Problem 13.1

Based on the info about the scattering function we know that the multipath spread is $T_m = 1 \text{ ms}$, and the Doppler spread is $B_d = 0.2 \text{ Hz}$.

(a) (i) $T_m = 10^{-3} \text{ sec}$
(ii) $B_d = 0.2 \text{ Hz}$
(iii) $(\Delta t)_c \approx \frac{1}{B_d} = 5 \text{ sec}$
(iv) $(\Delta f)_c \approx \frac{1}{T_m} = 1000 \text{ Hz}$
(v) $T_m B_d = 2 \cdot 10^{-4}$

(b) (i) Frequency non-selective channel: This means that the signal transmitted over the channel has a bandwidth less that 1000 Hz.
(ii) Slowly fading channel: the signaling interval T is $T << (\Delta t)_c$.
(iii) The channel is frequency selective: the signal transmitted over the channel has a bandwidth greater than 1000 Hz.

(c) The signal design problem does not have a unique solution. We should use orthogonal $M=4$ FSK with a symbol rate of 50 symbols/sec. Hence $T = 1/50 \text{ sec}$. For signal orthogonality, we select the frequencies with relative separation $\Delta f = 1/T = 50 \text{ Hz}$. With this separation we obtain $1000/50=200$ frequencies. Since four frequencies are required to transmit 2 bits, we have up to 50^{th}-order diversity available. We may use simple repetition-type diversity or a more efficient block or convolutional code of rate $\geq 1/50$. The demodulator may use square-law combining.

Problem 13.2

(a) $P_{2h} = p^3 + 3p^2(1-p)$

where $p = \frac{1}{2 + \tilde{\gamma}_c}$, and $\tilde{\gamma}_c$ is the received SNR/cell.

(b) For $\tilde{\gamma}_c = 100$, $P_{2h} \approx 10^{-6} + 3 \cdot 10^{-4} \approx 3 \cdot 10^{-4}$
For $\tilde{\gamma}_c = 1000$, $P_{2h} \approx 10^{-9} + 3 \cdot 10^{-6} \approx 3 \cdot 10^{-6}$

(c) Since $\tilde{\gamma}_c >> 1$, we may use the approximation: $P_{2s} \approx \left(\frac{2L-1}{L} \right) \left(\frac{1}{\tilde{\gamma}_c} \right)^L$, where L is the order of diversity. For $L=3$, we have:

\[
P_{2s} \approx \frac{10}{\tilde{\gamma}_c^3} \Rightarrow \begin{cases}
 P_{2s} \approx 10^{-5}, & \tilde{\gamma}_c = 100 \\
 P_{2s} \approx 10^{-8}, & \tilde{\gamma}_c = 1000
\end{cases}
\]
(d) For hard-decision decoding:

\[P_{2h} = \sum_{k=L+1}^{L} \binom{L}{k} p^k (1-p)^{L-k} \leq [4p(1-p)]^{L/2} \]

where the latter is the Chernoff bound, \(L \) is odd, and \(p = \frac{1}{2 + \gamma_c} \).

For soft-decision decoding:

\[P_{2s} \approx \left(\frac{2L-1}{L} \right) \left(\frac{1}{\gamma_c} \right)^L \]

Problem 13.3

(a) For a fixed channel, the probability of error is: \(P_e(a) = Q\left(\sqrt{\frac{a^2}{N_0}} \right) \). We now average this conditional error probability over the possible values of \(a \), which are \(a=0 \), with probability 0.1, and \(a=2 \) with probability 0.9. Thus:

\[P_e = 0.1Q(0) + 0.9Q\left(\sqrt{\frac{8E}{N_0}} \right) = 0.05 + 0.9Q\left(\sqrt{\frac{8E}{N_0}} \right) \]

(b) As \(\frac{E}{N_0} \to \infty \), \(P_e \to 0.05 \)

(c) When the channel gains \(a_1, a_2 \) are fixed, the probability of error is:

\[P_e(a_1, a_2) = Q\left(\sqrt{\frac{(a_1^2 + a_2^2)2E}{N_0}} \right) \]

Averaging over the probability density function \(p(a_1, a_2) = p(a_1) \cdot p(a_2) \), we obtain the average probability of error:

\[P_e = (0.1)^2 Q(0) + 2 \cdot 0.9 \cdot 0.1 \cdot Q\left(\sqrt{\frac{8E}{N_0}} \right) + (0.9)^2 Q\left(\sqrt{\frac{16E}{N_0}} \right) \]

\[= 0.005 + 0.18Q\left(\sqrt{\frac{8E}{N_0}} \right) + 0.81Q\left(\sqrt{\frac{16E}{N_0}} \right) \]

(d) As \(\frac{E}{N_0} \to \infty \), \(P_e \to 0.005 \)
Problem 13.4

(a) \[T_m = 1 \text{ sec} \Rightarrow (\Delta f)_c \approx \frac{1}{T_m} = 1 \text{ Hz} \]
\[B_d = 0.01 \text{ Hz} \Rightarrow (\Delta t)_c \approx \frac{1}{B_d} = 100 \text{ sec} \]

(b) Since \(W = 5 \text{ Hz} \) and \((\Delta f)_c \approx 1 \text{ Hz}\), the channel is frequency selective.

(c) Since \(T=10 \text{ sec} < (\Delta t)_c \), the channel is slowly fading.

(d) The desired data rate is not specified in this problem, and must be assumed. Note that with a pulse duration of \(T=10 \text{ sec} \), the binary PSK signals can be spaced at \(1/T = 0.1 \text{ Hz} \) apart. With a bandwidth of \(W=5 \text{ Hz} \), we can form 50 subchannels or carrier frequencies. On the other hand, the amount of diversity available in the channel is \(W/(\Delta f)_c = 5 \). Suppose the desired data rate is 1 bit/sec. Then, ten adjacent carriers can be used to transmit the data in parallel and the information is repeated five times using the total number of 50 subcarriers to achieve 5-th order diversity. A subcarrier separation of 1 Hz is maintained to achieve independent fading of subcarriers carrying the same information.

(e) We use the approximation :
\[P_2 \approx \left(\frac{2L - 1}{L} \right) \left(\frac{1}{4\bar{\gamma}_c} \right)^L \]
where \(L=5 \). For \(P_3 = 10^{-6} \), the SNR required is :
\[(126) \left(\frac{1}{4\bar{\gamma}_c} \right)^5 = 10^{-6} \Rightarrow \bar{\gamma}_c = 10.4 \text{ (10.1 dB)} \]

(f) The tap spacing between adjacent taps is \(1/5=0.2 \text{ seconds} \). the total multipath spread is \(T_m = 1 \text{ sec} \). Hence, we employ a RAKE receiver with at least 5 taps.

(g) Since the fading is slow relative to the pulse duration, in principle we can employ a coherent receiver with pre-detection combining.

(h) For an error rate of \(10^{-6} \), we have :
\[P_2 \approx \left(\frac{2L - 1}{L} \right) \left(\frac{1}{\bar{\gamma}_c} \right)^5 = 10^{-6} \Rightarrow \bar{\gamma}_c = 41.6 \text{ (16.1 dB)} \]
Problem 13.5

(a)
\[p(n_1, n_2) = \frac{1}{2\pi \sigma^2} e^{-(n_1^2 + n_2^2)/2\sigma^2} \]

\[U_1 = 2\mathcal{E} + N_1, \quad U_2 = N_1 + N_2 \Rightarrow N_1 = U_1 - 2\mathcal{E}, \quad N_2 = U_2 - U_1 + 2\mathcal{E} \]

where we assume that \(s(t) \) was transmitted. Then, the Jacobian of the transformation is:

\[J = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1 \]

and:

\[p(u_1, u_2) = \frac{1}{2\pi \sigma^2} e^{\frac{-1}{2\sigma^2}[(U_1-2\mathcal{E})^2+(U_2-(U_1-2\mathcal{E})]^2} \]

The derivation is exactly the same for the case when \(- s(t)\) is transmitted, with the sole difference that \(U_1 = -2\mathcal{E} + N_1 \).

(b) The likelihood ratio is:

\[\Lambda = \frac{p(u_1, u_2) + s(t)}{p(u_1, u_2) - s(t)} = \exp \left[-\frac{1}{\sigma^2} (-8\mathcal{E}U_1 + 4\mathcal{E}U_2) \right] +^{s(t)} 1 \]

or:

\[\ln \Lambda = \frac{8\mathcal{E}}{\sigma^2} \left(U_1 - \frac{1}{2} U_2 \right) +^{s(t)} 0 \Rightarrow U_1 - \frac{1}{2} U_2 +^{s(t)} 0 \]

Hence \(\beta = -1/2 \).

(c)

\[U = U_1 - \frac{1}{2} U_2 = 2\mathcal{E} + \frac{1}{2} (N_1 - N_2) \]

\[E[U] = 2\mathcal{E}, \quad \sigma_U^2 = \frac{1}{4} (\sigma_{n1}^2 + \sigma_{n2}^2) = \mathcal{EN}_0 \]

Hence:

\[p(u) = \frac{1}{\sqrt{2\pi \mathcal{E} N_0}} e^{-(u-2\mathcal{E})^2/2\mathcal{E} N_0} \]

(d)

\[P_e = P(U < 0) \]

\[= \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi \mathcal{E} N_0}} e^{-(u-2\mathcal{E})^2/2\mathcal{E} N_0} du \]

\[= Q \left(\frac{2\mathcal{E}}{\sqrt{\mathcal{E} N_0}} \right) = Q \left(\sqrt{\frac{4\mathcal{E}}{N_0}} \right) \]
(e) If only U_1 is used in reaching a decision, then we have the usual binary PSK probability of error: $P_e = Q\left(\sqrt{\frac{2E}{N_0}}\right)$, hence a loss of 3 dB, relative to the optimum combiner.

Problem 13.6

(a)

$$U = \text{Re} \left[\sum_{k=1}^{L} \beta_k U_k \right] > 0$$

where $U_k = 2Ea_k e^{-j\phi_k} + v_k$ and where v_k is zero-mean Gaussian with variance $2EN_0k$. Hence, U is Gaussian with:

$$E[U] = \text{Re} \left[\sum_{k=1}^{L} \beta_k E(U_k) \right] = 2E \cdot \text{Re} \left[\sum_{k=1}^{L} a_k \beta_k e^{-j\phi_k} \right] = 2E \sum_{k=1}^{L} a_k |\beta_k| \cos (\theta_k - \phi_k) \equiv m_u$$

where $\beta_k = |\beta_k| e^{j\theta_k}$. Also:

$$\sigma^2_u = 2E \sum_{k=1}^{L} |\beta_k|^2 N_0k$$

Hence:

$$p(u) = \frac{1}{\sqrt{2\pi\sigma_u}} e^{-\left(u - m_u\right)^2 / 2\sigma_u^2}$$

(b) The probability of error is:

$$P_2 = \int_{-\infty}^{0} p(u) du = Q\left(\sqrt{2\gamma}\right)$$

where:

$$\gamma = \frac{E \left[\sum_{k=1}^{L} a_k |\beta_k| \cos (\theta_k - \phi_k) \right]^2}{\sum_{k=1}^{L} |\beta_k|^2 N_0k}$$

(c) To maximize P_2, we maximize γ. It is clear that γ is maximized with respect to $\{\theta_k\}$ by selecting $\theta_k = \phi_k$ for $k = 1, 2, \ldots, L$. Then we have:

$$\gamma = \frac{E \left[\sum_{k=1}^{L} a_k |\beta_k| \right]^2}{\sum_{k=1}^{L} |\beta_k|^2 N_0k}$$

Now:

$$\frac{d\gamma}{d|\beta_l|} = 0 \Rightarrow \left(\sum_{k=1}^{L} |\beta_k|^2 N_0k \right) a_l - \left(\sum_{k=1}^{L} a_k |\beta_k| \right) |\beta_l| N_0l = 0$$
Consequently:

\[|\beta_1| = \frac{a_1}{N_{01}} \]

and:

\[\gamma = \frac{\mathcal{E} \left(\sum_{k=1}^{L} \frac{a_k^2}{N_{0k}} \right)^2}{\sum_{k=1}^{L} \frac{a_k^2}{N_{0k}}} = \mathcal{E} \sum_{k=1}^{L} \frac{a_k^2}{N_{0k}} \]

The above represents maximal ratio combining.

Problem 13.7

(a)

\[p(u_1) = \frac{1}{(2\sigma_1^2)^L (L-1)!} u_1^{L-1} e^{-u_1/2\sigma_1^2}, \quad \sigma_1^2 = 2\mathcal{E} N_0 (1 + \gamma_c) \]

\[p(u_2) = \frac{1}{(2\sigma_2^2)^L (L-1)!} u_2^{L-1} e^{-u_2/2\sigma_2^2}, \quad \sigma_2^2 = 2\mathcal{E} N_0 \]

\[P_2 = P(U_2 > U_1) = \int_{0}^{\infty} P(U_2 > U_1|U_1)p(U_1)dU_1 \]

But:

\[
P(U_2 > U_1|U_1) = \int_{u_1}^{\infty} p(u_2)du_2 = \int_{u_1}^{\infty} \frac{1}{(2\sigma_2^2)^L (L-1)!} u_2^{L-1} e^{-u_2/2\sigma_2^2} du_2
\]

\[
= \left[\frac{1}{(2\sigma_2^2)^L (L-1)!} u_2^{L-1} e^{-u_2/2\sigma_2^2} \right]_{u_1}^{\infty} - \int_{u_1}^{\infty} \frac{(-2\sigma_2^2)(L-1)}{(2\sigma_2^2)^L (L-1)!} u_2^{L-2} e^{-u_2/2\sigma_2^2} du_2
\]

\[
= \frac{1}{(2\sigma_2^2)^L (L-1)!} u_1^{L-1} e^{-u_1/2\sigma_2^2} + \int_{u_1}^{\infty} \frac{1}{(2\sigma_2^2)^{L-1} (L-2)!} u_2^{L-2} e^{-u_2/2\sigma_2^2} du_2
\]

Continuing, in the same way, the integration by parts, we obtain:

\[P(U_2 > U_1|U_1) = e^{-u_1/2\sigma_2^2} \sum_{k=0}^{L-1} \frac{u_1^{k}/(2\sigma_2^2)^k}{k!} \]

Then:

\[P_2 = \int_{0}^{\infty} \left[e^{-u_1/2\sigma_2^2} \sum_{k=0}^{L-1} \frac{u_1^{k}/(2\sigma_2^2)^k}{k!} \right] \frac{1}{(2\sigma_1^2)^L (L-1)!} u_1^{L-1} e^{-u_1/2\sigma_1^2} du_1
\]

\[
= \sum_{k=0}^{L-1} \frac{1}{k!(2\sigma_2^2)^k (2\sigma_1^2)^L (L-1)!} \int_{0}^{\infty} u_1^{L-1+k} e^{-u_1(1/\sigma_1^2 + 1/\sigma_2^2)/2} du_1
\]
The integral that exists inside the summation is equal to :
\[
\int_{0}^{\infty} u^{L-1+k} e^{-ua} du = \\
\left[\frac{u^{L-1+k} e^{-ua}}{(-a)} \right]_{0}^{\infty} - \frac{L-1+k}{(-a)} \int_{0}^{\infty} u^{L-2+k} e^{-ua} du = \\
\frac{L-1+k}{a} \int_{0}^{\infty} u^{L-2+k} e^{-ua} du
\]
where \(a = (1/\sigma_1^2 + 1/\sigma_2^2)/2 = \frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2 \sigma_2^2} \). Continuing the integration by parts, we obtain :
\[
\int_{0}^{\infty} u^{L-1+k} e^{-ua} du = \frac{1}{a^{L+k}} (L - 1 + k)! = \left(\frac{2\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2} \right)^{L+k} (L - 1 + k)!
\]
Hence :
\[
P_2 = \sum_{k=0}^{L-1} \frac{1}{k!(2\sigma_1^2)^k (2\sigma_2^2)^k} \int_{0}^{\infty} u^{L-1+k} e^{-u(1/\sigma_1^2 + 1/\sigma_2^2)/2} du_1
\]
\[
= \sum_{k=0}^{L-1} \frac{1}{k!(2\sigma_1^2)^k (2\sigma_2^2)^k} \frac{(2\sigma_1^2 \sigma_2^2)^k}{(\sigma_1^2 + \sigma_2^2)^{L+k}} (L - 1 + k)!
\]
\[
= \sum_{k=0}^{L-1} \left(\frac{L-1+k}{k} \right) \left(\frac{2\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2} \right)^L = \sum_{k=0}^{L-1} \left(\frac{L-1+k}{k} \right) \left(\frac{2\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2} \right)^L
\]
\[
= \sum_{k=0}^{L-1} \left(\frac{L-1+k}{k} \right) \left(\frac{2\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2} \right)^L = \left(\frac{1}{2+\gamma} \right)^L \sum_{k=0}^{L-1} \left(\frac{L-1+k}{k} \right) \left(\frac{1+\gamma}{2+\gamma} \right)^k
\]
which is the desired expression (14-4-15) with \(\mu = \frac{\gamma}{2+\gamma} \).

Problem 13.8

\[
U = \sum_{k=1}^{L} U_k
\]

(a) \(U_k = 2Ea_k + v_k \), where \(v_k \) is Gaussian with \(E[v_k] = 0 \) and \(\sigma_v^2 = 2EN_0 \). Hence, for fixed \(\{a_k\} \), \(U \) is also Gaussian with : \(E[U] = \sum_{k=1}^{L} E(U_k) = 2E \sum_{k=1}^{L} a_k \) and \(\sigma_u^2 = L\sigma_v^2 = 2LEN_0 \). Since \(U \) is Gaussian, the probability of error, conditioned on a fixed number of gains \(\{a_k\} \) is

\[
P_b (a_1, a_2, ..., a_L) = Q \left(\frac{2E \sum_{k=1}^{L} a_k}{\sqrt{2LEN_0}} \right) = Q \left(\frac{2E \left(\sum_{k=1}^{L} a_k \right)^2}{LEN_0} \right)
\]
(b) The average probability of error for the fading channel is the conditional error probability averaged over the \(\{a_k\} \). Hence:

\[
P_d = \int_0^\infty da_1 \int_0^\infty da_2 \ldots \int_0^\infty da_L P_b(a_1, a_2, \ldots, a_L) p(a_1)p(a_2)\ldots p(a_L)
\]

where \(p(a_k) = \frac{a_k}{\sigma^2} \exp(-a_k^2/2\sigma^2) \), where \(\sigma^2 \) is the variance of the Gaussian RV’s associated with the Rayleigh distribution of the \(\{a_k\} \) (not to be confused with the variance of the noise terms). Since \(P_b(a_1, a_2, \ldots, a_L) \) depends on the \(\{a_k\} \) through their sum, we may let: \(X = \sum_{k=1}^L a_k \) and, thus, we have the conditional error probability \(P_b(X) = Q\left(\sqrt{2EX/(LN_0)}\right) \). The average error probability is:

\[
P_b = \int_0^\infty P_b(X)p(X)dX
\]

The problem is to determine \(p(X) \). Unfortunately, there is no closed form expression for the pdf of a sum of Rayleigh distributed RV’s. Therefore, we cannot proceed any further.

Problem 13.9

(a) The plot of \(g(\bar{\gamma}_c) \) as a function of \(\bar{\gamma}_c \) is given below:

![Graph](image)

The maximum value of \(g(\bar{\gamma}_c) \) is approximately 0.215 and occurs when \(\bar{\gamma}_c \approx 3 \).

(b) \(\bar{\gamma}_c = \bar{\gamma}_b/L \). Hence, for a given \(\bar{\gamma}_b \) the optimum diversity is \(L = \bar{\gamma}_b/\bar{\gamma}_c = \bar{\gamma}_b/3 \).

(c) For the optimum diversity we have:

\[
P_2(L_{opt}) < 2^{-0.215\gamma_b} = e^{-\ln 2 - 0.215\gamma_b} = e^{-0.15\gamma_b} = \frac{1}{2}e^{-0.15\gamma_b+\ln 2}
\]
For the non-fading channel: \(P_2 = \frac{1}{2} e^{-0.5\gamma_b} \). Hence, for large SNR \((\gamma_b >> 1)\), the penalty in SNR is:

\[
10 \log_{10} \frac{0.5}{0.15} = 5.3 \, dB
\]

Problem 13.10

The radio signal propagates at the speed of light, \(c = 3 \times 10^8 \) m/sec. The difference in propagation delay for a distance of 300 meters is

\[
T_d = \frac{300}{3 \times 10^8} = 1 \, \mu sec
\]

The minimum bandwidth of a DS spread spectrum signal required to resolve the propagation paths is \(W = 1 \, MHz \). Hence, the minimum chip rate is \(10^6 \) chips per second.

Problem 13.11

(a) The dimensionality of the signal space is two. An orthonormal basis set for the signal space is formed by the signals

\[
f_1(t) = \begin{cases}
\sqrt{\frac{2}{T}}, & 0 \leq t < \frac{T}{2} \\
0, & \text{otherwise}
\end{cases} \quad f_2(t) = \begin{cases}
\sqrt{\frac{2}{T}}, & \frac{T}{2} \leq t < T \\
0, & \text{otherwise}
\end{cases}
\]

(b) The optimal receiver is shown in the next figure

(c) Assuming that the signal \(s_1(t) \) is transmitted, the received vector at the output of the samplers is

\[
r = \left[\sqrt{\frac{A^2 T}{2}} + n_1, n_2 \right]
\]
where \(n_1, n_2 \) are zero mean Gaussian random variables with variance \(\frac{N_0}{2} \). The probability of error \(P(e|s_1) \) is

\[
P(e|s_1) = P(n_2 - n_1 > \sqrt{\frac{A^2 T}{2}}) = \frac{1}{\sqrt{2\pi N_0}} \int_{\sqrt{\frac{A^2 T}{2}}}^{\infty} e^{-\frac{x^2}{2N_0}} dx = Q\left(\sqrt{\frac{A^2 T}{2N_0}}\right)
\]

where we have used the fact the \(n = n_2 - n_1 \) is a zero-mean Gaussian random variable with variance \(N_0 \). Similarly we find that \(P(e|s_1) = Q\left(\sqrt{\frac{A^2 T}{2N_0}}\right) \), so that

\[
P(e) = \frac{1}{2} P(e|s_1) + \frac{1}{2} P(e|s_2) = Q\left(\sqrt{\frac{A^2 T}{2N_0}}\right)
\]

(d) The signal waveform \(f_1(\frac{T}{2} - t) \) matched to \(f_1(t) \) is exactly the same with the signal waveform \(f_2(T - t) \) matched to \(f_2(t) \). That is,

\[
f_1(\frac{T}{2} - t) = f_2(T - t) = f_1(t) = \begin{cases} \sqrt{\frac{2}{T}}, & 0 \leq t < \frac{T}{2} \\ 0, & \text{otherwise} \end{cases}
\]

Thus, the optimal receiver can be implemented by using just one filter followed by a sampler which samples the output of the matched filter at \(t = \frac{T}{2} \) and \(t = T \) to produce the random variables \(r_1 \) and \(r_2 \) respectively.

(e) If the signal \(s_1(t) \) is transmitted, then the received signal \(r(t) \) is

\[
r(t) = s_1(t) + \frac{1}{2}s_1(t - \frac{T}{2}) + n(t)
\]

The output of the sampler at \(t = \frac{T}{2} \) and \(t = T \) is given by

\[
r_1 = A\sqrt{\frac{2}{T^4}} + \frac{3A}{2}\sqrt{\frac{2}{T^4}} + n_1 = \frac{5}{2}\sqrt{\frac{A^2 T}{8}} + n_1
\]
\[
r_2 = A\sqrt{\frac{2}{T^4}} + n_2 = \frac{1}{2}\sqrt{\frac{A^2 T}{8}} + n_2
\]

If the optimal receiver uses a threshold \(V \) to base its decisions, that is

\[
s_1 \quad \quad r_1 - r_2 > V \quad \quad s_2
\]
then the probability of error $P(e|s_1)$ is

$$P(e|s_1) = P(n_2 - n_1 > 2\sqrt{\frac{A^2 T}{8} - V}) = Q\left(2\sqrt{\frac{A^2 T}{8 N_0} - \frac{V}{\sqrt{N_0}}} \right)$$

If $s_2(t)$ is transmitted, then

$$r(t) = s_2(t) + \frac{1}{2}s_2(t - \frac{T}{2}) + n(t)$$

The output of the sampler at $t = \frac{T}{2}$ and $t = T$ is given by

$$r_1 = n_1$$
$$r_2 = A\sqrt{\frac{2 T}{T^4} + 3A} \sqrt{\frac{2 T}{T^4} + n_2}$$
$$= \frac{5}{2}\sqrt{\frac{A^2 T}{8} + n_2}$$

The probability of error $P(e|s_2)$ is

$$P(e|s_2) = P(n_1 - n_2 > \frac{5}{2}\sqrt{\frac{A^2 T}{8} + V}) = Q\left(\frac{5}{2}\sqrt{\frac{A^2 T}{8 N_0} + \frac{V}{\sqrt{N_0}}} \right)$$

Thus, the average probability of error is given by

$$P(e) = \frac{1}{2} P(e|s_1) + \frac{1}{2} P(e|s_2)$$

$$= \frac{1}{2} Q\left(2\sqrt{\frac{A^2 T}{8 N_0} - \frac{V}{\sqrt{N_0}}} \right) + \frac{1}{2} Q\left(\frac{5}{2}\sqrt{\frac{A^2 T}{8 N_0} + \frac{V}{\sqrt{N_0}}} \right)$$

The optimal value of V can be found by setting $\frac{\partial P(e)}{\partial V}$ equal to zero. Using Leibnitz rule to differentiate definite integrals, we obtain

$$\frac{\partial P(e)}{\partial V} = 0 = \left(2\sqrt{\frac{A^2 T}{8 N_0} - \frac{V}{\sqrt{N_0}}} \right)^2 - \left(\frac{5}{2}\sqrt{\frac{A^2 T}{8 N_0} + \frac{V}{\sqrt{N_0}}} \right)^2$$

or by solving in terms of V

$$V = -\frac{1}{8}\sqrt{\frac{A^2 T}{2}}$$

(f) Let a be fixed to some value between 0 and 1. Then, if we argue as in part (e) we obtain

$$P(e|s_1, a) = P(n_2 - n_1 > 2\sqrt{\frac{A^2 T}{8} - V(a)})$$

$$P(e|s_2, a) = P(n_1 - n_2 > (a + 2)\sqrt{\frac{A^2 T}{8} + V(a)})$$
and the probability of error is

\[P(e|a) = \frac{1}{2} P(e|s_1, a) + \frac{1}{2} P(e|s_2, a) \]

For a given \(a \), the optimal value of \(V(a) \) is found by setting \(\frac{\partial P(e|a)}{\partial V(a)} \) equal to zero. By doing so we find that

\[V(a) = -\frac{a}{4} \sqrt{\frac{A^2T}{2}} \]

The mean square estimation of \(V(a) \) is

\[V = \int_0^1 V(a)f(a)da = -\frac{1}{4} \sqrt{\frac{A^2T}{2}} \int_0^1 ada = \frac{1}{8} \sqrt{\frac{A^2T}{2}} \]

Problem 13.12

(a)
The probability of error for binary FSK with square-law combining for $L = 2$ is given in Figure 14-4-7. The probability of error for $L = 1$ is also given in Figure 14-4-7. Note that an increase in SNR by a factor of 10 reduces the error probability by a factor of 10 when $L = 1$ and by a factor of 100 when $D = 2$.

Problem 13.13

(a) The noise-free received waveforms $\{r_i(t)\}$ are given by: $r_i(t) = h(t) * s_i(t)$, $i = 1, 2$, and they are shown in the following figure:
(b) The optimum receiver employs two matched filters \(g_i(t) = r_i(2T - t) \), and after each matched filter there is a sampler working at a rate of \(1/2T \). The equivalent lowpass responses \(g_i(t) \) of the two matched filters are given in the following figure:
Problem 13.14

Since a follows the Nakagami-m distribution:

$$p_a(a) = \frac{2}{\Gamma(m)} \left(\frac{m}{\Omega} \right)^m a^{2m-1} \exp \left(-\frac{ma^2}{\Omega} \right), \quad a \geq 0$$

where: $\Omega = E\left(a^2\right)$. The pdf of the random variable $\gamma = a^2 \bar{e}_b/N_0$ is specified using the usual method for a function of a random variable:

$$a = \sqrt{\gamma \frac{N_0}{\bar{e}_b}}, \quad \frac{d\gamma}{da} = 2a\bar{e}_b/N_0 = 2\sqrt{\gamma\bar{e}_b/N_0}$$
Hence:

\[p_\gamma(\gamma) = \left(\frac{d\gamma}{\gamma^2} \right)^{-1} p_d \left(\sqrt{\frac{N_0}{\gamma \zeta_b}} \right) \]

\[= \frac{1}{2\sqrt{\gamma\zeta_b/N_0}} \frac{2^{2\Gamma(m)}}{\Gamma(m)} \left(\frac{m}{\gamma} \right)^m \left(\sqrt{\frac{N_0}{\gamma \zeta_b}} \right)^{2m-1} \exp \left(-m\gamma \frac{N_0}{\zeta_b} / \Omega \right) \]

\[= \frac{m^m}{\Gamma(m)} \frac{\gamma^{m-1}}{\zeta_b^m} \exp \left(-m\gamma / (\zeta_b \Omega / N_0) \right) \]

\[= \frac{m^m}{\Gamma(m)} \frac{\gamma^{m-1}}{\zeta_b^m} \exp \left(-m\gamma / \bar{\gamma} \right) \]

where \(\bar{\gamma} = E \left(a^2 \right) \zeta_b / N_0 \).

Problem 13.15

(a) By taking the conjugate of \(r_2 = h_1 s_2^* - h_2 s_1^* + n_2 \)

\[\begin{bmatrix} r_1 \\ r_2^* \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ -h_2^* & h_1^* \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2^* \end{bmatrix} \]

Hence, the soft-decision estimates of the transmitted symbols \((s_1, s_2)\) will be

\[\begin{bmatrix} \hat{s}_1 \\ \hat{s}_2 \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ -h_2^* & h_1^* \end{bmatrix}^{-1} \begin{bmatrix} r_1 \\ r_2^* \end{bmatrix} \]

\[= \frac{1}{h_1^* + h_2^*} \begin{bmatrix} h_1^* r_1 - h_2 r_2^* \\ h_2^* r_1 + h_1 r_2^* \end{bmatrix} \]

which corresponds to dual-diversity reception for \(s_i \).

(b) The bit error probability for dual diversity reception of binary PSK is given by Equation (14.4-15), with \(L = 2 \) and \(\mu = \sqrt{\frac{\gamma_c}{1 + \gamma_c}} \) (where the average SNR per channel is \(\gamma_c = \frac{\zeta_b}{N_0} E[h^2] = \frac{\zeta_b}{N_0} \))

Then (14.4-15) becomes

\[P_2 = \left[\frac{1}{2} (1 - \mu) \right]^2 \left\{ \left(\frac{1}{2} \right) \left(\frac{1}{\gamma_c} \right) + \left[\frac{1}{2} (1 + \mu) \right] \left(\frac{2}{\gamma_c} \right) \right\} \]

\[= \left[\frac{1}{2} (1 - \mu) \right]^2 \left[2 + \mu \right] \]

When \(\gamma_c \gg 1 \), then \(\frac{1}{2} (1 - \mu) \approx 1 / 4 \gamma_c \) and \(\mu \approx 1 \). Hence, for large SNR the bit error probability for binary PSK can be approximated as

\[P_2 \approx 3 \left(\frac{1}{4 \gamma_c} \right)^2 \]

PROPRIETARY MATERIAL. ©The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
(c) The bit error probability for dual diversity reception of binary PSK is given by Equation (14.4-41), with \(L = 2 \) and \(\mu \) as above. Replacing we get

\[
P_2 = \frac{1}{2} \left[1 - \frac{\mu}{\sqrt{2 - \mu^2}} \left(1 + \frac{1 - \mu^2}{2 - \mu^2} \right) \right]
\]

Problem 13.16

The DFT of \(r(m) \) is

\[
R(m) = W^H H(m) W s(m) + W^H n(m) = G(m) s(m) + W^H n(m)
\]

where \(G(m) \) is defined in equation 13.6-26 as \(G(m) = W^H H(m) W \). We select \(b_k(m) \) to minimize

\[
\mathbb{E} \left[|s_k(m) - b_k^H R(m)|^2 \right] = \mathbb{E} \left[|s_k|^2 \right] - \mathbb{E} \left[s_k(m) R^H(m) b_k(m) \right]
- b_k^H(m) \mathbb{E} \left[R(m) s_k^*(m) \right] + b_k^H(m) \mathbb{E} \left[R(m) R^H(m) \right] b_k(m)
\]

which yields the result

\[
b_k(m) = \mathbb{E} \left[R(m) R^H(m) \right]^{-1} \mathbb{E} \left[R(m) s_k^*(m) \right]
\]

But

\[
\mathbb{E} \left[R(m) R^H(m) \right] = \mathbb{E} \left[(G(m) s(m) + W^H n(m))(s^H(m) G^H(m) + n^H(m) W) \right]
= G(m) \mathbb{E} \left[s(m) s^H(m) \right] G^H(m) + W^H \mathbb{E} \left[n(m) n^H(m) \right] W
= G(m) G^H(m) + N_0 I_N
\]

since \(\mathbb{E} \left[s(m) s^H(m) \right] = I_N \) and \(W^H \mathbb{E} \left[n(m) n^H(m) \right] W = N_0 W^H W = N_0 I_N \). Also, \(\mathbb{E} \left[R(m) s_k^*(m) \right] = g_k(m) \) by definition. Therefore, equation 13.6-24 is proved.

The minimum MSE is

\[
\mathbb{E} \left[s_k(m) - \hat{b}_k^H(m) R(m) \right] s_k^*(m) = \mathbb{E} \left[|s_k(m)|^2 \right] - b_k^H(m) \mathbb{E} \left[R(m) s_k^*(m) \right]
= 1 - g_k^H(m) (G(m) G^H(m) + N_0 I_N)^{-1} g_k(m)
\]

Problem 13.17

We have
\[
E \left[\alpha'(t + \tau)(\alpha'(t))^* \right] = E \left[\lim_{h_1 \to 0} \frac{\alpha(t + \tau + h_1) - \alpha(t + \tau)}{h_1} \lim_{h_2 \to 0} \frac{\alpha^*(t + h_2) - \alpha^*(t)}{h_2} \right]
\]
\[
= \lim_{h_1, h_2 \to 0} \left(\frac{E \left[\alpha(t + \tau + h_1)\alpha^*(t + h_2) \right] - E \left[\alpha(t + \tau + h_1)\alpha^*(t) \right]}{h_1 h_2} \right)
\]
\[
- \frac{E \left[\alpha(t + \tau)\alpha^*(t + h_2) \right] - E \left[\alpha(t + \tau)\alpha^*(t) \right]}{h_1 h_2}
\]
\[
= \lim_{h_1, h_2 \to 0} \frac{R_\alpha(\tau + h_1 - h_2) - R_\alpha(\tau + h_1) - R_\alpha(\tau - h_2) + R_\alpha(\tau)}{h_1 h_2}
\]
\[
= -R''_\alpha(\tau)
\]

where the second equality is due to the fact that both of the limits exist and the last equality is derived by the definition of the second derivative.

Problem 13.18

The zero-mean complex-valued Gaussian process \(\alpha_k(t) \) is passed through a differentiator whose transfer function is \(H(f) = j2\pi f \). Therefore, the power spectral density of the signal at the output of the differentiator is

\[
S_y(f) = |H(f)|^2 S(f)
\]

where \(S(f) \) is the power spectral density of \(\alpha_k(t) \). Consequently,

\[
E \left[|\alpha'_k(t)|^2 \right] = \int_{-\infty}^{+\infty} S_y(f) df = \int_{-f_m}^{f_m} (2\pi f)^2 S(f) df
\]

where \(S(f) \) is given by equation 13.6-5. Thus,

\[
\int_{-f_m}^{f_m} \frac{(2\pi f)^2}{\pi f_m \sqrt{1 - (f/f_m)^2}} df = 2\pi^2 f_m^2
\]