www.pudn.com > PMSM.zip > Example_281xAdcSoc.c, change:2003-09-11,size:5650b


//########################################################################### 
// 
// FILE:   Example_281xAdc.c 
// 
// TITLE:  DSP281x ADC Example Program. 
// 
// ASSUMPTIONS: 
// 
//   This program requires the DSP281x V1.00 header files.   
//   As supplied, this project is configured for "boot to H0" operation. 
// 
//   Make sure the CPU clock speed is properly defined in  
//   DSP281x_Examples.h before compiling this example. 
// 
//   Connect signals to be converted to A2 and A3. 
//   
// 
// DESCRIPTION: 
// 
//   This example sets up the PLL in x10/2 mode, divides SYSCLKOUT     
//   by six to reach a 25Mhz HSPCLK (assuming a 30Mhz XCLKIN). The     
//   clock divider in the ADC is not used so that the ADC will see     
//   the 25Mhz on the HSPCLK. Interrupts are enabled and the EVA       
//   is setup to generate a periodic ADC SOC on SEQ1. Two channels     
//   are converted, ADCINA3 and ADCINA2. 
// 
//   Watch Variables: 
//  
//         Voltage1[10]     Last 10 ADCRESULT0 values 
//         Voltage2[10]     Last 10 ADCRESULT1 values 
//         ConversionCount  Current result number 0-9 
//         LoopCount        Idle loop counter   
//          
// 
//########################################################################### 
// 
// Original Author: D.F. 
//  
//  Ver | dd mmm yyyy | Who  | Description of changes 
// =====|=============|======|=============================================== 
//  1.00| 11 Sep 2003 | L.H. | Changes since previous version (v.58 Alpha) 
//      |             |      | Cleanup only.  Results are shifted >> 4 
//########################################################################### 
 
#include "DSP281x_Device.h"     // DSP281x Headerfile Include File 
#include "DSP281x_Examples.h"   // DSP281x Examples Include File 
 
// Prototype statements for functions found within this file. 
interrupt void adc_isr(void); 
 
// Global variables used in this example: 
Uint16 LoopCount; 
Uint16 ConversionCount; 
Uint16 Voltage1[10]; 
Uint16 Voltage2[10]; 
 
 
main()  
{ 
 
// Step 1. Initialize System Control: 
// PLL, WatchDog, enable Peripheral Clocks 
// This example function is found in the DSP281x_SysCtrl.c file. 
   InitSysCtrl(); 
 
// For this example, set HSPCLK to SYSCLKOUT / 6 (25Mhz assuming 150Mhz SYSCLKOUT) 
   EALLOW; 
   SysCtrlRegs.HISPCP.all = 0x3;  // HSPCLK = SYSCLKOUT/6 
   EDIS; 
    
// Step 2. Initialize GPIO:  
// This example function is found in the DSP281x_Gpio.c file and 
// illustrates how to set the GPIO to it's default state. 
// InitGpio();  // Skipped for this example   
 
// Step 3. Clear all interrupts and initialize PIE vector table: 
// Disable CPU interrupts  
   DINT; 
 
// Initialize the PIE control registers to their default state. 
// The default state is all PIE interrupts disabled and flags 
// are cleared.   
// This function is found in the DSP281x_PieCtrl.c file. 
   InitPieCtrl(); 
 
// Disable CPU interrupts and clear all CPU interrupt flags: 
   IER = 0x0000; 
   IFR = 0x0000; 
 
// Initialize the PIE vector table with pointers to the shell Interrupt  
// Service Routines (ISR).   
// This will populate the entire table, even if the interrupt 
// is not used in this example.  This is useful for debug purposes. 
// The shell ISR routines are found in DSP281x_DefaultIsr.c. 
// This function is found in DSP281x_PieVect.c. 
   InitPieVectTable(); 
      
// Interrupts that are used in this example are re-mapped to 
// ISR functions found within this file.        
   EALLOW;  // This is needed to write to EALLOW protected register 
   PieVectTable.ADCINT = &adc_isr; 
   EDIS;    // This is needed to disable write to EALLOW protected registers 
 
// Step 4. Initialize all the Device Peripherals: 
// This function is found in DSP281x_InitPeripherals.c 
// InitPeripherals(); // Not required for this example 
   InitAdc();  // For this example, init the ADC 
 
// Step 5. User specific code, enable interrupts: 
 
// Enable ADCINT in PIE 
   PieCtrlRegs.PIEIER1.bit.INTx6 = 1; 
   IER |= M_INT1; // Enable CPU Interrupt 1 
   EINT;          // Enable Global interrupt INTM 
   ERTM;          // Enable Global realtime interrupt DBGM 
 
   LoopCount = 0; 
   ConversionCount = 0; 
     
// Configure ADC 
   AdcRegs.ADCMAXCONV.all = 0x0001;       // Setup 2 conv's on SEQ1 
   AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x3; // Setup ADCINA3 as 1st SEQ1 conv. 
   AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x2; // Setup ADCINA2 as 2nd SEQ1 conv. 
   AdcRegs.ADCTRL2.bit.EVA_SOC_SEQ1 = 1;  // Enable EVASOC to start SEQ1 
   AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1;  // Enable SEQ1 interrupt (every EOS) 
 
// Configure EVA 
// Assumes EVA Clock is already enabled in InitSysCtrl(); 
   EvaRegs.T1CMPR = 0x0080;               // Setup T1 compare value 
   EvaRegs.T1PR = 0xFFFF;                 // Setup period register 
   EvaRegs.GPTCONA.bit.T1TOADC = 1;       // Enable EVASOC in EVA 
   EvaRegs.T1CON.all = 0x1042;            // Enable timer 1 compare (upcount mode) 
 
// Wait for ADC interrupt 
   while(1) 
   { 
      LoopCount++; 
   } 
 
} 
 
 
interrupt void  adc_isr(void) 
{ 
 
  Voltage1[ConversionCount] = AdcRegs.ADCRESULT0 >>4; 
  Voltage2[ConversionCount] = AdcRegs.ADCRESULT1 >>4; 
 
  // If 40 conversions have been logged, start over 
  if(ConversionCount == 9)  
  { 
     ConversionCount = 0; 
  } 
  else ConversionCount++; 
 
  // Reinitialize for next ADC sequence 
  AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;         // Reset SEQ1 
  AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;       // Clear INT SEQ1 bit 
  PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;   // Acknowledge interrupt to PIE 
   
  return; 
}