www.pudn.com > pinsanquxian.rar > lame0a.m, change:2004-07-14,size:1227b


format long 
syms p; 
kh=0.01; 
cd=6100;cs=3300;m=cs/cd; 
y1=-4*p*((p^2+1)*m^2-1)^(1/2)*tan(kh/2*p); 
y2=(p^2-1)^2*tan(kh/2*((p^2+1)*m^2-1)^(1/2)); 
y=y1-y2; 
ezplot(y1,[5000,10000]); 
grid on 
hold on 
pause 
ezplot(y2,[5000,10000]); 
zoom on 
pause; 
[xx,yy]=ginput(3);  %从图上获取曲线零点所对应的p值点 
c1=sqrt(xx(1)^2+1)  %求出所对应的c/cs值 
c2=sqrt(xx(2)^2+1) 
c3=sqrt(xx(3)^2+1) 
[x(1),fval,exitflag]=fzero(inline(y1-y2),xx(1),[]); 
[x(2),fval,exitflag]=fzero(inline(y1-y2),xx(2),[]); 
[x(3),fval,exitflag]=fzero(inline(y1-y2),xx(3),[]); 
c11=sqrt(x(1)^2+1) 
c22=sqrt(x(2)^2+1) 
c33=sqrt(x(3)^2+1) 
%检验结果 
p1=sqrt(c11^2-1); 
y11=-4*p1*((p1^2+1)*m^2-1)^(1/2)*tan(kh/2*p1); 
y21=(p1^2-1)^2*tan(kh/2*((p1^2+1)*m^2-1)^(1/2)); 
y01=y11-y21 
p2=sqrt(c22^2-1); 
y12=-4*p2*((p2^2+1)*m^2-1)^(1/2)*tan(kh/2*p2); 
y22=(p2^2-1)^2*tan(kh/2*((p2^2+1)*m^2-1)^(1/2)); 
y02=y12-y22 
p3=sqrt(c33^2-1); 
y13=-4*p3*((p3^2+1)*m^2-1)^(1/2)*tan(kh/2*p3); 
y23=(p3^2-1)^2*tan(kh/2*((p3^2+1)*m^2-1)^(1/2)); 
y03=y13-y23 
%作图 
%a=jieguo01;x=a(:,1);y0=a(:,2);y1=a(:,3);y2=a(:,4);y3=a(:,5);y4=a(:,6); 
%y5=a(:,7);y6=a(:,8);y7=a(:,9);plot(x,y0); hold on;grid on; 
%plot(x,y1);plot(x,y2);plot(x,y3);plot(x,y4);plot(x,y5);plot(x,y6);plot(x,y7);