterval) == 0,
	% ... and now there are :-)
	% 1D filters
	W = B' * whiteningMatrix;
	icaplot('dispsig',W);
	drawnow;
      end
     otherwise
    end
    
    switch usedNlinearity
      % pow3
     case 10
      B = (X * (( X' * B) .^ 3)) / numSamples - 3 * B;
     case 11
      % optimoitu - epsilonin kokoisia eroja
      % täm? on optimoitu koodi, katso vanha koodi esim.
      % aikaisemmista versioista kuten 2.0 beta3
      Y = X' * B;
      Gpow3 = Y .^ 3;
      Beta = sum(Y .* Gpow3);
      D = diag(1 ./ (Beta - 3 * numSamples));
      B = B + myy * B * (Y' * Gpow3 - diag(Beta)) * D;
     case 12
      Xsub=X(:, getSamples(numSamples, sampleSize));
      B = (Xsub * (( Xsub' * B) .^ 3)) / size(Xsub,2) - 3 * B;
     case 13
      % Optimoitu
      Ysub=X(:, getSamples(numSamples, sampleSize))' * B;
      Gpow3 = Ysub .^ 3;
      Beta = sum(Ysub .* Gpow3);
      D = diag(1 ./ (Beta - 3 * size(Ysub', 2)));
      B = B + myy * B * (Ysub' * Gpow3 - diag(Beta)) * D;
      
      % tanh
     case 20
      hypTan = tanh(a1 * X' * B);
      B = X * hypTan / numSamples - ...
	  ones(size(B,1),1) * sum(1 - hypTan .^ 2) .* B / numSamples * ...
	  a1;
     case 21
      % optimoitu - epsilonin kokoisia 
      Y = X' * B;
      hypTan = tanh(a1 * Y);
      Beta = sum(Y .* hypTan);
      D = diag(1 ./ (Beta - a1 * sum(1 - hypTan .^ 2)));
      B = B + myy * B * (Y' * hypTan - diag(Beta)) * D;
     case 22
      Xsub=X(:, getSamples(numSamples, sampleSize));
      hypTan = tanh(a1 * Xsub' * B);
      B = Xsub * hypTan / size(Xsub, 2) - ...
	  ones(size(B,1),1) * sum(1 - hypTan .^ 2) .* B / size(Xsub, 2) * a1;
     case 23
      % Optimoitu
      Y = X(:, getSamples(numSamples, sampleSize))' * B;
      hypTan = tanh(a1 * Y);
      Beta = sum(Y .* hypTan);
      D = diag(1 ./ (Beta - a1 * sum(1 - hypTan .^ 2)));
      B = B + myy * B * (Y' * hypTan - diag(Beta)) * D;
      
      % gauss
     case 30
      U = X' * B;
      Usquared=U .^ 2;
      ex = exp(-a2 * Usquared / 2);
      gauss =  U .* ex;
      dGauss = (1 - a2 * Usquared) .*ex;
      B = X * gauss / numSamples - ...
	  ones(size(B,1),1) * sum(dGauss)...
	  .* B / numSamples ;
     case 31
      % optimoitu
      Y = X' * B;
      ex = exp(-a2 * (Y .^ 2) / 2);
      gauss = Y .* ex;
      Beta = sum(Y .* gauss);
      D = diag(1 ./ (Beta - sum((1 - a2 * (Y .^ 2)) .* ex)));
      B = B + myy * B * (Y' * gauss - diag(Beta)) * D;
     case 32
      Xsub=X(:, getSamples(numSamples, sampleSize));
      U = Xsub' * B;
      Usquared=U .^ 2;
      ex = exp(-a2 * Usquared / 2);
      gauss =  U .* ex;
      dGauss = (1 - a2 * Usquared) .*ex;
      B = Xsub * gauss / size(Xsub,2) - ...
	  ones(size(B,1),1) * sum(dGauss)...
	  .* B / size(Xsub,2) ;
     case 33
      % Optimoitu
      Y = X(:, getSamples(numSamples, sampleSize))' * B;
      ex = exp(-a2 * (Y .^ 2) / 2);
      gauss = Y .* ex;
      Beta = sum(Y .* gauss);
      D = diag(1 ./ (Beta - sum((1 - a2 * (Y .^ 2)) .* ex)));
      B = B + myy * B * (Y' * gauss - diag(Beta)) * D;
      
      % skew
     case 40
      B = (X * ((X' * B) .^ 2)) / numSamples;
     case 41
      % Optimoitu
      Y = X' * B;
      Gskew = Y .^ 2;
      Beta = sum(Y .* Gskew);
      D = diag(1 ./ (Beta));
      B = B + myy * B * (Y' * Gskew - diag(Beta)) * D;
     case 42
      Xsub=X(:, getSamples(numSamples, sampleSize));
      B = (Xsub * ((Xsub' * B) .^ 2)) / size(Xsub,2);
     case 43
      % Uusi optimoitu
      Y = X(:, getSamples(numSamples, sampleSize))' * B;
      Gskew = Y .^ 2;
      Beta = sum(Y .* Gskew);
      D = diag(1 ./ (Beta));
      B = B + myy * B * (Y' * Gskew - diag(Beta)) * D;

     otherwise
      error('Code for desired nonlinearity not found!');
    end
  end

  
  % Calculate ICA filters.
  W = B' * whiteningMatrix;
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  % Also plot the last one...
  switch usedDisplay
   case 1 
    % There was and may still be other displaymodes...
    % 1D signals
    icaplot('dispsig',(X'*B)');
    drawnow;
   case 2
    % ... and now there are :-)
    % 1D basis
    icaplot('dispsig',A');
    drawnow;
   case 3
    % ... and now there are :-)
    % 1D filters
    icaplot('dispsig',W);
    drawnow;
   otherwise
  end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DEFLATION APPROACH
if approachMode == 2
  
  B = zeros(vectorSize);
  
  % The search for a basis vector is repeated numOfIC times.
  round = 1;
  
  numFailures = 0;
  
  while round <= numOfIC,
    myy = myyOrig;
    usedNlinearity = gOrig;
    stroke = 0;
    notFine = 1;
    long = 0;
    endFinetuning = 0;
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Show the progress...
    if b_verbose, fprintf('IC %d ', round); end
    
    % Take a random initial vector of lenght 1 and orthogonalize it
    % with respect to the other vectors.
    if initialStateMode == 0
      w = randn (vectorSize, 1);
    elseif initialStateMode == 1
      w=whiteningMatrix*guess(:,round);
    end
    w = w - B * B' * w;
    w = w / norm(w);
    
    wOld = zeros(size(w));
    wOld2 = zeros(size(w));
    
    % This is the actual fixed-point iteration loop.
    %    for i = 1 : maxNumIterations + 1
    i = 1;
    gabba = 1;
    while i <= maxNumIterations + gabba
      if (usedDisplay > 0)
	drawnow;
      end
      if (interruptible && g_FastICA_interrupt)
        if b_verbose 
          fprintf('\n\nCalculation interrupted by the user\n');
        end
        return;
      end
      
      % Project the vector into the space orthogonal to the space
      % spanned by the earlier found basis vectors. Note that we can do
      % the projection with matrix B, since the zero entries do not
      % contribute to the projection.
      w = w - B * B' * w;
      w = w / norm(w);
      
      if notFine
	if i == maxNumIterations + 1
	  if b_verbose
	    fprintf('\nComponent number %d did not converge in %d iterations.\n', round, maxNumIterations);
	  end
	  round = round - 1;
	  numFailures = numFailures + 1;
	  if numFailures > failureLimit
	    if b_verbose
	      fprintf('Too many failures to converge (%d). Giving up.\n', numFailures);
	    end
	    if round == 0
	      A=[];
	      W=[];
	    end
	    return;
	  end
	  % numFailures > failurelimit
	  break;
	end
	% i == maxNumIterations + 1
      else
	% if notFine
	if i >= endFinetuning
	  wOld = w; % So the algorithm will stop on the next test...
	end
      end
      % if notFine
      
      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      % Show the progress...
      if b_verbose, fprintf('.'); end;
      
      
      % Test for termination condition. Note that the algorithm has
      % converged if the direction of w and wOld is the same, this
      % is why we test the two cases.
      if norm(w - wOld) < epsilon || norm(w + wOld) < epsilon
        if finetuningEnabled && notFine
          if b_verbose, fprintf('Initial convergence, fine-tuning: '); end;
          notFine = 0;
	  gabba = maxFinetune;
          wOld = zeros(size(w));
          wOld2 = zeros(size(w));
          usedNlinearity = gFine;
          myy = myyK * myyOrig;
	  
	  endFinetuning = maxFinetune + i;
	  
        else
          numFailures = 0;
          % Save the vector
          B(:, round) = w;
	  
          % Calculate the de-whitened vector.
          A(:,round) = dewhiteningMatrix * w;
          % Calculate ICA filter.
          W(round,:) = w' * whiteningMatrix;
	  
          %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
          % Show the progress...
          if b_verbose, fprintf('computed ( %d steps ) \n', i); end
	  
          %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
          % Also plot the current state...
          switch usedDisplay
	   case 1
	    if rem(round, displayInterval) == 0,
	      % There was and may still be other displaymodes...   
	      % 1D signals
	      temp = X'*B;
	      icaplot('dispsig',temp(:,1:numOfIC)');
	      drawnow;
	    end
	   case 2
	    if rem(round, displayInterval) == 0,
	      % ... and now there are :-) 
	      % 1D basis
	      icaplot('dispsig',A');
	      drawnow;
	    end
	   case 3
	    if rem(round, displayInterval) == 0,
	      % ... and now there are :-) 
	      % 1D filters
	      icaplot('dispsig',W);
	      drawnow;
	    end
          end
	  % switch usedDisplay
	  break; % IC ready - next...
        end
	%if finetuningEnabled & notFine
      elseif stabilizationEnabled
	if (~stroke) && (norm(w - wOld2) < epsilon || norm(w + wOld2) < ...
			epsilon)
	  stroke = myy;
	  if b_verbose, fprintf('Stroke!'); end;
	  myy = .5*myy;
	  if mod(usedNlinearity,2) == 0
	    usedNlinearity = usedNlinearity + 1;
	  end
	elseif stroke
	  myy = stroke;
	  stroke = 0;
	  if (myy == 1) && (mod(usedNlinearity,2) ~= 0)
	    usedNlinearity = usedNlinearity - 1;
	  end
	elseif (notFine) && (~long) && (i > maxNumIterations / 2)
	  if b_verbose, fprintf('Taking long (reducing step size) '); end;
	  long = 1;
	  myy = .5*myy;
	  if mod(usedNlinearity,2) == 0
	    usedNlinearity = usedNlinearity + 1;
	  end
	end
      end
      
      wOld2 = wOld;
      wOld = w;
      
      switch usedNlinearity
	% pow3
       case 10
	w = (X * ((X' * w) .^ 3)) / numSamples - 3 * w;
       case 11
	EXGpow3 = (X * ((X' * w) .^ 3)) / numSamples;
	Beta = w' * EXGpow3;
	w = w - myy * (EXGpow3 - Beta * w) / (3 - Beta);
       case 12
	Xsub=X(:,getSamples(numSamples, sampleSize));
	w = (Xsub * ((Xsub' * w) .^ 3)) / size(Xsub, 2) - 3 * w;
       case 13
	Xsub=X(:,getSamples(numSamples, sampleSize));
	EXGpow3 = (Xsub * ((Xsub' * w) .^ 3)) / size(Xsub, 2);
	Beta = w' * EXGpow3;
	w = w - myy * (EXGpow3 - Beta * w) / (3 - Beta);
	% tanh
       case 20
	hypTan = tanh(a1 * X' * w);
	w = (X * hypTan - a1 * sum(1 - hypTan .^ 2)' * w) / numSamples;
       case 21
	hypTan = tanh(a1 * X' * w);
	Beta = w' * X * hypTan;
	w = w - myy * ((X * hypTan - Beta * w) / ...
		       (a1 * sum((1-hypTan .^2)') - Beta));
       case 22
	Xsub=X(:,getSamples(numSamples, sampleSize));
	hypTan = tanh(a1 * Xsub' * w);
	w = (Xsub * hypTan - a1 * sum(1 - hypTan .^ 2)' * w) / size(Xsub, 2);
       case 23
	Xsub=X(:,getSamples(numSamples, sampleSize));
	hypTan = tanh(a1 * Xsub' * w);
	Beta = w' * Xsub * hypTan;
	w = w - myy * ((Xsub * hypTan - Beta * w) / ...
		       (a1 * sum((1-hypTan .^2)') - Beta));
	% gauss
       case 30
	% This has been split for performance reasons.
	u = X' * w;
	u2=u.^2;
	ex=exp(-a2 * u2/2);
	gauss =  u.*ex;
	dGauss = (1 - a2 * u2) .*ex;
	w = (X * gauss - sum(dGauss)' * w) / numSamples;
       case 31
	u = X' * w;
	u2=u.^2;
	ex=exp(-a2 * u2/2);
	gauss =  u.*ex;
	dGauss = (1 - a2 * u2) .*ex;
	Beta = w' * X * gauss;
	w = w - myy * ((X * gauss - Beta * w) / ...
		       (sum(dGauss)' - Beta));
       case 32
	Xsub=X(:,getSamples(numSamples, sampleSize));
	u = Xsub' * w;
	u2=u.^2;
	ex=exp(-a2 * u2/2);
	gauss =  u.*ex;
	dGauss = (1 - a2 * u2) .*ex;
	w = (Xsub * gauss - sum(dGauss)' * w) / size(Xsub, 2);
       case 33
	Xsub=X(:,getSamples(numSamples, sampleSize));
	u = Xsub' * w;
	u2=u.^2;
	ex=exp(-a2 * u2/2);
	gauss =  u.*ex;
	dGauss = (1 - a2 * u2) .*ex;
	Beta = w' * Xsub * gauss;
	w = w - myy * ((Xsub * gauss - Beta * w) / ...
		       (sum(dGauss)' - Beta));
	% skew
       case 40
	w = (X * ((X' * w) .^ 2)) / numSamples;
       case 41
	EXGskew = (X * ((X' * w) .^ 2)) / numSamples;
	Beta = w' * EXGskew;
	w = w - myy * (EXGskew - Beta*w)/(-Beta);
       case 42
	Xsub=X(:,getSamples(numSamples, sampleSize));
	w = (Xsub * ((Xsub' * w) .^ 2)) / size(Xsub, 2);
       case 43
	Xsub=X(:,getSamples(numSamples, sampleSize));
	EXGskew = (Xsub * ((Xsub' * w) .^ 2)) / size(Xsub, 2);
	Beta = w' * EXGskew;
	w = w - myy * (EXGskew - Beta*w)/(-Beta);
	
       otherwise
	error('Code for desired nonlinearity not found!');
      end
      
      % Normalize the new w.
      w = w / norm(w);
      i = i + 1;
    end
    round = round + 1;
  end
  if b_verbose, fprintf('Done.\n'); end
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  % Also plot the ones that may not have been plotted.
  if (usedDisplay > 0) && (rem(round-1, displayInterval) ~= 0)
    switch usedDisplay
     case 1
      % There was and may still be other displaymodes...
      % 1D signals
      temp = X'*B;
      icaplot('dispsig',temp(:,1:numOfIC)');
      drawnow;
     case 2
      % ... and now there are :-)
      % 1D basis
      icaplot('dispsig',A');
      drawnow;
     case 3
      % ... and now there are :-)
      % 1D filters
      icaplot('dispsig',W);
      drawnow;
     otherwise
    end
  end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% In the end let's check the data for some security
if ~isreal(A)
  if b_verbose, fprintf('Warning: removing the imaginary part from the result.\n'); end
  A = real(A);
  W = real(W);
end




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Subfunction
% Calculates tanh simplier and faster than Matlab tanh.
function y=tanh(x)
y = 1 - 2 ./ (exp(2 * x) + 1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Samples = getSamples(max, percentage)
Samples = find(rand(1, max) < percentage);