www.pudn.com > gcv.rar > gcv.m, change:2013-05-30,size:5011b


function [reg_min,G,reg_param] = gcv(U,s,b,method) 
%GCV Plot the GCV function and find its minimum. 
% 
% [reg_min,G,reg_param] = gcv(U,s,b,method) 
% [reg_min,G,reg_param] = gcv(U,sm,b,method)  ,  sm = [sigma,mu] 
% 
% Plots the GCV-function 
%          || A*x - b ||^2 
%    G = ------------------- 
%        (trace(I - A*A_I)^2 
% as a function of the regularization parameter reg_param. 
% Here, A_I is a matrix which produces the regularized solution. 
% 
% The following methods are allowed: 
%    method = 'Tikh' : Tikhonov regularization   (solid line ) 
%    method = 'tsvd' : truncated SVD or GSVD     (o markers  ) 
%    method = 'dsvd' : damped SVD or GSVD        (dotted line) 
% If method is not specified, 'Tikh' is default. 
% 
% If any output arguments are specified, then the minimum of G is 
% identified and the corresponding reg. parameter reg_min is returned. 
 
% Per Christian Hansen, IMM, Dec. 16, 2003. 
 
% Reference: G. Wahba, "Spline Models for Observational Data", 
% SIAM, 1990. 
 
% Set defaults. 
if (nargin==3), method='Tikh'; end  % Default method. 
npoints = 200;                      % Number of points on the curve. 
smin_ratio = 16*eps;                % Smallest regularization parameter. 
 
% Initialization. 
[m,n] = size(U); [p,ps] = size(s); 
beta = U'*b; beta2 = norm(b)^2 - norm(beta)^2; 
if (ps==2) 
  s = s(p:-1:1,1)./s(p:-1:1,2); beta = beta(p:-1:1); 
end 
if (nargout > 0), find_min = 1; else find_min = 0; end 
 
if (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4)) 
 
  % Vector of regularization parameters. 
  reg_param = zeros(npoints,1); G = reg_param; s2 = s.^2; 
  reg_param(npoints) = max([s(p),s(1)*smin_ratio]); 
  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1)); 
  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end 
 
  % Intrinsic residual. 
  delta0 = 0; 
  if (m > n & beta2 > 0), delta0 = beta2; end 
 
  % Vector of GCV-function values. 
  for i=1:npoints 
    G(i) = gcvfun(reg_param(i),s2,beta(1:p),delta0,m-n); 
  end  
 
  % Plot GCV function. 
%   loglog(reg_param,G,'-'), xlabel('\lambda'), ylabel('G(\lambda)') 
%   title('GCV function') 
 
  % Find minimum, if requested. 
  if (find_min) 
    [minG,minGi] = min(G); % Initial guess. 
    reg_min = fminbnd('gcvfun',... 
      reg_param(min(minGi+1,npoints)),reg_param(max(minGi-1,1)),... 
      optimset('Display','off'),s2,beta(1:p),delta0,m-n); % Minimizer. 
    minG = gcvfun(reg_min,s2,beta(1:p),delta0,m-n); % Minimum of GCV function. 
%     ax = axis; 
%     HoldState = ishold; hold on; 
%     loglog(reg_min,minG,'*r',[reg_min,reg_min],[minG/1000,minG],':r') 
%     title(['GCV function, minimum at \lambda = ',num2str(reg_min)]) 
%     axis(ax) 
%     if (~HoldState), hold off; end 
  end 
 
elseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4)) 
    
  % Vector of GCV-function values. 
  rho2(p-1) = abs(beta(p))^2; 
  if (m > n & beta2 > 0), rho2(p-1) = rho2(p-1) + beta2; end 
  for k=p-2:-1:1, rho2(k) = rho2(k+1) + abs(beta(k+1))^2; end 
  G = zeros(p-1,1); 
  for k=1:p-1 
    G(k) = rho2(k)/(m - k + (n - p))^2; 
  end 
  reg_param = (1:p-1)'; 
 
  % Plot GCV function. 
%   semilogy(reg_param,G,'o'), xlabel('k'), ylabel('G(k)') 
%   title('GCV function') 
%  
  % Find minimum, if requested. 
  if (find_min) 
    [minG,reg_min] = min(G); 
%     ax = axis; 
%     HoldState = ishold; hold on; 
%     semilogy(reg_min,minG,'*r',[reg_min,reg_min],[minG/1000,minG],':r') 
%     title(['GCV function, minimum at k = ',num2str(reg_min)]) 
%     axis(ax); 
%     if (~HoldState), hold off; end 
  end 
 
elseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4)) 
 
  % Vector of regularization parameters. 
  reg_param = zeros(npoints,1); G = reg_param; 
  reg_param(npoints) = max([s(p),s(1)*smin_ratio]); 
  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1)); 
  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end 
 
  % Intrinsic residual. 
  delta0 = 0; 
  if (m > n & beta2 > 0), delta0 = beta2; end 
 
  % Vector of GCV-function values. 
  for i=1:npoints 
    G(i) = gcvfun(reg_param(i),s,beta(1:p),delta0,m-n,1); 
  end 
 
%   % Plot GCV function. 
%   loglog(reg_param,G,':'), xlabel('\lambda'), ylabel('G(\lambda)') 
%   title('GCV function') 
 
  % Find minimum, if requested. 
  if (find_min) 
    [minG,minGi] = min(G); % Initial guess. 
    reg_min = fminbnd('gcvfun',... 
      reg_param(min(minGi+1,npoints)),reg_param(max(minGi-1,1)),... 
      optimset('Display','off'),s,beta(1:p),delta0,m-n,1); % Minimizer. 
    minG = gcvfun(reg_min,s,beta(1:p),delta0,m-n,1); % Minimum of GCV function. 
%     ax = axis; 
%     HoldState = ishold; hold on; 
%     loglog(reg_min,minG,'*r',[reg_min,reg_min],[minG/1000,minG],':r') 
%     title(['GCV function, minimum at \lambda = ',num2str(reg_min)]) 
%     axis(ax) 
%     if (~HoldState), hold off; end 
  end 
 
elseif (strncmp(method,'mtsv',4) | strncmp(method,'ttls',4)) 
 
  error('The MTSVD and TTLS methods are not supported') 
 
else 
  error('Illegal method') 
end