Solutions Manual
for
Digital Communications, 5th Edition
(Chapter 10) 1

Prepared by
Kostas Stamatiou

January 15, 2008

1PROPRIETARY MATERIAL. ©The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
Problem 10.1

(a) \[F(z) = \frac{4}{5} + \frac{3}{5}z^{-1} \Rightarrow X(z) = F(z)F^*(z^{-1}) = 1 + \frac{12}{25}(z + z^{-1}) \]

Hence:
\[\Gamma = \begin{bmatrix} 1 & \frac{12}{25} & 0 \\ \frac{12}{25} & 1 & \frac{12}{25} \\ 0 & \frac{12}{25} & 1 \end{bmatrix} \quad \xi = \begin{bmatrix} 3/5 \\ 0 \end{bmatrix} \]

and:
\[C_{opt} = \begin{bmatrix} c_{-1} \\ c_0 \\ c_1 \end{bmatrix} = \Gamma^{-1}\xi = \frac{1}{\beta} \begin{bmatrix} 1 - a^2 & -a & a^2 \\ -a & 1 & -a \\ a^2 & -a & 1 - a^2 \end{bmatrix} \begin{bmatrix} 3/5 \\ 0 \end{bmatrix} \]

where \(a = 0.48 \) and \(\beta = 1 - 2a^2 = 0.539 \). Hence:
\[C_{opt} = \begin{bmatrix} 0.145 \\ 0.95 \\ -0.456 \end{bmatrix} \]

(b) The eigenvalues of the matrix \(\Gamma \) are given by:
\[|\Gamma - \lambda I| = 0 \Rightarrow \begin{vmatrix} 1 - \lambda & 0.48 & 0 \\ 0.48 & 1 - \lambda & 0.48 \\ 0 & 0.48 & 1 - \lambda \end{vmatrix} = 0 \Rightarrow \lambda = 1, 0.3232, 1.6768 \]

The step size \(\Delta \) should range between:
\[0 \leq \Delta \leq 2/\lambda_{max} = 1.19 \]

(c) Following equations (10-3-3)-(10-3-4) we have:
\[\psi = \begin{bmatrix} 1 & 0.48 \\ 0.48 & 0.64 \end{bmatrix}, \quad \psi \begin{bmatrix} c_{-1} \\ c_0 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix} \Rightarrow \]
\[\begin{bmatrix} c_{-1} \\ c_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1.25 \end{bmatrix} \]

and the feedback tap is:
\[c_1 = -c_0f_1 = -0.75 \]
Problem 10.2

(a) \[\Delta_{\text{max}} = \frac{2}{\lambda_{\text{max}}} = \frac{2}{1 + \frac{1}{\sqrt{2}} + N_0} = \frac{2}{1.707 + N_0} \]

(b) From (10-1-31):

\[J_\Delta = \Delta^2 J_{\text{min}} \sum_{k=1}^{3} \frac{\lambda_k^2}{1 - (1 - \Delta \lambda_k)^2} \approx \frac{1}{2} \Delta J_{\text{min}} \sum_{k=1}^{3} \lambda_k \]

Since \(\frac{J_\Delta}{J_{\text{min}}} = 0.01 \):

\[\Delta \approx \frac{0.07}{1 + N_0} \approx 0.06 \]

(c) Let \(C' = V^t C, \xi' = V^t \xi \), where \(V \) is the matrix whose columns form the eigenvectors of the covariance matrix \(\Gamma \) (note that \(V^t = V^{-1} \)). Then:

\[C_{(n+1)} = (I - \Delta \Gamma) C_{(n)} + \Delta \xi \Rightarrow \]
\[C_{(n+1)} = (I - \Delta VAV^{-1}) C_{(n)} + \Delta \xi \Rightarrow \]
\[V^{-1} C_{(n+1)} = V^{-1} (I - \Delta VAV^{-1}) C_{(n)} + \Delta V^{-1} \xi \Rightarrow \]
\[C'_{(n+1)} = (I - \Delta \Lambda) C'_{(n)} + \Delta \xi' \]

which is a set of three de-coupled difference equations (de-coupled because \(\Lambda \) is a diagonal matrix). Hence, we can write:

\[c'_{k,(n+1)} = (1 - \Delta \lambda_k) c'_{k,(n)} + \Delta \xi'_k, \quad k = -1, 0, 1 \]

The steady-state solution is obtained when \(c'_{k,(n+1)} = c'_k \), which gives:

\[c'_k = \frac{\xi'_k}{\lambda_k}, \quad k = -1, 0, 1 \]

or going back to matrix form:

\[C' = \Lambda^{-1} \xi' \Rightarrow \]
\[C = VC' = V\Lambda^{-1}V^{-1} \xi \Rightarrow \]
\[C = (VAV^{-1})^{-1} \xi = \Gamma^{-1} \xi \]

which agrees with the result in Probl. 9.49(a).
Problem 10.3

Suppose that we have a discrete-time system with frequency response $H(\omega)$; this may be equalized by use of the DFT as shown below:

![Diagram of system and equalizer with DFT]

\[A(\omega) = \sum_{n=0}^{N-1} a_n e^{-j\omega n} \quad Y(\omega) = \sum_{n=0}^{N-1} c_n e^{-j\omega n} = A(\omega)H(\omega) \]

Let:

\[E(\omega) = \frac{A(\omega)Y^*(\omega)}{|Y(\omega)|^2} \]

Then by direct substitution of $Y(\omega)$ we obtain:

\[E(\omega) = \frac{A(\omega)A^*(\omega)H^*(\omega)}{|A(\omega)|^2 |H(\omega)|^2} = \frac{1}{H(\omega)} \]

If the sequence $\{a_n\}$ is sufficiently padded with zeros, the N-point DFT simply represents the values of $E(gw)$ and $H(\omega)$ at $\omega = \frac{2\pi}{N} k = \omega_k$, for $k = 0, 1, \ldots, N - 1$ without frequency aliasing. Therefore the use of the DFT as specified in this problem yields $E(\omega_k) = \frac{1}{H(\omega_k)}$, independent of the properties of the sequence $\{a_n\}$. Since $H(\omega)$ is the spectrum of the discrete-time system, we know that this is equivalent to the folded spectrum of the continuous-time system (i.e. the system which was sampled). For further details for the use of a pseudo-random periodic sequence to perform equalization we refer to the paper by Qureshi (1985).

Problem 10.4

The MSE performance index at the time instant k is

\[J(c_k) = E \left[\sum_{n=-N}^{N} c_{k,n} v_{k-n} - I_k \right]^2 \]

If we define the gradient vector G_k as

\[G_k = \frac{\partial J(c_k)}{2 \partial c_k} \]
then its l-th element is

$$G_{k,l} = \frac{\partial J(c_k)}{\partial c_{k,l}} = \frac{1}{2} E \left[2 \left(\sum_{n=-N}^{N} c_{k,n} v_{k-n} - I_k \right) v_k^* \right]$$

$$= E \left[-\epsilon_k v_k^* \right] = -E \left[\epsilon_k v_k^* \right]$$

Thus, the vector G_k is

$$G_k = \left(\begin{array}{c} -E[\epsilon_k v_{k+N}] \\ \vdots \\ -E[\epsilon_k v_{k-N}] \end{array} \right) = -E[\epsilon_k V_k^*]$$

where V_k is the vector $[v_{k+N} \cdots v_{k-N}]^T$. Since $\hat{G}_k = -\epsilon_k V_k^*$, its expected value is

$$E[\hat{G}_k] = E[-\epsilon_k V_k^*] = -E[\epsilon_k V_k^*] = G_k$$

Problem 10.5

The tap-leakage LMS algorithm is:

$$C(n+1) = wC(n) + \Delta \epsilon(n) V^*(n) = wC(n) + \Delta (\Gamma C(n) - \xi) = (wI - \Delta \Gamma) C(n) - \Delta \xi$$

Following the same diagonalization procedure as in Problem 10.2 or Section (10-1-3) of the book, we obtain:

$$C'(n+1) = (wI - \Delta \Lambda) C'(n) - \Delta \xi'$$

where Λ is the diagonal matrix containing the eigenvalues of the correlation matrix Γ. The algorithm converges if the roots of the homogeneous equation lie inside the unit circle:

$$|w - \Delta \lambda_k| < 1, \quad k = -N, ..., -1, 0, 1, ..., N$$

and since $\Delta > 0$, the convergence criterion is:

$$\Delta < \frac{1 + w}{\lambda_{\text{max}}}$$

Problem 10.6

The estimate of g can be written as: $\hat{g} = h_0 x_0 + ... + h_{M-1} x_{M-1} = x^T h$, where x, h are column vectors containing the respective coefficients. Then using the orthogonality principle we obtain the optimum linear estimator h:

$$E[\epsilon x] = 0 \Rightarrow E[(g - x^T h)] = 0 \Rightarrow E[\epsilon g] = E[xx^T] h$$
\[h_{\text{opt}} = R_{xx}^{-1} c \]

where the \(M \times M \) correlation matrix \(R_{xx} \) has elements:

\[R(m, n) = E[x(m)x(n)] = E[g^2] u(m)u(n) + \sigma_w^2 \delta_{nm} = Gu(m)u(n) + \sigma_w^2 \delta_{nm} \]

where we have used the fact that \(g \) and \(w \) are independent, and that \(E[g] = 0 \). Also, the column vector \(c = E[xg] \) has elements:

\[c(n) = E[x(n)g] = Gu(n) \]

Problem 10.7

(a) The time-update equation for the parameters \(\{H_k\} \) is:

\[H_k^{(n+1)} = H_k^{(n)} + \Delta \epsilon^{(n)} y_k^{(n)} \]

where \(n \) is the time-index, \(k \) is the filter index, and \(y_k^{(n)} \) is the output of the \(k \)-th filter with transfer function: \(\frac{1 - z^{-M}}{1 - e^{j2\pi k/M} z^{-1}} \) as shown in the figure below:

Parallel Bank of Single – Pole Filters
The error $\epsilon(n)$ is calculated as: $\epsilon(n) = I_n - y(n)$, and then it is fed back in the adaptive part of the equalizer, together with the quantities $y_k^{(n)}$, to update the equalizer parameters H_k.

(b) It is straightforward to prove that the transfer function of the k-th filter in the parallel bank has a resonant frequency at $f_k = 2\pi \frac{k}{M}$, and is zero at the resonant frequencies of the other filters $f_m = 2\pi \frac{m}{M}$, $m \neq k$. Hence, if we choose as a test signal sinusoids whose frequencies coincide with the resonant frequencies of the tuned circuits, this allows the coefficient H_k for each filter to be adjusted independently without any interaction from the other filters.

Problem 10.8

(a) The gradient of the performance index J with respect to h is: $\frac{dJ}{dh} = 2h + 40$. Hence, the time update equation becomes:

$$h_{n+1} = h_n - \frac{1}{2}\Delta(2h_n + 40) = h_n(1 - \Delta) - 20\Delta$$

This system will converge if the homogeneous part will vanish away as $n \to \infty$, or equivalently if: $|1 - \Delta| < 1 \iff 0 < \Delta < 2$.

(b) We note that J has a minimum at $h = -20$, with corresponding value: $J_{\min} = -372$. To illustrate the convergence of the algorithm let’s choose: $\Delta = 1/2$. Then: $h_{n+1} = h_n/2 - 10$, and, using induction, we can prove that:

$$h_{n+1} = \left(\frac{1}{2}\right)^n h_0 - 10 \left[\sum_{k=0}^{n-1} \left(\frac{1}{2}\right)^k\right]$$

where h_0 is the initial value for h. Then, as $n \to \infty$, the dependence on the initial condition h_0 vanishes and $h_n \to -10 \frac{1}{1-1/2} = -20$, which is the desired value. The following plot shows the expression for J as a function of n, for $\Delta = 1/2$ and for various initial values h_0.

![Plot showing the expression for J as a function of n for different initial values h0](image-url)
Problem 10.9

The linear estimator for x can be written as: $\hat{x}(n) = a_1 x(n-1) + a_2 x(n-1) = [x(n-1) x(n-2)] \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$.

Using the orthogonality principle we obtain:

$$E \left\{ \begin{bmatrix} x(n-1) \\ x(n-2) \end{bmatrix} e \right\} = 0 \Rightarrow E \left\{ \begin{bmatrix} x(n-1) \\ x(n-2) \end{bmatrix} \left(x(n) - [x(n-1) x(n-2)] \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \right) \right\} = 0$$

or:

$$\begin{bmatrix} \gamma_{xx}(-1) \\ \gamma_{xx}(-2) \end{bmatrix} = \begin{bmatrix} \gamma_{xx}(0) & \gamma_{xx}(1) \\ \gamma_{xx}(-1) & \gamma_{xx}(0) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \Rightarrow \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}^{-1} \begin{bmatrix} b \\ b^2 \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

This is a well-known fact from Statistical Signal Processing theory: a first-order AR process (which has autocorrelation function $\gamma(m) = a^{|m|}$) has a first-order optimum (MSE) linear estimator: $\hat{x}_n = a x_{n-1}$.

Problem 10.10

In Probl. 10.9 we found that the optimum (MSE) linear predictor for $x(n)$, is $\hat{x}(n) = b x(n-1)$. Since it is a first order predictor, the corresponding lattice implementation will comprise of one stage, too, with reflection coefficient a_{11}. This coefficient can be found using (10-4-28):

$$a_{11} = \frac{\gamma_{xx}(1)}{\gamma_{xx}(0)} = b$$

Then, we verify that the residue $f_1(n)$ is indeed the first-order prediction error: $f_1(n) = x(n) - b x(n-1) = x(n) - \hat{x}(n) = e(n)$

Problem 10.11
The system $C(z) = \frac{1}{1-0.9z}$ has an impulse response: $c(n) = (0.9)^n$, $n \geq 0$. Then, we write the input $y(n)$ to the adaptive FIR filter:

$$y(n) = \sum_{k=0}^{\infty} c(k)x(n-k) + w(n)$$

Since the sequence $\{x(n)\}$ corresponds to the information sequence that is transmitted through a channel, we will assume that is uncorrelated with zero mean and unit variance. Then the optimum (according to the MSE criterion) estimator of $x(n)$ will be: $\hat{x}(n) = [y(n) \ y(n-1)] \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$. Using the orthogonality criterion we obtain the optimum coefficients $\{b_i\}$:

$$E \left\{ \begin{bmatrix} y(n) \\ y(n-1) \end{bmatrix} \epsilon \right\} = 0 \Rightarrow E \left\{ \begin{bmatrix} y(n) \\ y(n-1) \end{bmatrix} \left(x(n) - [y(n) \ y(n-1)] \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} \right) \right\} = 0$$

$$\Rightarrow \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \left(E \begin{bmatrix} y(n)y(n) & y(n)y(n-1) \\ y(n-1)y(n) & y(n-1)y(n-1) \end{bmatrix} \right)^{-1} \left(E \begin{bmatrix} y(n)x(n) \\ y(n-1)x(n) \end{bmatrix} \right)$$

The various correlations are as follows:

$$E [y(n)x(n)] = E \left[\sum_{k=0}^{\infty} c(k)x(n-k)x(n) + w(n)x(n) \right] = c(0) = 1$$

where we have used the fact that: $E [x(n-k)x(n)] = \delta_k$, and that $\{w(n)\} \{x(n)\}$ are independent. Similarly:

$$E [y(n-1)x(n)] = E \left[\sum_{k=0}^{\infty} c(k)x(n-k-1)x(n) + w(n)x(n) \right] = 0$$

$$E [y(n)y(n)] = E \left[\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} c(k)c(j)x(n-k)x(n-j) \right] + \sigma_w^2$$

$$= \sum_{j=0}^{\infty} c(j)c(j) + \sigma_w^2 = \sum_{j=0}^{\infty} (0.9)^{2j} + \sigma_w^2 = \frac{1}{1-0.81} + \sigma_w^2 = \frac{1}{0.19} + \sigma_w^2$$

and:

$$E [y(n)y(n-1)] = E \left[\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} c(k)c(j)x(n-k)x(n-1-j) \right]$$

$$= \sum_{j=0}^{\infty} c(j)c(j+1) = \sum_{j=0}^{\infty} (0.9)^{2j+1}$$

$$= \frac{0.9}{1-0.81} = 0.9 \frac{1}{0.19}$$
Hence:
\[
\begin{bmatrix}
 b_0 \\
 b_1
\end{bmatrix}
= \begin{bmatrix}
 \frac{1}{0.19} + 0.1 & \frac{0.9}{0.19} \\
 0.9 \frac{1}{0.19} & \frac{1}{0.19} + 0.1
\end{bmatrix}^{-1}
\begin{bmatrix}
 1 \\
 0
\end{bmatrix}
= \begin{bmatrix}
 0.85 \\
 -0.75
\end{bmatrix}
\]

It is interesting to note that in the absence of noise (i.e. when the term \(\sigma^2_w = 0.1\) is missing from the diagonal of the correlation matrix), the optimum coefficients are:
\[
B(z) = b_0 + b_1 z^{-1} = 1 - 0.9 z^{-1},
\]
i.e. the equalizer function is the inverse of the channel function (in this case the MSE criterion coincides with the zero-forcing criterion). However, we see that, in the presence of noise, the MSE criterion gives a slightly different result from the inverse channel function, in order to prevent excessive noise enhancement.

Problem 10.12

(a) If we denote by \(\mathbf{V}\) the matrix whose columns are the eigenvectors \(\{\mathbf{v}_i\}\):
\[
\mathbf{V} = [\mathbf{v}_1|\mathbf{v}_2|...|\mathbf{v}_N]
\]
then its conjugate transpose matrix is:
\[
\mathbf{V}^* = \begin{bmatrix}
 v_1^* \\
 v_2^* \\
 \vdots \\
 v_N^*
\end{bmatrix}
\]
and \(\Gamma\) can be written as:
\[
\Gamma = \sum_{i=1}^{N} \lambda_i \mathbf{v}_i \mathbf{v}_i^* = \mathbf{V} \Lambda \mathbf{V}^*
\]
where \(\Lambda\) is a diagonal matrix containing the eigenvalues of \(\Gamma\). Then, if we name \(\mathbf{X} = \mathbf{V} \Lambda^{1/2} \mathbf{V}^*\), we see that:
\[
\mathbf{XX} = \mathbf{V} \Lambda^{1/2} \mathbf{V}^* \mathbf{V} \Lambda^{1/2} \mathbf{V}^* = \mathbf{V} \Lambda^{1/2} \Lambda^{1/2} \mathbf{V}^* \mathbf{V}^* = \mathbf{V} \Lambda \mathbf{V}^* = \Gamma
\]
where we have used the fact that the matrix \(\mathbf{V}\) is unitary: \(\mathbf{VV}^* = \mathbf{I}\). Hence, since \(\mathbf{XX} = \Gamma\), this shows that the matrix \(\mathbf{X} = \mathbf{V} \Lambda^{1/2} \mathbf{V}^* = \sum_{i=1}^{N} \lambda_i^{1/2} \mathbf{v}_i \mathbf{v}_i^*\) is indeed the square root of \(\Gamma\).

(b) To compute \(\Gamma^{1/2}\), we first determine \(\mathbf{V}, \Lambda\) (i.e. the eigenvalues and eigenvectors of the correlation matrix). Then:
\[
\Gamma^{1/2} = \sum_{i=1}^{N} \lambda_i^{1/2} \mathbf{v}_i \mathbf{v}_i^* = \mathbf{V} \Lambda^{1/2} \mathbf{V}^*
\]