NeroAPI

v6.6.0.1

The NeroAPI will only work with
a fully installed Nero version!

Document version 1.62, Copyright 2002-2005 Nero AG

Nero AG, Im Stoeckmaedle 18, 76307 Karlsbad, Germany

| NeroAPI v6.6.0.1

1. Contents

1.
2.
3.

L0 o 41 11 2
T2 Lo Yo == 4 = o N 8
L 0T LT o) 9
3.1. 1Y o (Y= 1o o P OUURRRSRRR 9
3.2. L Y= SRR 9
3.3. =0 [T =T 0 =Y o] £ 9
3.4. =T o 0T =To IS 1| SRR 10
3.5. Compatibility between Different NeroAPI VErsionsccccvviiiiiieiiiiccieeeee e 10
3.5.1. Source Compatibility..........oeoiiiiiii e 10
3.5.2. Binary CompatiDility..........ooueeiiii e 10
3.6. =T E= =T o] o] [PR 10
3.7. THEe NErOSDK FOIUM ...ciiiiiiiii ittt e e e e e st e e e sttt e e e abte e e e s anbeeeeeanteeeeeannaeeen 10
LT QR - o SRS 11
4.1. Running Precompiled Sample AppliCationscoooii i 11
4.1.1. I = 0T o I =] PSPPSR 11
4.1.2. NeroAPITest Command Line EXamples............oueeiiiiiiiiiiiiiiiiee e 13
4.2. (070) a0 o] 1T aTe IR LIRS T= 10] o] L= RS 14
4.3. Accessing the NeroAPIin Your AppliCatioNScoo e 14
4.4. o1} S5 e) A @7 0] g 1= o [=T =1 1 T o ISR 14
Detailed Discussion of the NeroAPITest Sample..........cccccccriiiiiicccirmriini s ssn e e 15
Creating a Simple MFC Application ... e 18
6.1. Nero Fiddled While Rome Burned!ot 18
6.2. Creating the FrameEWOTK............oi ettt s e e e e e 18
6.3. e [o 1 g AN T=T 4 oY o I 1= PRI 20
6.4. F N o] o O o 01 (o] L= USSP 21
6.5. Adding Member Variablesooi e 23
6.5.1. Variables fOr CONIIOISuiiiii et e e e e e e e ee e e e e e e e nnneees 23
6.5.2. Other VariabIEs.ooi ittt e e et e et e e e e e enees 24
6.6. Adding Message Handling Functions FOr Controlscccoeiiieiiiiie i 25
6.6.1. (0 01 =] 0= S 25
6.6.2. (0] 01 =11 o 26
6.6.3. (031 G PRSP PRSRRRR 29
6.6.4. (01 07= o Uo7 PSSR 29
6.6.5. (047N oo o SRS 30
6.7. Adding ULility FUNCHONS........oiiiiiee et raee e e 30
6.7.1. AN = 0T o 1o PSPPSR 30
6.7.2. [N =TT e L =T YRS SR 33
6.7.3. Y o] o 1=Y oo 1 141 T SRR OURRRUPR 33
6.8. Adding Callback FUNCHONS.........eiiiiiieii et e e rneeee e 34
6.8.1. 1] (210211 o =Tl QSO RSSRPRPT 34
6.8.2. L0 LY I =1 o o [PP OUPPPPPRN 35
6.8.3. ProgreSSCallDACKeiiiiiiiii ittt et e e st e et e e e e ann e e nnaes 37
6.8.4. ADOMEACAIIDACK ...t e et e e et e e e et e e e e nnraeaesanraeaaans 37
6.8.5. F o [0 oo | I o = PP PUUUPPUPIR 37
6.8.6. SetPhasS@CalIDACKccoiiiiee et e e et e e et e e e e e e e e 38
6.9. Build and RUN NErOFIAAIEScooiiieeee e e e eae s 38

Nero AG 2

NeroAPI v6.6.0.1

7. APITypes and FUNCLIONS........cccouciiiiiiiii s s s s s ss s s mn s s s mn e s snnnns 39
71. LI 1T USROS PUPPR TP 39
71.1. DLG_OVERBURN_INFO ...ttt 39
7.1.2. NERO_ABORTED_CALLBACKttt 39
7.1.3. NERO_ACCESSTYPEottt ettt rb et e e nbe e st e e sabeeenee s 40
7.1.4. NERO_ADD_LOG_LINE_CALLBACK ...ttt 40
7.1.5. NERO_AUDIO_FORMAT _INFO ...ttt 41
7.1.6. NERO_AUDIO_ITEM_INFO ...ttt 41
71.7. NERO_AUDIO_ITEM_HANDLEooiiiiie et s 41
7.1.8. NERO_AUDIO_TRAGCK ...ttt 42
7.1.9. NERO _CALLBACK ...ttt sttt s e e e e et e e e e nbee e e e ennes 43
7110, NERO_CD_COPY ...ttt ettt ettt e bt e nbe e nn e nere e e 43
7111, NERO_CD_FORMAT ...ttt et sb ettt et sa e e be e e aat e e sbe e e saneeenees 45
7112, NERO_CD_INFO ...ttt b et e e s bt e e e s aabe e e e e aabeeeeens 46
7113, NERO_CITE_ARGS ittt ettt e ettt e e s eab et e e e et ee e e sabeeeeesneeeaeanns 48
7.1.14. NERO_CONFIG_RESULT ...ttt 49
7.1.15. NERO_DATA_EXCHANGEcooitiieiiiiii ettt 50
7.1.16. NERO_DATA_EXCHANGE_TYPE ...ttt 51
71.17. NERO_DEVICEHANDLE ...t e e e e ee e 51
7.1.18. NERO_DISABLE_ABORT_CALLBACK...... .ottt 52
7.1.19. NERO_DEVICEOPTIONoiiitiii ittt sttt ettt st rae e e sate e s nne e s e e enees 52
7.1.20. NERO_DLG_WAITCD_MEDIA_INFO ..ottt 53
7.1.21. NERO_DRIVE_ERROR ...ttt st e e ee e 54
7.1.22. NERO_DRIVESTATUS_CALLBACKottt 55
7.1.23. NERO_DRIVESTATUS_TYPE ...ttt 55
7.1.24. NERO_DRIVESTATUS _RESULToiiiiiiiiiiiiiie ettt e e 56
7.1.25. NERO_FILESYSTEMTRACK _OPTIONSot 56
7.1.26. NERO_FREESTYLE_TRACK ... ittt ettt 57
7.1.27. NERO_IDLE_CALLBACK ...ttt ettt ettt ettt ab e s e sbe e e sbe e e e eanes 58
7.1.28. NERO_IMPORT_DATA_TRACK _INFO.....oiiiiiiiiiiiiee et 58
7.1.29. NERO_IMPORT_DATA _TRACK_RESULT ..ottt 58
TA.30. NERO IO ettt e et e e e ab e e e et e e e e enbe e e e enees 59
7.1.31. NERO_IO_CALLBACK ...ttt sttt e e anr e e 60
7.1.32. NEROL_ISO_ITEM ...ttt ettt sttt bt st e ae e st e e e anb e e s neeenee 60
7.1.33. NERO_MAJOR_PHASE ...t 61
7.1.34. NERO_SET_MAJOR_PHASE_CALLBACKcoiiiiiii et 63
7.1.35. NERO_MEDIA _SET ..ttt ettt sttt sttt e ene e e e e 63
7.1.36. NERO_MEDIA_TYPE ..ottt ettt bttt e b e sne e st e e sabeeenees 64
7.1.37. NERO_MEDIUM_TYPE ...ttt sttt e e sbeeeeeaaes 66
7.1.38. NERO_PROGRESS....... oottt ettt ettt e e s et e e e e sbeeee e sneeeeeaaes 66
7.1.39. NERO_PROGRESS_CALLBACKottt ettt 67
7.1.40. NERO_SCSI_DEVICE_INFO....cciiiiiitieiiii ettt sttt 67
7.1.41. NERO_SCSI_DEVICE_INFOS ...t 70
7.1.42. NERO_SET_PHASE_CALLBACK ...ttt sneee e 71
7143, NERO_SETTINGS ...ttt ettt sttt ebe e enes 71
7.1.44. NERO_SPEED_INFOSottt bbb be e s eneee 72
7.1.45. NERO_STATUS _CALLBACK ...ttt ittt e e sbeeee e e 73
7146, NERO _TEXT _TYPE. . ettt e et e e st e e e sneeeeeeaes 73

Nero AG

NeroAPI v6.6.0.1

7.1.47. NERO_TRACK INFO ...ttt e e e e e e e e e e e e e e eeanes 74
7.1.48. NERO _TRACK TYPE ..o e e e e e e e e 75
7.1.49. NERO_TRACKMODE _TYPE.......ooii ittt ettt a e et e e e 75
7.1.50. NERO_VIDEQO _ITEM _TYPEottt ettt e et e e e e e e e ae e e e e e e e eannns 75
7.1.51. NERO_VIDEQO ITEM ...ttt e e e e e e e e e e e e eennes 76
7.1.52. NERO_VIDEO RESOLUTIONo 77
7.1.53. NERO _VMS INFO ...ttt ettt et e et e e e et e e e e nb e e e e enbaeaeeennes 77
7.1.54. NERO_VMSSESSION ...ttt e et e e e e e e st e e e e e e e e s snnraaeeeaaeeaaannns 78
7.1.55. NERO_WAITCD _TYPE ..ottt et e e e e e s e e e e e e e e eennes 78
7.1.56. NERO WRITE _CD ...ttt e e e e e e e e e e e e eeeanes 81
7.1.57. NERO _WRITE_FILE_SYSTEM_CONTENTcooiiiiiiieie et 82
7.1.58. NERO_WRITE_FREESTYLE _CD ..oooeeiiiiiii ettt ettt a e e e e e 83
7.1.59. NERO_WRITE _IMAGE ..ot e 85
7.1.60. NERO _WRITE _VIDEO CD ..o a e e 86
7.1.61. NEROAPI_ BURN _ERROR ..ottt et e e ee e e 87
7.1.62. NEROAPI_OPTION.ttt ettt e e et e e e e e e e s e st eeeeaeeesesnntaaeeeaaeeaaaannes 88
7.1.63. NEROAPI_INIT _ERROR ...oooiiiiiee ettt e e e e et e e e e e e e eennes 89
7.1.64. NEROAPI_SCSI DEVTYPEo 89
7.1.65. NERODLG ICON _TYPEooiiiiiieiee ettt ettt st e et e e e et e e e e ennre e e e e nreas 90
7.1.66. NERODLG _MESSAGE _TYPE ...ttt e e e e e n e e e e e e s eannes 90
7.1.67. NERODLG _MESSAGEBOXttt e e 91
7.1.68. NeroUserDIgINOUIENUMoiiiii e e 91
7.1.69. ROBOMOVEMESSAGEooooeioeoeeee e e e ea e e e e 96
7.1.70. ROBOMOVENODE ...ttt e e e et e e e e e e s e e e e e e e e e sanraaeeeaaeeaaannns 96
7.1.71. ROBOUSERMESSAGEcooiiieceiee ettt e e e e e e e e aae e e e e e e eeanns 97
71.72. ROBOUSERMESSAGETYPE.......coeeeeeeeeeeeee e 97
7.2. U] oot (o] o ISR SO PPPUSRPRPPRt 98
7.21. NeroAudioCreateTargetltemuviiiiiie e a e 98
7.2.2. NErOAUdIOCIOSEITEIMuiiiiiiiiec e e e e e e e e e e ae e e e e e e eeanns 98
7.2.3. NeroAUdioGEetFOrMAtINfOooiiiiie s 98
7.2.4. NeroAudioGUICONFIGUIEIIEMoiiee e 98
7.2.5. N[o) =0 o [PPSRt 99
7.2.6. N =) Co L@ =T T =ty o) =TSO PPRT 100
7.2.7. NEIOCIOSEDEVICE. ...t e e e e e e et e e e e e e e eabraeeeaaaeaan 100
7.2.8. NErOCOPYISOIEM....ciiii e 101
7.2.9. NErOCIEAtEISOITEIM ... nnnnnns 101
7.2.10. NeroCreatelSOEMOSSIZEoooooo i 101
7.2.11. NeroCreatelSOTIACKEXcooii it a e 102
7.2.12. NErOCIEAtEPTOGIESSeiiiiiiiiie it bb e e e e 103
7.213. NS fo] B A RS 104
7.2.14. [N =T 0] o) 1= PR PPPPP 104
7.2.15. NN =T o] =y 1= Yo 1o =T [0 I SRR 105
7.2.16. N[o] = =TT 0 B T SRR 105
7.217. NEFOEFASEDISCccoiiiiiiiiiiieieeeee ettt ae e aa e teteteaasabebabebebsbabsbebabnbssnsesnrnsnsnnns 105
7.2.18. NeroEStMateTraCkSIZe........uuviiiiiii e a e e 106
7.2.19. NErOFTEECDSIAMP ...t et e e e e e e e e e e e e e e ebabreeeeaaeeas 107
7.2.20. NEIOFTEEISOIIEM. ...ttt e et et e tebebebebebsbabsbsbaasasbsbsssssssssnssnnnnnnnnnnns 107
7.2.21. NEIOFTEEISOTIACK.iiiiiiiiiiieeeeeeeeeee ettt b e bebe b e bebebebabebsassesesesnsnnes 107
Nero AG 4

NeroAPI v6.6.0.1

7.2.22. NEroFreelSOIEMTIEE e e e e e e e 107
7.2.23. [N o] LYY 1V 1T o o SRR 108
7.2.24. NEIOGEIAPIVEISION ...ttt e e e e e e e e e e e e e e e e e e snnnreeeeaeeees 108
7.2.25. NeroGetAPIVEISIONEX........coiiiiiiiie it e e ns 108
7.2.26. NeroGetAVaIlabIEDIVESEXccuiiiiiiiee e 109
7.2.27. NeroGetAvVailableSPEEASoooi e 109
7.2.28. =T Lo T @1 (@] 1) o SR 109
7.2.29. NeroGetCDRWETASINGTIME ...t e e e e e e e e e e e aeeeaeeeaean 110
7.2.30. NeroGetDeVICEOPLIONueiiiiiiii e e e e e e e e 111
7.2.31. NeroGetDiSCIMAagEINTOeiii e e 111
7.2.32. =TT CT=) = 4 o] I o T SRR 112
7.2.33. NeroGetLastDrIVEEITON.......ooo e 112
7.2.34. NEIOGEILASTEITON ... e et e e e e e bae e e e enees 113
7.2.35. NErOGEILASTEITOIS ...ttt e e e e e e et e e e e e e e e e ennneeeeeaeaens 113
7.2.36. NeroGetLocalizedWaitCDTEXESvuiiiiieeiii i e e e e e e 113
7.2.37. NeroGetTypeNameOfMeEia...........c..uviiiiiiie e a e 114
7.2.38. =T TCT=) AV ALY K] o | o PSR 114
7.2.39. NErOGEtWaItCD TEXES ... et e e e e e e e e e e e e e e e e e e e nnneeeeeaaaens 115
7.2.40. NerolmportDataTIACKoueeiee e 115
7.2.41. NerolmMpOrtISOTIACKEXuviiiiiiiiice e a e 116
7.2.42. I =T (0] [o PP PPPR 117
7.2.43. NeroINitIMagERECOITEToiiiiiiii e e 117
7.2.44. NEroISDEVICEREAY.......coiiiiiiii ittt et e e e e 117
7.2.45. N2 CoT@] o= g1 B2 o7 YRR 118
7.2.46. NeroRegisterDriveChangeCallbackcocuuiiiiiiiiiiiiiiie e 118
7.2.47. NeroRegisterDriveStatusCallback.............oouiii i 119
7.2.48. NEroSetDEeVICEOPHON......cco i e e e 119
7.2.49. NeroSetEXPECIEAAPIVEISION ... e e e 120
7.2.50. NeroSetEXPeCtEdAPIVEISIONEXccoiiiiiiiiiiiieee et a e e 120
7.2.51. [N TS £ o RS T=1 (@ o] (o] o SRS 121
7.2.52. NeroUpdateDeviCelNfOeii i 121
7.2.53. NeroUnregisterDriveChangeCallback ..o 121
7.2.54. NeroUnregisterDriveStatusCallbackK.............oocciiiiiiiei i 122
7.2.55. NeroUserDIgINOUL........ccooiiiiiiiii ettt e st e e s st e e s s e e e snseeeeannnaeeas 122
7.2.56. NErOWAIFOIDISC ...ceeee ittt e e e e e e e ae e e e e e e e e s nnnaeeeeaaeeeanns 123
7.2.57. NEroWatFOrMEIa ...t e e e e e e e e e e e eeeaeee s 123

< TR £5T0 B I - T2 1 03 (== ') o 124
Lo TR 10 B I - T Q03 oo] 125
9.1. L YT TSRS 125
9.2. (O N2 (o] = =1 @7 1|1 o =1 QSRR 126
9.3. L0 LT o] Yo o F= 1o o |- PP SRR 126
9.4. (O LY o] ETo] 1 T =1 (o] SRR 127
9.5. L0 =T o] E-ToT = o1 {2 PP PP PR 127
9.6. L@ N2 0] [T o =TS 129
10. The FileSystemContent INterface ..o 132
L0 TR R © V= oSSR 133
10.2. NamMESPACE SEEHING ..eeiiiiiiiiiiiiie e e e rb e 134
TR T [01 (=T = o= = = T RS 134

Nero AG

NeroAPI v6.6.0.1

10.4. File System Reading INtErfacescoocuuiii it 135
10.4.1. 11 =Y @] (= o | PSRRI 135
10.4.2. 11Tt (0] Y] =1 o1 {2 PRSP 135
10.4.3. |1 =Tox (o) YRR PPPR 136
10.4.4. [FileSyStEMOCONIENTooiiiiiiie it e e et e e e re e e e enneeeeeenees 136

10.5. File System Content Creation INterfacesoooiiiiiiiiiii e 137
10.5.1. IDAtalNPUESTIIEAM ..o e 137
LT | 1 1=T o oo 0T SRR 137
10.5.3. IDIreCtOryENtryCONTAINETeiiiiiiee ettt e e e e e enree e e e e 137
10.5.4. | D1 C=Te1 (0] (@7] o] r=11 o =T S PSP PR 138
10.5.5. IFileSystemDeSCCONTAINETuiii i 139

1. The Burn-at-once INterface.........ccoccooiriececerircecr e e e sn e e e e e 140

11.1. The NERO_WRITE_BURN_AT_ONCE StrUCL.........ooiiiiiiie e 140

11.2. The IBUurnAtONcelnfo INterface 141
L T € 1= (01 7= APPSO 141

LI T ¥ {3 T o T SRR 142
11.3.1. NETOBUIMATONCE ..ottt ettt et e e et e e e e et e e e e stbe e e e este e e e enteeeeennseeeeennees 142
11.3.2. NeroBAOCreateHaNdIEoooo o a e 142
11.3.3. NErOBAOOPENFIIE. e e 144
11.3.4. NEroBAOWIETORIIEco it e e 144
11.3.5. NETOBAOCIOSEFIIE ...ttt e e e e e e e nee e e e e nnee e e e enees 145
11.3.6. NeroBAOCIOSEHANAIE ..o e e e e e 145

12. The Packet Writing APl cccecrr s sssssrr s s e s s sms s e e e e s s s mmn e e e e e e sn s mmnn e e e nannnnnn 146

12.1. Packet Writing INtEITACEcooiii i a e e e e enaae s 146
1210, ACCESS MO ...ttt e e e e e et e et e e e e e e e ee e e e e e e e e annrees 146
12.1.2. IMAGEACCESSIMOUEo et 146
12.1.3. NeroCreateBIoCKWIHLErINterfaceooov oo 147
12.1.4. NeroCreateBlockReaderInterface ..o 147
12.1.5. NeroCreateBlockACCeSSFromImageoocuuiii i 147
12.1.6. NeroGetSupportedAccessSModesSFOrDEVICEooooiiiiiiiiiiiiiii e 147

12.2. File System BIOCK ACCESS INTEITACEcoiiiiiiiiiii e 148
12.2.1. INeroFileSystemBIOCKACCESSoooiiiiiie e e 149
12.2.2. INeroFileSystemBIOCKACCESSEXIENSIONevviiiiiieiiiecceee e 149
12.2.3. INeroFileSystemBIOCKREAETcocuiiiiiiie e 150
12.2.4. INeroFileSystemBIOCKWILETooiiiiie e 151
12.2.5. [0 C=Ta 7= LTSN Y/ o 1= T PP PRR 152
12.2.6. NeroF SBIOCKACCESSEXIENSIONSTYPE ...coeeeiiiiieeiee et 152
12.2.7. NN =T o] =t o) PSR 152
12.2.8. NeroFSPartitionINfO ... 153
12.2.9. =T o Sl I = Lo g Y o= PSR 154
12.2.10. N =T o S T=Tod N o PSS 154

13. RoObOt CoNtrol INLErfaceooo o m e 155

13.1. NERO_COMMNODE_TYPE ENUMErationccocveiiiiiiiiee ettt e e sreee e snene e 155

13.2. NEROAPI_ROBO_ERROR ENUMEratioN........cccciciiiiiiciiiie ettt e sraee e 155

13.3. NeroPrintLabelCallback _t CallDackcooiiiiiiiiiiiie e 155

13.4. NERO_ROBO_DRIVER_INFO StrUCIUIEviiiiiiiiiee ettt e etaee e snaee e 156

13.5. NERO_ROBO_DRIVER_INFOS StrUCUIE......ccciiiiiieeiiiiieeeciiie e e siiee e e steee e e s stree e e s sneeeeessnraeeeeanes 156

13.6. NeroGetAvailableRoboDrivers FUNCHONceuviiiiiiee e e e 156

Nero AG 6

NeroAPI v6.6.0.1

13.7. NeroAssocCiateRObO FUNCHONoooiiiiiiiiiiiiceeeeeeeeeeeeeee ettt eeeeeeeaeees 156
13.8. NERO_ROBO_FLAG ENUMEratioNcoiiiiiiiiiiieiieei et e e e e e e e e e e 157
13.9. NeroSetRObOFIag FUNCHON. e 157
14. Media Type FOrmats..........iiiiiiiceirn s s 158
L 20t T T T TSRS 158
L o =Y o T SRR 158
14.2.1. SVCD Creation With Nero.............oooooi 158
15. O 160
15.1. INEIOSDK LICENSE.....ccc ittt e e e e e e e et e e e e e e e e et r e e e e e e eeeraraees 160
15.2. NeroSDK/NEroAPI FEAtUIEScooiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee ettt eeaees 160
15.3. General Programming ISSUESoiiiiiiiiiiiiiiee ettt e e st ee e e snbeeeeeanee 161
LR B AV N 1T T SRR 161
15.5. Video CD and SUper VIidE0 CDuuiiiiiiiiiiieceieee ettt e e e e e e e e e eaans 163
LR T T 1 TSRS 164
LS Y/ [0 (E=T=YT= (o) o RS SPPRPRRPPR 164
15.8. Size Information, Calculation and EStimationccccoiiiiiiii e 166
LRSI N = Vet (= A 41 {1 o RO URRP 167
15.10. LO70] aTeTN {4 (=1 o T YA PSPPSRI 167
15.11. MISCEIIANEOUS ...ttt et et be e bebabeba b et e babebsbebsassssssssssssssssnssssnsnnnnsnres 168
16. KNown LimitatioNs ... s s s 172
17. Bibliography......ccceeiiiieis i ———————— 173
171, C Programming BOOKScoiuiiiiiiiie et 173
17.2. C Programming ONliNE RESOUICESueiiiiiiiiiieiiiiee ettt e e ee e 173
17.3. CH++ Programming BOOKS........ccciiiiiiiiiiiiiie ettt e e e e e e s e e e e e e e e e e e e e aa e e e e e nnnnees 173
17.4. CH+ ONlNE RESOUICES.......uuiiiiiiii ettt e e e e e e e e e e e e e e e e aabareeeeeeeaeennnees 174
17.5. General CD/CD-ROM ONlINE RESOUICES.cieieieiiieie ettt e e e e e ee e e e e e e annes 174
17.6. AUdIO CD ONliNE RESOUICESoeveeiiieiieiiiiie e ettt e e e e st e e e e e s e st te e e e e e e e esanenaneeeaaeeeaannnnes 174
17.7. Super Video CD ONlNE RESOUICESuuiiiiiiiiiiiiieiiee e ettt e e e e e st e e e e e e sesanbaeeeeaeeeeennnes 174
Nero AG 7

| NeroAPI v6.6.0.1

2. License Agreement
IMPORTANT: PLEASE READ THE SOFTWARE LICENSE AGREEMENT ("LICENSE")
CAREFULLY BEFORE USING THE SOFTWARE.

USING THE SOFTWARE INDICATES YOUR ACKNOWLEDGMENT THAT YOU HAVE
READ THE LICENSE AND AGREE TO ITS TERMS.

The license agreement is contained in a text file, “NeroSDK_License.txt”, to be
found in the root folder of the installation package.

Nero AG 8

| NeroAPI v6.6.0.1

3. Introduction

3.1. Motivation

The NeroSDK is a tool for inclusion of Nero functionality in your own applications.

Since it became available we have provided documentation in form of source code
comments and a read-me-file. That kind of documentation proved as being ample for
seasoned professionals, though somewhat tedious. Soon more and more people
began to use this SDK. It became obvious that a “manual within the code” was not
enough for programmers who are less familiar with getting the grip on somebody
else’s source code.

You asked for this documentation, we have created it. We hope this little manual,
which describes the NeroAPI part of the NeroSDK, to be just what you need.

Unfortunately nothing is ever perfect. So the author would be grateful if you sent your
suggestions or pointed out errors, both in our code and documentation.

3.2. Overview

This paper, the documentation of the NeroAPI, contains some practical guidelines on
how to use the API (Application Programming Interface) that is implemented in the
NeroAPI.dll with the help of NeroSDK (Nero Software Development Kit). The SDK is
available for OEMs (Original Equipment Manufacturers) and registered users of Nero.

We believe that it will help you add CD- and DVD-burning capability to your own
applications in less time. A detailed discussion of what the programming samples do,
and how they do it, together with a list of all types and functions, should enable you to
get your routines working in no time.

A brief description of Nero’s Audio-, Video- and Super-Video-CD capabilities will
ensure that you do not fail because of using the wrong file format.

3.3. Requirements

This documentation assumes that Nero 6.6.0.1 or later is already installed on your
computer. The current NeroSDK version (NeroSDK 1.06) supports the command set
of Nero 6.6.0.1.

Depending on your individual needs, your NeroAPI-based application might work with
an earlier version. Therefore, this documentation will indicate which NeroAP! version
introduced a particular feature, function, or type.

For additional information please take a look at 3.5 Compatibility between Different
NeroAPI Versions.

Nero AG 9

| NeroAPI v6.6.0.1

3.4. Required Skills

This documentation is directed towards Software developers who have gathered
some experience in programming C or C++. It is absolutely required that you know the
basic concepts of the C programming language to use the NeroAP!.

If you have no or little experience with C/C++, you will find a list of books and Internet
addresses that we regard as very useful for learning the language. C and C++ are still
the most commonly used programming languages, and once you’'ve mastered them
you will learn any other programming language with ease.

3.5. Compatibility between Different NeroAPI Versions

Since several programs must access the same NeroAPI package, not all of them can
be updated every time a new version of Nero is released.

Nero ensures both source and binary compatibility with its future versions.
Version 5.0.3.9 of Nero and the following versions meet that requirement, while older
versions do not.

3.5.1. Source Compatibility

Applications written for one version of the NeroAPI will work with more recent
versions of Nero, without having to change their source code.

3.5.2. Binary Compatibility

Applications written for one version of the NeroAPI will work with more recent
versions of Nero without having to compile the application again.

3.6. Related Topics
Closely related to NeroAPI is NeroCOM, a Type Library for the Component Object
Model. NeroCOM presents another approach for accessing the power of Nero.

NeroCOM will be installed as part of the Nero installation. The documentation for
NeroCOM is available as part of the NeroSDK.

3.7. The NeroSDK Forum

We provide a forum for all users of the NeroSDK to get in dialog with each other at
http://www.nero.com/link.php?topic_id=17. We will also monitor the messages from
time to time and try to help where possible.

Nero AG 10

http://www.nero.com/link.php?topic_id=17

| NeroAPI v6.6.0.1

4. Quick Start

4.1. Running Precompiled Sample Applications

41.1.

NeroAPITest

This application can

e read information about a CD

e burn audio CDs

e burn ISO CDs

e burn UDF (Universal Disc Format) CDs
e burn ISO/UDF CDs

e burn DVDs

e burn mixed mode CDs

e burn Video and Super Video CD

e extract CDA tracks

Open a command window (MS-DOS shell) and type “NeroAPITest", followed by a
command and in most cases a parameter list.

See the following table for valid parameters. Square brackets indicate that a
parameter is optional. However, when writing an Audio/ISO CD, you have to
supply at least one valid set of parameters.

Command Function
--listdrives List available drives
Parameters Description
None
Command Function
--cdinfo Get information about a CD
Parameters Description
--drivename ‘X’ Supply drive letter.
Command Function
--write Write Audio/ISO/UDF/Mixed Mode CD or DVD
Parameters Description
--drivename X' Supply drive letter.
[--real] Do not simulate burning process.
[-TAO] Track At Once.
[--bup] Burn with buffer underrun
protection.
[--writebuffersize x’] Set the size of the write buffer in
Kbytes.

Nero AG

11

NeroAPI v6.6.0.1

Command Function
[--artist ‘artist’] Supply artist's name for Audio CD.
[-title ‘title’] Supply Audio CD title.
[--speed x| Select desired speed.
[--pause x] Pause length in blocks. Valid pause
lengths are 0 to 7500.
In TAO only default pause length is
supported (150).
[~-audioinindex0] Write audio data into index 0 to
prevent silent pauses between
tracks.
TAO and —audioinindex0 are
mutually exclusive.
[‘audio file1'] ['audio file2'] ... List of Audio files to burn.
[--cdextra] Use the CDExtra feature. Two
sessions will be created, the first
containing Audio tracks, the second
containing one ISO track.
[-iso 'volume name'] Name the ISO-volume.
[--udf 'volume name'] UDF
[--isoudf 'volume name'] ISO and UDF
[--dvd] Burn ISO DVD
[—-iso-no-joliet] No long filenames.
[--iso-mode2] Select ISO mode 2.
[dir/file1’] ['dir/file2] ... List of files to burn. Can be
directory tree or file.
--write Write Video CD
Parameters Description
--drivename 'xxx' Supply drive letter.
--videocd Selection of Video CD type
[--real] Do not simulate burning process.
[-TAQ] Track At Once.
[—-bup] Burn with buffer underrun
protection.
[--writebuffersize x’] Set the size of the write buffer in
Kbytes.
[--speed x| Select desired speed.
['mpeg/jpeg file1’] List of Video files.
['mpeg/jpeg file2]]...
Command Function
--write Write Super Video CD
Parameters Description
--drivename 'xxx' Supply drive letter.
--svideocd Selection of Video CD type
[--real] Do not simulate burning process.
[-TAO] Track At Once.
[--bup] Burn with buffer underrun
protection.

Nero AG

12

NeroAPI v6.6.0.1

Command Function
[—-writebuffersize x’] Set the size of the write buffer in
Kbytes.
[--speed x| Select desired speed.
‘mpeg/jpegq file1’ List of Video files to burn.
['mpeg/jpeg file2]...
Command Function
--read Copy CD tracks to files
Parameters Description
-- drivename X’ Supply drive letter.
- xy’ file1’ [-- xy’ file2]... Read contents of track with number
‘xy’ into file 1°.
The file name has to include the
suffix. Only “.pcm” and “.wav” will
be accepted.
Command Function
--erase Erase a CD-RW
Parameters Description
[--entire] By default a quick erase is done,
where the actual content of the CD
is not erased. The “—entire” option
sweeps the whole CD, insuring that
no data can be retrieved by any
means afterwards.
-- drivename X’ Supply drive letter.
--eject Ejects a CD from the drive
Parameters Description
-- drivename X’ Supply drive letter.
Command Function
--load Loads a CD into the drive
Parameters Description
-- drivename X’ Supply drive letter.
4.1.2. NeroAPITest Command Line Examples

Simulate the burning of a mixed mode CD with one audio track and one file using
the CD recorder with the drive letter “D”:

NeroAPITest --write --drivename d c:\media\audio\policeO1.wav --iso mycd

c:\datal\file.dat

Burn the content of a folder:

NeroAPITest --write --drivename d --real --iso mycd c:\data

Nero AG

13

| NeroAPI v6.6.0.1

4.2. Compiling the Samples

e Start Visual C++.

e Select Files and Open Workspace from the menu.
An Open-dialog will come up.

e Select project files as file type (“.dsp”-suffix)

¢ Navigate to the samples directory and select the project you want to open.
e Click the OK-button.

e Open the Build-menu and then select Build All.

4.3. Accessing the NeroAPI in Your Applications
e Make the *.h files of the NeroAPI-include-directory accessible from your
program
e Link your project with the NeroAPIGlue library
o Use the NeroAPI functions in proper order. Take the samples for reference.

¢ Implement the callback functions.

4.4. Points of Consideration

Make sure that the application will find the required DLLs, by installing Nero.

The Nerolnit and NeroDone functions must not be called from the destructor of
a global object or from a DIIMain function. If they are called like that, the result
will be a deadlock.

To burn WMA files onto CD, Nero’s WMA Plug-in must be installed.

Users of Nero can download the WMA Plug-in free of charge from
http://www.nero.com.

Important note on the naming of identifiers

In the beginning of the NeroAPI, DVD writers were not widely available. The naming
of the older NeroAPI types and constants still reflects that situation when CDs were
the only available media. For example, NBF_DETECT_NON_EMPTY_CDRW seems
to refer to CD-RW media only. However, it will also be accepted by the NeroAPI in the
context of rewritable DVD media.

To remain compatible with existing implementations, we have not updated the old
type names. Unless explicitly stated otherwise, it is perfectly legal to use types
or constants that contain “CD” in their name with other media, like DVDs.

When we started supporting DVDs, we began to use the more generic term “disc”.

‘Nero AG 14

http://www.nero.com/

| NeroAPI v6.6.0.1

5. Detailed Discussion of the NeroAPITest Sample

NeroAPITest,cpp is the source file that defines what the application actually does.
It contains the main function which is the application’s entry point. Having a main
function identifies it as console application (as opposed to a true Windows application
that has a winmain function).

At the beginning of NeroAPITest.cpp, you will find a few include-directives. Those are
references to other files that contain some required definitions:
NeroAPIGlue.h is responsible for attaching NeroAPITest to the NeroAPI.DLL.

The rest of the include files are required for communicating with your Operating
System. They let you access device-Input/Output, handle special keystroke
combinations like Ctrl-C (which will cause the current task to abort), display characters
on your computer screen, and perform many other important background tasks.

Line 43: From line 43 on you will find function declarations. All listed functions are
implemented within NeroAPITest.cpp. Most of them are callback-functions, and thus
responsible for giving NeroAPI access to NeroAPITest whenever necessary, e.g. to
display a progress bar or obtain user input.

Line 64: Beginning with line 64, types and variables are defined, and termination
behavior is implemented by a sequence of NeroAPI calls in the Exit function, starting
in line 115. The order of those API calls is very important, and if some API functions
that free memory were not called, the application would allocate memory and not free
it when terminating.

Line 133: The function Usage will display a help-text, concerning the proper usage of
program arguments or command line parameters.

Line 158: The function main starts by initializing variables. It then parses command
line parameters to determine what the user wants to do. According to those
parameters variables are set, indicating what kind of device is to be used, whether the
application should read or write data, what kind of data, and where the data comes
from.

Line 440: The function signal tells Windows to call our SigCtrIC function when Citrl-C
is pressed.

Then the application tries to load the NeroAPI.dll by calling NeroAPIGlueConnect. If it
cannot be found, an error message is displayed, and the application is terminated by
calling our Exit function, providing error code 10 as a parameter.
During NeroAPIGlueConnect the Windows registry is queried for the shared NeroAPI.

Line 448: A call to NeroGetAPIVersionEx retrieves the API’s version number. The
version number, contained in four WORD values, is then printed on the screen.

Line 456: The NeroAPI is initialized. The NeroAP! will work in Demo mode if no Serial
Number is found.

Line 478: If the write buffer size is not 0, NeroSetOption is called to set the write
buffer size in the NeroAPI. The actual value is calculated by taking the user-provided

‘Nero AG 15 ‘

| NeroAPI v6.6.0.1 |

parameter and multiplying it by 1024 (1 KB), because the user is expected to give the
buffer size in Kbytes.

Line 483: The program then tries to get a list of all CD-ROM devices in the system by
calling NeroGetAvailableDrivesEx. If no device is present, the application will
terminate.

Line 490: If a drive name has been specified by the —drivename command, the
program searches for that device in the list of available devices. The program then
tries to open it for further use by calling NeroOpenDevice. If no device handle is
returned (e.g. if the drive letter given is not present in the system), the application will
terminate with an error message.

If —listdrives was passed as a command line parameter, the list of available devices
will be printed.

Line 544: If a device handle could not be retrieved, the application terminates.

Line 549: This code section retrieves and displays a list of allowed speeds for the
selected drive.

Line 557: Loading a CD is handled after this line.

Line 561: Erase-behavior is implemented here. The application checks whether a CD
is present in the drive, whether it is of the right type, and whether the CD should
undergo a quick erase or a complete sweep, to make it ready for rewriting.

Line 579: The “Eject CD” part has been implemented here.

Line 583: Lines 583 to 692 are dedicated to getting Information about a CD or reading
tracks. The “read’-part after line 637 scans for all available tracks and tries to
determine whether they are PCM or WAV. The respective format will be read from the
CD.

If any error occurs, the application is stopped after displaying an error message.

Line 694: If the user requested to write a CD-ROM or DVD, the code after line 661
checks whether creation of ISO/Audio CD, ISO DVD, or VCD/SVCD was specified.
The size of the CD/DVD directory is calculated, and the program tries to allocate
memory for the NERO_WRITE_CD structure, that will be used for writing the
information. If the free-memory-pool is not large enough, the application will terminate.

Then the application fills the NERO_WRITE_CD structure with the information the
user provided.

Line 770: The burn process is started by calling NeroBurn, passing a pointer to the
NERO_WRITE_CD structure, which has just been filled with content.

Line 784: Burning of VCD/SVCD is handled here. Basically this means filling a
NERO_WRITE_VIDEO_CD structure and passing it to the NeroBurn function.

Line 840: This part of the code deals with burning an image. Allowed formats are
NRG, ISO and CUE.

After the CD has been burnt, the log file is updated, the allocated memory is freed,
and the application terminates without error.
‘Nero AG 16 ‘

| NeroAPI v6.6.0.1 |

Line 910: The implementation of the idle callback is empty, apart from an assertion
that ensures that the NeroAPI actually returned the same pointer provided as user
data. In a GUI application this function would probably do a little more than just to
return control to the NeroAPI and passing the aborted-flag.

Line 931: Here the user can reply to a NeroAPI request by keyboard input. CharlO
will take an array of mappings from character to NeroUserDIginOut constants, and
return the proper NeroUserDIglnOut constant depending on the user input.

Line 953: The UserDialog callback implementation displays a number of options,
depending on the value of “type”. It then calls CharlO to get the user’'s desired option.
The corresponding NeroUserDIglnOut constant is then returned to the NeroAPI.

Line 1172: Here we can find the implementation of the various callback functions that
the NeroAPI requires.

E. g. ProgressCallback, whenever called by the NeroAPI, will display the current
progress of the burn progress in percent.

Line 1271: The NeroError function obtains the last error from the NeroAPI, prints
some information about the action that failed, lets the NeroAPI free some memory and
makes the application terminate with exit code 10.

Nero AG 17

| NeroAPI v6.6.0.1

6. Creating a Simple MFC Application

6.1. Nero Fiddled While Rome Burned!

It is quite obvious that the world has been T £
11 H 1 1 ~File Nam -
\A/_altlng for an appllcatlon that glves Some IE\Elger\eDalalen\AllamsMnnssetlaThalanu\dBaEnnd Browse I E:,:;‘
tribute to important events of the past. So Lo |
we will call this one “NeroFiddles”.
Application names don’t come any better.

Our Nero - of course - has a lot more to do

than just fiddle. (o | |
This simple application lists the available [l -
. G etting Serial Number from Registry. -
devices that can burn CDs. It lets the user b i ety
. . Found the following devices:
choose a file and burns an ISO CD which R o
contains this single file. o o

This is nothing spectacular and less
powerful than the command line examples in the previous chapter.

But to prevent the application from becoming too cluttered and hard to understand we
have to keep it simple. GUI applications have a much bigger overhead than console
applications. So we’ll just provide minimum functionality to keep the program small
and simple. Once it works it is not that complicated to provide additional functionality.
Getting started is the hard part.

6.2. Creating the Framework

This tutorial is based on Visual C++ 6.0. Visual Studio .NET screens may differ!
Also Nero has to be installed on your system to run this sample!

Open Microsoft Visual C++. IIEl_EEI
Fles Projects | Workspaces | Other Documents |

Select File/New from the menu. The “Projects” tab T C I -

already should be selected when the “New” dialog) S ——

opens.

% Ceate new workspace
) Addia curtent worispace
= Dependencyich

Select “MFC AppWizard (exe)” and type —
“‘NeroFiddles” into the “Project name” edit box.

You may select your favorite project directory, but :
leave the rest of the settings as they are. Click on oo |
the “OK” button.

Nero AG 18

| NeroAPI v6.6.0.1

In the “MFC AppWizard Step 1” dialog select “Dialog
based” and choose the preferred language for your
resources. “English (USA) (APPWZENU.DLL)” should
work fine, so let’s just pick this entry. Click “Next”.

Uncheck “ActiveX Controls” in “MFC AppWizard Step
2” because we will not use any.

Click “Next”.

Select “As a statically linked library” in “MFC
AppWizard Step 3 of 4”. The application becomes
bigger, but we do not depend on the presence of the
MFC DLLs on the target system. Leave the rest of the
settings as they are. Click “Next”.

Click “Next”, do not make any changes and then click
“Finish”.

MFC AppWizard - Step 1

[z]]

‘wha type of applicalion would you lke fo create?

[7]]

_ Would you ke ta include W54 support?

™ Windows Sockets

Flease enter a lils for your dialog:

[rercFiddies

What style of project would you lke 7

& MFC Standard
1 4indovs Erplorer

Would you fike to generate source fle comments?

& Yes. please

© No, thank you

How would you ke to use the MFC fbrary?

ClA IR
@ ks a staticall linked bran;

MFC AppWizard - Step 4 of 4

[71x]

AppWizard ereates the following classes for you

CMeraFiddiesDig

Class name Header e
CheroFiddlesApn nerofiddies h

Base class: Implementation file:

Cwindpp neroFiddles.cpp

cgack | wer | [Ewn cancel |

Nero AG

19

| NeroAPI v6.6.0.1

A dialog pops up, teling you about what the
AppWizard created for you. Click “OK”.

We now have a working MFC dialog based application
that can be compiled and executed, though it doesn’t
do much of what we need, yet.

6.3. Adding NeroAPI files

Hew Project Information

AppWWizard will create a new skeleton project with the fallowing specifications:

[Apglication pe of nercFiddies.
Dislag Based Application targeting

Classes to be created
Appication. CeroFiddestpp in neroFiddles.h and neroFiddles.cpp
Diclog: CNeroFiddlesDlg in neroFiddlesDlg h and neroFiddlesDig.ca

Featues:
-+ Abaut by an spstem menu
+30 Cantiaks
+ Laalizable test in

Englisch[USA]

Project Directory
D:AneroFiddies

Cancel

Make sure that you can see the workspace window on the left side. If it is not there,

activate it by selecting View/Workspace from the menu.

Before we do anything else we need to make sure that everything we need from the
NeroAPI is in its place. Go to your NeroAPI folder and copy the contents of the
“‘include” and “lib” subdirectories to your NeroFiddles-project directory. You will need

to copy the following files:

NeroAPl.h, NeroAPIGlue.h, NeroUserDialog.h and NeroAPIGlue.lib.

The required NeroAPI files now are located as desired. Return to Visual Studio.

Select Project/Add To Project/Files from the menu. Select
“‘NeroAPIGlue.h” from the “Insert Files Into Project” dialog
that comes up. Hold down the <Ctrl> key and also select
“‘NeroAPIl.h” and “NeroUserDialog.h”. Click “OK”.

Go to Project/Settings. Select the “Link” tab and
pick “Input” in the “Category” dropdown list box.
Type “NeroAPIGlue.lib” in the “Object/library
modules” edit field and “libcmt.lib” in the “Ignore
libraries” edit field.

Insert Files into Project

neroFiddesDla h

Debug
es
iddies.cpp |64 Stdbfx.cpp
Stdbfnh

neroFiddes.fc AudicPrablems h
[ef) neroFiddiesDig.cpp] NerctPLh

]

[NerotPIGIe.o

Dateiname:

Dateityp:

Ingert into:

neroFiddies =

Category [Genera < Heset

Output fils name:

¥ Link i
I~ Enable profiing

enkaly ™ Generate mapfile

Project Options:

Frolago stemwindows /incrementalyes 1=
ot Debug/nercF ddies.pdb” /debug /machine 1386
out"D ebug/neraFiddles.exe" /pcbiype:sept

Cancsl
Nero AG 20

| NeroAPI v6.6.0.1 |

Select the FileView tab in the Workspace window. Open “NeroFiddles files”/ “Header
Files”/ “StdAfx.h” by double clicking it. Within that file you should find something like
this:

#include <afxwin.h> // MFC core and standard components
finclude <afxext.h> // MFC extensions
#include <afxdtctl.h> // MFC support for Internet Explorer 4

Common Controls

#ifndef AFX NO AFXCMN SUPPORT

#include <afxcmn.h> // MFC support for Windows Common Controls
#endif // AFX NO AFXCMN SUPPORT

Right after that, add the following line:

#include "NeroAPIglue.h"

6.4. Adding Controls

Usually, the Resource View tab of the workspace window will already be selected and
display a skeleton of our application. If you cannot see it, select the Resource View
tab, and open NeroFiddles resources/Dialog/IDD_NEROFIDDLES_DIALOG.

You should see two buttons “OK”, “Cancel”, and a line of text that says “TODO: place
your dialog controls here.”

That's what we intended to do anyway. So click

]
on that line of text, and delete it by pressing the i
“del”-key. J
Resize the dialog window a little bit, so that it

becomes bigger. There’s no need to squeeze
everything into the small amount of space
Visual Studio initially offers us.

Now click on the “Edit Box” icon in the little “Controls” window. You should place an
Edit box control in the upper left corner of the NeroFiddles dialog. Resize the control
so that it can display a little more text.

Right click over the Edit box and select “Properties” 55" G| s | cvemseons: |
from the context menu that pops up. You will now see I e E—

a “Edit properties” dialog. Click the “Keep Visible” pin- e | Dles | [ieo
board-style pin icon in the upper left corner of the ’ ’
property dialog — we will need this dialog more than

once.

‘ Nero AG 21

| NeroAPI v6.6.0.1

Rename IDC_EDIT1 to IDC_FILENAME. Select the
“Styles” tab and make the control “Read only”; it 27 ‘fw=d (k] it |

should now have a gray color. We want it to be “read o1 oo e o
only” because the user should rather browse for a file e L Lomel e

than type its name, which is error prone.

We need a button that will later open a FileOpen dialog. Click on the button icon in the
“Controls” window. Place the button to the right of the Edit control that you just
inserted.

Change the name from “IDC_BUTTON1” to “IDC_BROWSE” in the “Push Button
Properties” window. Change the “Caption” from “Button1” to “Browse”.

We also need a ComboBox that displays the available devices and lets the user select
one for burning. Click on the “Combo Box” symbol of the “Control” window. Place the
ComboBox under the Edit Box and resize it. Rename it from “IDC_COMBO1” to
“‘IDC_DEVICES”. Select the “Styles” tab and change the type to “droplist” — the user
then cannot enter any information, but has to choose from the options our application
gives him, which is exactly what we want.

Now add a Progress Control and another button. Rename that button from
“‘IDC_BUTTONZ2” to “IDC_BURN?”. Change the caption to “Burn”. Make the button
“disabled”. It will be enabled after the user has selected a file for burning.

Place another button to the right of IDC_BURN. Rename that button to IDC_ABORT.
Change the caption to “Abort”. Make the button “disabled”; this is the initial state when
the application starts. The Abort button will be enabled when the user pushes the
Burn button.

Add another Edit Box; rename it from “IDC_EDIT2” to “IDC_MESSAGES”. Select the
“Styles” tab and make it “multiline” and “read only”. Also check “Horizontal Scroll”,
“AutoHScroll”, “Vertical Scroll” and “AutoVScroll”. Now resize the Edit Box so that it
can display about ten lines of text.

That completes our work with the Resource Editor. You can enhance the appearance
by using some group boxes if you want.

Nero AG 22

| NeroAPI v6.6.0.1

6.5. Adding Member Variables

If we build and run our application now, we see that it basically looks like what we
wanted, but it doesn’t do much so far. To include functionality we have to provide a
few member variables, which map to controls and handle interchange with the
NeroAPI.

6.5.1. Variables for Controls
The controls we added need to be MapPed t0 i v | ssosin | et | cote |
. . Project Class name: Add Class..
variables to provide easy access. e — Bl i
Open the ClassWizard (View/ClassWizard or fuim - Moo
Ctrl+W) and select the “Member Variables” —
tab. CNeroFiddlesDlg should already be e
selected as “Class name”. e
Cancel
; « » o « » o ;
Click on “IDC_BROWSE?” in the “Control IDs” list box. Click <==== —_
“ . ” . H H H [mbrBowsd
on “Add Variable”, and in the following dialog provide the ==~ o |
variable with the name “mbtnBrowse”, make the Category 2. .~
“Control” and the variable type “CButton”. Click “OK”. -

Now select “IDC_BURN?”, click on “Add Variable” and name it “mbtnBurn”,
category “Control”, type “CButton”.

IDC_ABORT gets a variable named “mbtnAbort”, category Control, type CButton.

IDC_DEVICES becomes mcbxDevices, category Control (careful here: the default
is value!), variable type CComboBox.

IDC_FILENAME is mapped to name medtFileName, Control, type CEdit.
IDC_MESSAGES becomes medtMessages, Control, CEdit.
IDC_PROGRESS1 maps to mpgsProgress, Control, CProgressCtrl.
IDCANCEL maps to mCancel, Control, CButton.

IDOK maps to mOK, Control, CButton.

The controls now have corresponding member variables and can be used quite
easily.

Nero AG 23

NeroAPI v6.6.0.1

6.5.2. Other Variables

We need to add numerous other variables to our dialog class.

Open the “ClassView” tab in the Workspace window.

Right click on the “CNeroFiddlesDIg” class. Select “Add
Member Variable” from the context menu. In the dialog i

that comes up enter “CString” for variable type and
‘mstrPathName” for variable name. Set “Access” to
“private” and click “OK”.

ol
w
o

I 1=
g |=

[msteFieHame

Repeat this for CString mstrFileName, also private.

Enter “NERO_DEVICEHANDLE” as type and “ndhDeviceHandle” as variable
name. Make it “private” and click on “OK”.

Repeat this with “NERO_SCSI_DEVICE_INFOS*” as type and “pndiDevicelnfos”
as name. Make it “private”.

Do this for all of the following:

The name pncdCDInfo is of type NERO_CD_INFO*.
nsSettings is of type NERO_SETTINGS.
npProgress is of type NERO_PROGRESS.
writeCD is of type NERO_WRITE_CD.
mniiFile is of type NERO_ISO_ITEM.
dwVersion is of type DWORD.

pFile is of type FILE*.

pcDriveName [128] is of type char.
pcNeroFilesPath [128] is of type char.
pcVendor [128] is of type char.

pcSoftware [128] is of type char.
pcLanguageFile [128] is of type char.
mbAborted is of type bool.

Nero AG 24

| NeroAPI v6.6.0.1

6.6. Adding Message Handling Functions For Controls

6.6.1. OnBrowse

The first “real” functionality we add is the |TE=ZE BE

Message Maps | Member Variables | Automation | ActiveX Events | Class Info |

selection of a file and the display of its name i e=_ - | e |
IDC_FILENAME. b

oL peomr " = [B_DoUBLECLICRED eS|
We need the ClassWizard again. If you closed |
it, reopen it and select the “Message Maps” [C
tab. “ClassName” should still be

ON_wWM_INITDIALOG
ON_wWM_PAINT
ON_wh_QUERYDRAGICON

CNeroFiddlesDlg. Select IDC_BROWSE from =
“Object IDs” and “BN_CLICKED” from ——— —

. : P =
“‘Messages”. Click “Add Function”.
Accept the proposed function name, which is “OnBrowse”, by

clicking “OK”.

Message: BN_CLICKED
Objest ID: IDC_BROWSE

We have now added a message handler that calls the OnBrowse member function
whenever the “Browse” button is clicked.

Click on “Edit Code”. The ClassWizard disappears and a source file window opens
and displays the content of the OnBrowse function:

void CNeroFiddlesDlg: :0OnBrowse ()
{
// TODO: Add your control notification handler code here

Type the following after the line that starts with “TODO”. (To make things easier,
you might as well copy it from here, if you obtained this document as a file.)

static char BASED CODE szFilter[] = "MP3 Files (*.mp3) |[*.mp3|All Files

(G ad I B B
CFileDialog dlgOpen (TRUE, NULL, NULL, OFN FILEMUSTEXIST, szFilter,
this) ;
if (dlgOpen.DoModal () == IDOK)
{
mstrPathName = dlgOpen.GetPathName () ;
mstrFileName = dlgOpen.GetFileName () ;
medtFileName.SetWindowText (mstrPathName) ;
if (pndiDeviceInfos->nsdisNumDevInfos > 0)
{

mbtnBurn.EnableWindow (true) ;

Nero AG 25

| NeroAPI v6.6.0.1 |

This code defines a control string for our preferred file type, which is MP3. The
string has to have a certain format so that it can be passed to the CFileDialog
constructor. If the user clicks “OK” in the FileDialog, it will pass “IDOK” as return
value. mstrPathName and mstrFileName now hold the selected file’'s name,
mstrPathName the full name, and mstrFileName the file name without path. Then
the file name, including the path, is displayed in the Edit Box.

Afterwards, the functions checks whether any Devices have been enumerated
during startup. If this is true, the Burn-button is enabled, otherwise it stays grayed.

(We could have mapped the Edit control to a string directly, but we are lazy and
do not want to think too much. It is easier to keep track of everything, if we know
that all controls map to control variables. Apart from that, we do not have to use
the UpdateData function. But that is a completely different issue.)

6.6.2. OnBurn

This function is connected to the IDC_BURN button and is supposed to start the
burn process later. We will now add it to our application.

Open the ClassWizard, select the “Message Maps” tab. “ClassName” should still
be CNeroFiddlesDlg. Select IDC_BURN from “Object IDs” and “BN_CLICKED”
from “Messages”. Click “Add Function” and accept the proposed function name,
which is “OnBurn”, by clicking “OK”.

Click on “Edit Code”, and type the following after the line that starts with “TODQO”.
(The AppendString method will be introduced later.)

if (mstrFileName == "")

{

AppendString ("You have to choose a file before you can start
burning!") ;

}

else

{
strcpy (mniiFile.fileName, mstrFileName) ;
strcpy (mniiFile.sourceFilePath, mstrPathName) ;
mniiFile.isDirectory=FALSE;
mniiFile.isReference=FALSE;
mniiFile.nextItem=NULL;
writeCD.nwcdpCDStamp=NULL;
writeCD.nwcdArtist=NULL;
writeCD.nwcdTitle=NULL;
writeCD.nwcdCDExtra=FALSE;
writeCD.nwcdNumTracks=0;
writeCD.nwcdMediaType = MEDIA CD;

int 1 = mcbxDevices.GetCurSel () ;
NERO_SCS I_DEVICE_INFO* nsdiDevice =

(NERO_SCSI DEVICE INFO*)mcbxDevices.GetItemDataPtr (i)
Nero AG 26

NeroAPI v6.6.0.1

nd

if

}
el

{

hDeviceHandle = NeroOpenDevice (nsdiDevice) ;

(!ndhDeviceHandle)

AppendString ("Device could not be opened: "+ (CString)nsdiDevice-
>nsdiDeviceName) ;

se

mbtnAbort.EnableWindow (true) ;
mCancel .EnableWindow (false) ;
mOK.EnableWindow (false) ;
mcbxDevices.EnableWindow (false) ;
mbtnBrowse.EnableWindow (false) ;
mbtnBurn.EnableWindow (false) ;
mpgsProgress.SetRange (0,100) ;

writeCD.nwcdIsoTrack = NeroCreatelIsoTrackEx (&mniiFile,

"NeroFiddles", NCITEF CREATE ISO FS|NCITEF USE_JOLIET) ;

int iRes = NeroBurn (ndhDeviceHandle, NERO ISO AUDIO CD,

NBF WRITE, 0, &npProgress);

NeroFreelsoTrack (writeCD.nwcdIsoTrack) ;
NeroCloseDevice (ndhDeviceHandle) ;

mbtnAbort.EnableWindow (false) ;
mCancel .EnableWindow (true) ;
mOK.EnableWindow (true) ;
mcbxDevices.EnableWindow (true) ;
mbtnBrowse.EnableWindow (true) ;
mbtnBurn.EnableWindow (true) ;
mpgsProgress.SetPos (0) ;
mbAborted false;

char* Log NeroGetErrorLog () ;
AppendString (Log) ;

NeroFreeMem (Log) ;

switch (iRes)
{
case NEROAPI BURN OK:
AppendString ("BurnCD() : burn successful");
break;
case NEROAPI BURN UNKNOWN CD FORMAT:
AppendString ("BurnCD() : unknown CD format") ;
break;
case NEROAPI BURN INVALID DRIVE:
AppendString ("BurnCD() : invalid drive");

&writeCD,

Nero AG

27

NeroAPI v6.6.0.1

break;
case NEROAPI BURN FAILED:
AppendString ("BurnCD() : burn failed");
break;
case NEROAPI BURN FUNCTION NOT ALLOWED:
AppendString ("BurnCD() : function not allowed");
break;
case NEROAPI BURN DRIVE NOT ALLOWED:
AppendString ("BurnCD() : drive not allowed");
break;
case NEROAPI BURN USER ABORT:
AppendString ("BurnCD() : user aborted");
break;
case NEROAPI BURN BAD MESSAGE FILE:
AppendString ("BurnCD() : bad message file");
break;
default:
AppendString ("BurnCD() : unknown error");
break;

You might have noticed that this code has few comments, to say the least. The
author was not driven by laziness here, but rather wanted to prevent this tutorial
from becoming monstrous. You will find source code comments in the NeroFiddles
files that come with the NeroAPI. Here we will briefly explain what the code is
supposed to do (and hopefully does).

First, the function checks whether or not the user had selected a file name by
using the Browse button. If he did not, the function returns, doing nothing but
adding an admonishing line to the message log.

If a file was selected, the NERO_ISO_ITEM structure mniiFile is filled and the
NERO_WRITE_CD structure is initialized.

The index of the selected ComboBox entry is retrieved and used for getting a
pointer to the respective NERO SCSI _DEVICE_INFO, which is stored as a void-
pointer. Therefore it needs to be cast.

Then the NERO_WRITE_CD structure is filled with the required information.
The function tries to open this device and store a handle in NeroDeviceHandle.

If the device handle is 0, meaning that the device could not be opened, a log line
is added and the function returns.

If the device handle is valid, the nwcdlsoTrack member of NERO_WRITE_CD is
assigned to a CNerolsoTrack pointer.

Nero AG 28 ‘

| NeroAPI v6.6.0.1

The burn process is started. Burning is actually done and not simulated.

When the NeroBurn function returns, the ISO track is freed, and the device is
closed.

The return value of the NeroBurn function is evaluated, and a corresponding line
is added to the message log.

6.6.3. OnOK

When the application closes, we also need to properly disconnect from the
NeroAPI.DLL. This means that we need to have handling-functions that intercept
when the user clicks “OK” or “Cancel.

Open the ClassWizard and select the “Message Maps” tab. Select IDOK from
“‘Object IDs” and “BN_CLICKED” from “Messages”. Click “Add Function” and
accept the proposed function name, which is “OnOK?”, by clicking “OK”.

Click on “Edit Code” and you will see this:

void CNeroFiddlesDlg: :0OnOK ()

{
// TODO: Add extra validation here

CDhialog: :0OnOK () ;
}

Type the following after the line that contains “TODQO”.

NeroAPIFree () ;
6.6.4. OnCancel

Open the ClassWizard and select the “Message Maps” tab. Select IDCANCEL
from “Object IDs” and “BN_CLICKED” from “Messages”. Click “Add Function” and
accept the proposed function name, which is “OnCancel”, by clicking “OK”.

Change the function to look like this:

void CNeroFiddlesDlg: :0OnCancel ()

{
// TODO: Add extra cleanup here
NeroAPIFree () ;

CDialog: :0OnCancel () ;
}

Nero AG 29

NeroAPI v6.6.0.1

6.6.5. OnAbort

If the “Abort” button is pressed while burning, the member variable “mbAborted”
will be set to true. The value of mbAborted will be returned to the NeroAPI during
Process- and Idle-callbacks. If it becomes “true”, the NeroAPI will stop the burn
process.

Open the ClassWizard and select the “Message Maps” tab. Select IDC_ABORT
from “Object IDs” and “BN_CLICKED” from “Messages”. Click “Add Function” and
accept the proposed function name, which is “OnAbort”, by clicking “OK”.

Click on “Edit Code” and change the function to look like this:

void CNeroFiddlesDlg: :0OnAbort ()

{
// TODO: Add your control notification handler code here

mbAborted = true;
}

6.7. Adding Utility Functions

6.7.1. NeroAPIInit

The initialization of the NeroAPI will be performed during OnlnitDialog. However,
there is a lot to do, so we will not add the code there, but rather create a function
that initializes the API.

This function will be named NeroAPIlInit. The first thing we need to do is adding a
line in OnlInitDialog to calls this function.

Open the CNeroFiddlesDlg tree in ClassView and locate “OnlnitDialog”. Double
click “OnlnitDialog”.

You will now see the body of this function. Go right to the end of it, where you
should find some code that looks like this:

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog

SetIcon(m hIcon, TRUE); // Set big icon

SetIcon(m hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here

return TRUE; // return TRUE unless you set the focus to a control

In the line after “TODO” type “NeroAPlInit;". That will call the - still no-existing -
function NeroAPIInit during initialization.

We will provide this function now.

| Nero AG 30

NeroAPI v6.6.0.1 ‘

Right click on CNeroFiddlesDIlg and choose “Add Member Function”. Set the
Function Type to “void” and the Function Declaration to “NeroAPIInit”. Click “OK”.

Visual Studio will add the function declaration, create the function body, and get
you right into the function body. Fill the function with the following code:

mbAborted = false;
AppendString ("Opening NeroAPI.DLL") ;

if (!NeroAPIGlueConnect (NULL)) {
AppendString ("Cannot open NeroAPI.DLL");
return;

AppendString ("Retrieving version information.");
WORD majhi, majlo, minhi, minlo;
NeroGetAPIVersionEx (&majhi, &majlo, &minhi, &minlo, NULL) ;

CString strVersion;
strVersion.Format ("Nero API version %d.%d.%d.%d",
majhi, majlo, minhi, minlo) ;

AppendString (strVersion) ;

AppendString ("Filling NERO SETTINGS structure");

strcpy (pcNeroFilesPath, "NeroFiles");
strcpy (pcVendor, "ahead");

pcSoftware, "Nero - Burning Rom");

(
(
strcpy (
(

strcpy (pcLanguageFile, "Nero.txt");

memset (&nsSettings, 0, sizeof (nsSettings));
nsSettings.nstNeroFilesPath = pcNeroFilesPath;
nsSettings.nstVendor = pcVendor;
nsSettings.nstIdle.ncCallbackFunction = IdleCallback;
nsSettings.nstIdle.ncUserData = this;
nsSettings.nstSoftware = pcSoftware;
nsSettings.nstUserDialog.ncCallbackFunction = UserDialog;
nsSettings.nstUserDialog.ncUserData = this;
nsSettings.nstlLanguageFile =pcLanguageFile;

memset (&npProgress, 0, sizeof (npProgress)) ;
npProgress.npAbortedCallback = AbortedCallback;
npProgress.npAddLogLineCallback = AddLogLine;
npProgress.npDisableAbortCallback = NULL;
npProgress.npProgressCallback = ProgressCallback;

Nero AG 31

NeroAPI v6.6.0.1

npProgress.npSetPhaseCallback = SetPhaseCallback;
npProgress.npSetMajorPhaseCallback=NULL;
npProgress.npSubTaskProgressCallback=NULL;
npProgress.npUserData = this;

pndiDevicelInfos = NULL;

NEROAPI_INIT_ERROR initErr;
initErr = NeroInit (&nsSettings, NULL) ;

switch (initErr)
{
case NEROAPI INIT OK:
AppendString ("Initialization of the NeroAPI successful.");
break;
case NEROAPI INIT INVALID ARGS:
AppendString ("The arguments are not valid."):;
break;
case NEROAPI INIT INVALID SERIAL NUM:
AppendString ("The Serial Number is not valid.");
break;
default:

AppendString ("An error occured. The type of error cannot be
determined.") ;

break;

pndiDeviceInfos = NeroGetAvailableDrivesEx (MEDIA CD, NULL);

if (!pndiDeviceInfos) {

AppendString ("NeroGetAvailableDrives () returned no available
devices.");

}
else
{
if (pndiDeviceInfos->nsdisNumDevInfos > 0)
{
AppendString ("Found the following devices:");

for (DWORD dDeviceCounter = 0; dDeviceCounter < pndiDeviceInfos-
>nsdisNumDevInfos; dDeviceCounter++)

{

AppendString (pndiDeviceInfos-
>nsdisDevInfos[dDeviceCounter] .nsdiDeviceName) ;

int i = mcbxDevices.AddString (pndiDeviceInfos->
nsdisDevInfos[dDeviceCounter] .nsdiDeviceName) ;

mcbxDevices.SetItemDataPtr (i, &pndiDeviceInfos-
>nsdisDevInfos[dDeviceCounter]) ;

}

Nero AG 32

NeroAPI v6.6.0.1

mcbxDevices.SelectString (-1, pndiDevicelInfos-
>nsdisDevInfos[0] .nsdiDeviceName) ;

}

else

{

AppendString ("The number of available devices is 0.");

}

The NERO_SETTINGS and NERO_PROGRESS structures are initialized and
then filled with pointers to callback functions, as well as the this-pointer.

The result of the call to Nerolnit is evaluated and added to the message log.

Then the available drives are added to the Devices-ComboBox, linking each entry
with a pointer to a NERO_SCSI_DEVICE_INFO.

6.7.2. NeroAPIFree

This function disconnects NeroFiddles from the NeroAP! and is called when our
application closes.

Right click on CNeroFiddlesDIlg and choose “Add Member Function”. Set the
Function Type to “void” and the Function Declaration to “NeroAPIFree”. Click
“OK!!.

Visual Studio will add the function declaration, create the function body and set
the cursor to the function body. Fill the function with the following code:

if (pndiDeviceInfos)

{

NeroFreeMem (pndiDeviceInfos) ;

}

NeroClearErrors () ;
if (NeroDone ())

{

AfxMessageBox ("Detected memory leaks in NeroFiddles");

}

NeroAPIGlueDone () ;

return;

6.7.3. AppendString

Right click on CNeroFiddlesDIlg and choose “Add Member Function”. Set the
Function Type to “void” and the Function Declaration to “AppendString (CString
str)”. Click “OK”.

| Nero AG 33 |

NeroAPI v6.6.0.1

Fill the function with the following code:

CString strBuffer;

medtMessages.GetWindowText (strBuffer);
if (!strBuffer.IsEmpty())
{

strBuffer += "\r\n";

}
strBuffer += str;
medtMessages.SetWindowText (strBuffer);

medtMessages.LineScroll (medtMessages.GetLineCount (), 0);

6.8. Adding Callback Functions

The one remarkable thing about the use of the callback functions is the this-pointer.

The ncUserData member of the NERO_CALLBACK structure is supposed to hold a
pointer to the calling object in a C++ environment. We filled that pointer with a dummy
value in the console applications, because there is no such pointer when you are not
using classes and objects.

For NeroFiddles it is vital, though. If we do not hand over that pointer to the NeroAPI
and retrieve it in our callback functions, we will not be able to access any non-static
member of our CNeroFiddlesDIg class. This would mean that we could not update the
progress bar or print messages, which is a must.

We set the this-pointer during NeroAPIInit:

nsSettings.nstUserDialog.ncUserData = this;

The NeroAPI stores the pointer, and what we need to do is retrieve it. It is handed
over to our callback functions as void* pUserData. We have to cast it to a
CNeroFiddlesDlIg pointer. The usage looks like this:

bool bSomeBooleanVariable = ((CNeroFiddlesDlg*)pUserData)->mbAborted;

6.8.1. IdleCallback

IdleCallback will be called continuously during a burn process. If the user clicked
the “Abort” button, mbAborted becomes true, and the API will be told to stop
burning.

Use the known ClassView approach to add a member function. Set the Function
Type to “BOOL NERO_CALLBACK ATTR” and the Function Declaration to
“IdleCallback (void *pUserData)”. Activate the “static” Checkbox.

‘ Nero AG 34 ‘

NeroAPI v6.6.0.1

Now change the function body to this:

BOOL NERO CALLBACK ATTR CNeroFiddlesDlg::IdleCallback(void *pUserData)
{
static MSG msg;

while (! (((CNeroFiddlesDlg*)pUserData)->mbAborted) &&
: : PeekMessage (&msg, NULL, NULL, NULL, PM NOREMOVE))

{
if (!AfxGetThread () ->PumpMessage ())

break;

}
return ((CNeroFiddlesDlg*)pUserData)->mbAborted;

The first part of the function ensures that, while Nero is burning, the application
still can process messages.

6.8.2. UserDialog

The UserDialog callback function is designed to let the user make a choice, or tell
the NeroAPI that the user had finished a task, which the NeroAPI required him to
perform. To keep the sample as small as possible, we will only provide user-
controlled handling where absolutely required.

Add a member function of Function Type “NeroUserDIginOut
NERO_CALLBACK ATTR” and make the Function Declaration “UserDialog
(void *pUserData, NeroUserDIgIinOut type, void *data)’. Activate the “static”
Checkbox.

Make the function body look like this:

NeroUserDlgInOut NERO CALLBACK ATTR CNeroFiddlesDlg::UserDialog (void
*pUserData, NeroUserDlgInOut type, void *data)

{
switch (type)
{
case DLG AUTO INSERT:
return DLG RETURN CONTINUE;
break;
case DLG DISCONNECT RESTART:
return DLG RETURN ON RESTART;
break;
case DLG DISCONNECT:
return DLG RETURN CONTINUE;
break;
case DLG AUTO INSERT RESTART:
return DLG RETURN EXTIT;
break;

Nero AG 35

NeroAPI v6.6.0.1

case DLG RESTART:
return DLG RETURN EXIT;
break;

case DLG SETTINGS RESTART:
return DLG RETURN CONTINUE;
break;

case DLG OVERBURN:
return DLG RETURN TRUE;
break;

case DLG AUDIO PROBLEMS:
return DLG RETURN EXIT;
break;

case DLG FILESEL IMAGE:
{

static char BASED CODE szFilter[] = "Image Files
(*.nrg) | *.nrg|All Files (*.*)|*.*||";

CFileDialog dlgOpen (TRUE, NULL, "test.nrg", OFN_ OVERWRITEPROMPT,
szFilter, ((CNeroFiddlesDlg*)pUserData)) ;

if (dlgOpen.DoModal () == IDOK)

strcpy ((char*)data,dlgOpen.GetPathName ()) ;
return DLG RETURN TRUE;

}

else

{
return DLG BURNIMAGE CANCEL;

}
break;
case DLG WAITCD:
{
NERO WAITCD TYPE waitcdType = (NERO_WAITCD_TYPE) (int)data;
char *waitcdString = NeroGetLocalizedWaitCDTexts (waitcdType) ;
((CNeroFiddlesDlg*)pUserData) ->AppendString (waitcdString) ;
NeroFreeMem (waitcdString) ;
return DLG RETURN EXIT;
break;
}
default:
break;
}
return DLG RETURN EXIT;

Nero AG 36

NeroAPI v6.6.0.1

6.8.3. ProgressCallback

The ProgressCallback function will provide information on how much of the current
process has been completed. We use this information for display in a progress
bar.

Add a member function of Function Type “BOOL NERO_CALLBACK_ATTR” and
make the Function Declaration “ProgressCallback (void *pUserData, DWORD
dwProgressinPercent)”. Activate the “static” Checkbox.

Make the function body look like this:

BOOL NERO CALLBACK ATTR CNeroFiddlesDlg::ProgressCallback (void
*pUserData, DWORD dwProgressInPercent)

{
((CNeroFiddlesDlg*)pUserData) ->
mpgsProgress.SetPos (dwProgressInPercent) ;

return ((CNeroFiddlesDlg*)pUserData)->mbAborted;
}

6.8.4. AbortedCallback

This function is used by the NeroAPI to check whether the current process is
supposed to be terminated.

Add a member function of Function Type “BOOL NERO_CALLBACK_ATTR” and
make the Function Declaration “AbortedCallback(void *pUserData)’. Activate the
“static” Checkbox.

Make the function body look like this:

BOOL NERO CALLBACK ATTR CNeroFiddlesDlg::AbortedCallback (void*
pUserData)

{
return ((CNeroFiddlesDlg*)pUserData)->mbAborted;

}
6.8.5. AddLogLine
This function provides textual information about certain states that might be

important for the application.

Add a member function of Function Type “void NERO_CALLBACK_ATTR” and
make the Function Declaration “AddLogLine(void *pUserData,
NERO_TEXT_TYPE type, const char *text)”.

Activate the “static” Checkbox.

Nero AG 37

NeroAPI v6.6.0.1

Make the function body look like this:
void NERO CALLBACK ATTR CNeroFiddlesDlg::AddLogLine (void *pUserData,
NERO TEXT TYPE type, const char *text)

{
CString csTemp (text) ;
((CNeroFiddlesDlg*)pUserData) ->AppendString ("Log line:" + csTemp) ;
return;

}

6.8.6. SetPhaseCallback

This function provides textual information about the current phase of the burning
process.

Add a member function of Function Type “void NERO_CALLBACK ATTR ” and
make the Function Declaration “ SetPhaseCallback(void *pUserData, const char
*text)”. Activate the “static” Checkbox.

Make the function body look like this:
void NERO CALLBACK ATTR CNeroFiddlesDlg::SetPhaseCallback (void

*pUserData, const char *text)

{
CString csTemp (text) ;
((CNeroFiddlesDlg*)pUserData) ->AppendString ("Phase: " + csTemp) ;
return;

}
6.9. Build and Run NeroFiddles
We’re almost done. We have added everything that is required; now choose
“Build/Rebuild All” from the menu and then “Build/Execute NeroFiddles.exe”.

If we did everything right, NeroFiddles should now be running.

NeroFiddles is almost screaming for additional functionality. You should check the
command line examples, and get ideas there. E.g. you could enable it to burn more
than one file or complete folders. You could complete the user-interaction part and
provide burning of different formats.

You could provide RadioButtons to toggle between simulation of the burn process and
actual burning. Also, you could add the “continue session” feature.

Nero AG 38

| NeroAPI v6.6.0.1

7. APl Types and Functions

This paragraph describes the interface to the NeroAPI DLL.

7.1. Types

7.1.1. DLG_OVERBURN_INFO

Additional information when DLG_OVERBURN user callback is called.

typedef struct

{
DWORD dwTotalBlocksOnCD;
DWORD dwTotalCapacity;
DWORD reserved([32];

} DLG_OVERBURN INFO;

Description of structure members

dwTotalBlocksOnCD Total blocks to be written to disc.

dwTotalCapacity Free capacity on disc in blocks.

reserved Reserved for future usage.

Identifier Introduced in NeroAPI version
DLG_OVERBURN_INFO 6.0.0.27

7.1.2. NERO_ABORTED_CALLBACK

TRUE indicates that the user wants to abort.

typedef BOOL (NERO CALLBACK ATTR *NERO ABORTED CALLBACK)

(void *pUserData) ;

Identifier

Introduced in NeroAPI version

NERO_ABORTED_CALLBACK

5.0.3.9

Nero AG

39

NeroAPI v6.6.0.1

7.1.3. NERO_ACCESSTYPE

This type is used when querying the available speeds for reading or writing with
the NeroGetAvailableSpeeds function.

typedef enum

{
ACCESSTYPE_WRITE,
ACCESSTYPE READ

} NERO_ACCESSTYPE;

Identifier Introduced in NeroAPI version
NERO_ACCESSTYPE 5.5.9.14

71.4. NERO_ADD_LOG_LINE_CALLBACK
A one-line text is to be displayed. The text pointer becomes invalid after returning
from this function.

typedef void (NERO CALLBACK ATTR *NERO ADD LOG LINE CALLBACK)
(void *pUserData, NERO TEXT TYPE type, const char *text);

Identifier Introduced in NeroAPI version
NERO_ADD LOG LINE CALLBACK 5.0.3.9

Nero AG 40

NeroAPI v6.6.0.1

7.1.5. NERO_AUDIO_FORMAT_INFO

A pointer to a variable of this type is returned by the NeroAudioGetFormatinfo
function.

typedef struct tagNERO AUDIO FORMAT INFO
{
char nafiDescription[256],
nafiExtList[256];
BOOL nafiTgt,
nafiConfigurable;
} NERO AUDIO FORMAT INFO;

Description of structure members

nafiDescription[256] A description, e.g. "RIFF PCM WAV format".

nafiExtList[256]; A list, e.g. "wav,wave,riff"

nafiTgt Contains TRUE fif this is a target plug-in.

nafiConfigurable Configureltem will fail on items of this type if this member
equals to false.

Identifier Introduced in NeroAPI version
NERO_AUDIO_FORMAT_INFO 5.5.9.8

7.1.6. NERO_AUDIO_ITEM_INFO

This type is used as a member of the NERO_DATA_EXCHANGE struct.

typedef struct tagNERO AUDIO ITEM INFO
{
NERO_AUDIO ITEM HANDLE naiiAudioItem;
const char *naiiFileName;
} NERO AUDIO ITEM INFO;

Identifier Introduced in NeroAPI version
NERO_AUDIO_ITEM_INFO 5.5.9.14

71.7. NERO_AUDIO_ITEM_HANDLE

This handle is returned by the NeroAudioCreateTargetltem helper function.
NERO_AUDIO_ITEM_INFO contains a NERO_AUDIO_ITEM_HANDLE member.

typedef void * NERO AUDIO ITEM HANDLE;

Identifier Introduced in NeroAPI version
NERO_AUDIO_ITEM_HANDLE 5.5.9.14

Nero AG 41

NeroAPI v6.6.0.1

7.1.8. NERO_AUDIO_TRACK

NERO_AUDIO _TRACK is used as member of the NERO_WRITE_CD struct.

typedef struct tag NERO AUDIO TRACK

{

DWORD natPauselInBlksBeforeThisTrack;
DWORD natNumIndexPositions;
DWORD natRelativeIndexBlkPositions[98];

const char *natTitle,

*natArtist;

NERO DATA EXCHANGE natSourceDataExchg;
DWORD natLengthInBlocks;

BOOL natIndex0OContainsData;

DWORD natReserved[31];

} NERO AUDIO TRACK;

Description of structure members

natPauselnBlksBeforeThisTrack

Pause in blocks before this track.

natNumIndexPositions

Number of index positions.

natRelativelndexBlkPositions

Offsets between one index position and the next one.

Note: The values of index positions have to be given in bytes,
whereby the values have to be a multiple of 2352.

natTitle Set to NULL if unknown or to be taken from source.
natArtist Set to NULL if unknown or to be taken from source.
natSourceDataExchg Contains information about the type of data exchange (file,

callback, audio item).

natLengthinBlocks

Only used for NERO_IO_CALLBACK.

natReserved

Should be zero.

natindexOContainsData

TRUE, if audio data shall be written into index 0. Data for
index 0 must be provided. This can be used to prevent silent
pauses between tracks.

Identifier Introduced in NeroAPI version
NERO_AUDIO_TRACK 5.0.3.9
natindexOContainsData 5.5.9.8
natReserved 5.5.9.8:
Size decreased from 32 to 31.
Nero AG 42

NeroAPI v6.6.0.1

7.1.9. NERO_CALLBACK

Actually, this is a pointer to one of several different callback functions defined
below. ncUserdata will be passed to the function as first parameter when it is

called by the NeroAPI.

A callback function is an interface to other software to notify your application of
changes. Windows makes extensive use of callback functions.

Data exchange between an application and NeroAPI is done with a function that
gets a pointer to its own structure, a buffer pointer, and the amount of bytes to be
read or written. It shall return the actual amount of bytes transferred. Other
functions indicate that the end of the file has been reached (EOF) when reading,

or that a serious error occurred.

typedef struct tag NERO CALLBACK
{

void *ncCallbackFunction;

void *ncUserData
} NERO_CALLBACK;

Identifier

Introduced in NeroAPI version

NERO_CALLBACK

5.0.3.9

7.1.10. NERO_CD_COPY

To copy a disc with the NeroAPI, fill in the NERO_CD_COPY structure and pass it
to the NeroBurn function as parameter pWriteCD. Also, set the CDFormat
parameter of NeroBurn to NERO_CD_COPY_TYPE.

#define NERO CD_COPY TYPE ((NERO_CD_FORMAT) 1000)

typedef struct

{
NERO_DEVICEHANDLE sourceDrive;
BOOL onTheFly;
const char *imageFilePath;
BOOL deletelmage;

int readSpeed;

UINT tryNr;
BOOL readErrOption;
BOOL readRawModel;
int rawModelOption;
BOOL readRawMode?2;
int rawMode20ption;

Nero AG

43

NeroAPI v6.6.0.1

BOOL readSub;
BOOL checkDA;
int slowDown;

BOOL ignoreDAErr;

BOOL readIsrcAndMediaCatalogNo;
BOOL ignoreBadTOCType;

NERO MEDIA TYPE mediaType;

} NERO CD COPY;

Description of structure members
sourceDrive The drive to read the data from.
onTheFly Copy on-the-fly (without storing an image on the hard drive
first).
imageFilePath For non on-the-fly copying, specify the temporary image file
path (mandatory).
deletelmage Determine whether or not the temporary image shall be
deleted after burning.
readSpeed Read speed in KB/s, 0 for maximum speed.
tryNr Determine the number of read attempts if a read error occurs.
readErrOption For data tracks:
1 - ignore read errors and continue.
0 - abort on read errors.
For NeroAPI 5.5 it was possible to select the readRaw mode
for Mode1 and Mode2 separately.
Up from NeroAPI 6, general read raw mode is enabled if one
of these options is set.
readRawMode1 Read raw mode.
rawMode10ption For NeroAPI 6: ignored;
For NeroAPI 5.5:
0 - Repair EDC/ECC error for raw data.
1 - Ignore EDC/ECC error for raw data.
readRawMode2 Read raw mode.
rawMode2Option For NeroAPI 6: ignored;
For NeroAPI 5.5:
0 - Repair EDC/ECC error for raw data.
1 - Ignore EDC/ECC error for raw data.
readSub For NeroAPI 6: ignored.
For NeroAPI 5.5: read audio data with sub q code.
checkDA For NeroAPI 6: ignored.
For NeroAPI 5.5: check for audio data.
slowDown For NeroAPI 6: ignored.
For NeroAPI 5.5 option for jitter correction in read audio track:
0 - If correction failed rewind and read from the beginning.
1 - If correction failed slow down at once.
2 - No jitter correction.
ignoreDAETrr For audio tracks: Ignore read errors and continue.

Nero AG

44

NeroAPI v6.6.0.1

Description of structure members

readlsrcAndMediaCatalogNo

NeroAPI 5.5 and NeroAPI after 6.3.1.24: TRUE if media
catalog number and ISRC should be read and copied.

ignoreBadTOCType For NeroAPI 6: ignored.
For NeroAPI 5.5: should be set to TRUE.

mediaType NeroAPI 6.3.1.24 and later: Determine which media type is to
be copied.

Identifier Introduced in NeroAPI version

NERO_CD_COPY

6.3.1.24

7.1.11. NERO_CD_FORMAT

Used in the NeroBurn function to determine the format that will be written on the

media.

Due to historical reasons, the enum type and some of its enumerators refer to CD
media. Please bear in mind that this type can be used with DVD media as well!

typedef enum

{
NERO ISO AUDIO MEDIA
NERO_VIDEO_CD
NERO BURN IMAGE MEDIA
NERO FREESTYLE CD

NERO FILE SYSTEM CONTAINER MEDIA =4,

NERO_ISO_AUDIO CD
NERO BURN IMAGE CD
} NERO_CD FORMAT;

Description of enumerators

NERO_ISO_AUDIO_MEDIA

Burn either a CD or a DVD, depending on the
nwcdMediaType member.

NERO_VIDEO_CD

NERO_BURN_IMAGE_MEDIA

Burn either a CD or a DVD from an image.

NERO_FREESTYLE_CD

For a Freestyle compilation.

NERO_FILE_SYSTEM_
CONTAINER_MEDIA

Burn an IfileSystemDescContainer.

NERO_ISO_AUDIO_CD

Audio or ISO CD. Available only for compatibility reasons.

NERO_BURN_IMAGE_CD

CD Type determined by content of CD Image. Available only
for compatibility reasons.

Identifier Introduced in NeroAPI version

NERO_CD_FORMAT 5.0.3.9

NERO_FILE_SYSTEM_CONTAINER_MEDIA 5.5.6.0
Nero AG 45

NeroAPI v6.6.0.1

7.1.12. NERO_CD_INFO

This type is returned by the NeroGetCDInfo function and provides detailed
information about the current media.

Due to historical reasons, this type refers to CD media. Please bear in mind that
this type can be used with DVD media as well!

struct struct

tag NERO CD INFO tag NERO TRACK INFO
+ncdiFreeCapacityinBlocks: DWORD +ntiSessionMNumberDWORD
+ncdilswWriteahle:BOOL +ntiTrackMumberDWORD
+ncdiediumType:NERO_MEDILIM_TYFE +ntiTrackTypeMERC_TRACK_TYPE
+ncdisist.char [6a] o = +ntiTrackStarBlkDWWORD
+ncdiTitle:char [64] +ntiTrackLenagthinBlks:DWORD
+ncdifvailableErasemodes: DWORD +ntigrist.char [6a]
+necdillnusedBlocks:DWORD +ntiTitle:char [64]
+ncdiResenedDWORD [30] +ntiReserved:DWORD [32]
+ncdiMumTracks:.DWORD
+ncdiTrackinfos:NERD_TRACK_IMFO [1]

typedef struct tag NERO CD INFO
{

DWORD ncdiFreeCapacityInBlocks;
BOOL ncdiIsWriteable;

NERO MEDIUM TYPE ncdiMediumType;

char ncdiArtist([65];

char ncdiTitle[65];

DWORD ncdiAvailableEraseModes;
DWORD ncdiUnusedBlocks;

NERO MEDIA TYPE ncdiMediaType;

DWORD ncdiMediumFlags;

DWORD ncdilayerOMaxBlocks;
DWORD ncdiTotalCapacity;
DWORD ncdiReserved[26] ;

DWORD ncdiNumTracks;

NERO_ TRACK INFO ncdiTrackInfos[1];

} NERO CD_INFO;

Description of structure members

ncdiFreeCapacitylnBlocks Number of unused blocks on CD.

ncdilsWriteable A disc can be non-writeable.

ncdiMediumType Old media type description, ncdiMediaType should be used
instead.

ncdiArtist Artist name.

ncdiTitle CD Title.

Nero AG 46

NeroAPI v6.6.0.1

ncdiAvailableEraseModes

This bitfield can be decoded using the
NCDI_IS_ERASE_MODE_AVAILABLE macro.

ncdiUnusedBlocks

Difference between Lead-Out position and last possible Lead-
Out position.

ncdiMediaType Type of media.
ncdiMediumFlags Various media flags:
NCDIMF_ The media is a virtual

VIRTUALMULTISESSION multisession media; use VMS
AP to retrieve session

information.

Note: This flag only tells you,
that if multisession is written,
VMS is used. But not that this
medium contains
multisessions.

NCDIMF_HDB_SUPPORTED | The media supports HD-
BURN.

ncdiLayerOMaxBlocks

If this value is set, the medium is a double layer medium
whereby layer 0 can not be bigger than the given number of
blocks.

ncdiTotalCapacity

The total capacity of this medium.

ncdiReserved

Should be zero.

ncdiNumTracks

Number of tracks.

ncdiTracklInfos

A List of NERO_TRACK_INFO structures.

Identifier Introduced in NeroAPI version
NERO_CD_INFO 5.0.3.9
ncdiAvailableEraseModes 5547
ncdiUnusedBlocks 55.5.8
ncdiMediaType 5594
ncdiReserved 5.5.9.4:

Reduced size from 30 to 29.
ncdiMediumFlags 6.0.0.10
ncdiLayerOMaxBlocks 6.0.0.19
ncdiTotalCapacity 6.3.0.5

Nero AG 47

NeroAPI v6.6.0.1

7.1.13. NERO_CITE_ARGS

This struct can be used to pass additional parameters to NeroCreatelsoTrackEx,

in certain cases, e.g.

e if a media shall have two different file systems (e.g. HFS+ CDs), you can
provide the second file system with firstRootltem_wrapper.

e if you intend to pass information to be written to the volume descriptor

typedef struct tag NERO CITE ARGS ({

int size;
NERO_ISO ITEM
NERO ISO ITEM
const char
DWORD

const char
const char
const char
const char
const char
const char
const char
const char
} NeroCITEArgs;

*firstRootItem;
*firstRootItem wrapper;
*name;

dwBurnOptions;

*systemIdentifier;
*volumeSet;
*publisher;
*dataPreparer;
*application;
*copyright;
*abstract;
*bibliographic;

Description of structure members

Size

This parameter will be ignored. Initialize the whole struct with
0. The version of the struct will be taken from the expected
NeroAPI version.

firstRootltem

If firstRootltem_wrapper is NULL, then firstRootltem is
identical to NeroCreatelsoTrackEx’s rootltem.

firstRootltem_wrapper

Used to create a wrapper file system. One file system can be
embedded in another. Depending on the capabilities of a
particular system, the one that can be read will be visible.
Unlike the UDF/ISO bridge, both file systems can contain
different files, so two pointers to root items are required.

Name

Name of the IsoTrack (volume name).

dwBurnOptions

The same options as used by the NeroCreatelsoTrackEx
function.

systemldentifier

System identifier.

volumeSet This name is used when multiple media are part of one logical
unit.

Publisher The publisher of this track.

dataPreparer The preparer of this track.

application The application that created this track.

Copyright Copyright file.

Abstract Abstract file.

Nero AG

48

NeroAPI v6.6.0.1

Description of structure members

bibliographic Bibliographic file.

Identifier Introduced in NeroAPI version
NeroCITEArgs 5.5.9.0
systemldentifier 5.5.9.26
volumeSet 5.5.9.26
Publisher 5.5.9.26
dataPreparer 5.5.9.26
application 5.5.9.26
Copyright 5.5.9.26
Abstract 5.5.9.26
bibliographic 5.5.9.26

NERO_CITE_ARGS

6.0.0.0:

NeroCITEArgs was renamed to
NERO_CITE_ARGS.

7.1.14. NERO_CONFIG_RESULT

This is the return type for the NeroAudioGUIConfigureltem function.

typedef enum

{
NCR CANNOT CONFIGURE,
NCR CHANGED,
NCR_NOT_ CHANGED

} NERO_CONFIG RESULT;

Description of enumerators

NCR_CANNOT_CONFIGURE

The item cannot be configured.

NCR_CHANGED

The configuration has been changed.

NCR_NOT_CHANGED

The configuration has not been changed.

Identifier

Introduced in NeroAPI version

NERO_CONFIG_RESULT

55.9.8

Nero AG

49

NeroAPI v6.6.0.1

7.1.15. NERO_DATA_EXCHANGE

Use PCM, 44.1kHz, Stereo (left channel first), 16 bits per channel, Little Endian
Word (LSB first), when exchanging data with the NeroAPI.

typedef struct tag NERO DATA EXCHANGE

{
NERO DATA EXCHANGE TYPE ndeType;

union
{
char ndeFileName[256];
struct
{
DWORD reserved;

const char “*ptr;
} ndeLongFileName;

NERO IO ndeIO;

NERO_AUDIO ITEM INFO

} ndeData;
} NERO DATA EXCHANGE;

ndeAudioItemInfo;

Description of structure members

ndeFileName

Deprecated, use ndeLongFileName.ptr instead.

ndeLongFileName.reserved

Must be 0.

ndelO

NERO_IO/EOF/ERROR_CALLBACK, data is exchanged with
the application directly.

ndeAudioltemlInfo

NERO_ET_AUDIO_FILE, data is exchange through audio
items, using the plug-in manager.

Identifier Introduced in NeroAPI version
NERO_DATA_EXCHANGE 5.0.3.9
ndeAudioltemInfo 5598
ndeLongFileName 6.0.0.0
Nero AG 50

NeroAPI v6.6.0.1

7.1.16. NERO_DATA_EXCHANGE_TYPE

This enum is used as a member of the NERO_DATA EXCHANGE struct.

typedef enum
{
NERO ET FILE,
NERO_ET IO CALLBACK,
NERO_ET MP3,
NERO ET FILE RAW,
NERO ET AUDIO FILE
} NERO DATA EXCHANGE TYPE;

Description of enumerators

NERO_ET_FILE Read/write to/from WAV file.

NERO_ET 10 _CALLBACK Exchange data with application directly.
NERO_ET_MP3 Read from MP3 file (not for DAE).
NERO_ET_WMA Read from MS audio file (not for DAE).
NERO_ET_FILE_RAW For a Freestyle compilation, this and

NERO_ET_IO_CALLBACK are the only types allowed at the
moment. It will expect files to be in the format as to be written
to the disc. This exchange type is valid for freestyle
compilations only.

NERO_ET_AUDIO_FILE Audio file created with the plug-in manager.

Identifier Introduced in NeroAPI version
NERO_DATA_EXCHANGE_TYPE 5.0.3.9
NERO_ET AUDIO FILE 5.5.9.8

7.1.17. NERO_DEVICEHANDLE

Is defined as a class pointer for C++ or a void pointer for standard C.

The __ cplusplus preprocessor macro determines whether C++ or C is being
compiled. This macro is predefined and gives the programmer the opportunity to
use more sophisticated C++ constructs where possible, or substitute them with
standard C where not.

#ifdef cplusplus
class CSourceDriveInfo;
typedef CSourceDriveInfo *NERO DEVICEHANDLE;

#else

typedef void *NERO DEVICEHANDLE;

#endif

Identifier Introduced in NeroAPI version
NERO_DEVICEHANDLE 5.0.3.9

Nero AG 51

NeroAPI v6.6.0.1

7.1.18. NERO_DISABLE_ABORT_CALLBACK

Tells the main program whether the burn process can be interrupted or not.

typedef void (NERO_CALLBACK_ATTR *NERO_DISABLE_ABORT_CALLBACK)(void
*pUserData, BOOL abortEnabled) ;

Identifier Introduced in NeroAPI version
NERO_DISABLE_ABORT_CALLBACK 5.0.3.9

7.1.19. NERO_DEVICEOPTION

Used to get and set special low level options of devices.

typedef enum
{
NERO DEVICEOPTION BOOKTYPE DVDROM = 0,
NERO DEVICEOPTION LAYERSWITCH = 1,
NERO DEVICEOPTION BOOKTYPE DVDROM NEXT WRITE = 2,
NERO DEVICEOPTION BREAK LAYER = 3
} NERO DEVICEOPTION;

Description of enumerators

NERO_DEVICEOPTION_ Change the booktype of a DVD+R and DVD+RW for
BOOKTYPE_DVDROM subsequent writes until next power cycle to DVD-ROM.

When used in NeroGetDeviceOption or NeroSetDeviceOption
void* is a pointer to BOOL.

For setting the booktype to DVD-ROM, set the parameter to
TRUE, to reset make it FALSE.

In NeroGetDeviceOption, TRUE is returned if changing the
booktype to DVD-ROM is enabled for both DVD+R and
DVD+RW, FALSE otherwise.

NERO_DEVICEOPTION_LAYER | Set the number of blocks after that to switch from layer 0 to
SWITCH layer 1 when writing on a double layer medium.

Notes:
e The number of blocks must be a multiple of 16.

e The layer 0 must be >= totalDataSize/2, because there can
never be more data on layer 1 than on layer 0.

¢ In NeroSetDeviceOption value is a pointer to a DWORD
variable.

¢ In NeroGetDeviceOption a pointer to a DWORD is
returned.

Nero AG 52

NeroAPI v6.6.0.1

Description of enumerators

NERO_DEVICEOPTION _ Set the booktype of the next DVD+R and DVD+RW that is
BOOKTYPE_DVDROM_NEXT_ | written to DVD-ROM. This option is useful if you do packet
WRITE writing. If you call NeroBurn you have to use the

NBF_BOOKTYPE_DVDROM flag or

NBF_NO_BOOKTYPE_CHANGE flag.

void* is a pointer to BOOL in Nero(Set|Get)DeviceOption.

NERO_DEVICEOPTION _ Set the number of blocks after that to switch from layer 0 to

BREAK_LAYER layer 1 when writing on a double layer medium. In difference

to NERO_DEVICEOPTION_LAYERSWITCH the layer break

is written immediately to the disc, while otherwise it is set

during burning.

Notes:

e The number of blocks must be a multiple of 16

e The layer 0 must be >= totalDataSize/2, because there can
never be more data on layer 1 than on layer 0.

¢ In NeroSetDeviceOption value is a pointer to a DWORD

variable.
¢ In NeroGetDeviceOption a pointer to a DWORD is

returned.
Identifier Introduced in NeroAPI version
NERO_DEVICEOPTION 5.5.10.7
NERO DEVICEOPTION_BOOKTYPE_DVDROM_NEXT
WRITE - - - - 6.0.0.24
NERO_DEVICEOPTION_LAYERSWITCH 6.3.1.4
NERO_DEVICEOPTION_ BREAK LAYER 6.3.1.4

7.1.20. NERO_DLG_WAITCD_MEDIA_INFO

A pointer to this structure will be passed with the DLG_WAITCD_MEDIA INFO
user dialog callback.

typedef struct

{
DWORD ndwmiSize;
NERO MEDIA TYPE ndwmiLastDetectedMedia;
NERO MEDIA SET ndwmiRequestedMedia;
const char *ndwmilastDetectedMediaName;
const char *ndwmiRequestedMediaName;

} NERO DLG _WAITCD MEDIA INFO;

Identifier Introduced in NeroAPI version
NERO_DLG_WAITCD_MEDIA_INFO 5594

Nero AG 53

NeroAPI v6.6.0.1

7.1.21. NERO_DRIVE_ERROR

Error code describing an error happened during communication with a drive.

This error code is returned by NerolsDeviceReady. Other functions set an internal
error variable to one of these codes if an error occurred. This error can be
received with NeroGetLastDriveError.

typedef enum

{
NDE NO ERROR = 0,
NDE GENERIC ERROR = 1,
NDE DRIVE IN USE = 2,
NDE_DRIVE NOT READY =
NDE_NO DRIVE = 4,
NDE_DISC _NOT PRESENT = 5,
NDE_DISC NOT PRESENT TRAY OPEN = 6,
NDE_DISC_NOT PRESENT TRAY CLOSED = 7

} NERO_DRIVE ERROR;

3,

Description of structure members

NDE_NO_ERROR No error occurred/ drive is ready.

NDE_GENERIC_ERROR Error, not handled with other enums.

NDE_DRIVE_IN_USE Drive cannot be locked; maybe another application uses this
drive at the moment.

NDE_DRIVE_NOT_READY Drive is not ready.

NDE_NO_DRIVE The given device is not available. Probably removed by the
user (USB/Firewire).

NDE_DISC_NOT_PRESENT No medium in drive, status of tray unknown.

NDE_DISC_NOT_PRESENT _ No medium - tray open.
TRAY_
NDE_DISC_NOT_PRESENT _ No medium - tray closed.
TRAY_CLOSED

Identifier Introduced in NeroAPI version
NERO_DRIVE_ERROR 6.0.0.0

Nero AG 54

NeroAPI v6.6.0.1

7.1.22. NERO_DRIVESTATUS_CALLBACK

This callback informs the application about a drive’s status change.

Note: The callback needs to be thread safe, since it might be called from a
different thread.

typedef void (NERO_CALLBACK ATTR *NERO DRIVESTATUS CALLBACK) (
int hostID,
int targetlID,
NERO DRIVESTATUS RESULT result,
void *pUserData) ;

Description

hostID Corresponds to nsdiHostAdapterNo.

targetlD Corresponds to nsdiDevicelD of
NERO_SCSI_DEVICE_INFO.

Identifier Introduced in NeroAPI version

NERO_DRIVESTATUS CALLBACK 6.0.0.0

7.1.23. NERO_DRIVESTATUS_TYPE

This enum is used by the NeroRegisterDriveStatusCallback callback.

typedef enum
{
NDT DISC CHANGE,
NDT IN USE_CHANGE
} NERO DRIVESTATUS TYPE;

Description of enumerators
NDT_DISC_CHANGE The disc in the drive has been changed.

Warning: This change notification is based on Windows
notifying about medium changes. If an application has
disabled this notification, the callback will not be called. If you
want to be sure to recognize all medium changes, you should
use timer events and use NerolsDeviceReady to ask for the
drive status.

NDT_IN_USE_CHANGE The in-use status of the drive has been changed.
Identifier Introduced in NeroAPI version
NERO_DRIVESTATUS_TYPE 6.0.0.0

Nero AG 55

NeroAPI v6.6.0.1

7.1.24. NERO_DRIVESTATUS_RESULT

This enumeration is used by NERO_DRIVESTATUS_CALLBACK.

typedef enum
{
NDR_DRIVE IN USE=0,
NDR DRIVE NOT IN USE,
NDR_DISC REMOVED,
NDR DISC INSERTED,
NDR DRIVE REMOVED,
NDR DRIVE ADDED
} NERO_DRIVESTATUS RESULT;

Identifier Introduced in NeroAPI version
NERO_DRIVESTATUS RESULT 6.0.0.0

7.1.25. NERO_FILESYSTEMTRACK_OPTIONS

This structure is passed as a parameter type to the NeroEstimateTrackSize
function.

typedef struct tag NERO FILESYSTEMTRACK OPTIONS
{

DWORD netsStructureSize;
void * netspCDStamp;

NERO MEDIA TYPE netsMediaType;
NERO_ DEVICEHANDLE netsDeviceHandle;
DWORD netsFlags;

#ifdef cplusplus
FileSystemContent::

#else //__cplusplus
struct

#endif// cplusplus
IFileSystemDescContainer *netsFSContainer;
DWORD netsFSContainerFlags;
DWORD netsReserved[32];

} NERO FILESYSTEMTRACK OPTIONS;

Description of structure members
netsStructureSize Fill this with sizeof(NERO_FILESYSTEMTRACK_ OPTIONS).

netspCDStamp Point on a CDStamp object when appending to an existing
medium, otherwise NULL.

This entry needs to be filled out whenever the file system size
is to be calculated accurately.

netsMediaType The media type the file system is to be written to.

This entry needs to be filled out whenever the file system size
is to be calculated accurately.

Nero AG 56

NeroAPI v6.6.0.1

Description of structure members

netsDeviceHandle

Device handle representing the drive the file system is to be
written to.

This entry needs to be filled out whenever the file system size
is to be calculated accurately.

netsFlags

NBF_XXXX that will be used for the recording process.

netsFSContainer

If not NULL, the file system will be created from this object
instead of the passed CNerolsoTrack object. plsoTrack must
be NULL in this case.

netsFSContainerFlags

NCITEF_XXXX flags to be used for file system creation. Used
only when netsFSContainer is used to create the file system.

netsReserved

Should be zero.

7.1.26. NERO_FREESTYLE_TRACK

This type is used as a member of NERO_WRITE_FREESTYLE_CD.

typedef struct tag NERO FREESTYLE TRACK

{

DWORD nftStructureSize;

DWORD nftPauselInBlksBeforeThisTrack;
DWORD nftNumIndexPositions;
DWORD nftRelativeIndexBlkPositions[98];

const char *nftTitle,

*nftArtist;

NERO DATA EXCHANGE nftSourceDataExchg;

DWORD nftLengthInBlocks;

NERO_ TRACKMODE TYPE nftTracktype;

} NERO_FREESTYLE TRACK;

Description of structure members

nftStructureSize

Size of this structure, to ensure binary compatibility.

nftPauselnBlksBeforeThisTrack

Pause in blocks before this track.

nftNumIndexPositions

Number of index positions.

nftRelativelndexBlkPositions[98]

Offsets between one index position and the next one.

nftTitle Set to NULL if unknown or to be taken from source.

nftArtist Set to NULL if unknown or to be taken from source.

nftSourceDataExchg Source for raw track data.

nftLengthinBlocks Only used for NERO_IO_CALLBACK.

nftTracktype Specifies track type to be written.

Identifier Introduced in NeroAPI version

NERO_FREESTYLE_TRACK 5.0.3.9
Nero AG 57

NeroAPI v6.6.0.1

7.1.27. NERO_IDLE_CALLBACK

During writing, or in several long running functions, control is transferred to the
DLL. The application has to provide services and interact with the user via
callback functions.

NERO_CALLBACK_ATTR is defined in "NeroUserDialog.h" and ensures that the
same conventions are used for passing of parameters. NERO_IDLE_CALLBACK
is called regularly during long running activities. Return TRUE if this activity shall
be aborted.

typedef BOOL (NERO CALLBACK ATTR *NERO IDLE CALLBACK) (void *pUserData);

Identifier Introduced in NeroAPI version
NERO_IDLE_CALLBACK 5.0.3.9

7.1.28. NERO_IMPORT_DATA_TRACK_INFO

This structure is used as a parameter for the NerolmportDataTrack function.

typedef struct tag NERO IMPORT DATA TRACK INFO
{

DWORD nidtiSize;

char *nidtipVolumeName;
} NERO IMPORT DATA TRACK INFO;

Description of structure members

nidtiSize Must contain the size of the structure.

nidtipVolumeName This must be released using NeroFreeMem.

Identifier Introduced in NeroAPI version
NERO_IMPORT_DATA_TRACK_INFO 6.0.0.0

7.1.29. NERO_IMPORT_DATA_TRACK_RESULT

This enum is used as result parameter for the NerolmportDataTrack function.

typedef enum
{
NIDTR NO ERROR=0,
NIDTR GENERIC ERROR,
NIDTR DRIVE ERROR,
NIDTR READ ERROR,
NIDTR INVALID FS
} NERO IMPORT DATA TRACK RESULT;

Nero AG 58

NeroAPI v6.6.0.1

Description of enumerators

NIDTR_NO_ERROR No error.

NIDTR_GENERIC_ERROR Undefined error.

NIDTR_DRIVE_ERROR Get more details with NeroGetLastDriveError.

NIDTR_READ_ERROR Error while reading from the disc. Parts of the file system may
have been imported nevertheless.

NIDTR_INVALID_FS Errors in the file system on the disc. Parts of the files system
may have been imported nevertheless.

Identifier Introduced in NeroAPI version
NERO_IMPORT_DATA TRACK RESULT 6.0.0.0

7.1.30. NERO_IO

NERO IO is required when the NeroAPI exchanges data with the application
directly. NERO_|O is used as member of the NERO_DATA_EXCHANGE struct.

typedef struct tag NERO IO
{
void *nioUserData;
NERO IO CALLBACK nioIOCallback;
NERO STATUS CALLBACK nioEOFCallback;
NERO STATUS CALLBACK nioErrorCallback;

} NERO IO;

Description of structure members

nioUserData Provide the this-pointer here.

niolOCallback See declaration of NERO_|O_CALLBACK.

nioEOFCallback Shall return TRUE if further 1O calls will always fail to transfer
any data, i.e. EOF reached.

nioErrorCallback Shall return TRUE if an error occurred during an 10 call.

Identifier Introduced in NeroAPI version

NERO_IO 5.0.3.9

Nero AG 59

NeroAPI v6.6.0.1

7.1.31. NERO_IO_CALLBACK

Data exchange between an application and the NeroAPI is done with a function
that gets a pointer to its own structure, a buffer pointer and the amount in bytes to
be read or written. It shall return the actual amount of bytes transferred. Other
functions indicate that EOF has been reached when reading or a serious error

occurred.

typedef DWORD (NERO_CALLBACK_ATTR *NERO_IO_CALLBACK)
(void *pUserData, BYTE *pBuffer, DWORD dwLen) ;

Identifier

Introduced in NeroAPI version

NERO_IO_CALLBACK

5.0.3.9

7.1.32. NERO_ISO_ITEM

This type is used for ISO track generation. The NeroAPI offers functions to create
ISO items, copy them, free space used by an item, and creates tracks based on

an ISO root item.

typedef struct tag NERO ISO ITEM

{
char fileName[252];
char *longFileName;
BOOL isDirectory;
BOOL isReference;

char sourceFilePath[252];

const char *longSourceFilePath;

char sourceFilePath[256];

struct tag NERO ISO ITEM *subDirFirstItem;
struct tag NERO ISO ITEM *nextItem;

void *userData;

long dataStartSec;
___int64 datalLength;
struct tm entryTime;
int itemSize;

struct CImportInfo *importinfo;

} NERO ISO ITEM;

Description of structure members

fileName

Deprecated, use longFileName instead.

longFileName

File name on the burnt CD. It will be freed in NeroFreelsoltem

if this item is a reference.

isDirectory

Is this item a directory?

isReference

Is this item a reference to a file/directory of a previous
session?

sourceFilePath

Deprecated, use longSourceFilePath instead

Nero AG

60

NeroAPI v6.6.0.1

Description of structure members

longSourceFilePath Path to the file, including file name (ignored for a directory).
When recording rockridge, you can set the name of a directory
to be used for retrieving rockridge information here.

subDirFirstltem Point on the first item of the sub directory if the item is a
directory. Can be NULL if the directory is empty. (ignored for a
file)

nextltem Next item in the current directory

userData Can be used to store additional information

dataStartSec Used to reference a file from a previous session

datalLength Used to reference a file from a previous session

entryTime Used to reference a file from a previous session

itemSize Size of the structure

importinfo Optional pointer to an object with import information.

Identifier Introduced in NeroAPI version

NERO_ISO_ITEM 5.0.3.9

itemSize 5.5.0.6

Importinfo 5.5.0.6
5.5.7.5:

“rockridge” is renamed to

“importinfo”
filename 6.0.0.0:

Size changed from 256 to 252.
longFileName 6.0.0.0
sourceFilePath 6.0.0.0:

Size changed from 256 to 252.
longSourceFilePath 6.0.0.0

7.1.33.

NERO_MAJOR_PHASE

This enum is used by NERO_SET_MAJOR_ PHASE_CALLBACK. It indicates

what major phase the burn process is currently in.

typedef enum

{
NERO PHASE UNSPECIFIED
NERO_ PHASE START CACHE
NERO_PHASE_DONE_CACHE
NERO PHASE FAIL CACHE
NERO_PHASE_ABORT_CACHE
NERO PHASE START TEST
NERO PHASE DONE TEST
NERO PHASE FAIL TEST
NERO PHASE ABORT TEST
NERO_ PHASE START SIMULATE
NERO PHASE DONE SIMULATE
NERO_ PHASE FAIL SIMULATE
NERO PHASE ABORT SIMULATE

=24,
=25,
=26,
=27,
=28,
=29,
=30,
=31,

=33

=351,

Nero AG

61

NeroAPI v6.6.0.1

NERO_PHASE START WRITE
NERO_PHASE DONE_WRITE
NERO_PHASE FAIL WRITE
NERO_PHASE ABORT WRITE

NERO PHASE START SIMULATE NOSPD
NERO_PHASE DONE_SIMULATE NOSPD
NERO PHASE FAIL SIMULATE NOSPD
NERO_PHASE ABORT SIMULATE NOSPD
NERO PHASE_START WRITE NOSPD
NERO_PHASE DONE _WRITE NOSPD
NERO PHASE FAIL WRITE NOSPD
NERO_PHASE ABORT WRITE NOSPD
NERO_PHASE PREPARE ITEMS
NERO_PHASE VERIFY COMPILATION
NERO_PHASE VERIFY ABORTED
NERO_PHASE VERIFY END OK

NERO PHASE VERIFY END FAIL
NERO_PHASE_ENCODE_VIDEO

NERO PHASE SEAMLESSLINK ACTIVATED

NERO PHASE BUP ACTIVATED
NERO PHASE CONTINUE FORMATTING

NERO PHASE FORMATTING SUCCESSFUL

NERO PHASE FORMATTING FAILED
NERO_PHASE PREPARE_CD

NERO PHASE DONE_PREPARE CD
NERO_PHASE FAIL PREPARE CD
NERO PHASE ABORT PREPARE CD
NERO_PHASE DVDVIDEO DETECTED

NERO_PHASE DVDVIDEO REALLOC STARTED
NERO_PHASE DVDVIDEO REALLOC COMPLETED
NERO_PHASE DVDVIDEO REALLOC NOTNEEDED
NERO_PHASE DVDVIDEO REALLOC_ FAILED

NERO_PHASE DRM CHECK FAILURE
} NERO MAJOR PHASE;

=100,
=101,
=105,
=106,
=107,
=108,
=111,
=112,
=113

=114,
=115,
=169

Identifier Introduced in NeroAPI version
NERO_MAJOR_PHASE 5.0.3.9
NERO_PHASE_BUP_ACTIVATED 55.7.8
NERO_PHASE_DVDVIDEO DETECTED 5.5.7.8
NERO_PHASE_DVDVIDEO REALLOC_STARTED 55.7.8
NERO_PHASE_DVDVIDEO_ REALLOC_COMPLETED 55.7.8
NERO_PHASE_CONTINUE_FORMATTING 5.5.8.0
NERO_PHASE_SEAMLESSLINK_ACTIVATED 5.5.8.2
NERO_PHASE_FORMATTING_SUCCESSFUL 5.5.8.2
NERO_PHASE_DVDVIDEO_ REALLOC_NOTNEEDED 5.5.9.3
NERO_PHASE DVDVIDEO REALLOC_FAILED 5.5.9.3
NERO_PHASE_FAIL_CACHE 6.0.0.0
NERO_PHASE_ABORT_CACHE 6.0.0.0
Nero AG 62

NeroAPI v6.6.0.1

Identifier Introduced in NeroAPI version

NERO_PHASE_FAIL_TEST 6.0.0.0
NERO_PHASE_ABORT_TEST 6.0.0.0
NERO_PHASE_FAIL _SIMULATE 6.0.0.0
NERO_PHASE_ABORT_SIMULATE 6.0.0.0
NERO_PHASE_FAIL_WRITE 6.0.0.0
NERO_ PHASE_ABORT_WRITE 6.0.0.0
NERO_PHASE_FAIL_SIMULATE_NOSPD 6.0.0.0
NERO_PHASE_ABORT_SIMULATE_NOSPD 6.0.0.0
NERO_PHASE_FAIL WRITE_NOSPD 6.0.0.0
NERO_PHASE_ABORT_WRITE_NOSPD 6.0.0.0
NERO_PHASE_ABORT_WRITE_NOSPD 6.0.0.0
NERO_PHASE_PREPARE_ITEMS 6.0.0.0
NERO_PHASE_VERIFY_COMPILATION 6.0.0.0
NERO_PHASE_VERIFY_ABORTED 6.0.0.0
NERO_PHASE_VERIFY_END OK 6.0.0.0
NERO_PHASE_VERIFY_END_FAIL 6.0.0.0
NERO_PHASE_FORMATTING_FAILED 6.0.0.0
NERO_PHASE_PREPARE_CD 6.0.0.0
NERO_PHASE_DONE_PREPARE_CD 6.0.0.0
NERO_PHASE_FAIL_PREPARE_CD 6.0.0.0
NERO_PHASE_ABORT_PREPARE_CD 6.0.0.0
NERO_PHASE_DRM_CHECK_FAILURE 6.3.0.6

7.1.34. NERO_SET _MAJOR_PHASE_CALLBACK

This callback tells the application which phase of the burn process NeroAPI is
currently in.

typedef void (NERO CALLBACK ATTR *NERO SET MAJOR PHASE CALLBACK) (void
*pUserData, NERO MAJOR PHASE phase,void *reserved) ;

Identifier Introduced in NeroAPI version
NERO_SET _MAJOR_PHASE_ CALLBACK 5.0.3.9

7.1.35. NERO_MEDIA_SET

NERO_MEDIA_SET represents a set of several media.

typedef DWORD NERO MEDIA SET;

Identifier Introduced in NeroAPI version
NERO_MEDIA_SET 55.8.0

Nero AG 63

NeroAPI v6.6.0.1

7.1.36.

The bit combinations of NERO_MEDIA_TYPE have a relatively uncommon format

NERO_MEDIA_TYPE

to ensure binary compatibility.

This might lead to unexpected behavior. For example when checking (mediaType

& MEDIA_CDRW) the result will be true, even if mediaType=MEDIA_CDR.
So it is better to test for (mediaType&MEDIA_CDRW) == MEDIA_CDRW.

typedef enum tag NERO MEDIA TYPE

{
MEDIA NONE
MEDIA CD

MEDIA DDCD
MEDIA DVD M
MEDIA DVD P
MEDIA DVD_ RAM
MEDIA ML
MEDIA MRW

MEDIA NO CDR
MEDIA NO CDRW
MEDIA CDRW
MEDIA CDR
MEDIA DVD_ROM
MEDIA CDROM

MEDIA NO DVD M RW
MEDIA NO DVD M R
MEDIA NO DVD P RW
MEDIA NO DVD P R
MEDIA DVD M R
MEDIA DVD M RW
MEDIA DVD P R
MEDIA DVD P RW
MEDIA FPACKET
MEDIA VPACKET
MEDIA PACKETW

MEDIA HDB
MEDIA DVD P R9
MEDIA DVD_ ANY

} NERO MEDIA TYPE;

0,
0x00001,

0x00002,
0x00004,
0x00008,
0x00010,
0x00020,
0x00040,

0x00080,
0x00100,
MEDIA CD|MEDIA NO CDR,
MEDIA CD|MEDIA NO CDRW,
0x00200,
0x00400,

0x00800,

0x01000,

0x02000,

0x04000,

MEDIA DVD M|MEDIA NO DVD M RW,
MEDIA DVD M|MEDIA NO DVD M R,
MEDIA DVD P|MEDIA NO DVD P RW,
MEDIA DVD P|MEDIA NO DVD P R,
0x08000,

0x10000,

MEDIA MRW|MEDIA FPACKET

|MEDIA VPACKET

0x20000

0x40000),

MEDIA DVD M|MEDIA DVD P|
MEDIA DVD RAM| MEDIA DVD P R9

Description of enumerators

MEDIA_NONE No media present.
MEDIA_CD CD-R/RW
MEDIA_DDCD DDCD-R/RW
MEDIA_DVD_M DVD-R/RW

Nero AG

64

NeroAPI v6.6.0.1

Description of enumerators

MEDIA_DVD_P DVD+RW

MEDIA_DVD_ANY Any DVD-Recorder

MEDIA_DVD_RAM DVD-RAM

MEDIA_ML ML (Multi Level disc)

MEDIA_MRW Mt. Rainier

MEDIA_NO_CDR Exclude CD-R

MEDIA_NO_CDRW Exclude CD-RW

MEDIA_CDRW CD-RW

MEDIA_CDR CD-R

MEDIA_DVD_ROM DVD-ROM (non writable)

MEDIA_CDROM CD-ROM (non writable)

MEDIA_NO_DVD_M_RW Exclude DVD-RW

MEDIA_NO_DVD_M_R Exclude DVD-R

MEDIA_NO_DVD_P_RW Exclude DVD+RW

MEDIA_NO_DVD_P_R Exclude DVD+R

MEDIA_DVD_M_R DVD-R

MEDIA_DVD_M_RW DVD-RW

MEDIA_DVD_P_R DVD+R

MEDIA_DVD_P_RW DVD+RW

MEDIA_FPACKET Fixed Packet writing

MEDIA_VPACKET Variable Packet writing

MEDIA_PACKETW A bit mask for packet writing

MEDIA_HDB HD-Burn

MEDIA_DVD_P_R9 Double Layer DVD

Identifier Introduced in NeroAPI version
NERO_MEDIA_TYPE 5543
MEDIA_NONE 5.5.9.4
MEDIA_NO_CDR 5.5.94
MEDIA_NO_CDRW 5.5.94
MEDIA_CDRW 5.5.9.4
MEDIA_CDR 5.5.9.4
MEDIA_DVD_ROM 55.94
MEDIA_CDROM 5.5.9.4
MEDIA_NO_DVD_M_RW 5.5.9.10
MEDIA_NO_DVD_M_R 5.5.9.10
MEDIA_NO_DVD_P_RW 5.5.9.10
MEDIA_NO_DVD_P_R 5.5.9.10
MEDIA_DVD_M_R 5.5.9.10
MEDIA_DVD_M_RW 5.5.9.10
MEDIA_DVD_P_R 5.5.9.10
MEDIA_DVD_P_RW 5.5.9.10
MEDIA_FPACKET 5.5.9.10
MEDIA_VPACKET 5.5.9.10
MEDIA_PACKETW 5.5.9.10

Nero AG 65

NeroAPI v6.6.0.1

Identifier Introduced in NeroAPI version
MEDIA _HDB 55104
MEDIA DVD_P_R9 6.0.0.29

7.1.37. NERO_MEDIUM_TYPE

This type is obsolete and should not be used anymore. Please use
NERO_MEDIA_TYPE instead.

typedef enum
{
NMT UNKNOWN,
NMT CD ROM,
NMT CD RECORDABLE,
NMT CD REWRITEABLE
} NERO MEDIUM TYPE;

Description of enumerators

NMT_UNKNOWN Unknown medium

NMT_CD_ROM CD ROM

NMT_CD_RECORDABLE CD Recordable (CDR)

NMT_CD_REWRITEABLE CD Rewritable (CDRW)

Identifier Introduced in NeroAPI version
NERO_MEDIUM_TYPE 5.0.3.9

7.1.38. NERO_PROGRESS

Is used for passing required callback function pointers to the NeroBurn function.
npDisableAbortCallback will be called only if the NBF_DISABLE_ABORT flag is
given to the NeroBurn function.

npSubTaskProgressCallback provides the write buffer fill level.

typedef struct tag NERO PROGRESS
{
NERO PROGRESS CALLBACK npProgressCallback;
NERO ABORTED CALLBACK npAbortedCallback;
NERO ADD LOG LINE CALLBACK npAddLogLineCallback;

NERO SET PHASE CALLBACK npSetPhaseCallback;
NERO DISABLE ABORT CALLBACK npDisableAbortCallback;

NERO SET MAJOR PHASE CALLBACK npSetMajorPhaseCallback;
NERO PROGRESS CALLBACK npSubTaskProgressCallback;
} NERO_PROGRESS;

Identifier Introduced in NeroAPI version
NERO_PROGRESS 5.0.3.9
npSetMajorPhaseCallback 5.5.5.8

Nero AG 66

NeroAPI v6.6.0.1

Identifier Introduced in NeroAPI version
npSubTaskProgressCallback 5.5.6.6

7.1.39. NERO_PROGRESS_CALLBACK

This function needs to return TRUE if the user wants to abort.

The application may provide callback functions to set the different parts of this
display. All of them may be NULL.

typedef BOOL (NERO_CALLBACK_ATTR *NERO_PROGRESS_CALLBACK)
(void*pUserData, DWORD dwProgressInPercent) ;

Identifier Introduced in NeroAPI version
NERO_PROGRESS_CALLBACK 5.0.3.9

7.1.40. NERO_SCSI_DEVICE_INFO

This struct provides information about a device. It is wused in
NERO_SCSI_DEVICE_INFOS, the return type of NeroGetAvailableDrivesEx.
Apart from that, it is a required parameter when opening a device by a call to
NeroOpenDevice.

typedef struct tag NERO SCSI DEVICE INFO
{
char nsdiDeviceName [32];
char nsdiHostAdapterName [8] ;
DWORD nsdiHostAdapterNo;
DWORD nsdiDevicelID;
NEROAPI SCSI DEVTYPE nsdiDevType;
char nsdiDriveletter;
DWORD nsdiCapabilities;
NERO_SPEED INFOS nsdiReadSpeeds;
NERO SPEED INFOS nsdiWriteSpeeds;
const void *nsdiDriver;
char~* NsdiBufUnderrunProtName [64] ;
DWORD nsdiMandatoryBUPSpeed;
NERO MEDIA SET nsdiMediaSupport;
DWORD nsdiDriveBufferSize;
DWORD nsdiDriveError;
NERO MEDIA SET nsdiMediaReadSupport;
DWORD nsdiReserved[61];
} NERO SCSI DEVICE INFO;

Description of structure members
nsdiDeviceName Device name.
nsdiHostAdapterName | Host Adapter name.
nsdiHostAdapterNo Host Adapter number.
nsdiDevicelD Device ID.

Nero AG 67

NeroAPI v6.6.0.1

Description of structure members

nsdiDevType

Device type.

nsdiDriveletter

Windows drive letter or O if not available.

nsdiCapabilities

drive capabilities:

NSDI_ALLOWED

The drive can only be used if this
bit is set.

NSDI_DAO

Can write in DAO.

NSDI_READ_CD_TEXT

Can read CD text.

NSDI_VARIABLE_PAUSES_IN_TAO

See
natPauselnBlksBeforeThisTrack
below.

NSDI_DAO_WRITE_CD_TEXT

Writes CD text in DAO
(see natArtist/Title);
never supported in TAO.

NSDI_BURN_PROOF

Drive can use the burn proof
mode.

This flag is present for
compatibility, better use the
NSDI_BUF_UNDERRUN
_PROT flag to support other
technologies too

NSDI_IMAGE_RECORDER

Drive is the image recorder.

NSDI_UNDETECTED

NSDI_IDE_BUS

NSDI_SCSI_BUS

NSDI_BUF_UNDERRUN_PROT

Drive has a buffer underrun
protection feature (not necessary
Burn Proof)

NSDI_RESERVED

Must not be used.

NSDI_RESERVED2

Must not be used.

NSDI_ALLOW_CHANGE_
BOOKTYPE

DVD recorder can change
booktype of burned medium.

NSDI_DVDPLUSVR_SUPPORTED

This recorder can write DVD+VR.

nsdiReadSpeeds

See declaration of NERO_SPEED_INFOS.

nsdiWriteSpeeds

See declaration of NERO_SPEED_INFOS.

nsdiDriver

Opaque identifier of the internal driver, required by NeroOpenDevice.

nsdiBufUnderrunProt
Name

Buffer underrun protection technology name
The string will be empty if the technology has no name

nsdiMandatoryBUPSp
eed

It is highly recommended to enable buffer underrun protection when
burning at this speed or faster. Contains 0 if there is no recommendation.

nsdiMediaSupport

Bit field of supported media (constructed with the NERO_MEDIA_TYPE

enum).

nsdiDriveBufferSize

Drive buffer size (internal) in KB.

Nero AG

68

NeroAPI v6.6.0.1

Description of structure members

nsdiDriveError Contains a NERO_DRIVE_ERROR that occurred during generating the
information.

If it differs from NDE_NO_ERROR, some information like the drive
capabilities or the speeds might be wrong.

NerolsDeviceReady can be used to check if the drive is ready later and
update the device information with NeroUpdateDevicelnfo.

NDE_DISC_NOT_PRESENT* errors can be ignored.

nsdiMediaRead Bit field of supported readable media (constructed with the

Support NERO_MEDIA_TYPE enum).

nsdiReserved Should be zero.

Identifier Introduced in NeroAPI version

NERO_SCSI_DEVICE_INFO 5.0.3.9

NSDI_BUF_UNDERRUN_PROT 5.5.0.6

nsdiBufUnderrunProtName 5.5.0.6

nsdiMandatoryBUPSpeed 5.5.3.2

nsdiMediaSupport 554.1
5.5.8.0:

Changed type from DWORD to
NERO_MEDIA_SET

nsdiDriver 5.5.9.4:
Changed from void* to const void*

nsdiDriveBufferSize 5594
NSDI_RESERVED2 5.5.10.7
NSDI_ALLOW_CHANGE_BOOKTYPE 5.5.10.7
NSDI_DVDPLUSVR_SUPPORTED 6.0.0.0
nsdiDriveError 6.0.0.0
nsdiMediaReadSupport 6.0.0.8

Nero AG 69

NeroAPI v6.6.0.1

7.1.41. NERO_SCSI_DEVICE_INFOS

Used to create a list of NERO _SCSI _DEVICE_INFO structures. It is the return
type of NeroGetAvailableDrivesEx.

struct
tag NERO SCSI DEVICE INFO

+nsdiDeviceMame:char [64]
+nsdiHostAdaptertame:char [8]

+nsdiHostAdapterMo: DYWORD struct
struct +nsdiDevicelD:DWORD tag NERO SPEED INFOS
tag NERO SCSI DEVICE INFOS +nsdiDevType:NEROARPI_SCSI_DEVTYFE
+nsdiDrivelLetter:char f<o—== +nsiNumSupporttedSpeeds DWORD
+nsdisHumDevinfos DWORD - = +nsdiCapabilities:DWORD +nsiBaseSpeedkBs DWORD
+nsdisDevinfos:NERO_SCSI_DEVICE_IMFO [1] +hsdiReadSpeeds NERO_SPEED_INFOS +hsiSupporttedSpeedskKBs DWWORD [F4]
+nsdivirite Speeds:NERO_SPEED_INFOS +nsiSupportedSpeeds: DWVORD [64]
+nsdiDrivervoid * < = +nsiReserved: DWORD [32]
+nsdiBufUnderrunProtiarme:char [64]
+nsdiMandatoryBUPSpeed:DWORD
+nsdiMediaSupport DWORD

+nsdiResened DWORD [64]

typedef struct tag NERO SCSI DEVICE INFOS
{

DWORD nsdisNumDevInfos;

NERO SCSI DEVICE INFO nsdisDevInfos([1];
} NERO SCSI DEVICE INFOS;

Description of structure members

nsdisNumDevInfos Number of entries in nsdisDevlInfos.

nsdisDevInfos See declaration of NERO_SCSI_DEVICE_INFO.

Identifier Introduced in NeroAPI version
NERO_SCSI_DEVICE_INFOS 5.0.3.9

Nero AG 70

NeroAPI v6.6.0.1

7.1.42. NERO_SET_PHASE_CALLBACK

Set the phase line. The text pointer becomes invalid after returning from this

function.

typedef void (NERO CALLBACK ATTR *NERO SET PHASE CALLBACK) (void
*pUserData, const char *text);

Identifier

Introduced in NeroAPI version

NERO_SET_PHASE_CALLBACK

5.0.3.9

7.1.43. NERO_SETTINGS

This struct needs to be passed when calling the Nerolnit function.

struct
tag NERO SETTINGS

+nsthleroFilesPath:const char™
+nstvendorconst char®
+nstSofbware:const char®
+nstLanguageFile:const char®
+nstldle:MERC_CALLBACK

+nstEnableCverburn:BOOL
+nstOverhurnSize: DWORD

+nstllserDialog:NERO_CALLBACK

typedef struct tag NERO SETTINGS

{

const char *nstNeroFilesPath;

const char *nstVendor,

struct
tag NERO CALLEBACK
o
+ncCallbackFunctionwoid *
+ncldserDatavoid *
o
*nstSoftware;

const char *nstLanguageFile;

NERO CALLBACK nstIdle;

NERO CALLBACK nstUserDialog;
BOOL nstEnableOverburn;

DWORD nstOverburnSize;
} NERO_SETTINGS;

Description of structure members

nstNeroFilesPath

Directory name with trailing '\' of where to find the additional
Nero DLL and text files.

nstVendor Path for registry setting. Use “ahead”.
nstSoftware Path for registry settings. Use "Nero - Burning Rom" for Nero
application's settings.
Nero AG 71

NeroAPI v6.6.0.1

Description of structure members

nstLanguageFile Name of the Nero language file;
relative to nstNeroFilesPath (e.g. "Nero.txt")
nstldle NERO_IDLE_CALLBACK, may be NULL
nstUserDialog NERO_USER_DIALOG, must not be NULL, see
"NeroUserDialog.h" for details
nstEnableOverburn Overburn settings:

Overburning (writing more than the nominal capacity of a disc)
is allowed if all of this is true:

NstEnableOverburn == TRUE

NstOverburnSize >= amount of required blocks for compilation
The drive supports it

DAO is used.

Even then, overburning has to be acknowledged via callback
(see DLG_OVERBURN in "NeroUserDialog.h").

nstOverburnSize In blocks
Identifier Introduced in NeroAPI version
NERO_SETTINGS 5.0.3.9

7.1.44. NERO_SPEED_INFOS

This struct will be returned by NeroGetAvailableSpeeds. Two instances of it are
used in the NERO_SCSI _DEVICE_INFO struct, for read and write speeds that a
particular device supports.

typedef struct tag NERO SPEED INFOS
{
DWORD nsiNumSupportedSpeeds;
DWORD nsiBaseSpeedKBs;
DWORD nsiSupportedSpeedsKBs[64];
DWORD nsiSupportedSpeeds|[64];
DWORD nsiReserved[32];
} NERO_SPEED INFOS;

Description of structure members

nsiNumSupportedSpeeds 1 if the speed cannot be changed.

nsiBaseSpeedKBs Speed corresponding to 1X for the selected media in KB/s.

nsiSupportedSpeedsKBs List of possible speeds in KB/s

nsiSupportedSpeeds List of possible speeds in multiple of 150KB/s (1X for CD)
(present for compatibility)

nsiReserved Reserved for future use.

Identifier Introduced in NeroAPI version

NERO_SPEED_INFOS 5.0.3.9

Nero AG 72

NeroAPI v6.6.0.1

7.1.45. NERO_STATUS_CALLBACK

This callback is used as a part of the data exchange between the NeroAPI and an
application.

typedef BOOL (NERO CALLBACK ATTR *NERO STATUS CALLBACK)
(void *pUserData) ;

Identifier Introduced in NeroAPI version
NERO_STATUS_ CALLBACK 5.0.3.9

7.1.46. NERO_TEXT_TYPE

This type is used by the NERO_ADD LOG LINE_CALLBACK to indicate the
nature the textual information.

typedef enum
{
NERO TEXT INFO,
NERO TEXT STOP,
NERO TEXT EXCLAMATION,
NERO TEXT QUESTION,
NERO TEXT DRIVE,
NERO_TEXT FILE,
NERO TEXT UNSPECIFIED
} NERO_TEXT TYPE;

Description of enumerators

NERO_TEXT_INFO Informative text.

NERO_TEXT_STOP Some operation stopped prematurely
NERO_TEXT_EXCLAMATION Important information.

NERO_TEXT_QUESTION A question which requires an answer.
NERO_TEXT_DRIVE A message concerning a CD-ROM drive or recorder.
NERO_TEXT_FILE A message concerning a file.
NERO_TEXT_UNSPECIFIED No type specified.

Identifier Introduced in NeroAPI version
NERO_TEXT_TYPE 5.0.3.9

Nero AG 73

NeroAPI v6.6.0.1

7.1.47. NERO_TRACK_INFO

A list of this type is contained in NERO_CD_INFO to provide details about every
track.

typedef struct tag NERO TRACK INFO
{
DWORD ntiSessionNumber;
DWORD ntiTrackNumber;
NERO TRACK TYPE ntiTrackType;
DWORD ntiTrackStartBlk;
DWORD ntiTrackLengthInBlks;
char ntiArtist[65];
char ntiTitle[65];
char ntiISRC[13];
DWORD ntiBlockSize;
DWORD ntiReserved[28];
} NERO TRACK INFO;

Description of structure members

ntiSessionNumber Session Number.

ntiTrackNumber Track Number.

ntiTrackType Track Type (Audio, Data, Unknown).

ntiTrackStartBlk Start Block of Track.

ntiTrackLengthInBlks | Length of Track in Blocks.

ntiArtist[65] Name of Artist for Audio Tracks.

ntiTitle[65] Title of Song for Audio Tracks.

ntilSRC[13] If NGCDI_READ _ISRC is present: 12 char ISRC (International Standard
Recording Code) + terminator.

ntiBlockSize Size of one block in bytes.

ntiReserved[28] Should be zero.

Identifier Introduced in NeroAPI version

NERO_TRACK_INFO 5.5.8.3

ntilISRC 5.5.84

ntiBlockSize 6.0.0.0

Nero AG 74

NeroAPI v6.6.0.1

7.1.48. NERO_TRACK_TYPE

This enum is a member of the NERO_TRACK INFO struct.

typedef enum
{
NTT UNKNOWN,
NTT DATA,
NTT AUDIO
} NERO_TRACK_TYPE;

Identifier Introduced in NeroAPI version
NERO_TRACK_TYPE 5.0.3.9

7.1.49. NERO_TRACKMODE_TYPE

This type is contained in NERO_FREESTYLE_TRACK to specify the track type
that will be written.

typedef enum

{
NERO_TRACKMODE MODE1,
NERO_TRACKMODE MODE2_ FORM1,

NERO TRACKMODE AUDIO
} NERO_ TRACKMODE TYPE;

Description of enumerators
NERO_TRACKMODE_MODE1 |2048 Bytes per sector data track

NERO_TRACKMODE_MODE2_ |2048 Bytes per sector, used for multisession
FORM1

NERO_TRACKMODE_AUDIO 2352 Bytes per sector, standard audio track

Identifier Introduced in NeroAPI version
NERO_TRACKMODE_TYPE 5.0.3.9

7.1.50. NERO_VIDEO_ITEM_TYPE

This enum is used in NERO_VIDEO_ITEM to determine the format of the video
data.

typedef enum
{

NERO_MPEG ITEM,

NERO JPEG ITEM,

NERO NONENCODED VIDEO ITEM,
} NERO VIDEO ITEM TYPE;

Nero AG 75

NeroAPI v6.6.0.1

Description of enumerators
NERO_MPEG_ITEM Item is of MPEG type.
NERO_JPEG _ITEM ltem is of JPEG type.
NERO_NONENCODED_VIDEO__ | The source file name will be an AVI file which will be encoded
ITEM into MPG by the NeroAPI.
Identifier Introduced in NeroAPI version
NERO_VIDEO_ITEM_TYPE 5.0.3.9
NERO_NONENCODED_VIDEO_ITEM 5.5.7.8
NERO_DIB_ITEM 6.0.0.24:

Removed

7.1.51. NERO_VIDEO_ITEM

A list of NERO_VIDEO_ITEM structs is contained in NERO_WRITE_VIDEO_CD.

typedef struct tag NERO VIDEO ITEM
{
DWORD nviPauseAfterItem;
char nviSourceFileName[250];
const char *nvilLongSourceFileName;
NERO VIDEO ITEM TYPE nviItemType;
} NERO_VIDEO ITEM;

Description of structure members
nviPauseAfterltem Pause in number of blocks (75 blocks = 1 second).
nviSourceFileName Deprecated, use nviLongSourceFileName instead.
nviLongSourceFileName MPG, JPG or AVI file.
nviltemType Callback functions can only be used for MPG files.
Identifier Introduced in NeroAPI version
NERO_VIDEO_ITEM 5.0.3.9
nviData 6.0.0.0
Removed.
nviSourceFileName 6.0.0.0:
Size changed from 236 to 250.

Nero AG 76

NeroAPI v6.6.0.1

7.1.52. NERO_VIDEO_RESOLUTION

Used by the NERO_WRITE_VIDEO_CD structure.

typedef enum
{
NERO_VIDEO RESOLUTION PAL = 0,
NERO VIDEO RESOLUTION NTSC = 1
} NERO_VIDEO RESOLUTION;

Identifier Introduced in NeroAPI version
NERO_VIDEO_RESOLUTION 6.0.0.17

7.1.53. NERO_VMS_INFO

Virtual multisession is a technique to allow writing multisession discs on media
types that do not support normal multisession, e.g. DVD-/+RW.

This structure is the return type of NeroGetVMSInfo.

typedef struct tag NERO VMS INFO
{

DWORD nvmsiNextWritableAddress;
DWORD nvmsiNumSessions;
DWORD nvmsiReserved[32];

NERO_VMSSESSION nvmsiSessionInfo[l];
} NERO VMS INFO;

Description of structure members

nvmsiNextWritableAddress The next writable address of the media, it may be used for
free space calculation.

nvmsiNumSessions Number of sessions stored on the VMS medium.

nvmsiReserved Should be zero.

nvmsiSessioninfo One entry per session.

Identifier Introduced in NeroAPI version

NERO_VMS_INFO 6.0.0.10

Nero AG 77

NeroAPI v6.6.0.1

7.1.54. NERO_VMSSESSION

This structure describes a single session entry and is used as member in

NERO_VMS_INFO.

typedef struct tag NERO VMSSESSION

{

char nvmssSessionName [256] ;

struct tm nvmssCreationTime;
DWORD nvmssNextWritableAddress;
DWORD nvmssReserved[32];

} NERO VMSSESSION;

Description of structure members

nvmssSessionName

The name of the session (volume name).

nvmssCreationTime

The creation time of the session.

nvmssNextWritableAddress

The first block that is not occupied by this session.

nvmssReserved

Should be zero.

Identifier

Introduced in NeroAPI version

NERO_VMSSESSION

6.0.0.10

7.1.55. NERO_WAITCD_TYPE

This enum is used by

the NERO_USER_DIALOG callback and the

NeroGetLocalizedWaitCDTexts function.

Due to historical reasons, the enum type and some of its enumerators refer to CD
media. Please bear in mind that this type can be used with DVD media as well!

typedef enum

{

NERO_WAITCD WRITE,
NERO_WAITCD SIMULATION,
NERO_WAITCD AUTOEJECTLOAD,
NERO_WAITCD REINSERT,
NERO_WAITCD NEXTCD,
NERO_WAITCD ORIGINAL,
NERO_WAITCD WRITEPROTECTED,
NERO WAITCD NOTENOUGHSPACE,
NERO_WAITCD NEWORIGINAL,
NERO WAITCD EMPTYCD,
NERO_WAITCD WRITE EMPTY,

NERO WAITCD SIMULATION EMPTY,

NERO WAITCD WRITEWAVE,
NERO WAITCD MULTISESSION,

Nero AG

78

NeroAPI v6.6.0.1

NERO WAITCD MULTISESSION SIM,
NERO WAITCD MULTI REINSERT,
NERO_WAITCD DISCINFOS FAILED,
NERO_WAITCD MEDIUM UNSUPPORTED,
NERO_WAITCD AUTOEJECTLOAD VER,
NERO_WAITCD REINSERT VER,

NERO WAITCD NOFORMAT,
NERO_WAITCD WRONG MEDIUM,

NERO WAITCD WAITING,

NERO WAITCD EMPTYCDRW,
NERO WAITCD NOTENOUGHSPACERW,
NERO WAITCD NOTENOUGHSPACE 80MIN,

NERO_WAITCD MAX
} NERO WAITCD TYPE;

Description of enumerators

NERO_WAITCD_WRITE

"Please insert the disc to write to..."

NERO_WAITCD_SIMULATION

"Please insert a disc to use during simulation... (Nothing will
be written on the disc.)”

NERO_WAITCD_
AUTOEJECTLOAD

"Please do not remove the disc! Your recorder requires this
eject between simulation and burning. The disc will be
reloaded automatically before continuing with burning...”

NERO_WAITCD_REINSERT

"Please do not remove the disc!

Your recorder requires this eject between simulation and
burning. Please reinsert the disc..."

NERO_WAITCD_NEXTCD

"Please remove the disc and insert the next recordable disc to
write to...”

NERO_WAITCD_ORIGINAL

"Please insert the original disc."

NERO_WAITCD_ "This disc is not writable.
WRITEPROTECTED Please insert a writable disc..."
NERO_WAITCD_ "There is not enough space to burn this compilation onto this
NOTENOUGHSPACE disc.

Please insert another disc that provides more space..."
NERO_WAITCD_ "The disc is blank, invalid nor a multisession disc.
NEWORIGINAL

Please insert original disc.”

NERO_WAITCD_EMPTYCD

"The disc is not empty.
Please insert an empty disc."

NERO_WAITCD_WRITE_
EMPTY

"Please insert an empty disc to write to..."

NERO_WAITCD_SIMULATION_
EMPTY

“Please insert an empty disc to use during simulation...
(Nothing will be written on the disc).”

NERO_WAITCD_WRITEWAVE

"The disc is blank. Please insert original disc...”

NERO_WAITCD_
MULTISESSION

"Nero is checking for the disc, please wait ...

To burn this multisession compilation you need the disc, which
contains the previous backup sessions. Please insert this disc
if you haven't done it before.”

NERO_WAITCD_
MULTISESSION_SIM

"To simulate this multisession compilation you need the disc,
which contains the previous backup sessions. Please insert
this disc. (Nothing will be written on disc)."

Nero AG

79

NeroAPI v6.6.0.1

Description of enumerators

NERO_WAITCD_MULTI_
REINSERT

"Please do not remove the disc! Your recorder requires this
eject between simulation and burning. Please reinsert the
same Multisession disc..."

NERO_WAITCD_DISCINFOS_
FAILED

"Disc analysis failed. The error log contains more information
about the reason."

NERO_WAITCD_MEDIUM_
UNSUPPORTED

"The recorder does not support this type of media!
Please insert a correct disc to write to..."

NERO_WAITCD_
AUTOEJECTLOAD_VER

"Please do not remove the disc!

Your recorder requires that the disc be ejected between
burning and verification. The disc will be reloaded
automatically when burning is to continue..."

NERO_WAITCD_REINSERT_
VER

"Please do not remove the disc!

Your recorder requires that the disc be ejected between
burning and verification. Please reinsert the disc...”

NERO_WAITCD_NOFORMAT

"The disc is not formatted. Please insert a formatted disc.”

NERO_WAITCD_WRONG _
MEDIUM

"Sorry, your compilation cannot be written on this kind of disc.
Please insert a disc of the correct type or modify the settings

of your compilation to make them compatible with the current
disc."

NERO_WAITCD_WAITING

"--- Accessing disc, please wait ---"

NERO_WAITCD_EMPTYCDRW

"The disc is not empty."

NERO_WAITCD_ "There is not enough space to burn the compilation onto this
NOTENOUGHSPACERW disc."
NERO_WAITCD_ "There is not enough space to burn the compilation onto this

NOTENOUGHSPACE_80MIN

disc. Please insert a 80min/700MB media"

NERO_WAITCD_MAX

"unknown NERO_WAITCD_TYPE"

Identifier Introduced in NeroAPI version
NERO_WAITCD_WRONG_MEDIUM 5.5.5.6
NERO_WAITCD_ WAITING 5.5.10.26
NERO_WAITCD_EMPTYCDRW 6.0.0.20
NERO_WAITCD_NOTENOUGHSPACERW 6.0.0.20
NERO_WAITCD _NOTENOUGHSPACE_80MIN 6.0.0.20
Nero AG 80

NeroAPI v6.6.0.1

7.1.56. NERO_WRITE_CD

NERO WRITE _CD is passed to the NeroBurn function in the pWriteCD
parameter, when burning ISO/Audio media.

Due to historical reasons, this type refers to CD media. Please bear in mind that it
can be used with DVD media as well!

struct et
tag NERO WRITE CD tag NERO AUDIO TRACK
+rwcdArtistcanst char* struct
+nwcdTille:const char © rnaiauselnblksBelreThis Track DWORD tagy NERO DATA EXCHANGE

+mwedlsoTrackstruct CHerolsoTrack™ matumindexPosiions:DWORD
+rCdCDERA-BO0L +natRelativelndexBIkPositions DVWORD [48]

+mucdpCDStarmpyoid = ——=f *natTille:const char®

+natArtistconst char®
+nwedNumTracks DWORD
+rwcoMediaTyne NERO_MEDIA_TYPE +natdourceDataBxchg NERO_DATA_EXCHANGE

+mwedResenved: DWORD [32] ::::;zli‘z'gf;xggg"{g? Unnameds@s
+nwedTracks:NERO_AUDIO_TRACK [1]

+ndeType:NERQ_DATA_ERXCHANGE_TYPE

01

struct
CNeroisoTrack

CNerolsoEriry

+~CMNerolsoEntry
+Crealelirectorylierstor CNerolso

+Geihame.constchar = .
+Gettengtiong +GetName.const char

+CreateHandle: CherolsoH andle * : Sgijflﬂ{;g%’{”e’am' Cerolsolterator
+GelDataStanSec:DWORD <] ;

+Usehode2BOOL
+|gDataFixed:BOOL +UseRackRidge BOOL
+GelEntyTime:BOOL LBUMISOBOOL
+BurnUDF.BOOL

+~CNeralsoTrack

+GetRackRidgelnfoiconst CRAckR

+GetPriotities void #GelLengthilong

:zizzzg; :": #OreateHandle: CHerolsoHandle =
+BurnOptions:DWORD
-reserved3:int

typedef struct tag NERO WRITE CD
{

const char *nwcdArtist;

const char *nwcdTitle;

struct CNeroIsoTrack *nwcdIsoTrack;

BOOL nwcdCDExtra;

void *nwcdpCDStamp;

DWORD nwcdNumTracks;

NERO MEDIA TYPE nwcdMediaType;

BOOL nwcdAudioMaster;

DWORD nwcdReserved[31];

NERO AUDIO TRACK nwcdTracks[1];
} NERO WRITE CD;

Description of structure members
nwcdArtist May be NULL.
nwcdTitle May be NULL.

nwcdlsoTrack If not NULL, then the disc will have an ISO track - please refer
to "NerolsoTrack.h".

nwCDEXxtra If TRUE and nwcdlsoTrack not NULL, then the resulting CD
will have audio in the first session and the data track in the
second, however, currently the NeroAPI does not add any of

Nero AG 81

NeroAPI v6.6.0.1

Description of structure members
the special CD Extra files to the data track.
nwcdpCDStamp Point on a CDStamp object if a particular CD is requested,
otherwise NULL.
nwcdNumTracks Number of Tracks.
nwcdMediaType Media on which the data should be written.
nwcdAudioMaster Create an Audio Master CD (if the recorder supports it).
nwcdReserved[31]
nwcdTracks See declaration of NERO_AUDIO_TRACK.
Identifier Introduced in NeroAPI version
NERO_WRITE_CD 5.0.3.9
nwcdMediaType 5543

7.1.57. NERO_WRITE_FILE_SYSTEM_CONTENT

This type is used when burning an IFileSystemDescContainer.

typedef struct tag NERO WRITE FILE SYSTEM CONTAINER
{
DWORD nwfscSize;
#ifdef cplusplus
FileSystemContent::
#else
struct
#endif
IFileSystemDescContainer *nwfscFSContainer;
NERO MEDIA TYPE nwfscMediaType;
DWORD nwfscBurnOptions;
DWORD nwfscReserved[32];
} NERO WRITE FILE SYSTEM CONTENT;

Description of structure members

nwfscSize fill this with
sizeof(NERO_WRITE_FILE_SYSTEM_CONTENT)

nwfscFSContainer A pointer to the IFileSystemDescContainer object.

nwfscMediaType Media on which the data should be written

nwfscBurnOptions Combination of NCITEF flags

nwfscReserved Should be zero

Identifier Introduced in NeroAPI version

NERO_WRITE_FILE_SYSTEM_CONTENT 5.5.6.0

Nero AG 82

NeroAPI v6.6.0.1

7.1.58.

NERO_WRITE_FREESTYLE_CD

This structure will allow you to write any type of CD Layout, e.g. containing a raw
data track at the beginning of the disc instead of a self-made ISO/UDF file system.
This is good for writing .iso images as can be downloaded everywhere on the net.

struct
tag NERO FREESTYLE TRACK

struct
tag NERO WRITE FREESTYLE CD

CNerolsoEntry

+nftStructure Size:DWORD
+nftPauselnBlksBeforeThisTrack DWORD
+nitflumindexPositions:DWORD
+nftRelativelndexBIkP ositions: DWORD [98]
+nftTitle:const char®

+nfthrtistconst char®
+nftSourceDataExchy:NERC_DATA_EXCHANGE
+nfiLengthinBlocks DWORD
+nfiTracktype:NERC_TRACKMODE_TYPE

+rwfcdStructureSize:DWORD
+rwfcdArtist.const char

+rwfcdTitle:const char ™

+rwfedlsoTrack struct CMerolsoTrack™
+rwfed COExraBOOL
+hwfedpCOStampvoid *

+rwfcdMumTracks: DWORD
+rwfcdTracks:NERO_FREESTYLE_TRACK [1]

+~CMNerolsoEntry

+Getame: const char*
+Getlengthiong

+CreateHandiie: CherolsoHandie *
+GetDataStanSecDWORD
+IsDataFived:BOOL
+GetEntnyTime:BOOL

+GetPrioritiesvoid

struct
tag NERO DATA EXCHANGE

+ndeType NERO_DATA_EXCHANGE_TYPE

Unnamedafs

typedef struct

{

DWORD nwfcdStructureSize;

const char *nwfcdArtist;

const char *nwfcdTitle;
*nwfcdIsoTrack;

struct CNeroIsoTrack
BOOL nwfcdCDExtra;
void *nwfcdpCDStamp;

DWORD nwfcdNumTracks;
DWORD nwfcdBurnOptions;

#ifdef cplusplus

FileSystemContent::

#else //__cplusplus

struct

#endif// cplusplus

-reserved? int
-reservedziint
-reserved3int

+CreateDirectondterator CNeroisolterator *

+GetRockRidgelnfo:const CRockRidgelnfo *

CNerolsoTrack

struct

+~CMNerolsoTrack

+UsedolietBOOL
+UseModeZ:BO0L

+BumISO:BOOL
+BurmUJDFBOOL
#Getlength:lang

+Getameconst char™
+CreatelirectondteratorCNerolsolterator *

+UseRockRidge BOOL

#CreateHandle:CMerolsoHandle *
+BurnOptions: DWORD

IFileSystemDescContainer *nwfcdFSContainer
NERO MEDIA TYPE nwfcdMediaType;

DWORD nwfcdReserved([32];

Nero AG

83

NeroAPI v6.6.0.1

NERO FREESTYLE TRACK nwfcdTracks([1];
} NERO WRITE FREESTYLE CD;

Description of structure members

nwfcdStructureSize Fill this with sizeof(NERO_WRITE_FREESTYLE_CD).

nwfcdArtist may be NULL.

nwfcdTitle may be NULL.

nwfcdlsoTrack If not NULL, then the disc will have an ISO track - please refer
to the “ISO Track Classes” description.

nwfcdCDEXxtra If TRUE and nwfcdlsoTrack not NULL, then the resulting CD

will have audio in the first session and the data track in the
second, however, currently the NeroAPI does not add any of
the special CD Extra files to the data track.

nwfcdpCDStamp Point to a CDStamp object if a particular CD is requested,
otherwise NULL.

nwfcdNumTracks Number of tracks.

nwfcdBurnOptions Combination of NCITEF flags. Ignored if nwfcdFSContainer is
NULL.

nwfcdFSContainer If not NULL, then the disc will have an ISO track described by

this container. nwfcdlsoTrack must be NULL; otherwise the
container will be ignored.

nwfcdMediaType Media on which the data should be written.

nwfcdTracks[1] List of NERO_FREESTYLE_TRACKS.

nwfcdReserved[32] Should be zero.

Identifier Introduced in NeroAPI version
NERO_WRITE_FREESTYLE_CD 5.0.3.9
nwfcdBurnOptions 5.5.9.1
nwfcdFSContainer 5.5.91
nwfcdMediaType 5591
nwfcdReserved 5.5.9.1

Nero AG 84

NeroAPI v6.6.0.1

7.1.59. NERO_WRITE_IMAGE

Used when burning an image.

nwilmageLongFileName contains the name of the image file to burn. Supported
formats are NRG, ISO and CUE.

typedef struct tag NERO WRITE IMAGE
{
char nwiImageFileName[252];
const char *nwilongImageFileName;
NERO MEDIA TYPE nwiMediaType;
DWORD nwiReserved[32];
} NERO WRITE IMAGE;

Description of structure members
nwilmageFileName Deprecated, use nwiLonglmageFileName instead.
nwiLonglmageFileName Name of the NRG file to burn.
nwiMediaType Media on which the image should be written. If set to
MEDIA_NONE the default media type of the image will be
used.
Identifier Introduced in NeroAPI version
NERO_WRITE_IMAGE 5.0.3.9
nwilmageFileName 5.5.6.8:
ISO and CUE possible
6.0.0.0:
Size reduced from 256 to 252
nwiLonglmageFileName 6.0.0.0
nwiMediaType 6.3.0.6

Nero AG 85

NeroAPI v6.6.0.1

7.1.60. NERO_WRITE_VIDEO_CD

NERO_WRITE_VIDEO CD is passed to the NeroBurn function in the pWriteCD
parameter, when burning video content.

ChNerolsoERtry struct struct
tag NERO VIDEO ITEM tay NERO WRITE VIDEO CD
+nviPauseiterltern:DWORD +mwvedSYCD:BOOL
+~CheralsoEntry . .
i . . +mviSourceFileMame:char [256] b +rwvcdNumitems DWORD
+Createlirectonyiterator CNerolsofterator
v +hviltermn Type:MERO _WIDECQ_ITEM_TYFPE +hwwvecdlsoTrack struct CHerolsoTrack *

+Getiame const char*
+Getlangthiong

+CreateHandle. CNerolsoH andie *
+GetDataStartSec:DWORD
+|sDataFixed:BOOL
+GetEntryTime: BOOL
+GetRockRidgelnfo const CRockRidgelnfo *
+GetPrioritiesvoid

-reserved?int

-reserved2:int

-reseredding

+mwvcdTempPath:char [256]
+hcdResened DWWORD [32]
+nvcditems MERO _VIDEQ_ITEM [1]

0.1

struct
CNeroisoTrack

+~CMerlsoTrack
+Zetameconst char*

+Create Directonsterator:Cheral solterator =
+UseldolietBOOL
+Usedode2:BOOL
+UseRockRidge:BOOL
+Burnl3:BOOL

+BurnlUJDF:BOOL
#Getlength:long
#CreateHandle:CMerolsoHandle *
+BurnCptions: DWORD

typedef struct tag NERO WRITE VIDEO CD
{
BOOL nwvcdSVCD;
DWORD nwvcdNumItems;
struct CNeroIsoTrack “*nwvcdIsoTrack;
char nwvcdTempPath[252];
const char *nwvcdLongTempPath;
#ifdef cplusplus
VCDEngine: : IVCDFSContentGenerator * (*nwvcdCustomVCDEngine)
(VCDEngine: : IVCDMediaDescription*desc,
FileSystemContent: :IFileSystemDescContainer *pFSDC) ;
#else
void *nwvcdCustomVCDEngine;
fendif
NERO_VIDEO RESOLUTION nwvcdEncodingResolution;
DWORD nwvcdReserved[31];
NERO VIDEO ITEM nwvcdItems[1];
} NERO WRITE VIDEO CD;

Nero AG 86

NeroAPI v6.6.0.1

Description of structure members

nvedSVCD

If TRUE, write a SVCD.

nwvcdNumltems

Number of Video/Super Video ltems.

nwvcdlsoTrack

Pointer to an ISO Track.

nwvcdTempPath Deprecated, use nwvcdLongTempPath instead.
nwvcdLongTempPath Where the encoded files will be temporary stored.
nwvcdCustomVCDEnNgine

nwvcdEncodingResolution

Select the encoding resolution for the video.
This option only has effects for video items of type

NERO_NONENCODED_VIDEO_[TEM.

nwvcdReserved Should be zero.
nwvcdltems List of Video/Super Video Items.
Identifier Introduced in NeroAPI version
NERO_WRITE_VIDEO_CD 5.0.3.9
nwvcdTempPath 5553
nwvcdCustomVCDEngine 55.7.6
nwvcdTempPath 5.5.5.3:

Size reduced from 256 to 252.
nwvcdLongTempPath 5.5.5.3
nwvcdEncodingResolution 6.0.0.17

7.1.61. NEROAPI_BURN_ERROR

This is the return type of the NeroBurn function. It indicates whether the burn

process was successful or not, and provides a reason if it failed.

typedef enum
{

NEROAPI BURN_OK=0,

NEROAPI BURN UNKNOWN CD FORMAT,
NEROAPI BURN INVALID DRIVE,

NEROAPI BURN FATLED,

NEROAPI BURN FUNCTION NOT ALLOWED,
NEROAPI BURN DRIVE NOT ALLOWED,
NEROAPI BURN USER ABORT,

NEROAPI BURN BAD MESSAGE FILE

} NEROAPI BURN ERROR;

Identifier Introduced in NeroAPI version

NEROAPI_BURN_ERROR 5.0.3.9

NEROAPI_BURN_BAD_ MESSAGE_FILE 6.0.0.0
Nero AG 87

NeroAPI v6.6.0.1

7.1.62. NEROAPI_OPTION

Possible global Nero options. Used when calling NeroSetOption.

typedef enum

{
NEROAPI OPTION MSG FILE NAME,
NEROAPI OPTION WRITE BUFFER SIZE ,
NEROAPI OPTION USER DLG CALLBACK,
NEROAP I_OPT I ON_I DLE_CALLBACK o
NEROAPI OPTION OVERBURN

} NEROAP I OPTION;

Description of enumerators

NEROAPI_OPTION_MSG_FILE_NAME Used for changing the file name for the Nero
error messages.

NEROAPI_OPTION_WRITE_BUFFER_SIZE | Set write buffer size. Value points onto an integer
containing the size in byte.

NEROAPI_OPTION_USER DLG_ Set the user dialog callback, overwriting
CALLBACK nstUserDialog of the settings structure passed to
Nerolnit.

Pass a pointer to a NERO_CALLBACK structure
as value. After returning, the struct will contain
the previous user callback.

NEROAPI_OPTION_IDLE_CALLBACK Set the idle callback, overwriting nstldle of the
settings structure passed to Nerolnit.

Pass a pointer to a NERO_CALLBACK structure
as value. After returning, the struct will contain
the previous idle callback.

NEROAPI_OPTION_OVERBURN Enable/Disable overburning.

Value points to a DWORD containing the
overburn size in blocks. If the value is NULL,
disable overburning.

Identifier Introduced in NeroAPI version

NEROAPI_OPTION 5.0.3.9
NEROAPI_OPTION_WRITE_BUFFER_SIZE 5.5.5.0
NEROAPI_OPTION_USER_DLG_CALLBACK 6.0.0.0
NEROAPI_OPTION_IDLE_CALLBACK 6.0.0.0
NEROAPI_OPTION_OVERBURN 6.0.0.27

Nero AG 88

NeroAPI v6.6.0.1

7.1.63. NEROAPI_INIT_ERROR

Used when informing the user about the result of a call to Nerolnit. Provides some
additional information in case of failed initialization.

typedef enum

{
NEROAPI INIT OK=0,
NEROAPI INIT INVALID ARGS,
NEROAPI INIT UNSPECIFIED ERROR,
NEROAPI INIT INVALID SERIAL NUM,
NEROAPI INIT DEMOVERSION EXPIRED,
NEROAPI INIT ALREADY INITIALISED,
NEROAPI INIT CANNOT LOCK

} NEROAPI INIT ERROR;

Identifier Introduced in NeroAPI version

NERO _INIT_ERROR 5.0.3.9
NEROAPI_INIT_DEMOVERSION_EXPIRED 55.1.1
NEROAPI_INIT_ALREADY _INITIALISED 55.2.4
NEROAPI_INIT_CANNOT_LOCK 5552

7.1.64. NEROAPI_SCSI_DEVTYPE

Code to scan the SCSI/IDE bus and get information about the available
WORM/CD-ROM drives.

typedef enum
{

NEA SCSI DEVTYPE UNKNOWN,

NEA SCSI DEVTYPE WORM,

NEA SCSI DEVTYPE CDROM,

NEA SCSI DEVTYPE UNSUPPORTED WORM
} NEROAPI SCSI DEVTYPE;

Description of enumerators

NEA_SCSI_DEVTYPE_UNKNOWN | Type information not available
NEA_SCSI_DEVTYPE_WORM Write once. A CD-burner.
NEA SCSI_DEVTYPE_CDROM Read only. A CD-ROM drive.

NEA_SCSI_DEVTYPE_ Can write but is not supported by the NeroAPI.
UNSUPPORTED_WORM

Identifier Introduced in NeroAPI version
NEROAPI_SCSI_DEVTYPE 5.0.3.9
NEA_SCSI_DEVTYPE_UNSUPPORTED_WORM 55.6.5

Nero AG 89

NeroAPI v6.6.0.1

7.1.65.

NERODLG_ICON_TYPE

Used by the NERODLG_MESSAGEBOX structure.

typedef enum

{
NDIT INFO = O,
NDIT WARNING =
NDIT ERROR = 2,
NDIT QUESTION =3

} NERODLG ICON TYPE;

1,

Description of enumerators

NDIT_INFO An info icon.
NDIT_WARNING A warning icon.
NDIT_ERROR An error icon.

NDIT_QUESTION

A question icon.

Identifier

Introduced in NeroAPI version

NERODLG_ICON_TYPE

6.0.0.6

7.1.66.

typedef enum

{
NDMT OK = 0,
NDMT YESNO =
NDMT OKCANCEL
NDMT RETRYCANCEL

1,

NDMT ABORTRETRYIGNORE
NDMT YESNOCANCEL = 5
} NERODLG MESSAGE TYPE;

2,

NERODLG_MESSAGE_TYPE

= 4,

Description of enumerators

NDMT_OK An info dialog with only an OK button. The return value is
ignored.
NDMT_YESNO A dialog with a yes and a no button. Return

DLG_RETURN_YES for Yes and DLG_RETURN_NO for
No.

NDMT_OKCANCEL

A dialog with an OK and a Cancel button. Return
DLG_RETURN_OK for OK and DLG_RETURN_CANCEL
for Cancel.

NDMT_RETRYCANCEL

A dialog with a retry and a cancel button. Return
DLG_RETURN_RETRY for Retry and
DLG_RETURN_CANCEL for Cancel.

Nero AG

90

NeroAPI v6.6.0.1

Description of enumerators

NDMT_ABORTRETRYIGNORE A dialog with an abort, a retry and a ignore button. Return
DLG_RETURN_IGNORE for Ignore,
DLG_RETURN_RETRY for Retry and
DLG_RETURN_ABORT for Abort.

NDMT_YESNOCANCEL A dialog with a yes, a no and a cancel button. Return
DLG_RETURN_YES for Yes, DLG_RETURN_NO for No
and DLG_RETURN_CANCEL for Cancel.

Identifier Introduced in NeroAPI version
NERODLG _MESSAGE_TYPE 6.0.0.6

7.1.67. NERODLG_MESSAGEBOX

Used to describe a custom message box dialog. The data pointer will point to this
structure when a DLG_MESSAGEBOX user callback occurs.

typedef struct

{
NERODLG MESSAGE TYPE type;
NERODLG_ICON TYPE iconj;
NeroUserDlgInOut defaultReturn;
const char* message;

} NERODLG MESSAGEBOX;

Description of structure members

type The type of the message, see DLG_MESSAGE_TYPE.
icon The icon for the message, see DLG_ICON_TYPE.
defaultReturn The default return value.

message The message to display.

Identifier Introduced in NeroAPI version
NERODLG_MESSAGEBOX 6.0.0.6

7.1.68. NeroUserDIginOutEnum

Ask how to proceed by offering the user some choices.

Due to historical reasons, some of the enumerators refer to CD media.

Please bear in mind that the values can be used with DVD media as well!

typedef enum NeroUserDlgInOutEnum {

DLG_RETURN OK = -8,
DLG_RETURN_YES = -7,
DLG_RETURN RETRY = -6,
DLG_RETURN IGNORE = -5,
DLG_RETURN NO = -4,
DLG_RETURN CANCEL = -3,

Nero AG 91

NeroAPI v6.6.0.1

DLG RETURN ABORT = -2,
DLG RETURN NOT HANDLED = -1,

DLG RETURN EXIT = O,
DLG_RETURN FALSE = 0,
DLG RETURN TRUE = 1,
DLG DISCONNECT = 2,
DLG_RETURN ON RESTART = 3,
DLG RETURN RESTART = 4,
DLG RETURN CONTINUE = 5,
DLG DISCONNECT RESTART =
DLG_AUTO INSERT = 7,
DLG RETURN INSTALL DRIVER = 8,
DLG_RETURN OFF RESTART = 9,
DLG RESTART = 10,
DLG AUTO INSERT RESTART = 11,
DLG SETTINGS RESTART = 12,
DLG _OVERBURN = 13,
DLG AUDIO PROBLEMS = 14,
DLG WAITCD = 15,
DLG WAITCD REMINDER = 16,
DLG_WAITCD DONE = 17,
DLG _COPY QUALITY LOSS = 18,
DLG COPY FULLRISK = 19,
DLG FILESEL IMAGE = 20,
DLG BURNIMAGE CANCEL = 21,
DLG_NON EMPTY CDRW = 22,
DLG_COMP_REC_CONFLICT = 23,
DLG_WRONG MEDIUM = 24,
DLG ROBO MOVECD = 25,
DLG_ROBO MOVECD DONE = 26,
DLG ROBO USERMESSAGE = 27,
DLG_WAITCD MEDIA INFO = 28,
DLG MESSAGEBOX = 29,
DLG MAX

} NeroUserDlgInOut;

6,

Description of enumerators

DLG_RETURN_OK

Return code for DLG_ MESSAGEBOX: OK.

DLG_RETURN_YES

Return code for DLG_MESSAGEBOX: Yes.

DLG_RETURN_RETRY

Return code for DLG_MESSAGEBOX: Retry.

DLG_RETURN_IGNORE

Return code for DLG_MESSAGEBOX: Ignore.

DLG_RETURN_NO

Return code for DLG_ MESSAGEBOX: No.

DLG_RETURN_CANCEL

Return code for DLG_MESSAGEBOX: Cancel

DLG_RETURN_ABORT

Return code for DLG_ MESSAGEBOX: Abort.

DLG_RETURN_NOT_HANDLED

Return this if an enum is not handled by the
callback.

Nero AG

92

NeroAPI v6.6.0.1

Description of enumerators

DLG_RETURN_EXIT

Exit application / stop writing.

DLG_RETURN_FALSE

False.

DLG_RETURN_TRUE

True.

DLG_DISCONNECT

"Disconnect is turned off in the system
configuration.

This may cause serious problems while burning:
your disc might be damaged, or the system might
hang up."

DLG_RETURN_ON_RESTART

Turn on disconnect and restart windows.

DLG_RETURN_RESTART

Do not change the disconnect option and restart
windows.

DLG_RETURN_CONTINUE

Continue at your own risk.

(Use DLG_RETURN_EXIT instead to terminate
the process.)

DLG_DISCONNECT_RESTART

Same as DLG_DISCONNECT, but restarting has
been selected already and must not be canceled,
so valid return codes are only
DLG_RETURN_ON_RESTART and
DLG_RETURN_RESTART.

DLG_AUTO_INSERT

"Auto Insert Notification is turned on in the
system configuration.

This may cause serious problems while burning:
your disc might be damaged, or the system might
hang up. Nero is able to burn discs with Auto
Insert Notification turned on if all necessary
drivers are installed."

DLG_RETURN_INSTALL_DRIVER

Install 10O driver which temporarily disables auto
insert.

Note: this only works if the additional argument
for the callback is not NULL, otherwise it should
not be offered to the user.

DLG_RETURN_OFF_RESTART

Change autoinsert and restart Windows.

DLG_AUTO_INSERT_RESTART

"Auto Insert Notification is now OFF. You should
restart Windows."

(displayed after rebooting within program failed
and user has to do it manually).

The return code is irrelevant.

DLG_SETTINGS_RESTART

"Nero detected some modifications of your PC
system configuration and needs to modify some
settings. Please restart your PC to make

the changes become effective."

Allowed return values:
DLG_RETURN_RESTART

DLG_RETURN_CONTINUE

DLG_OVERBURN

"Sorry, this compilation contains too much data to
fit on the disc with respect to the normal disc
capacity. Do you want to try overburn writing at
your own risk (this might cause read errors at the
end of the disc or might even damage your
recorder)?"

Note: It is also possible, that SCSI/Atapi errors

Nero AG

93

NeroAPI v6.6.0.1

Description of enumerators

occur at the end of the simulation or burning.
Even in this case there is a certain chance, that
the disc is readable.

Allowed return values:
DLG_RETURN_TRUE
DLG_RETURN_FALSE

DLG_AUDIO_PROBLEMS

The tracks cannot be written as requested. A
detailed description of the problem is found in the
"data" parameter.

It is a DWORD with bits set according to the AUP
(Audio Problem) constants.

Return DLG_RETURN_TRUE to fix the problems
by adapting the track settings.

Return DLG_RETURN_FALSE to stop writing.

DLG_WAITCD

This dialog type differs slightly from the other
ones:

It should pop up a message and return
immediately while still showing the message, so
that the API can test for the expected disc in the
meantime.

During this time, the NERO_IDLE_CALLBACK
will be called to give the application a chance to
update its display and to test for user abort.
The API might call DLG_WAITCD several times
to change the text.

The text depends on the "data" argument that is
passed to the NERO_USER_DIALOG callback. It
is the enumeration NERO_WAITCD_TYPE
specified below.

DLG_WAITCD_REMINDER

It is time to remind the user of inserting the disc:
play a jingle, flash the screen, etc.

Called only once after a certain amount of time of
no disc being inserted.

DLG_WAITCD_DONE

Close the message box again, we are done.

DLG_COPY_QUALITY_LOSS

Tell the user that there will be quality loss during
the copy and ask if he wants to continue anyway.

DLG_COPY_FULLRISK

PROCEED AT YOUR OWN RISK message.

DLG_FILESEL_IMAGE

Ask the user the path of the file which will be
generated by the Image Recorder.

The "data" argument points on a 256 bytes buffer
that has to be filled with the image path.
Returning DLG_RETURN_EXIT will stop the burn
process.

DLG_BURNIMAGE_CANCEL

Tell that there is not enough space on disk to
produce this image.

DLG_NON_EMPTY_CDRW

Tell the user that the rewritable media is not
empty.

Starting from NeroAPI 5.5.3.0, the "data"
argument contains the device handle of the

Nero AG

94

NeroAPI v6.6.0.1

Description of enumerators

recorder.

It will only be called if the
NBF_DETECT_EMPTY_CDRW flag is given to
the NeroBurn function.

Returning DLG_RETURN_EXIT will stop the burn
process.

Returning DLG_RETURN_CONTINUE will
continue the burn process.

Returning DLG_RETURN_RESTART will ask the
user for another disc.

DLG_COMP_REC_CONFLICT

Tell the user that the compilation cannot be
written on that particular recorder and that the
user should modify his compilation settings or
burn the disc on another recorder, which
supports the required medium type.

DLG_WRONG_MEDIUM

Another type of medium must be used to burn
this compilation.

DLG_ROBO_MOVECD

Implementation of the DLG_ROBO_MOVECD
dialog types must behave like the DLG_WAITCD
type, that is, operate in a non-blocking way.

The data structure passed to this callback is
specified as * ROBOMOVEMESSAGE below.

DLG_ROBO_MOVECD_DONE

Destroy a MoveCD dialog. (void*)data cast to an
int will contain the * id of the MoveCD dialog to
be removed.

DLG_ROBO_USERMESSAGE

Show dialog message transmitted by the robot
driver.

Must return one of the constants below.

The data structure passed as the data pointer is
specified as ROBOUSERMESSAGE below.

Return DLG_RETURN_FALSE or
DLG_RETURN_TRUE.

DLG_WAITCD_MEDIA_INFO

Provide information about which media is
expected and which media is currently present in
the recorder.

The data pointer passed is a pointer on the
NERO_DLG_WAITCD_MEDIA_INFO structure.

The value returned is ignored.

DLG_MESSAGEBOX

Open a custom message box dialog. The type
and the message of the dialog are described with
a struct NERODLG_MESSAGEBOX which is
given as data pointer.

See comments for
NERODLG_MESSAGE_TYPE which values to
return.

DLG_MAX Not used.
Identifier Introduced in NeroAPI version
DLG_COMP_REC_CONFLICT 55.3.2
DLG_WRONG_MEDIUM 5.5.3.2
DLG_OVERBURN 6.0.0.27:

Nero AG 95

NeroAPI v6.6.0.1

Identifier Introduced in NeroAPI version

The data parameter is a pointer to

struct DLG_OVERBURN_INFO.
DLG_RETURN_OK 6.0.0.6
DLG_RETURN_YES 6.0.0.6
DLG_RETURN_RETRY 6.0.0.6
DLG_RETURN_IGNORE 6.0.0.6
DLG_RETURN_NO 6.0.0.6
DLG_RETURN_CANCEL 6.0.0.6
DLG_RETURN_ABORT 6.0.0.6
DLG_RETURN_NOT_HANDLED 6.0.0.6
DLG_MESSAGEBOX 6.0.0.6

7.1.69. ROBOMOVEMESSAGE

This struct is used in the context of the NeroUserDIgInOut callback.

typedef struct
{
int id;
ROBOMOVENODE source;
ROBOMOVENODE destination;
} ROBOMOVEMESSAGE ;

Description of structure members

id In future versions, we may have more than one
robot moving at a time. So this ID identifies the
movement action and will be used to remove it
with DLG_ROBO_MOVECD_DONE.

source Source position.

destination Destination position.

7.1.70. ROBOMOVENODE

Enumeration of node types.

typedef enum

{
RMN INPUT,
RMN RECORDER,
RMN OUTPUT,
RMN PRINTER,
RMN WASTEBIN

} ROBOMOVENODE ;

Nero AG 96

NeroAPI v6.6.0.1

7.1.71. ROBOUSERMESSAGE

This struct is used as data parameter when the NeroUserDIgIinOut callback is
called with the type DLG_ROBO_USERMESSAGE.

typedef struct

{
ROBOUSERMESSAGETYPE message_ type;
const char *message;

} ROBOUSERMESSAGE;

Description of structure members

message_type The type of message, see
ROBOUSERMESSAGETYPE description.

message Message text.

7.1.72. ROBOUSERMESSAGETYPE

This enum type is used by the ROBOUSERMESSAGE struct.

typedef enum
{
RUMT ERROR,
RUMT WARN ING,
RUMT QUESTION,
RUMT HINT
} ROBOUSERMESSAGETYPE;

Nero AG 97

| NeroAPI v6.6.0.1

7.2. Functions

7.21. NeroAudioCreateTargetltem

This helper function creates a target item and returns a handle.

NEROAPI API NERO AUDIO ITEM HANDLE NeroAudioCreateTargetItem (int
iFormatNumber) ;

Description of parameters
iFormatNumber | The format index number as used with the NeroAudioGetFormatinfo function.

7.2.2. NeroAudioCloseltem

This is a helper function to close an audio target item.
NEROAPI API BOOL NeroAudioCloseItem (NERO AUDIO ITEM HANDLE hItem) ;

Description of parameters
hltem | The handle of the item that will be closed.

7.2.3. NeroAudioGetFormatinfo

This helper function retrieves information about audio formats. When it returns
false, there are no further formats available.

NEROAPI API BOOL NeroAudioGetFormatInfo (int iNum,
NERO_AUDIO_FORMAT_INFO *pFI);

Description of parameters

iNum Format index number, use 0 to retrieve the first available format.
pFl Pass a pointer to a NERO_AUDIO_FORMAT_INFO object; it will be filled with
information about the format.

7.24. NeroAudioGUIConfigureltem
This function will open a configuration dialog for audio items. Instead of phltem, a
value of NULL can be passed to configure the whole plug-in manager.

NeroAudioGUIConfigureltem can only be used from GUI applications.

NEROAPI API NERO CONFIG RESULT NeroAudioGUIConfigureItem (
NERO _AUDIO ITEM HANDLE *phItem, int iNum);

Description of parameters
phltem An array of handles that belong to configurable items.

iNum The number of configurable items in phltem.

Nero AG 98

NeroAPI v6.6.0.1

7.2.5. NeroBurn

Burns a media.

NEROAPI BURN ERROR NADLL ATTR NeroBurn
(

NERO DEVICEHANDLE aDeviceHandle,
NERO_CD FORMAT CDFormat,

const void* pWriteCD,

DWORD dwFlags,
DWORD dwSpeed,
NERO_PROGRESS*
) i

pNeroProgress

Description of parameters

pwriteCD Must point on a NERO_WRITE_CD, NERO_CD_COPY or a
NERO_WRITE_VIDEO_CD structure.
dwFlags Some options for burning:

NBF_SPEED_TEST

Test speed of source first.

NBF_SIMULATE

Simulate writing before actually writing.

NBF_WRITE Really write at the end.

NBF_DAO Write in DAO.

NBF_CLOSE_SESSION Only close the session, not the whole disc.
NBF_CD_TEXT Write CD text - will be ignored if not

supported by drive.

NBF_BURN_PROOF

Present for compatibility: will enable any
buffer underrun protection feature even if it
is not "burn proof"

NBF_BUF_UNDERRUN_PROT

Enable safer burn mode.

NBF_DISABLE_ABORT

The abort callback will be called.

NBF_DETECT_NON_EMPTY_
CDRW

The DLG_NON_EMPTY_CDRW user
callback will be called when trying to burn
onto a non empty CDRW.

NBF_DISABLE_EJECT

CD will not be ejected at the end of the burn
process.

NBF_VERIFY

Verify file system after writing. Works for ISO
only.

NBF_SPEED_IN_KBS

Interpret the dwSpeed as KB/s instead of
multiple of 150 KB/s.

NBF_DVDP_BURN_30MM_AT

DVD+R/RW high compatibility mode (at

_LEAST least 1GB will be written)
NBF_CD_TEXT_IS_ If NBF_CD_TEXT and
JAPANESE NBF_CD_TEXT_IS_JAPANESE are set,

then the CD Text is treated as Japanese CD
Text.

NBF_BOOKTYPE_DVDROM

If NBF_BOOKTYPE_DVDROM is set, the
booktype of a burned DVD will be set to
DVDROM

Nero AG

99

NeroAPI v6.6.0.1

Description of parameters

NBF_NO BOOKTYPE_ Do not change the booktype of DVD, even if
CHANGE the NeroAPI default setting is to change the
booktype to DVD-ROM.

dwSpeed In KB/s if NBF_SPEED_IN_KBS is present, in multiple of 150 KB/s otherwise.
Identifier Introduced in NeroAPI version
NeroBurn 5.0.3.9
NBF_DISABLE_EJECT 5.5.1.1
NBF_SPEED IN_KBS 5.5.5.5
NBF_DVDP_BURN_30MM_AT_LEAST 5.5.8.0
NBF_CD_TEXT_IS_JAPANESE 5.5.9.17
NBF_BOOKTYPE_DVDROM 5.5.10.7
NBF_NO_BOOKTYPE_CHANGE 6.0.0.24

7.2.6. NeroClearErrors

Clear errors and log (done automatically for every read or write function, but can
be used to avoid false memory leak warnings).

NEROAPI API void NADLL ATTR NeroClearErrors ();

Identifier

Introduced in NeroAPI version

NeroClearErrors

5.0.3.9

7.2.7. NeroCloseDevice

Close a device.

NEROAPI API void NADLL ATTR NeroCloseDevice (NERO DEVICEHANDLE

aDeviceHandle) ;

Identifier Introduced in NeroAPI version

NeroCloseDevice 5.0.3.9
Nero AG 100

NeroAPI v6.6.0.1

7.2.8. NeroCopylsoltem

Create a copy of an existing NERO_ISO_ITEM object.

This is a safe way to obtain an exact copy of NERO_ISO_ITEM objects imported
from a previous session. Note that the new NERO _ISO _ITEM's extltem, userData
and subDirFirstltem members are set to NULL.

longFilename will only be copied if this item is a reference. In that case
longFilename had been allocated by the NeroAPI.

NEROAPI API NERO ISO ITEM * NADLL ATTR
NeroCopyIsolItem (const NERO ISO ITEM *iso item);

Identifier Introduced in NeroAPI version
NeroCopylsoltem 5.5.99
7.2.9. NeroCreatelsoltem

Macro for automatically filling the size_t member of NeroCreatelsoltemOfSize.

#define NeroCreateIsoltem/() NeroCreateIsoltemOfSize (sizeof (struct
NERO ISO_ITEM))

Identifier Introduced in NeroAPI version
NeroCreatelsoltem 5.0.3.9

7.2.10. NeroCreatelsoltemOfSize

Allocates an instance of the NERO_ISO_ITEM structure of size size t.

NEROAPI API struct NERO ISO ITEM * NADLL ATTR

NeroCreatelIsoltemOfSize (size t);

Identifier Introduced in NeroAPI version
NeroCreatelsoltemOfSize 5.0.3.9

Nero AG 101

NeroAPI v6.6.0.1

7.211. NeroCreatelsoTrackEx

Create an ISO track from a NERO _ISO_ITEM tree.

NEROAPI API struct CNeroIsoTrack * NADLL ATTR NeroCreatelIsoTrackEx (
struct NERO ISO ITEM *root,
const char *name,

DWORD flags) ;

Description of parameters

root First item of the root directory.
name Name of the CD.
flags available constants:
NCITEF_USE_JOLIET (1<<0)
Create a Joliet Track.
NCITEF_USE_MODE2 (1<<1)

Create a Mode 2 Track.

NCITEF_USE_ROCKRIDGE | (1<<2)
Create a RockRidge Track.

NCITEF_CREATE_ISO_FS | (1<<3)
Create an ISO File System Track.

NCITEF_CREATE_UDF_FS |(1<<4)

Create a Universal Disk Format File System
Track.

NCITEF_CREATE_HFS_FS |(1<<5)
Not yet available.

NCITEF_DVDVIDEO _ (1<<6)
REALLOC Perform reallocation of files in the VIDEO_TS
directory.

Beginning with NeroAPI 6.3.1.4: Also create
layer break if writing on a double layer media.

NCITEF_USE_STRUCT (1<<7)

'name’ points to an argument struct instead of
name.

For special needs you have to give a pointer
to NeroCITEArgs instead of a name, e.g.
when burning a CD with two different file
systems.

Set this flag to tell NeroCreatelsoTrackEx that
the name is a NeroCITEArgs struct and set
the flags for the burn options with
NeroCITEArgs::dwBurnOptions.

‘root’ should also be NULL in this case.

NCITEF_RESERVED1 (1<<8)
Reserved for future use.

Nero AG 102

NeroAPI v6.6.0.1

Description of parameters
NCITEF_USE_ALLSPACE (1<<9)

Use all space available on the medium for the
volume to be created. Supported for DVD+-

RW only.
NCITEF_RESERVED2 (1<<10)

Reserved for future use.
NCITEF_RESERVED3 (1<<11)

Reserved for future use.
NCITEF_RESERVED4 (1<<12)

Reserved for future use.
NCITEF_RELAX_JOLIET (1<<13)
Relax Joliet filename length limitations and

allow a maximum of 109 characters per
filename.

NCITEF_DVDVIDEO_CMPT | (1<<14)

Create DVD-Video compatible medium.
NCITEF_CREATE_ISO_FS and
NCITEF_CREATE_UDF_FS must be set.
NCITEF_DVDVIDEO_REALLOC may be set
to reallocate DVD-Video .IFO pointers.

Note: NeroAPI versions prior or equal to
6.0.0.13 will implicitly enable DVD-Video
compatibility when DVD-Video content is
found within the compilation.
NCITEF_RESERVEDS5 (1<<15)

Reserved for future use.

Identifier Introduced in NeroAPI version

NeroCreatelsoTrackEx 5.0.3.9
NCITEF_DVDVIDEO_REALLOC 5.5.7.8
NCITEF_USE_STRUCT 55.9.0
NCITEF_USE_ALLSPACE 5.5.9.17
NCITEF_RELAX_ JOLIET 5.9.10.17
NCITEF_DVDVIDEO _CMPT 6.0.0.13
NCITEF_RESERVED5S 6.0.0.13

7.212. NeroCreateProgress

Creates a correctly initialized NERO_PROGRESS structure.

The memory used by the structure must be freed with NeroFreeMem when no
longer needed.

NEROAPI API NERO PROGRESS* NADLL ATTR NeroCreateProgress () ;

Identifier Introduced in NeroAPI version
NeroCreateProgress 6.0.0.0

Nero AG 103

NeroAPI v6.6.0.1

7.213. NeroDAE

Digital Audio Extraction. Aborting will not be reported by NeroGetlLastError.
Incomplete target files are not deleted.

int NADLL ATTR NeroDAE

(

NERO DEVICEHANDLE aDeviceHandle,

DWORD dwTrackStartBlk,

DWORD dwTrackLengthInBlks,

const NERO DATA EXCHANGE *pDestDataExchg,
DWORD 1iSpeedInX,

NERO CALLBACK* pNeroProgressCallback

) i

Description of parameters
iSpeedInX Speed of extraction, 0 means maximum speed
pNeroProgressCallback | Has to be a NERO_PROGRESS_ CALLBACK.

Identifier Introduced in NeroAPI version
NeroDAE 5.0.3.9

7.2.14. NeroDone
Call this function before closing the DLL. This is necessary because some clean-
up actions like stopping threads cannot be done in the close function of the DLL.

NeroDone returns TRUE if some memory blocks were not unallocated using
NeroFreeMem. They are dumped in the debug output.

NeroDone returns FALSE if it succeeded.

NEROAPI API BOOL NADLL ATTR NeroDone ();

Identifier Introduced in NeroAPI version
NeroDone 5.0.3.9
Return type changed from void to BOOL. 6.0.0.0

Nero AG 104

NeroAPI v6.6.0.1

7.2.15. NeroEjectLoadCD

Returns zero if successful or an error code if not. FALSE in parameter “eject”
loads a disc, TRUE ejects.

Due to historical reasons, the function name refers to CD media. Please bear in
mind that it can be used with DVD media as well!

NEROAPI_API int NADLL ATTR NeroEjectLoadCD(NERO_DEVICEHANDLE
aDeviceHandle,BOOL eject) ;

Identifier Introduced in NeroAPI version
NeroEjectLoadCD 5.0.3.9

7.216. NeroEraseCDRW
Erase the loaded CD. With parameter “mode” set to 0 the function will erase the
entire CD. If “mode” is set to “1” a quick erase routine will be performed.

This function is deprecated! Please use NeroEraseDisc instead!

NEROAPI API int NADLL ATTR NeroEraseCDRW(NEROiDEVICEHANDLE DeviceHandle,
int mode) ;

Identifier Introduced in NeroAPI version
NeroEraseCDRW 5.0.3.9

7.217. NeroEraseDisc

Erase the disc inserted in the given recorder.

NEROAPI API int NADLL ATTR NeroEraseDisc (
NERO DEVICEHANDLE aDeviceHandle,
NEROAPI CDRW ERASE MODE mode,
DWORD dwFlags,
void *reserved) ;

Description of parameters
aDeviceHandle Recorder handle.

mode Erase mode.
flags available constants :
0 Default behavior: Eject if the recorder
requires it.
NEDF_DISABLE_EJECT CD will not be ejected at the end of the

erasing, even if this is recommended for
the selected recorder.
NEDF_EJECT_AFTER_ERASE | Eject disc after erasing, no matter if this is
recommended for the recorder or not.

Nero AG 105

NeroAPI v6.6.0.1

Description of parameters

reserved Set this parameter to NULL.

Identifier Introduced in NeroAPI version
NeroEraseDisc 6.0.0.0

7.218. NeroEstimateTrackSize

Estimate the total size of a track including data and overhead for the file system.
The method returns the size in blocks. Use the flags to specify what exactly has to
be taken into account for the calculation.

Warning: Depending on the parameters passed, the returned size might only be
an estimated value!

NEROAPI API unsigned int NADLL ATTR NeroEstimateTrackSize (
struct CNeroIsoTrack *pIsoTrack,
DWORD dwFlags,
NERO_FILESYSTEMTRACK OPTIONS *pOptions);

Description of parameters

plsoTrack The iso track for which to calculate the size.
dwFlags Combination of flags:
NETS_FILESYSTEM_ (1<<0)
OVERHEAD Calculate file system overhead.
NETS_DATA (1<<1)
Calculate data size.
NETS_EXACT_SIZE (1<<2)

Calculate exactly.

If this option is specified, file system
overhead as well as file data are taken into
account.

The optional fields of the
NERO_ESTIMATETRACKSIZE OPTIONS
structure need to be filled out.

pOptions Pointer to NERO_FILESYSTEMTRACK_OPTIONS structure.

Identifier Introduced in NeroAPI version
NeroEstimateTrackSize 6.0.0.14
NETS_EXACT_SIZE 6.0.0.21

Nero AG 106

NeroAPI v6.6.0.1

7.2.19. NeroFreeCDStamp

Free a CD stamp allocated by NerolmportlsoTrackEx.

NEROAPI API void NADLL ATTR NeroFreeCDStamp (void *pCDStamp) ;

Identifier Introduced in NeroAPI version
NeroFreeCDStamp 5.0.3.9

7.2.20. NeroFreelsoltem

Free memory that is used by an instance of the NERO_ISO_ITEM structure.

The memory for NERO_ISO _ITEM.longFileName will only be released if
NERO_ISO_ITEM.isReference member evaluates to TRUE. This stems from the
NerolmportDataTrack behavior, where the NeroAPI allocates longFileName.

NEROAPI API void NADLL ATTR NeroFreeIsoltem(struct NERO ISO ITEM *);

Identifier Introduced in NeroAPI version
NeroFreelsoltem 5.0.3.9

7.2.21. NeroFreelsoTrack

Free an ISO track previously allocated with NeroCreatelsoTrackEx.

NEROAPI API void NADLL ATTR NeroFreeIsoTrack (struct CNeroIsoTrack

*track) ;
Identifier Introduced in NeroAPI version
NeroFreelsoTrack 5.0.3.9

7.2.22. NeroFreelsoltemTree

Free an NERO_ISO_ITEM including all linked items.

It is required that all NERO_ISO_ITEMS in the tree have been created by either
the NeroCreatelsoltem or the NerolmportDataTrack function.

The memory for NERO_ISO_ITEM.longFileName will be released if
NERO _ISO_ITEM.isReference member evaluates to TRUE. This stems from the
NerolmportDataTrack behavior, where the NeroAPI allocates memory for
longFileName.

NEROAPI API void NADLL ATTR NeroFreeIsoItemTree (NERO ISO ITEMY*);

Nero AG 107

NeroAPI v6.6.0.1

Identifier Introduced in NeroAPI version
NeroFreelsoltemTree 6.0.0.0

7.2.23. NeroFreeMem

The NeroAPI never uses static memory. Instead, memory is allocated dynamically
on behalf of the application, e.g. for strings. This memory has to be freed with this
function. Passing NULL is allowed.

NEROAPI API void NADLL ATTR NeroFreeMem (void *pMem) ;

Identifier Introduced in NeroAPI version
NeroFreeMem 5.0.3.9

7.2.24. NeroGetAPIVersion

Version management for this API: Returns 1000 for 1.0.0.0

Note: This function is obsolete since NeroAPI 5.5.9.9. Use NeroGetAPIVersionEx
instead!

NEROAPI API DWORD NADLL ATTR NeroGetAPIVersion (void);

Identifier Introduced in NeroAPI version
NeroGetAPIVersion 5.0.3.9

7.2.25. NeroGetAPIVersionEx

Fills the pointed numbers (major version high and low, minor version high and low)
with the version number and returns true for success. The NeroGetAPIVersion
function was extended in NeroAPI 5.5.9.9 to support multiple digits. Provide NULL
for the “reserved” parameter!

NEROAPI API BOOL NADLL ATTR NeroGetAPIVersionEx (WORD *majhi
,WORD *majlo
,WORD *minhi
,WORD *minlo
,void *reserved) ;

Identifier Introduced in NeroAPI version
NeroGetAPIVersionEx 5.5.9.9

Nero AG 108

NeroAPI v6.6.0.1

7.2.26. NeroGetAvailableDrivesEx

Retrieves a list of available WORM and CDROM devices. This list will be freed
when calling NeroFreeMem. NeroGetAvailableDrivesEx will return NULL if errors
occurred.

The returned information might be inaccurate if another application uses one of
the recorders while the identification scan is performed.

Use by another application is indicated by the nsdiDriveError member of
NERO_SCSI_DEVICE_INFO being set to NDE_DRIVE_IN_USE.

If the information is inaccurate, it can be updated at a later time by calling
NeroUpdateDevicelnfo.

NEROAPI API NERO SCSI DEVICE INFOS * NADLL ATTR
NeroGetAvailableDrivesEx (NERO MEDIA TYPE mediaType, void *reserved);

Identifier Introduced in NeroAPI version
NeroGetAvailableDrivesEx 5.0.3.9

7.2.27. NeroGetAvailableSpeeds

Get available write speeds depending on medium type, free with NeroFreeMem.
Returns NULL for error.

NEROAPI_API NERO_SPEED_INFOS & NADLL ATTR
NeroGetAvailableSpeeds (NERO DEVICEHANDLE aDeviceHandle,

NERO ACCESSTYPE accessType,
NERO MEDIA TYPE mediaType,
void *reserved) ;

Identifier Introduced in NeroAPI version
NeroGetAvailableSpeeds 5.5.9.10

7.2.28. NeroGetCDinfo

Due to historical reasons, the function name refers to CD media. Please bear in
mind that it can be used with DVD media as well!

Retrieve a pointer to a NERO _CD _INFO structure for the specified device. The
allocated memory for the structure has to be freed by using NeroFreeMem. NULL
will be returned if an error occurred.

Note: When queried about DVD+RW media, most recorders will return the total
capacity of the media, even if parts of it already contain data.

Therefore, when dealing with DVD+RW media, NeroGetVMSInfo should be called
after NeroGetCDInfo. NeroGetVMSInfo returns a pointer to a NERO_VMS_INFO
structure. This structure contains the next writeable address in the

| Nero AG 109 |

NeroAPI v6.6.0.1

“nvmsiNextWriteableAddress” member. This information can be utilized to
determine what portion of the media already is in use.

This strategy will only work if the media has been created as multisession media
by Nero or the NeroAPI. If the media is of non-multisession type, currently there is
no way of determining the size of the used portion.

NEROAPI API NERO CD INFO * NADLL ATTR NeroGetCDInfo
(

NERO DEVICEHANDLE aDeviceHandle,

DWORD dwFlags
) ;

Description of parameters
aDeviceHandle | Device Handle
dwFlags available constants :
NGCDI_READ_CD_TEXT (1<<0)
NGCDI_READ_ISRC (1<<1)
International Standard Recording Code
NGCDI_USE_HDB (1<<2)
If the recorder and the current media
support HD-BURN, give the capacity and
the unused blocks for the HD-BURN mode.
Note, that if the media is already written in
HD-BURN mode, this flag is not
necessary.
Identifier Introduced in NeroAPI version
NeroGetCDInfo 5.0.3.9
NGCDI_READ_ISRC 55.84
NGCDI_USE_HDB 6.0.0.25

7.2.29. NeroGetCDRWErasingTime

Returns estimated blanking time for loaded RW media in seconds.

Due to historical reasons, the function name refers to CD media. Please bear in
mind that it can be used with DVD media as well!

NEROAPI_API int NADLL ATTR NeroGetCDRWErasingTime(NERO_DEVICEHANDLE
aDeviceHandle, int mode) ;

Description of return values
-1| No CD inserted.

-2 | Recorder does not support CDRW.
-3 | The inserted media is not rewriteable.

Nero AG 110

NeroAPI v6.6.0.1

Identifier Introduced in NeroAPI version
NeroGetCDRWErasingTime 5.0.3.9
Return value “-3” 5574

7.2.30. NeroGetDeviceOption

Get information about a special low level option from a device, e.g. if a device is
capable of changing the booktype of a DVD. The returned value must be freed
with NeroFreeMem by the caller.

If the option is not available, NULL is returned. The return type depends on the
queried option, for example NERO DEVICEOPTION_BOOKTYPE_DVDROM will
make the returned type BOOL*.

NEROAPI_API void* NADLL ATTR NeroGetDeviceOption (
NERO_ DEVICEHANDLE aDeviceHandle,
NERO_DEVICEOPTION aOption,
void* reserved) ;

Description of parameters

aDeviceHandle Device Handle.

aOption A device option, e.g. setting the booktype.

reserved Reserved for future use.

Identifier Introduced in NeroAPI version
NeroGetDeviceOption 5.5.10.7

7.2.31. NeroGetDisclmageinfo

Get information about a disc image. The result must be released using
NeroFreeMem.
In case of an error, NULL is returned.

NEROAPI_API NERO_CD_INFO & NADLL ATTR NeroGetDiscImageInfo (
const char *imagePath, void *reserved);

Description of parameters

imagePath Path to the image file.

reserved Reserved for future use.

Identifier Introduced in NeroAPI version
NeroGetDisclmagelnfo 5.5.9.16

Nero AG 111

NeroAPI v6.6.0.1

7.2.32. NeroGetErrorLog

All functions returning a DWORD will return zero for success and an error number
otherwise. These error numbers are opaque and neither can nor should be
interpreted by the application. Instead, localized strings are provided for errors and
informative displays. The NeroAPI keeps a log of such informative messages or
errors.

In case of an error, NeroGetLastError will return more information about the last
error and NeroGetErrorLog will show all recorded events.

Both functions return NULL if no error is available. Memory is allocated for the
string, which has to be freed with NeroFreeMem.

Note: NeroCloseDrive has to throw away all errors, because they might be bound
to the driver. Handle errors before calling it!

NEROAPI API char * NADLL ATTR NeroGetErrorLog ();

Identifier Introduced in NeroAPI version
NeroGetErrorLog 5.0.3.9

7.2.33. NeroGetLastDriveError

Get the last error occurred during communication with a drive.
The following methods set this error value:

e NeroGetCDInfo

e NerolmportDataTrack

e NeroEjectLoadCD

e NeroGetCDRWErasingTime

e NeroEraseDisc

All these methods first reset the error value and if an error occurred, the value is
set accordingly.

NEROAPI APT void NADLL ATTR NeroGetLastDriveError (NERO_DRIVE ERROR
*driveError, void *reserved);

Identifier Introduced in NeroAPI version
NeroGetlLastDriveError 6.0.0.0

Nero AG 112

NeroAPI v6.6.0.1

7.2.34. NeroGetLastError

If an error occurred, NeroGetLastError will return additional information.

NEROAPI API char * NADLL ATTR NeroGetLastError ();

Identifier Introduced in NeroAPI version
NeroGetlLastError 5.0.3.9

7.2.35. NeroGetLastErrors

This function returns recently logged errors. The number of returned errors is
determined by iNum.

NEROAPI API char * NADLL ATTR NeroGetLastErrors (int iNum, DWORD dwFlags,
void *reserved) ;

Description of parameters
iNum Number of errors to be returned.
dwFlags available constants :
NGLE_ALL (1<<0)
Also include errors which do not contain a
description to be shown in the GUI.
NGLE_REPORT (1<<1)
Format the errors as in the NeroAPI error
log.
Identifier Introduced in NeroAPI version
NeroGetlLastErrors 6.0.0.29

7.2.36. NeroGetLocalizedWaitCDTexts

Returned string must be released using NeroFreeMem. Function may return NULL
if type is out of range.

Due to historical reasons, the function name refers to CD media. Please bear in
mind that it can be used with DVD media as well!

NEROAPI API char * NADLL ATTR NeroGetLocalizedWaitCDTexts
(NERO_WAITCD TYPE type);

Identifier Introduced in NeroAPI version
NeroGetlLocalizedWaitCDTexts 5.5.9.10

Nero AG 113

NeroAPI v6.6.0.1

7.2.37. NeroGetTypeNameOfMedia

Get a string describing the given bit field of supported media. Free the string with
NeroFreeMem.

NEROAPI API char *NADLL ATTR NeroGetTypeNameOfMedia (
NERO MEDIA SET media,

void *reserved) ;

Identifier Introduced in NeroAPI version
NeroGetTypeNameOfMedia 5.0.3.9
NeroGetTypeNameOfMedia 5.5.9.4:
Changed signature and behavior. Old
version:

NeroGetTypeNameOfMedia
(DWORD media,const char
*separator);

With the current version, the
separator of the current system
language is used. This might cause
problems if old code relies on the use
of a special separator.

7.2.38. NeroGetVMSInfo

Virtual multisession is a technique to allow writing multisession discs on medium
types that does not support normal multisession, e.g. DVD-/+RW.

This function retrieves virtual multisession information for media supporting it.
NeroGetVMSInfo may be called for media having the
NCDIMF_VIRTUALMULTISESSION flag set in their NERO_CD_INFO structure.
Free the result with NeroFreeMem().

The function returns NULL in case of an error (e.g. non-VMS media inserted).

NEROAPI API NERO VMS INFO & NADLL ATTR NeroGetVMSInfo (
NERO_ DEVICEHANDLE aDeviceHandle,
DWORD dwFlags) ;

Description of parameters

aDeviceHandle | Device Handle, the result of NeroOpenDevice().

dwFlags Currently unused, reserved for future extensions.

Identifier Introduced in NeroAPI version
NeroGetVMSiInfo 6.0.0.10

Nero AG 114

NeroAPI v6.6.0.1

7.2.39. NeroGetWaitCDTexts

For a given NERO_WAITCD_TYPE a matching text message is returned.

This function is deprecated! Please use NeroGetLocalizedWaitCDTexts
instead since it returns a localized string.

static const char *NeroGetWaitCDTexts (NERO WAITCD TYPE type)
7.2.40. NerolmportDataTrack

Create a NERO_ISO_ITEM tree from an already existing ISO track in order to
create a new session with reference to files from older sessions.

NEROAPI API NERO ISO ITEM *NADLL ATTR NeroImportDataTrack (
NERO DEVICEHANDLE pRecorder,
DWORD trackNumber,
void **ppCDStamp,
NERO_IMPORT DATA TRACK INFO *pInfo,
DWORD flags,
NERO_IMPORT DATA TRACK RESULT *result,
void *reserved) ;

Description of parameters

pRecorder First item of the root directory.

trackNumber Name of the CD.

ppCDStamp *ppCDStamp will be filled with a pointer on a CDStamp object which will have
to be freed later.

plnfo Will be filled with information about the imported track.

flags Available constants :

NITEF_IMPORT_ROCKRIDGE | (1<<0)

Will be ignored, RockRidge is now always
imported if present.

NITEF_IMPORT_ISO_ONLY (1<<1)
NITEF_PREFER_ROCKRIDGE | (1<<2)

Will be ignored.
NITEF_IMPORT_UDF (1<<3)
Import UDF Session.
NITEF_IMPORT_VMS _ (1<<4)
SESSION Treat trackNumber as the virtual
multisession session specifier.
result Will contain a result flag, may be NULL.

reserved Must be NULL.

Nero AG 115

NeroAPI v6.6.0.1

Identifier Introduced in NeroAPI version

NerolmportDataTrack 5.9.99
plnfo 5.9.9.9
Result 59.9.9
NITEF_IMPORT_VMS_SESSION 6.0.0.10

7.2.41. NerolmportlsoTrackEx

Create a NERO_ISO_ITEM tree from an already existing ISO track in order to
create a new session with reference to files from older sessions.

This function is deprecated! Please Use NerolmportDataTrack instead!

NEROAPI API NERO ISO ITEM *NeroImportIsoTrackEx (

NERO_ DEVICEHANDLE pRecorder,
DWORD trackNumber,

void **ppCDStamp,

DWORD flags) ;

Nero AG

Description of parameters
pRecorder First item of the root directory.
trackNumber Name of the CD
ppCDStamp *ppCDStamp will be filled with a pointer on a CDStamp object which will have
to be freed later
flags Available constants:
NIITEF_IMPORT_ROCKRIDGE | (1<<0)
Will be ignored, RockRidge is now always
imported if present.
NITEF_IMPORT_ISO_ONLY (1<<1)
NIITEF_PREFER_ROCKRIDGE |(1<<2)
Will be ignored.
NIITEF_IMPORT_UDF (1<<3)
Import UDF Session.
NITEF_IMPORT_VMS_ (1<<4)
SESSION Treat trackNumber as the virtual
multisession session specifier.
Identifier Introduced in NeroAPI version
NerolmportlsoTrackEx 5.0.3.9
116

NeroAPI v6.6.0.1

7.2.42. Nerolnit

Initialize the DLL. Must be successful before any of the remaining functions can be
called. Settings structure and strings it points to are not copied and function
callbacks must be available all the time. Provide NULL for the “reserved”
parameter!

Make sure to keep all the data including the strings valid as long as you are using
NeroAPI, since Nero will only store a pointer to the NERO_SETTINGS structure,
not make a copy.

NEROAPI API NEROAPI INIT ERROR NADLL ATTR NeroInit (const NERO_SETTINGS
*pNeroSettings, const char *reserved);

Identifier Introduced in NeroAPI version
Nerolnit 5.0.3.9

7.2.43. NerolnitimageRecorder

Set the image file for the image recorder. This can be used to initialize the image
recorder for packet writing.

If imageFilePath is NULL, the last opened file is closed.

NEROAPI API int NADLL ATTR NeroInitImageRecorder (
NERO_DEVICEHANDLE aDeviceHandle,
const char *imageFilePath,

DWORD dwFlags,
NERO MEDIA TYPE mediaType,
void *reserved) ;

Identifier Introduced in NeroAPI version
NerolnitimageRecorder 6.0.0.25

7.2.44. NerolsDeviceReady

This function returns a NERO_DRIVE_ERROR.

NEROAPI API int NADLL ATTR NeroIsDeviceReady (NERO DEVICEHANDLE

aDeviceHandle) ;
Identifier Introduced in NeroAPI version
NerolsDeviceReady 5.0.3.9

Nero AG 117

NeroAPI v6.6.0.1

7.2.45. NeroOpenDevice

Open a device. This function returns NULL if errors have occurred.

In general, an application may not access devices from multiple threads
simultaneously. Even if NeroOpenDevice allows obtaining more than one handle
for a device, the different handles may not be used at the same time.

However, here is an example of a case where it is legal to do so:
When the NeroAPI calls the user dialog callback with DLG_NON_EMPTY_CDRW
as type, it is permitted to delete the rewritable media with NeroErase CDRW.

NEROAPI API NERO DEVICEHANDLE NADLL ATTR NeroOpenDevice (const
NERO_SCSI DEVICE INFO* pDevInfo);

Identifier Introduced in NeroAPI version
NeroOpenDevice 5.0.3.9

7.2.46. NeroRegisterDriveChangeCallback

Register a callback which is called whenever a drive was removed or added in the
system. Use NeroGetAvailableDrivesEx to get the current list of drives in the
system.

NOTE: In some rare cases the NeroAPI does not get this information from the OS
and will therefore never notify the callback if a drive has been added or removed.

NEROAPI API int NADLL ATTR NeroRegisterDriveChangeCallback (
NERO DRIVESTATUS CALLBACK callback,
void *pUserData) ;

Description of parameters
callback The callback to be called when a drive is removed or added.
The callback needs to be thread safe, since it might be called from a different
thread.
pUserData Data passed to the callback.
Identifier Introduced in NeroAPI version
NeroRegisterDriveChangeCallback 6.0.0.0

Nero AG 118

NeroAPI v6.6.0.1

7.2.47. NeroRegisterDriveStatusCallback

Register a callback which is called whenever the specified status of a drive is
changed. This function returns 0O for success.

Please see the documentation of NERO _DRIVE_STATUS TYPE for restrictions
of the notifications.

NEROAPI API int NADLL ATTR NeroRegisterDriveStatusCallback (
NERO DRIVESTATUS TYPE status,
const NERO SCSI DEVICE INFO *pDevicelInfo,
NERO DRIVESTATUS CALLBACK callback,
void *pUserData) ;

Description of parameters

status The status the application is interested in.

pDevicelnfo The drive for which the status change should be notified. The pointer can be
freed afterwards.

callback The callback needs to be thread safe, since it might be called from a different
thread.

pUserData Data passed to the callback.

Identifier Introduced in NeroAPI version

NeroRegisterDriveStatusCallback 6.0.0.0

7.2.48. NeroSetDeviceOption

Set a special option for a device. Returns zero on success.

For example, by providing NERO_DEVICEOPTION_BOOKTYPE_DVDROM in
the aOption parameter, the booktype can be changed to DVDROM - if the device
allows it.

NEROAPI API int NADLL ATTR NeroSetDeviceOption (
NERO_DEVICEHANDLE aDeviceHandle,
NERO_DEVICEOPTION aOption,
void *value);

Description of parameters

aDeviceHandle | The handle of a device.

aOption A device option, e.g. setting the booktype.

Value A pointer to an option specific type.
E.g. when used to change the booktype, the parameter is expected to be
BOOL*.

Identifier Introduced in NeroAPI version

NeroSetDeviceOption 5.5.10.7

Nero AG 119

NeroAPI v6.6.0.1

7.2.49. NeroSetExpectedAPIVersion

Using this function, an application can tell NeroAPI for which version of NeroAP! it
was designed to work. NeroAPI then tries to behave like this version as much as
possible. This ensures the binary compatibility with future versions of NeroAPI. If
this function is not called, NeroAPI will behave as NeroAPI 5.0.3.9. If your
application uses the NeroAPIGlue, this function will be called automatically.

Note: This function is obsolete since NeroAPl 5.5.9.9. Use
NeroSetExpectedAPIVersionEx instead!

NEROAPI API void NADLL ATTR NeroSetExpectedAPIVersion (DWORD) ;

Identifier Introduced in NeroAPI version
NeroSetExpectedAPIVersion 5.0.3.9

7.2.50. NeroSetExpectedAPIVersionEx

Using this function, an application can tell NeroAPI for which version of NeroAP! it
was designed to work. NeroAPI then tries to behave like this version as much as
possible. This ensures the binary compatibility with future versions of NeroAPI. If
this function is not called, NeroAPI will behave as NeroAPIl 5.0.3.9. If your
application uses the NeroAPIGlue, this function will be called automatically.

It returns true for success. Provide NULL for the “reserved” parameter!

NeroSetExpectedAPIVersion was extended in NeroAPI 5.5.9.9 to support multiple
digits.

If pPrevExpectedVersion is not NULL, it must point onto an array of 4 WORDs that
will be filled with the previously expected version number.

NEROAPI API BOOL NADLL ATTR NeroSetExpectedAPIVersionEx(WORD majhi
,WORD majlo
, WORD minhi
,WORD minlo
,void reserved
,WORD *pPrevExpectedVersion) ;

Identifier Introduced in NeroAPI version
NeroSetExpectedAPIVersionEx 5.5.9.9
pPrevExpectedVersion 6.0.0.0

Nero AG 120

NeroAPI v6.6.0.1

7.2.51. NeroSetOption

Used to set global Nero options such as the name of the message text file.

NEROAPI API int NADLL ATTR NeroSetOption (NEROAPI OPTION option,void

*value) ;
Identifier Introduced in NeroAPI version
NeroSetOption 5.0.3.9

7.2.52. NeroUpdateDevicelnfo

Update the information about a drive. The use of this function is only required
when a drive was blocked by another application during identification (drive in
use).

NEROAPI API NERO DRIVE ERROR NADLL ATTR NeroUpdateDeviceInfo (
NERO SCSI DEVICE INFO *devInfo,
NERO MEDIA TYPE mediaType,
void *reserved) ;

Description of parameters

devinfo The device info to update.

mediaType The media type to update the speed information items with.

reserved Must be NULL.

Identifier Introduced in NeroAPI version
NeroUpdateDevicelnfo 6.0.0.0

7.2.53. NeroUnregisterDriveChangeCallback

Unregister a callback which was registered with
NeroRegisterDriveChangeCallback.

NEROAPI API int NADLL ATTR NeroUnregisterDriveChangeCallback (
NERO DRIVESTATUS CALLBACK callback,
void *pUserData) ;

Description of parameters

callback The callback to be called when a drive is removed or added.

pUserData Data passed to the callback.

Identifier Introduced in NeroAPI version
NeroUnregisterDriveChangeCallback 6.0.0.0

Nero AG 121

NeroAPI v6.6.0.1

7.2.54. NeroUnregisterDriveStatusCallback

Unregister a callback.

NEROAPI API int NADLL ATTR NeroUnregisterDriveStatusCallback (
NERO DRIVESTATUS TYPE status
const NERO SCSI DEVICE INFO *pDevicelInfo,
NERO DRIVESTATUS CALLBACK callback,
void *pUserData) ;

Description of parameters

status The status the application is interested in.

pDevicelnfo The drive for which the status was notified. The pointer does not need to be
the same as in NeroRegisterDrivestatusCallback, but has to represent the
same drive.

callback The callback to be called if the status changed.

pUserData Data passed to the callback.

Identifier Introduced in NeroAPI version

NeroUnregisterDriveStatusCallback 6.0.0.0

7.2.55. NeroUserDIginOut

This function gets a requester type and shall return a suitable response to it.
Depending on the "type", "data" might contain additional information.

Argument passing is in standard C order (on the stack, right to left), also known as
Microsoft Visual C++ __ cdecl.

typedef NeroUserDlgInOut (NERO CALLBACK ATTR *NERO USER DIALOG)
(void *pUserData,
NeroUserDlgInOut type,
void *data);

Nero AG 122

NeroAPI v6.6.0.1

7.2.56. NeroWaitForDisc

Use the nstUserDialog callback functions to request a media. Returns FALSE if
the burn process should be aborted.

NEROAPI API BOOL NADLL ATTR NeroWaitForDisc (
NERO DEVICEHANDLE aDeviceHandle,
NERO MEDIA SET nmt,
DWORD dwBurnFlags,
void *pCDStamp,
DWORD dwFlags
void *reserved) ;

Description of parameters

nmt Media types requested.
dwBurnFlags Set of NBF__ flags.
pCDStamp Optional stamp of requested media.
dwFlags Set of NWFD_flags:
(1<<0)
NWFD_REQUIRE_EMPTY_DISC

Identifier Introduced in NeroAPI version
NeroWaitForDisc 6.0.0.25

7.2.57. NeroWaitForMedia

Use the nstUserDialog callback functions to request a media. Returns FALSE if
the burn process should be aborted.

This function is deprecated! Please use NeroWaitForDisc instead!

NEROAPI API BOOL NADLL ATTR NeroWaitForMedia (
NERO DEVICEHANDLE aDeviceHandle,
NERO MEDIA SET nms,
DWORD dwFlags,
void *pCDStamp) ;

Description of parameters

nms Media types requested.

dwFlags Set of NBF_ flags.

pCDStamp Optional stamp of requested media.

Identifier Introduced in NeroAPI version
NeroWaitForMedia 5594

Nero AG 123

| NeroAPI v6.6.0.1

8. ISO Track Creation

When working with the NeroAPI, there are three ways for creating ISO tracks:

1. By creating classes derived from those declared in NerolsoTrack.h, and putting a
pointer to an instance into the NERO_WRITE_CD structure.

2. By creating a tree of NERO_ISO_ITEMSs, and creating an CNerolsoTrack object,
using the NeroCreatelsoTrackEx function

3. By creating an instance of an IFileSystemDescContainer object, using the
NeroCreateFileSystemContainer function, adding files to this object through the
interfaces declared in NeroFileSystemContent.h, and then using the
NERO_WRITE_FILE_SYSTEM_CONTENT structure.

These three interfaces have been created for different needs and coexist in NeroAPI.

Nero AG 124

| NeroAPI v6.6.0.1

9. I1SO Track Classes

The following classes are used to write an ISO 9660/Joliet track. In contrast to most of
the rest of the NeroAPI, the ISO Track interface is not written in pure C, but C++. Thus,
the Nero ISO Track feature can only be used by C++ code.

9.1. Overview

CherolsoEntry

+~CNeralsoEntry

+Getdame const char*
+GetLengthiiong

+GetDataStartSer DWORD
+IsDataFixed BOOL
+GetEntryTime BOOL

+Createllirectonylterator Cierolsofterator *

+CreateHandle CNerolsoHandle *

iconst C
+GetPriorities void
-reservediint
-reservedzint
-reservedint

struct
CNeroisoTrack

+~CMeralsoTrack
+Getiame const char*

+UseJolistBOOL
+UseMode2.BO0L
+UseRockRidge:BOOL
+BUMIS0:BOOL
+BUMMLDF:B00L
#GatLengthlong

#Createtandle CherolsoHand!

struct
tag NERO WRITE CD

struct
tag NERO AUDIO TRACK

+CreateDirecton/teratorCiterolsolterator =

+nwvcdAtistconst char
+nwedTitle:const char *

+nwedlsoTrack struct CNeralsoTrack ™
+nwcdCOExdraBOOL
+rwvedpCDStampovoid *
+nwvcdNumTracks DWORD
+nwedhediaType NERO_MEDIA_TYPE
+indReserved. DWORD (32]
+nwedTracks:NERO_AUDIO_TRACK 1]

+natPauselnBlksBeforeThisTrack DWORD
+nathumindexPositions DYWORD
+natRelativelndexBIkPositions: DWORD [38]
+natTitle:const char*

+nataristeonst chars
+natSourceDataExch:NERO_DATA_EXCHANGE
+natLengthinBlocks DWORD

+natResered DWORD [32]

struct
tag NERO DATA EXCHANGE

struct
‘tag NERO WRITE FREESTYLE CD

struct
tag NERO FREESTYLE TRACK

DWORD

+BumCptions: DWORD

struct
tag NERO VIDEO ITEM

+miPauseAfterier:DWORD
+miSourceFileName:char [256]

+vilternTyne:NERQ_YIDEO_ITEM_TYPE

struct

tay NERO WRITE VIDEQ CD

~maved SVC D BO0L
+mavedhumlterns DWORD

+mivedTempPath:char [256]
+rnicdReserved. DWORD [32]

~maved|soTrack struct CMerolsoTrack *

+rwveditems:NERO_VIDEC_ITEM [1]

+rafedAristconst char *

+nnfcdTitle: const char™
+rwfedlsoTrack:struct CNerolsoTrack™
+rinfed CDExtra:BOOL

*rowicdpC DStam pivoid *
+tidedhumTracks:DWORD
+hincdTracks:NERO_FREESTYLE_TRACK [1]

+nfistructureSize: DWORD
+niPauselnBlksBeforeThisTrack DWORD
+nfilumindexPositions:DWORD
+nfiRelativelndexBIkP ositions DWORD [38]
+nMiTitle:canst chart

+nfiArtistconst char®
+nitgourceDataExchg:NERC_DATA_EXCHANGH
+nfiLengthinBlocks DWORD
+nfiTracklype:NERO_TRACKMODE_TYPE

+ndeType:NERD_DATA_EXCHANGE _TYPE

Unnamed568

Nero AG

125

| NeroAPI v6.6.0.1

9.2. CNeroDataCallback

The application has to specify the complete layout of the ISO track. The NeroAPI does
not care at all where the data for the files comes from. This also means that the
application has to provide access to the filename, or the data itself, when the API
needs it. Data can be fed into the API directly (i.e. without intermediate files) with
CNeroDataCallback.

class CNeroDataCallback
{

public:
virtual ~CNeroDataCallback () {}
virtual DWORD IOCallback (BYTE *pBuffer, DWORD dwLen) = 0;
virtual BOOL EOFCallback () = 0;
virtual BOOL ErrorCallback () = 0g¢

b

Description of class member functions

IOCallback same semantic as NERO_|O_CALLBACK in "NeroAPI.h"
EOFCallback same semantic as NERO_|0.nioEOFCallback
ErrorCallback same semantic as NERO_IO.nioErrorCallback

9.3. CNerolsoHandle

The API builds an internal representation of the complete ISO tree and uses a
CNerolsoHandle, acquired from the application for each file, to access the data later.

class CNerolsoHandle

{

public:
virtual ~CNerolIsoHandle () {}
virtual CNeroIsoHandle * Clone () = 0;
virtual int GetFileName (char *strBuffer, UINT nBufferSize) = 0;
virtual CNeroDataCallback * Open () = 0g
}i
Description of class member functions
Clone Creates a copy of the CNerolsoHandle object.
GetFileName If the application wants the API to read files, it has to fill the buffer of

size nBufferSize with a null-terminated string and return the length of
the full name, even if the given buffer was too small.

The API will try again with a larger buffer then.

Return 0 in GetFileName if you want to provide the data via a
CNeroDataCallback

Open Return instance ready to read the data associated with this handle or
NULL for error; this instance will be deleted by the NeroAPI;

usually only one file at once will be left open

Nero AG 126

| NeroAPI v6.6.0.1

9.4. CNerolsolterator

Iterators are used to walk through directories while the API builds its internal copy of
the tree. Iterators point to an entry or to NULL, if the last entry was passed, and can
only be incremented.

class CNerolIsoEntry;
class CNerolsolterator

{

public:
virtual ~CNeroIsoIterator () {}
virtual CNeroIsoEntry * GetCurrentEntry () = 0
virtual void Next () = 0;

b7

Description of class member functions

GetCurrentEntry Get pointer to current entry or NULL if last one passed; entry not
deleted by API, so the iterator may point to itself and implement the
required interface (as in the NeroAPI demo), or to some permanent
entry.

Next Go to next entry.

9.5. CNerolsoEntry

struct CImportInfo;
class CNeroIsoEntry

{

public:
virtual ~CNerolIsoEntry () {}
virtual CNerolIsolterator * CreateDirectorylterator() = 0;
virtual const char * GetName () = 0;
virtual inté64 GetLength () = 0;
virtual CNeroIsoHandle * CreateHandle () = 0;

virtual DWORD GetDataStartSec () { return 0;}
virtual BOOL IsDataFixed() { return FALSE;}
virtual BOOL GetEntryTime (struct tm *tm) {return FALSE;}
virtual const CImportInfo *GetImportInfo () const
{return NULL; };
virtual void GetPriorities(int &iPriority,int &iDirPriority)
{
iPriority =0;
iDirPriority =0;
}i
virtual CNerolIsolterator * CreateDirectorylteratorWrapper ()
{ return NULL; }
virtual CNeroIsoHandle * CreateResourceHandle ()
{ return NULL; };
virtual const WCHAR* GetUnicodeName () { return 0; } //

Nero AG 127

NeroAPI v6.6.0.1

private:
virtual int reservedl () {return 0;}

I g

Description of class member functions

CreateDirectorylterator NULL if no directory, otherwise an iterator to step through all child
entries; iterator will be deleted by the NeroAPI.

GetName The name for this entry; will be copied by API.

GetlLength The size of this entry in bytes, or -1 if a directory.

CreateHandle Creates a handle stored by the API to open a file later, NULL for
directory; handle will be deleted by NeroAPI when deleting the internal
ISO tree.

GetDataStartSec Can be used to reference files from previous session. Not fully
implemented yet.

IsDataFixed Can be used to reference files from previous session.

GetEntryTime Can be used to reference files from previous session.

Getlmportinfo This method was formerly known as GetRockRidgelnfo. The object

returned is a bit different internally now. Since it is a private structure of
NeroAPI this change does not matter.
No Importinfo by default

GetPriorities
CreateDirectorylteratorWrap | This function is equivalent to CreateDirectorylterator but returns an
per iterator for the wrapper file system of a CD, e.g. when creating HFS+
CDs with an HFS wrapper file system.
CreateResourceHandle See CreateHandle. Creates rsc fork handle for HFS file systems.
Will be preferred to reading the resource fork from the file specified by
GetName if different from NULL.
GetUnicodeName The name for this entry in Unicode format; will be copied by the API.
reserved1 Reserved for future use.
Identifier Introduced in NeroAPI version
CreateDirectorylteratorWrapper 5.5.9.0
CreateHandle 5.5.9.0
GetUnicodeName. 6.0.0.0

Nero AG 128

| NeroAPI v6.6.0.1

9.6. CNerolsoTrack

An ISO track is a special directory entry.

struct CNeroIsoTrack : public CNeroIsoEntry
{

friend class CNeroIsoTrackProxy5039;
friend class CNeroIsoTrackProxy55915;

public:
~CNeroIsoTrack () {}
virtual const char * GetName () = 0;
virtual CNerolIsolterator * CreateDirectorylterator () = 0;
virtual BOOL UseJoliet () { return TRUE; }
virtual BOOL UseMode2?2 () { return FALSE; }
virtual BOOL UseRockRidge () { return FALSE; }
virtual BOOL BurnISO() { return TRUE; }
virtual BOOL BurnUDF () { return FALSE; }
protected:
virtual inté4 GetLength () { return -1; }
virtual CNeroIsoHandle * CreateHandle () { return NULL; }
virtual CNerolIsoHandle * CreateResourceHandle () { return NULL; }
public:
virtual DWORD BurnOptions ()

{
return (UseJoliet () ? NCITEF USE JOLIET : 0)

| (UseMode2 () ? NCITEF USE MODE2 : 0)

| (UseRockRidge () ? NCITEF USE ROCKRIDGE : 0)
| (BurnISO() ? NCITEF CREATE ISO FS : 0)

| (BurnUDF () ? NCITEF CREATE UDF FS : 0);

}i

virtual CNerolIsolterator *CreateDirectorylteratorWrapper ()
{ return NULL; }

virtual BOOL HasWrapper (void)
{ return FALSE; }

virtual const void *dummy () const { return NULL; };

Nero AG 129

NeroAPI v6.6.0.1

Description of class member functions

GetName

Essential function. ISO volume name, copied by API.

CreateDirectorylterator

Essential function. Iterator for root directory; will be deleted by API.

UsedJoliet

Function returns reasonable default. TRUE if track shall contain Joliet
names in addition to 1SO.

UseMode2 Function returns reasonable default. TRUE if track shall be written as
mode 2/XA.

UseRockRidge Function returns reasonable default. RockRidge requires additional
information, so it is off by default.

BurnlSO Function exists from NeroAPI version 5.5.0.0. TRUE if ISO should be
created.

BurnUDF Function exists from NeroAPI version 5.5.0.0. TRUE if UDF should be
created.

GetlLength Function exists from NeroAPI version 5.5.0.0. Returns value for

directory.

CreateHandle

Return NULL, so object cannot be read.

CreateResourceHandle

CNerolsoTrack is a special directory, so no file handle is available and
NULL is returned.

BurnOptions From NeroAPI version 5.5.1.2 you can set your burn options simply by
redefining this function instead of UseJoliet, UseMode2, UseRockRidge,
BurnlSO and BurnUDF.
See 0 NeroCreatelsoTrackEx for the significance of the NCITEF flags.
dummy This method is for internal use only. Do not reimplement it!

GetVolumeDescriptor

The NeroAPI will call this method to determine whether that information
exists. If it does, it will be used during the creation of the media.

To provide this information, either derive a class from CNerolsoTrack
and overwrite this function or provide it when you call
NeroCreatelsoTrack.

This information is identical to what Nero displays on the “Label” tab of
an ISO compilation.

Identifier Introduced in NeroAPI version
CreateDirectorylteratorWrapper 5.5.9.0
HasWrapper 5.5.9.0
CreateResourceHandle 5.5.9.2
GetBootInfo 5.5.9.16
GetVolumeDescriptor 5.5.10.2
Nero AG 131

| NeroAPI v6.6.0.1

10. The FileSystemContent Interface

This is the third NeroAPI interface for preparing data CDs/DVDs. Unlike NerolsoTrack.h,
it is not much "callback based", thus most of the process will be driven by the application,
making it easier to write. This interface is closely connected to the internal engine of
NeroAPI; this improves the cooperation of NeroAPI and the application.

This set of classes describes the content of the file system of a disc. The application will
build a file structure using the IFileSystemContent object.

During the burn process, NeroAPI will request the content of files using the IFileContent
interface.

Use the NeroCreateFileSystemContainer function of NeroAPI.h to get an instance of an
IFileSystemDescContainer object.

Then, use the NERO _WRITE_FILE_SYSTEM_CONTAINER structure to burn the file
structure created.

Nero AG 132

| NeroAPI v6.6.0.1

10.1. Overview

FlleSystemContent: il Stream

+Write oo

FileSystemContent:IFileContent

+Read:unsigned
+EndOfFite:bool
+Errorbool

FifaSystemContent:iDirectorvEntry

FileSystemContent:IinterfaceBase

+GetOtherinterfacevoid *
+GetOtherinterfacevoid *
#-InterfaceBase

+GetName:constchar*
+GetSublirectonsconst iDiractons *
+GeltContent ENTRY_ERROR
+GetSowrceriiePath.const char ™
+GFetSizeiong

+GetFilePrior:int

+GetDirOrdering

+Getfd:int

+GetlatabtatSec unsigned

FileSystemContent: iDirectoryEntry Container

ENTRY ERROR
enum 74

+8etaizevoid
+SetPriortyvoid
+SetDirCrdervold
+8etDataStanzecvoid
+SetFivedDataStantSec void
+SetFileNumbervoid
+Seticvold

+8etFlagsvoid

FlleSystemContent:iDirectory Container

FiiaSystemContent:iDirectory

+GetNumEntries:int
+GellirectoryEntn o const iDirectonyEntny

FileSystemContent: iFileProducer

+AddDirectons I DirectonContainer *
+AddFlie:lDirectonEntnyContainer *
+AddFiie:iDirectonEntnyContainer ™
+RemoveEntn:bool
+EntnsiDirectonvEntnContainer *
+EntnsiDirectonvEntnContainer *
+SubDirectony: i DirectonContainer ™

+ProduceFile i DirectonyEntny ENTRY_ERROR
+Reigasenoid

FlleSystemContent:IFfeSystemContent

struct
FlleSystemContent:iFifeSystembDescContainer

+GetName:constchar*
+GetRootconst I0irectory *

+S8etNamevoid
+Root i DirectonContainer *
+Reigasevoid

Nero AG

133

| NeroAPI v6.6.0.1

10.2. Namespace setting

To make sure we do not interfere with other classes we use the namespace
“FileSystemContent” for this group of interfaces.

namespace FileSystemContent

10.3. InterfaceBase

GetOtherlInterface returns a different interface for the same object. This will be used to
extend the DLL interface without loosing binary compatibility. The function returns
NULL if no interface with this ID was found. This is inspired from the COM
Querylnterface function.
A different interface can be requested by providing an ID number or a string. Currently
no other interfaces are available by default.

class InterfaceBase

{

public:
virtual void *GetOtherInterface (int interfaceId) const
{
return 0;
}
virtual void *GetOtherInterface (const char *interfaceName) const
{
return 0;
}
protected:

virtual ~InterfaceBase() {}

b7

Nero AG 134

| NeroAPI v6.6.0.1

10.4. File System Reading Interfaces

This first set of interfaces will be used by the burn engine to read the content of the file
system.

10.4.1. IFileContent

Release will be called by the application when the object is not needed anymore

class IFileContent : public InterfaceBase

{

public:
virtual unsigned Read (void *pBuffer,unsigned length) =0;
virtual bool EndOfFile () =0g
virtual bool Error () =0;
virtual void Release () =0;

}i
10.4.2. IDirectoryEntry

GetName returns a file or directory name.
GetSourceFilePath returns the source file path, NULL if the file is generated.

Getld returns an Id number that can be used to find the file again later.

class IDirectoryEntry : public InterfaceBase
{
public:
enum ENTRY ERROR
{
ENTRY NO ERROR,
SEQUENCING ERROR,
ERROR NOT A FILE,
NOT AVAILABLE,
INTERFACE ERROR

enum
{
MODEZ_FORMZ =1<<0,
FIXED INSIDE VOLUME SPACE =1<<1,
FIXED OUTSIDE VOLUME SPACE =1<<2,
NO OWN CONTENT =1<<3
ti
virtual const char *GetName () const =0;

Nero AG 135

NeroAPI v6.6.0.1

virtual const IDirectory *GetSubDirectory () const =0;
virtual ENTRY ERROR GetContent (IFileContent **) const =0;
virtual const char *GetSourceFilePath () const =0;
virtual _ int64 GetSize () const =0;
virtual int GetFilePriority () const =0;
virtual int GetDirOrder () const =0;
virtual int GetId() const =0;
virtual unsigned GetDataStartSec () const =0;

bi

Description of enumerators

SEQUENCING_ERROR Indicates that the content for this file may not be requested at
this moment.

ERROR_NOT_A FILE This entry is not a file

NOT_AVAILABLE The content of this file cannot be requested at all.

INTERFACE_ERROR The overridden function has tried to get another interface for
one object and has failed.

FEATURE_NOT_AVAILABLE This feature is not available for this file system type.

Identifier Introduced in NeroAPI version
FEATURE_NOT_AVAILABLE 55.8.2
NO_OWN_CONTENT 5594

10.4.3. IDirectory

class IDirectory : public InterfaceBase
{
public:
virtual int GetNumEntries () const =0;
virtual const IDirectoryEntry *GetDirectoryEntry(int i) const =0;
}i

10.4.4. IFileSystemContent

GetName returns the volume name.

class IFileSystemContent : public InterfaceBase

{

public:
virtual const char *GetName () const =0;
virtual const IDirectory *GetRoot () const =0;

bi

Nero AG 136

| NeroAPI v6.6.0.1

10.5. File System Content Creation Interfaces

This second set of interfaces will be used by the application to produce the content of
the file system.

10.5.1. IDatalnputStream

This interface allows the file producer to return the data.

class IDatalnputStream : public InterfaceBase

{
public:
virtual void Write (const void *buffer,int size)= 0;

}i

10.5.2. IFileProducer

Produce the content of a file. This interface must be derived and its
implementation must create the content of the file in the ProduceFile function.

Calling ProduceFile will automatically update the file size to the amount of data
delivered by the producer.

Release will be called by the NeroAPI when the object is not needed anymore

class IFileProducer : public InterfaceBase

{

public:
virtual IDirectoryEntry::ENTRY ERROR ProduceFile (
IDatalInputStream *str) const = 0;
virtual void Release () const = 0;

}i

10.5.3. IDirectoryEntryContainer

This interface provides the means of describing a file. Using the SetSize function,
the file size can be changed after having added the entry to the directory.

If the file entry was created using an IFileProducer object, this one can be
retrieved using GetOtherlnterface.

SetDataStartSec sets the sector number that will be saved into the directory
structure.

SetFixedDataStartSec sets the physical position of the file in the file system.

SetPriority and SetDirOrder can be used to re-adjust the directory priority. Priority
numbers will be used in upward order: the file with smaller values first.

SetFlags enables or disables the given flag.

‘ Nero AG 137

NeroAPI v6.6.0.1

class IDirectoryEntryContainer : public IDirectoryEntry

{

public:

enum
{

IID IDirectoryEntryContainer,

IID IFileProducer,

IID IDirectoryEntryContainer?2,

IID IDirectoryEntry2
i
virtual void SetSize(int64 size) =0,
virtual void SetPriority(int priority) =0;
virtual void SetDirOrder (int directoryPriority) =0;
virtual void SetDataStartSec (unsigned) =0;
virtual void SetFixedDataStartSec (unsigned) =0;
virtual void SetFileNumber (int) =0;
virtual void SetId(int) =0;
virtual void SetFlags (bool enable,unsigned f) =0;

b7
10.5.4. IDirectoryContainer

This interface represents the content of a directory. AddDirectory returns a pointer
to the directory; directoryPriority specifies the position in the directory.
AddFile adds a file to the directory. The fp object will be automatically deleted
when the directory container will be deleted.

The file size passed here does not need to be correct; it will be used by the file
system generator to pre-allocate space so it must be the maximum space the
final version of the file may need (worst-case).

Priority specifies some user-defined ordinal defining the order in which the files
are being written to the disc physically (for example, .ifo comes before .vob).

Priorities are valid across directories. The fileentry order in a directory is defined
by the directoryPriority parameter which is the primary sort criterion when
arranging the files in a directory (Note that this is only true for file systems that do
not require files to be sorted in the directory, e.g. UDF).

If any of the priority specifiers is -1, the producer does not care about the priority
and the NeroAPI will put the file where it thinks it fits. AddFile will add a file which
is present in the real file system, and return NULL if a file with the same name
already exists.

RemoveEntry removes an entry from the directory.

Nero AG 138

NeroAPI v6.6.0.1

class IDirectoryContainer : public IDirectory

{
public:
virtual

virtual

virtual

virtual

virtual
virtual
virtual

bi

IDirectoryContainer *AddDirectory(const char *name,
int directoryPriority) =0;

IDirectoryEntryContainer *AddFile (const char *name,
const IFileProducer *fp, int64 size,int priority,
int directoryPriority) =0;

IDirectoryEntryContainer *AddFile (const char *name,
const char *sourcePath, int priority,

int directoryPriority) =0;
bool RemoveEntry(const char *name) =0;
IDirectoryEntryContainer *Entry(const char *name) =0;
IDirectoryEntryContainer *Entry(int 1) =0;

IDirectoryContainer *SubDirectory(const char *name =0;

10.5.5. IFileSystemDescContainer

This interface represents the content of a file system.

SetName sets the volume name of the file system.

The Root function provides access to the root directory for changing it.

Release is called by the application when the object is not needed anymore.

struct IFileSystemDescContainer : public IFileSystemContent

{
virtual
virtual

virtual

void SetName (const char *) =0;
IDirectoryContainer *Root () =0;
void Release () const =0;

Nero AG

139

| NeroAPI v6.6.0.1

11. The Burn-at-once Interface

The Burn-at-once interface allows burning a DVD-Video without storing intermediate files
on your hard disk.

There are two ways to use this functionality:

1. Calling the NeroBurnAtOnce function and responding to callbacks from the
NeroAPI.

2. Calling the NeroBAOxxx methods. Here the application controls the process.
The downside is that the application has to ensure that data bits are provided in
the right order while burning the DVD.

Due to the way the Burn-at-once process writes the data to a DVD, there might be small
gaps between some files on the disc. Therefore, the navigation data items in the IFO files
need to be adapted to the actual locations of the files on the disc. The NeroAP! will
provide you with the necessary information during the Burn-at-once burn process.

11.1. The NERO_WRITE_BURN_AT_ONCE struct

This structure is passed to the NeroBurnAtOnce and NeroBAOCreateHandle
functions as parameter.

typedef struct tag NERO BURN AT ONCE
{
DWORD nwbaoSize;
const char *nwbaoTempDirectory;
#ifdef cplusplus
FileSystemContent: :
#else // cplusplus
struct
#endif// cplusplus
IFileSystemDescContainer *nwbaoFSContainer;
DWORD nwbaoReserved[64];
} NERO WRITE BURN AT ONCE;

Description of structure members

nwbaoSize Fill this with sizeof(NERO_BURN_AT_ONCE).
nwbaoTempDirectory Path to a directory to store temporary files. If NULL, the
system temp directory will be used.
nwbaoFSContainer The content of the file system.
Important:

All IFO and BUP files must have the exact file size set.

All other video files must have the estimated size set. The size
will be updated during burning. Note, that the estimated size
should be as close to the actual size as possible.

Nero AG 140

NeroAPI v6.6.0.1

Description of structure members

For each video title set only add the first VOB file (e.g.
VTS_01_1.VOB) to the file system container and pass all the
video data of this title set in the file producer of this file.

The NeroAPI will automatically split the file at the appropriate
position (1 GB - logical block size).
DVD-Video files will be sorted automatically.

It is guaranteed that the file data will be requested in the
following order:

e VMGM_VOB (VIDEO_TS.VOB) [if present]

e For each video title set (VTS):
VTSM_VOB (e.g. VTS_01_0.VOB) [if present]
VTSTT_VOBS (e.g. VTS_01_1.VOB) [mandatory]
VTSI file (e.g. VTS_01_0.IFO) [mandatory]
VTSI backup (e.g. VTS_01_0.BUP) [mandatory]

¢ VMGMI (VIDEO_TS.IFO) [mandatory]

e Backup for VMGMI (VIDEO_TS.BUP) [mandatory]

nwbaoReserved Should be zero.
Identifier Introduced in NeroAPI version
NERO WRITE_BURN_AT_ONCE 6.3.1.11

11.2. The IBurnAtOncelnfo Interface

Access this interface through the |DatalnputStream object you get in
IFileProducer::ProduceFile. Use GetOtherlnterface("IBurnAtOncelnfo") to get a
pointer to an object of this class.

class IBurnAtOncelInfo : public InterfaceBase
{
public:
virtual DWORD GetOffset () const = 0;
}i

11.2.1. GetOffset

The GetOffset method returns the offset from the start of VIDEO_TS.IFO in
blocks.

Nero AG 141

| NeroAPI v6.6.0.1

11.3. Functions

11.3.1.

NeroBurnAtOnce

Start the Burn-at-once process. The NeroAPI will use callbacks to request data.

NEROAPI API NEROAPI BURN ERROR NADLL ATTR NeroBurnAtOnce (

NERO DEVICEHANDLE aDeviceHandle,
NERO WRITE BURN AT ONCE* pBurnAtOnce,
DWORD dwFlags,

DWORD dwSpeed,

NERO PROGRESS* pNeroProgress,
void* reserved) ;

Description of parameters

aDeviceHandle Device handle.

pBurnAtOnce Pointer to a NERO_WRITE_BURN_AT_ONCE struct.

dwFlags NBF flags. Note that not all NBF flags will be interpreted.

dwSpeed In KB/s if NBF_SPEED_IN_KBS is present, in multiple of 150 KB/s otherwise.
pNeroProgress Nero progress callback.

reserved Set this to NULL.

Identifier Introduced in NeroAPI version
NeroBurnAtOnce 6.3.1.11

11.3.2.

NeroBAOCreateHandle

This function is part of the second method to do Burn-at-once with the NeroAPI.

It allows more control by the application but the caller has to make sure that the
data is provided in the correct order. Additionally, the NeroAPI will not cache any
data in memory with this method and the functions block until all the data is
written. Therefore, your application should implement some caching itself for
performance reasons.

Use it like this:

1.

Fill the nwbaoFSContainer of NERO_WRITE_BURN_AT_ONCE to specify
the layout of the DVD.

Call NeroBAOCreateHandle with the necessary information to get a
NERO_BAO_HANDLE.

For each video file in the VIDEO_TS folder, call NeroBAOOpenFile, then
write all the data with NeroBAOWriteToFile and then call
NeroBAOCIoseFile.

Nero AG

142

NeroAPI v6.6.0.1

Note: It is absolutely important, that this is done in the correct order. See
the remarks on the nwbaoFSContainer above.

4. After all video data is written, call NeroBAOCloseHandle. This will write
additional files that are present in the file system container and then finalize

the disc.

5. If an error occurs on your side and/or you want to cancel burning, just call
NeroBAOCloseHandle with dwFlags set to NBAOF_CANCELED or
NBAOF_FAILED.

6. If an error occurs on the NeroAPI side, also call NeroBAOCloseHandle to
end burning and do some cleanup.

Notes: nwbaoFSContainer of parameter pBurnAtOnce is required to be valid until
NeroBAOCIloseHandle is called.

NEROAPI API NEROAPI BURN ERROR NADLL ATTR NeroBAOCreateHandle (

NERO_DEVICEHANDLE aDeviceHandle,
NERO WRITE BURN AT ONCE* pBurnAtOnce,
DWORD dwFlags,

DWORD dwSpeed,

NERO PROGRESS* pNeroProgress,
NERO BAO HANDLE* PBAOHandle,
voidx* reserved) ;

Description of parameters

aDeviceHandle | Device handle.

pBurnAtOnce Pointer to a NERO_WRITE_BURN_AT_ONCE struct.

dwFlags NBF flags. Note that not all NBF flags will be interpreted.

dwSpeed In KB/s if NBF_SPEED_IN_KBS is present, in multiple of 150 KB/s otherwise.

pNeroProgress Nero progress callback.

pBAOHandle Will receive the handle created by NeroAPI.

Identifier Introduced in NeroAPI version

NeroBAOCreateHandle 6.3.1.11
Nero AG 143

NeroAPI v6.6.0.1

11.3.3. NeroBAOOpenFile

NEROAPI API NEROAPI BURN ERROR NADLL ATTR NeroBAOOpenFile (
NERO BAO HANDLE hBAOHandle,

const char* name,
DWORD* pdwOffset,
voidx* reserved) ;

Description of parameters

hBAOHandle The handle that the NeroAPI created as result of NeroBAOCreateHandle.

name File name.

pdwOffset Contains the offset of the file from the beginning of VIDEO_TS.IFO in blocks.
(This is equivalent to IBurnAtOncelnfo::GetOffset when using the other
method.)

reserved Set this to NULL.

Identifier Introduced in NeroAPI version

NeroBAOOpenFile 6.3.1.11

11.3.4. NeroBAOWriteToFile

NEROAPI API NEROAPI BURN ERROR NADLL ATTR NeroBAOWriteToFile (
NERO BAO HANDLE hBAOHandle,

const void* lpBuffer,

DWORD nNumberOfBytesToWrite
LPDWORD 1pNumberOfBytesWritten,
void* reserved) ;

Description of parameters

hBAOHandle The handle, which the NeroAPI created as result of NeroBAOCreateHandle.
IpBuffer Data buffer.

nNumberOfBytes | Number of bytes to write. Must be a multiple of 2048!

ToWrite

IpNumberOf Number of bytes actually written.

BytesWritten

reserved Set this to NULL.

Identifier Introduced in NeroAPI version
NeroBAOWriteToFile 6.3.1.11

Nero AG 144

NeroAPI v6.6.0.1

11.3.5. NeroBAOCIloseFile

NEROAPI API NEROAPI BURN ERROR NADLL ATTR NeroBAOCloseFile (

NERO_BAO_HANDLE hBAOHandle,
void* reserved) ;

Description of parameters

hBAOHandle The handle, which the NeroAPI created as result of NeroBAOCreateHandle.
reserved Set this to NULL.

Identifier Introduced in NeroAPI version
NeroBAOCIoseFile 6.3.1.11

11.3.6. NeroBAOCloseHandle

Use the dwFlags parameter to instruct the NeroAPI to terminate the process. The
reason might be the user’s desire to cancel the operation or a failure. If one of the
flags is present, NeroAPI will not attempt to write additional data but stop the burn
process immediately.

NEROAPI API NEROAPI BURN ERROR NADLL ATTR NeroBAOCloseHandle (

NERO_ BAO HANDLE hBAOHandle,
DWORD dwFlags,
void* reserved) ;

Description of parameters
hBAOHandle The handle, which the NeroAPI created as result of NeroBAOCreateHandle.
dwFlags Available constants:

NBAOF_CANCELED (1<<0)

NBAOF_FAILED (1<<1)
reserved Set this to NULL.
Identifier Introduced in NeroAPI version
NeroBAOCIloseHandle 6.3.1.11

Nero AG

145

| NeroAPI v6.6.0.1

12. The Packet Writing API

Packet writing enables the incremental writing of data to a CD-R or DVD. Unlike disk-at-
once or track-at-once it lets the user access the media like a hard disk drive if the CD or
DVD recorder supports packet writing.

Packet writing has become available with NeroAPI 5.5.10.15.

12.1. Packet Writing Interface

Please note that only one object created by either NeroCreateBlockWriterInterface or
NeroCreateBlockReaderlnterface may exist at a time. Also make sure to delete the
object before using the referred drive for another purpose (e.g. importing multisession
data, starting a recording- or digital audio extraction process). Opening a secondary
device handle for the drive is not sufficient!

12.1.1. Access Mode

The enum is used when creating reader or writer interfaces from devices.

typedef enum
{

eNoWriting =0x0000,
ePacketWriting =0x0001,
eManagedMRW =0x0002,
eRawMRW =0x0004,
elllegalAccessMode =0xffffffff

} AccessMode;

Description of enumerators

eNoWriting Use this to instantiate an INeroFileSystemBlockAccess object
for read-only access.

ePacketWriting Use this for DVD+RW, DVD-RW, CD-RW media in non-MRW
mode.

eManagedMRW Use this for defective managed MRW mode for all media
types.

eRawMRW Use this for raw MRW mode (defective management turned
off).

12.1.2. ImageAccessMode

Used when creating a block access interface from an image.

typedef enum
{

eIAReadOnly = 0x0000,
eIAReadWrite = 0x0001,
eIATIllegalAccessMode = Oxffffffff

} ImageAccessMode;

Nero AG 146

NeroAPI v6.6.0.1

Description of enumerators
elAReadOnly Read only access.
elAReadWrite Read and write access.

12.1.3. NeroCreateBlockWriterinterface

Use this function to obtain a block writer to a specified NeroAPI device.

Please note that ownership of the aDeviceHandle is not transferred to the block
writer so you are still responsible to dispose of the device handle after disposing of
the writer interface.

NEROAPI API INeroFileSystemBlockAccess* NADLL ATTR
NeroCreateBlockWriterInterface (NERO DEVICEHANDLE DeviceHandle,

AccessMode eAccessMode) ;

12.1.4. NeroCreateBlockReaderinterface

Use this function to obtain a block reader to a specified NeroAPI device.

Please note that ownership of the aDeviceHandle is not transferred to the block
reader so you are still responsible to dispose of the device handle after disposing
of the reader interface.

NEROAPI API INeroFileSystemBlockReader* NADLL ATTR
NeroCreateBlockReaderInterface (NERO DEVICEHANDLE DeviceHandle,

AccessMode eAccessMode) ;

12.1.5. NeroCreateBlockAccessFromimage

Create a block access interface for the specified image file. Instead of an image
file, you may pass a drive letter here to read from a specific device supported by
the operating system.

NEROAPI API INeroFileSystemBlockAccess* NADLL ATTR
NeroCreateBlockAccessFromImage (const char *szFilename,

ImageAccessMode eAccessMode) ;
12.1.6. NeroGetSupportedAccessModesForDevice

This function will return a DWORD mask containing values as declared in enum
AccessMode. Use ((result&eDesiredMode)!=0) to determine whether a specific
mode is supported.

NEROAPI API DWORD NADLL ATTR NeroGetSupportedAccessModesForDevice (
NERO_ DEVICEHANDLE aDeviceHandle) ;

Nero AG 147

| NeroAPI v6.6.0.1

12.2. File System Block Access Interface

These interfaces are part of the NeroAPI packet writing API. The packet writing API
will return INeroFileSystemBlockAccess that can be used to have block access to a

file system.
INeroFileSystemBlockReader struct
NeroFSPartitionInfo
+GetNumPartitions:int +PartitionNum:int

0.1 | +PartitionStart:NeroFSSecNo
+PartitionSize:NeroFSSecNo
+PartitionType:NeroF STrackType
+sectorSize:DWORD

+GetPartitioninfo.const NeroF SPartitioninfo &
+GetPartitionForSector:const NeroF SPartitioninfo &
+ReadSectorsBuffered.NeroF SError
+ReadSectorsUnBuffered:NeroF SError
+~INeroFileSystemBlockReader

INeroFileSystemBlockWiiter enum
InterfaceType
0.1
+WriteSectorsBuffered:NeroF SError +eBWIUnknown:int
+WriteSectorsUnBuffered:NeroF SError
+FlushSectorCache:void
+GetBlockWriterType:Interface Type
INeroFileSystemBlockAccess INeroFileSystemBlockAccessExtension
0.1
+GetNumSupportedExtensions:DWORD +GetExtensionType.NeroF SBlockAccessExtensions Type
+GetFileExtensionByNumber:INeroFileSystemBlockAccessExtension * +~INeroFileSystemBlockAccessExtension
+GetFileExtension:/NeroFileSystemBlockAccessExtension *
0.1
enum

NeroFSBlockAccessExtensionsType

+etMRWReadDefectiveManagementinfo:int
+etDVDPRWFormatExtension:int
+etSectorMappingControlExtension:int
+etBlankAreaControlExtension:int
+etlllegalBlockAccessExtension:int

Nero AG 148

NeroAPI v6.6.0.1

12.2.1. INeroFileSystemBlockAccess

This interface contains an extension scheme that will allow us to transparently
extend the interface's functionality without losing binary compatibility.

class INeroFileSystemBlockAccess :public INeroFileSystemBlockWriter
{
public:
virtual DWORD GetNumSupportedExtensions () = 0;
virtual INeroFileSystemBlockAccessExtension
*GetFileExtensionByNumber (int iNumExt) = 0;

virtual INeroFileSystemBlockAccessExtension
*GetFileExtension (NeroFSBlockAccessExtensionsType eExtType) =
0;
}i

Description of members

GetNumSupportedExtensions Returns the number of supported extension fields.
GetFileExtensionByNumber In combination with the method above, this method can be
used to copy a set of extensions without knowing which ones
are actually there. Extensions have to be passed through to
any of the Nero file system generators, so it is essential to
have some means of copying them.

GetFileExtension Returns specified extension or NULL if not present.

12.2.2. INeroFileSystemBlockAccessExtension

All block device access extensions are derived from this one.

class INeroFileSystemBlockAccessExtension

{

public:
virtual NeroFSBlockAccessExtensionsType GetExtensionType () const
= 0;
virtual ~INeroFileSystemBlockAccessExtension () {};

bi

Nero AG 149

NeroAPI v6.6.0.1

12.2.3. INeroFileSystemBlockReader

This is an abstract interface for reading from block devices. It will provide
necessary data about the underlying medium as well as cache data if necessary.

class INeroFileSystemBlockReader
{
public:
virtual int GetNumPartitions () = 0;
virtual const NeroFSPartitionInfo &GetPartitionInfo (int iNumPartition)
= 0;

virtual const NeroFSPartitionInfo &GetPartitionForSector (
NeroFSSecNo secNo) = 0;

virtual NeroFSError ReadSectorsBuffered (void *pData,
NeroFSSecNo startSector,
NeroFSSecNo noSectors,
NeroFSSecNo &noSectorsRead)
= 0;
virtual NeroFSError ReadSectorsUnBuffered(void *pData,
NeroFSSecNo startSector,
NeroFSSecNo noSectors,
NeroFSSecNo &noSectorsRead)

virtual ~INeroFileSystemBlockReader () {};

}i

Description of members

GetNumPartitions Retrieve the number of partitions.

GetPartitionInfo Retrieve the partition information.

GetPartitionForSector Returns the partition a given sector resides in.

ReadSectorsBuffered The buffered reading method will use a cache to optimize file
system access. It should be used when reading directory
structures.

This method returns error codes as described in NeroFSError.
Your read requests may not cross partition boundaries!

ReadSectorsUnBuffered The unbuffered reading method should be used when reading
file contents.

This method returns error codes as described in NeroFSError.
Your read requests may not cross partition boundaries!

Nero AG 150

NeroAPI v6.6.0.1

12.2.4. INeroFileSystemBlockWriter

The FileSystem block writer interface is derived from the block reader interface. It
defines a path of access to RW file systems and partitions.

As is the case with the reader interface, the writer interface also provides two
methods for sector access. While WriteSectorsUnBuffered will merely ensure the
consistency of the read cache (write thru), WriteSectorsBuffered will not write
anything to the block device immediately but will cache a certain amount of
sectors before doing so.

The latter increases performance considerably but is prone to data loss in an
unstable environment.

Please note that regardless of which method you use, you must call
FlushSectorCache if you want all your data to be at their final physical location.
The reason is that even when writing in UnBuffered mode, the driver may decide
to not write away your data immediately. This depends on the underlying writing
scheme (e.g. packet writing will always try to collect a certain amount of sectors).

class INeroFileSystemBlockWriter :public INeroFileSystemBlockReader
{
public:
virtual NeroFSError WriteSectorsBuffered(const void *pData,
NeroFSSecNo startSector,
NeroFSSecNo noSectors,
NeroFSSecNo &noSectorsWritten)
= 0;
virtual NeroFSError WriteSectorsUnBuffered(const void *pData,
NeroFSSecNo startSector,

NeroFSSecNo noSectors,
NeroFSSecNo &noSectorsWritten)

= 0;
virtual void FlushSectorCache () = 0;

virtual InterfaceType GetBlockWriterType() = 0;
b7

Description of members

WriteSectorsBuffered Method for buffered writing.
WriteSectorsUnBuffered Method for unbuffered writing.
FlushSectorCache Force the flushing of the sector cache.

FlushSectorCache will be performed implicitly upon deleting
the block writer object.

GetBlockWriterType Runtime type information to be used for downcasting into
specialized interfaces.

Nero AG 151

NeroAPI v6.6.0.1

12.2.5. InterfaceType

Specifies the block writer type. You can use this information to down-cast the
interface to obtain specialized functionality.

No extensions to the normal block write interface are available so far.

enum InterfaceType
{

eBWIUnknown
}i

12.2.6. NeroFSBlockAccessExtensionsType

Type of an extension. Currently no extension is provided within the NeroSDK.

enum NeroFSBlockAccessExtensionsType

{
etMRWReadDefectiveManagementInfo,
etDVDPRWFormatExtension,
etSectorMappingControlExtension,
etBlankAreaControlExtension,
etIllegalBlockAccessExtension,
etHDPartitionInfo,
etHDUsedBlockAccessExtention,
etSectorPatchControlExtension,
etHDPartitionLocker,
etMediumCDStamp,
etFragmentReservation,
etUDFImageEditExtension,
etSessionControl,
etNeroFSBAExtensionReservedl,
etNeroFSBAExtensionReserved?2,
etMediumInfo

i
12.2.7. NeroFSError

This enum is used to obtain the result of reading and writing operations.

typedef enum

{
errOK=0,
errEndOfDir,
errEndOfFile,
errReadError,
errInvalidFs,
errNoDirectory,
errNoFile,
errNotSupported,
errIllegalArgument,

Nero AG 152

NeroAPI v6.6.0.1

errWriteError,
errInternalError,
errFileLocked

} NeroFSError;

Description of enumerators

errOK Operation successful.

errEndOfDir Deprecated. Should never be returned, to be treated as
errOK.

errEndOfFile See the libc read command for reference.

errReadError A read error has occurred.

errinvalidFS The files system is not valid.

errNoDirectory It has been attempted to perform a directory operation on an
object that is no directory.

errNoFile It has been attempted to perform a file operation on an object
that is no file.

errNotSupported Operation not supported.

errlllegalArgument An illegal argument has been passed.

errWriteError A write error has occurred.

errinternalError An internal error has occurred.

errFileLocked The file is locked.

12.2.8. NeroFSPartitionInfo

This struct stores information about a partition.

typedef struct
{

int PartitionNum;
NeroFSSecNo PartitionStart;
NeroFSSecNo PartitionSize;

NeroFSTrackType PartitionType;
DWORD sectorSize;
} NeroFSPartitionInfo;

Description of members

PartitionNum The current partition number.

PartitionStart The start sector for this Partition.
PartitionSize The number of sectors this Partition contains.
PartitionType The type of Partition.

sectorSize Sector size for this Partition.

Nero AG 153

NeroAPI v6.6.0.1

12.2.9. NeroFSTrackType

Enumeration of file system track types.

typedef enum

{
vtData=0,
vtAudio

} NeroFSTrackType;

Description of enumerators
vtData Data Track.
vtAudio Audio Track.

12.2.10. NeroFSSecNo

The sector number. All sector references use this type. LBA addressing is used
throughout the interface.

typedef int64 NeroFSSecNo;

Nero AG 154

| NeroAPI v6.6.0.1

13. Robot Control Interface

This interface is designed for associating duplication systems, also called “robots” or
“robos®, with disc drives.

You can associate a robot with a drive by using the NeroAssociateRobo function with the
device handle of a recorder.

13.1. NERO_COMMNODE_TYPE Enumeration

This enum type defines the character of the communication node, which can be either
serial, parallel or USB.

typedef enum

{
NCT PORT SERIAL,
NCT PORT PARALLEL,
NCT_ PORT USB

}
NERO_COMMNODE_TYPE;

13.2. NEROAPI_ROBO_ERROR Enumeration

This enum provides the supported error codes.

typedef enum
{

NEROAPI ROBO_OK =0,
NEROAPI ROBO_NOTFOUND =1,
NEROAPI ROBO_NOTSUPPORTED =7

}
NEROAPI ROBO ERROR;

13.3. NeroPrintLabelCallback_t Callback

This callback is used for label printing. It will be called by the NeroAPI when it is time
to print the label. The callback function must return TRUE if the label was printed
successfully, FALSE otherwise.

This callback is called from within the NeroRobo driver thread. Therefore, usually no
GUI interaction is allowed (spawning a new process is permitted, though). This
callback must not return until the print job is done.

typedef BOOL (*NeroPrintLabelCallback t) (void *data);

Nero AG 155

| NeroAPI v6.6.0.1

13.4. NERO_ROBO_DRIVER_INFO Structure

This struct provides information on one robot driver.

typedef struct

{
char nrdiIdentifier[256];

DWORD nrdiVersionNumber;
char nrdiDLLName[256];
} NERO ROBO DRIVER INFO;

13.5. NERO_ROBO_DRIVER_INFOS Structure

A list of robot driver information entries. The number of entries is determined by the
nrdisNumDevInfos member.

typedef struct

{

DWORD nrdisNumDevInfos;

NERO ROBO DRIVER INFO nrdiDevInfos[1];
} NERO ROBO DRIVER INFOS;

13.6. NeroGetAvailableRoboDrivers Function

This function will return a list of available robot drivers.

NEROAPI API NERO ROBO DRIVER INFOS & NADLL ATTR
NeroGetAvailableRoboDrivers () ;

13.7. NeroAssociateRobo Function

Associate a robot of the specified type connected to a given port with a device handle.

For now, this function will always return NEROAPI_ROBO_OK as it does not actually
do anything with the robot.

You can pass NULL instead of a print callback if printing shall be disabled.

NEROAPI API NEROAPI ROBO ERROR NADLL ATTR NeroAssociateRobo (
NERO DEVICEHANDLE aDeviceHandle,
const char *robo identifier,
NERO COMMNODE TYPE port,
int portnum,
NeroPrintLabelCallback t printcallback,
void *printcallback data);

Nero AG 156

| NeroAPI v6.6.0.1

13.8. NERO_ROBO_FLAG Enumeration

This enum is used when setting runtime options for the robot, i.e. settings that the
robot will not remember beyond the current session. This enum is used as parameter
to the NeroSetRoboFlag function.

typedef enum
{
NERO ROBO FLAG CLEANUP,
NERO ROBO INSERTCD RETRIES
} NERO_ROBO_ FLAG;

Description of enumerators

NERO_ROBO_FLAG_CLEANUP Set this value in order to have the robot perform cleanup
functions for itself. This might include removing any
remaining discs from the trays etc.

Note that the resulting behavior may sometimes look like a
bad control flow. For example, the robot might try to remove
discs when there are none.

Therefore, you should not use this option unless you are
cleaning up after a hard server crash or have another good
reason to do so.

NERO_ROBO_INSERTCD_RETRIES | This flag specifies how often Nero is to try to insert another
disc from the input tray if the disc in the drive is not writable.
The current default value for the number of retries is 5, a
value of 0 means trying indefinitely.

13.9. NeroSetRoboFlag Function

This function sets runtime options for the robot. Those will not be remembered beyond
the current session.

With this function, the generic control flow of the robot can be set. The function below
will return NEROAPI_ROBO_NOTSUPPORTED if a specific control flow option is not
supported by the robot or not available for some other reason.
NEROAPI API NEROAPI ROBO ERROR NADLL ATTR NeroSetRoboFlag (

NERO DEVICEHANDLE aDeviceHandle,

NERO ROBO FLAG eRoboFlag,

int iRoboValue) ;

Nero AG 157

| NeroAPI v6.6.0.1

14. Media Type Formats

14.1. Audio

The NeroAPI requires the use of PCM (Pulse Code Modulation), 44.1kHz, Stereo (left
channel first), 16 bits per channel, Little Endian Word (Least Significant Byte first).

WAV and MP3 files can also be burnt on Audio-CD by passing their path.

14.2. Video

14.2.1. SVCD Creation with Nero

There has been some confusion about what kind of input files are accepted by
Nero for VCD and SVCD. The general answer is:

MPEG files that have already been prepared for VCD or SVCD. If the files
conform to the VCD or SVCD specs, Nero is able to write a VCD or SVCD on-the-
fly without re-encoding the files.

It's important to realize that there are different types of MPEG files. What makes a
MPEG suitable for a (S)VCD is way beyond the scope of this documentation text
and has to be dealt with by the makers of MPEG encoders. It involves details and
settings that simply cannot be chosen via the user interface of existing encoders,
unless they have a button dedicated to "(S)VCD encoding".

Having said that, there is a way to at least make Nero happy with the source
MPEG files. However, this is far from producing a standard compliant CD,
because Nero cannot test all the relevant aspects.

The most obvious (and most easily met) requirement is picture size:

Format PAL Resolution NTSC Resolution

VCD, normal 352x288 352x240
VCD, high 704x576 704x480
SVCD, normal 480x576 480x480
SVCD, high 704x576 704x480

The "high" resolutions are only available for still images, not for movies.
For still images, Nero will do the encoding by itself, so the picture sizes may differ.
Nero will automatically fit the picture into the available space (in a future update,
this will be user-configurable).

The frequency for the video is 25Hz for PAL and 29.97Hz for NTSC. The VCD
format also allows a "MOVIE" resolution of 352x240 at 23.976Hz, but although this
is legal, it is said to cause problems with some players.

| Nero AG 158 |

| NeroAPI v6.6.0.1 |

Audio must be MPEG-1, layer 2, at 44.1kHz, stereo. SVCD also
allows a second music channel and MPEG-2 multi-channel. The second channel
is usually used for another language or — in case of Karaoke - for the music
without the vocal track.

Apart from these obvious aspects, Nero also requires the MPEG-2 file to have a
pack size that fits directly into a mode 2, form 2 block, i.e. it must be 2324 bytes
large. If this (and for VCD also some other minor aspects) is not met, then Nero
will list the file as having an "invalid stream encoding".

Nero does not test if scan information is stored in the user data of a stream. Scan
information is required by the SVCD standard and might be required by certain
players for seeking functions. Nero also accepts streams that contain invalid
stream IDs.

Nero AG 159

| NeroAPI v6.6.0.1

15. FAQ

This is a collection of frequently asked questions from the NeroSDK forum and Nero
AG’s customer support.

We have tried to avoid duplicates in different sections. If you, for example, have a
problem with multisession writing in combination with DVD media, you might want to
scan both the “Multisession” and “DVD Issues” chapters.

15.1. NeroSDK License

What licensing requirements do | have to meet to use the NeroSDK?

You can find the license agreement in the file NeroSDK_License.txt in the NeroSDK
package. To be able to work with the NeroAPI you additionally need a license of Nero.
Additionally, all computers running your application need a valid Nero license.

Are there any limitations (for instance burn speed) if | use the NeroSDK?
The limitations depend on the Nero license you have installed on the computer.

Can | distribute the software that | made with NeroSDK as a part of commercial
software?

Yes, you can. But on every computer that runs your software there will have to be a
Nero version with a valid license installed. For details on the license please also read
the file NeroSDK _license.txt that is contained in the NeroSDK package.

15.2. NeroSDK/NeroAPI Features

Can the NeroSDK create Slideshows of images in (S)VCD format?
Yes, the NeroSDK supports this.

Can the NeroSDK create Slideshow of images in DVD-Video format?
No, the NeroSDK does not support this.

Does the NeroAPI support writing Diskt@2?

The NeroAPI does not support this.

What recorders does the NeroAPI support?

Every recorder that is supported by Nero is also supported by the NeroAPI.
Can | copy a disc with the NeroSDK?

The NeroSDK does not offer functionality to copy a CD or DVD.

Can | use the trial version of Nero 6 to get the NeroAPI to work?

Yes.

| Nero AG 160

| NeroAPI v6.6.0.1

15.3. General Programming Issues

Where can | find the C interface to the NeroAPI?

You will find the C Interface to the NeroAPI in the NeroAPI.h file.
Where can | find good examples of how to use the NeroAPI?
NeroCmd utilizes much of the power of NeroAPI.

Is there any support for a Delphi interface?

Delphi will not be supported directly. The documentation will hopefully be good
enough to enable you to write a wrapper.

Do | have to link to both NeroAPIGlueRT.lib and NeroAPIGlue.lib?

You should only link to one of the libraries. NeroAPIGIueRT.lib is used for dynamic
linkage to the runtime library and NeroAPIGlue.lib for static linkage.

Can | use the NeroAPI with Borland C++ Builder?
Since NeroSDK 1.05, Borland C++ Builder is supported.

Please use the NeroAPIGlueBCPPB.lib library. You can find it in the Lib directory of
the NeroAPI tree.

| have problems with Borland’s C++ Builder. What can | do?

Upgrade to NeroSDK 1.05 which supports Borland’s C++ Builder.

15.4. DVD Issues

How can | obtain a list of all devices supporting DVD read/write or DVD write?

Use NeroGetAvailableDrivesEx to get a list of devices in the
NERO_SCSI_DEVICE_INFOS structure. Walk through the list and use the
nsdiMediaSupport member of each NERO_SCSI_DEVICE_INFO structure to get the
supported writable media of a drive. Use the nsdiMeadReadSupport member to get
the media a drive is able to read.

To see if a drive is a recorder or a read-only device, you can evaluate the value of the
nsdiDevType member.

Please do not use the mediaType parameter of NeroGetAvailableDrivesEx for this
purpose. This parameter is only meant to obtain a list of available speeds for a certain
media from the recorder.

Does the NeroAPI support writing multisession DVD?

Writing multisession on DVD-R and DVD+R is supported. For DVD+RW and DVD-RW
virtual multisession (VMS) is supported by NeroAP! 6.0.0.12 or better (NeroSDK
1.04).

| Nero AG 161

| NeroAPI v6.6.0.1 |

Virtual multisession is a technique that allows writing multisession discs on media
types that do not support normal multisession, e.g. DVD-/+RW.

Virtual multisession media can be handled by the standard multisession methods of
the NeroAPI. Only if you want to access a session that is not the last on the media,
you have to use the special virtual multisession methods.

Warning: Many operating systems have problems when reading from DVD-R and
DVD+R multisession media.

How can | detect the presence of a DVD media?

Use ncdiMediaType of struct NERO_CD_INFO instead of ncdiMediumType.
ncdiMediumType is obsolete!

Why does NeroBurn not return while "Writing short lead-out” on DVD media?

Depending from the exact media type, writing the lead out might take a long time. If
the amount of data to be written is relatively small, writing the lead-out portion appears
to consume a disproportionate amount of time.

Especially, if the NeroAPI writes a high compatibility border to the disc, which means
that at least 1 GB is written.

How do | get a list of VMS sessions written on DVD?

To determine if a media of type DVD+RW, DVD-RAM or DVD-RW is a virtual
multisession media, check NERO_CD_INFO::ncdiMediumFlags against
NCDIMF_VIRTUALMULTISESSION. Then, retrieve the session information using
NeroGetVMSiInfo.

You will need NeroSDK v1.04 and a recent Nero version.

| realized that | can burn DVD-Video using the NeroAPI. Does it allow creating
and encoding Video-DVD projects, in other words does it include any of Nero
Vision Express 2 functionality?

No. You can only burn the generated files with the NeroAPI so that the generated
DVD is standard compliant.

Please take a look at the NeroVision API which is contained in the NeroSDK. The
NeroVision API offers a selected range of Nero Vision Express 2 functionality.

| am trying to create a DVD-Video, but get an error 'Backup file 'VTS_01_0.BUP'
should be identical to 'VTS_01_0.IFO'. What is wrong?

The .BUP files are the backup files of .IFO files.

For DVD-Video, the .BUP files must be identical to the .IFO files. In fact, only stand-
alone DVD players need the .IFO files. However, .IFO files are so important for stand-
alone DVD players that the backup files must exist. If the .BUP files differ from the
IFO files, the compilation is not valid for burning.

Nero AG 162

| NeroAPI v6.6.0.1

Does the NeroAPI support the burning of ISO images to DVD?

This became possible with version 6.3.0.6 of the NeroAPI.

Set nwiMediaType of struct NERO_WRITE_IMAGE to MEDIA_DVD_ANY.

Can | create a DVD-Video by providing the NeroAPI with .mpg or .avi files?

There is no special API for this. You have to prepare the files for the DVD-Video
yourself. Then you can burn a UDF/ISO file system to DVD which has to contain all
necessary files in the proper location.

For additional information, please consider the answer to the next question.
How can | create a DVD-Video with the NeroAPI?

For improved compatibility and standard compliance, use the following flags:

NBF DVDP_BURN 30MM AT LEAST | NBF BOOK TYPE DVDROM
The required file system flags are:

NCITEF CREATE ISO FS | NCITEF CREATE UDF _FS |
NCITEF DVDVIDEO CMPT | NCITEF DVDVIDEO REALLOC

With NeroAPI 6.3.1.11, the Burn-at-once interface has become available.
Burn-at-once offers functionality to burn a DVD-Video without creating the I1SO file
system on the hard disk first.

Why does a DVD+RW media stay open even if | configured the NeroAPI to
finalize it?

DVD+RW can not be finalized in the usual meaning. And they also do not support real
multisession like CD-R/RW.

The NeroAPI always adds the information that is required to continue DVD+RW.

(Nero will only allow this if the user did not choose "Finalize")

15.5. Video CD and Super Video CD

How do | instruct the NeroAPI to use PAL/NTSC format when creating a
VCD/SVCD?

This is supported by Nero 6.0.0.17 (NeroSDK 1.04) and later versions.

The member nwvcdEncodingResolution within the struct NERO_WRITE_VIDEO_CD
can be used to provide that information. Valid values are
NERO_VIDEO_RESOLUTION_PAL and NERO_VIDEO_RESOLUTION_NTSC

Nero AG 163

| NeroAPI v6.6.0.1

How can | burn a VideoCD with data track with the NeroAPI?

You can use the IsoTrack property of the NERO_WRITE_VICEO_CD structure. It
takes a CNerolsoTrack class that can be created by NeroCreatelsoTrackEx or an
implementation of your own. That class implementation would be derived from
CNerolsoTrack.

NeroCreatelsoTrackEx requires a NERO_ISO_ITEM that can be created by
NeroCreatelsoltem.

15.6. Audio

Does the NeroAPI support ISRC (International Standard Recording Code)?
The NeroAPI can read ISRC information but cannot write it.

Please use NeroGetCDInfo to extract the ISRC. The information is contained in the
struct NERO_TRACK _INFO in ntilSRC (only if NGCDI_READ_ISRC is present).

Is there any support of jitter correction by the NeroAPI?

No, the NeroAPIl does not offer any jitter correction functionality. Only the jitter
correction built into the devices will be used.

Why does burning Audio CDs with indexes result in an "Invalid field in
parameter” error?

The NeroAPI expects the indexes as a multiple of the block size (2352). The
description in the NeroAPl.h was a bit misleading in earlier versions and has been
improved as of NeroSDK version 1.04.

15.7. Multisession

How can | prevent closing a disc, e.g. to start or continue a multisession disc?
Use the flag NBF_CLOSE_SESSION with the NeroBurn function.

During the importing of a track Nero Burning ROM reports "The Track you
selected was not created using Nero's multisession option, References to you
local files cannot be automatically restored" for a multisession disc started with
NeroAPI. What does that mean?

The message just indicates that the multisession disc was not written by Nero Burning
ROM / Nero Express. Nero Burning ROM writes additional information on multisession
discs which allows it to offer some options like updating files on the disc if the content
has changed, etc. The NeroAPI does not write this kind information. But you can
nevertheless continue a multisession disc written with the NeroAPI with Nero Burning
ROM.

Nero AG 164

| NeroAPI v6.6.0.1

Do | have to import the last or all tracks of a disc?

You normally import only one session. Which one, really depends on your particular
requirements. In most cases it is the last.

When burning, the NeroAPI will rename a directory or file if the same name
exists in a previous session. How can this be anticipated?

You can obtain the content of the previous session with NerolmportDataTrack.
You will get an ISO item tree, which contains all files of the imported session.

To prevent the renaming of ISO items, make sure there are no duplicate item names.
If a directory of the desired name already exists, arrange the new ISO items below the
existing directory.

Is there any sample code to burn, import and continue a multisession data CD?

Yes, please have a look at the NeroCMD code. Importing is done in IsoTrack.cpp with
NerolmportlsoTrackEx. To continue a multisession disc you just have to import the
session you want to continue and add the resulting NERO_ISO_ITEM to the root of
your NERO _ISO_ITEM tree.

To burn the disc with the possibility to later continue it, add the flag
NBF_CLOSE_SESSION to dwFlags in NeroBurn.

How do | continue a multisession disc if | want to use my own CNerolsoTrack
implementation?

NerolmportDataTrack does not return a ClsoTrack but a tree of NERO_ISO_ITEMS
which contain some information about the files on the disc. So what you actually have
to do is to provide this information to your ISO track implementation and feed it to the
NeroAPI when asked for it.

You should enhance the demo ISO track of NeroAPITest a bit so that it actually
supports multisession. The information you have to take from the ISO items is:

// Used to reference a file from a previous session
long dataStartSec;

___int64 datalength;

struct tm entryTime;

struct CImportInfo *importinfo;

Eventually, the information needs to be passed to the NeroAPI with these methods of
CNerolsoEntry:

// Can be used to reference files from previous session
virtual DWORD GetDataStartSec(); //

virtual BOOL IsDataFixed(); // return TRUE here

virtual BOOL GetEntryTime (struct tm *tm)

virtual CImportInfo *GetImportInfo() const;

Nero AG 165

| NeroAPI v6.6.0.1

What is the purpose of the CD stamp?

The purpose of the CD stamp is to let the NeroAPI request exactly the disc that the
CD stamp describes. E.g. for multisession discs, you would not want the user to insert
any disc but the one that contains the session from.

How can | write multiple sessions to a disc?
1. Use NeroGetCDInfo to check how many sessions are already on the media.

2. Use NerolmportDataTrack/NerolmportlsoTrackEx specifying the last session
as session to import.

3. Append your new ISO items to the ISO item tree

4. Burn the resulting ISO item tree.

15.8. Size Information, Calculation and Estimation

How can | obtain the available size of a media for each media type?

Use NERO_CD_INFO::ncdiFreeCapacitylnBlocks. One block has the size of 2048
bytes for data. For Audio and VCD/SVCD the size is 2352.

spaceAvaiable = (NeroCDInfo.FreeCapacitylnBlocks()* _blockSize).
Why does NeroEstimateTrackSize() always return -1 with NeroAPI 6.0.0.07?

You need at least version 6.0.0.14 in order for NeroEstimateTrackSize to work.
Please update your installation and retry.

How can | determine free disc space available for writing and used disc space
with the NERO_CD_INFO structure returned by NeroGetCDInfo?

1. NERO_CD_INFO.ncdiFreeCapacitylnBlocks should give you the information
(blocks are 2048 bytes long)

2. Parse the track info array starting at NERO_CD _INFO.ncdiTrackinfos and add
all NERO_TRACK_INFO.ntiTrackLengthInBlks.

e |If it contains "normal" data, the size is 2048 bytes.

e |If you put audio or video in these tracks (mode 2 form 2), the effective block
size will be 2324 bytes.

Actually, the total size of a block is exactly 2352 bytes. Depending on the format,
bytes are used for sync, header, EDC and ECC. In mode 1 and mode 2 form 1, you
get 2048 for user data. In mode 2 form 2 there is no ECC, so you get 276 bytes more,
but there are tradeoffs in reliability. Therefore, these kinds of tracks are typically used
for audio and video.

What is the size limitation for an UDF volume name?

Currently, the NeroAP!I limits the UDF volume name to 16 characters.
| Nero AG 166

| NeroAPI v6.6.0.1

15.9. Packet Writing

Can | format a disc with UDF?
It is not possible to format a disc with the NeroAPI.

Does the Packet Writing interface of the NeroAPI offer the same functionality as
InCD?

No.

Do | have to install InCD if | want to use the Packet Writing interface of the
NeroAPI?

No.

Can | write/lerase BYTE data on UDF formatted discs similar to a hard disk with
the NeroAPI?

You can read and write sectors.
What is the scope of NeroAPI Packet Writing?
NeroAPI packet writing support is limited to

e reading sectors for CD-R media.

e read/write access to sector of CD-RW media already formatted in packet
writing mode. This requirement also applies to DVD-RW media. DVD+RW
media can be written to without prior formatting.

Anything required besides low-level read/write access (like file system drivers) needs
to be developed by you since the current version of the NeroAPI does not provide
access to packet writing media on a file system level.

NeroAPI Packet Writing will always overwrite sectors that already exist on the media.
The NeroAPI does not provide support to format a packet writing medium, neither
physically nor logically.

When using UDF, in which format will the disc be written?

The NeroAPI will write UDF 1.02, physical partition. Other formats are currently not
supported.

15.10. Concurrency

Does the NeroAPI support writing to several recorders simultaneously?
The NeroAPI does not support this.
Does the NeroAPI support burning to several drives in parallel?

You cannot initiate two burns at the same time in the same process with NeroAPI but
it should not be a problem to start two processes. Try burning with two separate
instances of NeroCMD.

‘Nero AG 167 ‘

| NeroAPI v6.6.0.1

Is NeroBurn a synchronous or asynchronous function?
NeroBurn returns only after burning has been finished.

Can | lock the recorder for burning to prevent other users from ejecting the
disc?

There is no such method. The NeroAPI locks the recorder by itself during burning.

15.11. Miscellaneous

What is the meaning of "using interface version" in the log file?

This is the version of the NeroAPI which was used for compiling the application, i.e.
the version of the NeroAPI headers in the used NeroSDK.

Why does using the flag NBF_DISABLE_ABORT result in an exception?

The disable abort callback (NERO_PROGRESS::npDisableAbortCallback) is not set.
This was a bug in the NeroAPI and has been fixed with NeroAPI 6.3.1.1.

How can | use GetDrives to obtain a list of recorders?

GetDrives always returns all drives available. You can check if a drive is a recorder,
by looking at the Devlype property of NeroDrive. It should be
NERO_SCSI_DEVTYPE_WORM. You can also check which media are supported for
writing by checking the MediaSupport property of a NeroDrive.

To check if a drive is an image recorder, test the Capabilities property of NeroDrive for
NERO_CAP_IMAGE_RECORDER.

NeroBurn returns with NEROAPI_BURN_ERROR and GetLastError tells me
"Initialization failed". What happened?

There a number of potential problems:

1. The last parameter of NeroBurn must not be empty! A NERO_PROGRESS
structure is required there. Of course, you can set most of the callback
functions to NULL in that structure.

2. You set nwcdNumTracks to 1, but you want to burn only the iso track and no
audio tracks. nwcdNumTracks refers to the number of audio tracks.

3. You set nwcdMediaType to MEDIA DVD_ ANY|MEDIA _CDRW. This is not
supported. You have to set it to a single media type like MEDIA_DVD_ANY or
MEDIA_CD.

4. One of the tracks you are trying to burn does not exist.

Nero AG 168

| NeroAPI v6.6.0.1

Is there any way to burn a data disc using the C programming language?

You should be able to create a data disc in C by creating a tree of Isoltems and then
create the necessary ClsoTrack pointer with NeroCreatelsoTrackEx.

You do not have to include NerolsoTrack.h if you are using the NeroCreatelsoTrackEx
method. Just forward the pointer you get from the NeroCreatelsoTrackEx method to
the NeroAPI, e.g. by setting the nwcdlsoTrack member of the NERO_WRITE_CD
struct.

How do | create a CD that is Windows readable with long file names?
Use all of the following options:
NERO_BURN_OPTION_CREATE_ISO_FS
NERO_BURN_OPTION_RELAX_JOLIET
NERO_BURN_OPTION_USE_JOLIET

Why can | not change the structure of a CD/DVD on the fly?

The file system with references to the file data needs to be written first, so the
structure of the media must be known beforehand.

How do | write a disc using the FileSystemContent interface?

FileSystemContent::IFileSystemDescContainer
pContainer (NeroCreateFileSystemContainer (NULL)) ;

// set the volume name

pContainer->SetName ("Volume") ;

// Get the root directory container,

// build its content recursively
FileSystemContent::IDirectoryContainer *pRoot=pContainer->Root () ;

// add some files to the container

FileSystemContent::IDirectoryEntryContainer *pDirEntry= pRoot->
AddFile ("autoexec.bat", "c:\autoexec.bat",-1,-1);

pDirEntry=pRoot->AddFile ("test.txt","c:\config.sys",-1,-1);

// add a directory to the container

FileSystemContent::IDirectoryContainer * pSubDirectory = pRoot-
>AddDirectory ("New folder", -1);

// now you can use pSubDirectory to build the content of the sub directory
pDirEntry=pSubDirectory->AddFile ("test.txt","c:\config.sys",-1,-1);

After you have built the file system tree, you can burn it with NeroBurn by using the
NERO_WRITE_FILE_SYSTEM_CONTENT structure.

Nero AG 169

| NeroAPI v6.6.0.1 |

Is there a way of timing out so that NeroBurn returns with an error if the CD has
not been inserted after a certain period?

No. You can add your own timer and if the timeout is reached, return FALSE in the
idle callback, which will make the NeroAPI cancel the burning operation.

Why is my data CD empty?

*ppIsoTrack = NeroCreatelIsoTrackEx (NULL, m currentCDName, dwFlags);

You have to give a pointer to the root of you NERO_ISO_ITEM tree as first argument.
Since you specify NULL, your CD will be empty.

Can the NeroAPI handle .nri files?

Files with .nri extension are proprietary project files for ISO compilations, either
created by Nero Burning ROM or Nero Express.

Files of this kind, as well as other proprietary compilation files, such as .nra (audio
disc compilations) or .nrv (video disc compilations), can not be read or created by the
NeroAPI or other NeroSDK components.

Files with an .nrg extension, however, are disc images. This kind of image is created
when a compilation is burnt to the Image Recorder. Files with .nrg extension can be
read and created with the NeroAPI.

The NeroFiddles example can burn one file to a disc. How can | burn more than
one file?

To write several files, you have to build a tree of NERO_ISO_ITEMs that represent
the files/directories you want to burn on the disc.

Every NERO_ISO_ITEM has a member nextltem that points to the next file in the
current directory. If the item is a subdirectory, the member subDirFirstltem points to
the first file.

The items can be created by the NeroCreatelsoltem function. Then pass the
NERO_ISO_ITEM pointer of the root item to NeroCreatelsoTrackEx.

The memory has to be freed after the burning process, for example by using the
NeroFreelsoltemTree function.

How can | burn data that | receive from a network directly from RAM to disc
without creating temporary files first?

Please have a look at the NeroAPITest example of the NeroSDK.

In NerolsoTrack.h you should study CDemolsoHandle::GetFileName. Here you can
see how to inform the NeroAPI that you want to provide the data with callbacks.

The FileSystemContent interface also allows writing on the fly.
With NERO_ISO_ITEM you can only write files present on your hard disk.

Why is the longFileName of NERO_ISO_ITEM a char* while longSourceFilePath
is a const char*?

‘Nero AG 170 ‘

| NeroAPI v6.6.0.1

The reason is, that longFileName is allocated and freed by the NeroAPI if the item is a
reference.

How do | create an ISO image of files on a hard drive?

Once you have your data prepared, call NeroBurn using an image recorder's device
handle.

When your user dialog callback eventually receives the DLG_FILESEL IMAGE event,
supply the NeroAPI with a destination file name.

How can | use more than 64 characters with Joliet?
NeroSDK 1.03 and more recent versions support relaxing Joliet restrictions.

When providing the NCITEF_RELAX_ JOLIET flag for the NeroCreatelsoTrackEx
function, 109 characters can be used.

Can | use media type collections in all NeroAPI methods?

No. The NeroAPI provides two different method parameter types for media:
e NERO_MEDIA_TYPE, which describes one particular media type

e NERO_MEDIA SET, which represents a set of several media types

Media type collections are usually created with the help of the bitwise OR operator '|'.
Only if the parameter is of type NERO_MEDIA_SET, it becomes legal to pass media
type collections to the method in question.

Otherwise, you may only pass one single media type, as defined in the NeroAPIl.h
header file.

Nero AG 171

| NeroAPI v6.6.0.1

16. Known Limitations

e Currently there are no Linux versions of the NeroAPI and the Nero Software
Development Kit (NeroSDK).

¢ Methods of the NeroAPI should not be called simultaneously from different threads.

e Only one recorder can be accessed at a time.

Nero AG 172

| NeroAPI v6.6.0.1

17. Bibliography

17.1. C Programming Books

For those who never have programmed before:

Greg M. Perry: Absolute Beginner’s Guide to C

From the guys who invented C. Only for beginners who can appreciate a challenge:
Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language
17.2. C Programming Online Resources

This site is both for C and C++ programming

http://www.cprogramming.com

Steve Summit's Introductory C course

http://www.eskimo.com/~scs/cclass/cclass.html

17.3. C++ Programming Books

If you know something better than these, let us know.

Ivor Horten: Beginning Visual C++ 6

Davis Chapman: Sams Teach Yourself Visual C++ in 21 days

From the inventor of C++. Not for the faint of heart.

Bjarne Stroustrup: The C++ Programming Language

The author’s favorite author. ;-) Read it if you think you know C++ inside and out.

James Coplien: Advanced C++ Programming Styles and Idioms

Nero AG 173

http://www.cprogramming.com/
http://www.eskimo.com/~scs/cclass/cclass.html

| NeroAPI v6.6.0.1

17.4. C++ Online Resources

Valencia Community College C++ programming course

http://m2tech.net/cppclass/

Intended for C users who want to make the transition to C++

http://www.icce.rug.nl/docs/cplusplus/cplusplus.html

A very good site

http://www.codeproject.com

17.5. General CD/CD-ROM Online Resources

Glossary of CD-ROM and DVD technologies

http://www.sigcat.org/resource/gloss697.htm

17.6. Audio CD Online Resources

Digital Audio on CD

http://www.disctronics.co.uk/cdref/cdaudio/cdaudio.htm

17.7. Super Video CD Online Resources

MPEG-2 encoder test

http://www.tecoltd.com/enctest/enctest.htm

A well-researched page on SVCD

http://www.iki.fi/znark/video/svcd/overview/

German page with a similar mission

http://www.ratos.de/

Nero AG 174

http://m2tech.net/cppclass/
http://www.icce.rug.nl/docs/cplusplus/cplusplus.html
http://www.codeproject.com/
http://www.sigcat.org/resource/gloss697.htm
http://www.disctronics.co.uk/cdref/cdaudio/cdaudio.htm
http://www.tecoltd.com/enctest/enctest.htm
http://www.iki.fi/znark/video/svcd/overview/
http://www.ratos.de/

	1.Contents
	2.License Agreement
	3.Introduction
	3.1.Motivation
	3.2.Overview
	3.3.Requirements
	3.4.Required Skills
	3.5.Compatibility between Different NeroAPI Versions
	3.5.1.Source Compatibility
	3.5.2.Binary Compatibility

	3.6.Related Topics
	3.7.The NeroSDK Forum

	4.Quick Start
	4.1.Running Precompiled Sample Applications
	4.1.1.NeroAPITest
	4.1.2.NeroAPITest Command Line Examples

	4.2.Compiling the Samples
	4.3.Accessing the NeroAPI in Your Applications
	4.4.Points of Consideration

	5.Detailed Discussion of the NeroAPITest Sample
	6.Creating a Simple MFC Application
	6.1.Nero Fiddled While Rome Burned!
	6.2.Creating the Framework
	6.3.Adding NeroAPI files
	6.4.Adding Controls
	6.5.Adding Member Variables
	6.5.1.Variables for Controls
	6.5.2.Other Variables

	6.6.Adding Message Handling Functions For Controls
	6.6.1.OnBrowse
	6.6.2.OnBurn
	6.6.3.OnOK
	6.6.4.OnCancel
	6.6.5.OnAbort

	6.7.Adding Utility Functions
	6.7.1.NeroAPIInit
	6.7.2.NeroAPIFree
	6.7.3.AppendString

	6.8.Adding Callback Functions
	6.8.1.IdleCallback
	6.8.2.UserDialog
	6.8.3.ProgressCallback
	6.8.4.AbortedCallback
	6.8.5.AddLogLine
	6.8.6.SetPhaseCallback

	6.9.Build and Run NeroFiddles

	7.API Types and Functions
	7.1.Types
	7.1.1.DLG_OVERBURN_INFO
	7.1.2.NERO_ABORTED_CALLBACK
	7.1.3.NERO_ACCESSTYPE
	7.1.4.NERO_ADD_LOG_LINE_CALLBACK
	7.1.5.NERO_AUDIO_FORMAT_INFO
	7.1.6.NERO_AUDIO_ITEM_INFO
	7.1.7.NERO_AUDIO_ITEM_HANDLE
	7.1.8.NERO_AUDIO_TRACK
	7.1.9.NERO_CALLBACK
	7.1.10.NERO_CD_COPY
	7.1.11.NERO_CD_FORMAT
	7.1.12.NERO_CD_INFO
	7.1.13.NERO_CITE_ARGS
	7.1.14.NERO_CONFIG_RESULT
	7.1.15.NERO_DATA_EXCHANGE
	7.1.16.NERO_DATA_EXCHANGE_TYPE
	7.1.17.NERO_DEVICEHANDLE
	7.1.18.NERO_DISABLE_ABORT_CALLBACK
	7.1.19.NERO_DEVICEOPTION
	7.1.20.NERO_DLG_WAITCD_MEDIA_INFO
	7.1.21.NERO_DRIVE_ERROR
	7.1.22.NERO_DRIVESTATUS_CALLBACK
	7.1.23.NERO_DRIVESTATUS_TYPE
	7.1.24.NERO_DRIVESTATUS_RESULT
	7.1.25.NERO_FILESYSTEMTRACK_OPTIONS
	7.1.26.NERO_FREESTYLE_TRACK
	7.1.27.NERO_IDLE_CALLBACK
	7.1.28.NERO_IMPORT_DATA_TRACK_INFO
	7.1.29.NERO_IMPORT_DATA_TRACK_RESULT
	7.1.30.NERO_IO
	7.1.31.NERO_IO_CALLBACK
	7.1.32.NERO_ISO_ITEM
	7.1.33.NERO_MAJOR_PHASE
	7.1.34.NERO_SET_MAJOR_PHASE_CALLBACK
	7.1.35.NERO_MEDIA_SET
	7.1.36.NERO_MEDIA_TYPE
	7.1.37.NERO_MEDIUM_TYPE
	7.1.38.NERO_PROGRESS
	7.1.39.NERO_PROGRESS_CALLBACK
	7.1.40.NERO_SCSI_DEVICE_INFO
	7.1.41.NERO_SCSI_DEVICE_INFOS
	7.1.42.NERO_SET_PHASE_CALLBACK
	7.1.43.NERO_SETTINGS
	7.1.44.NERO_SPEED_INFOS
	7.1.45.NERO_STATUS_CALLBACK
	7.1.46.NERO_TEXT_TYPE
	7.1.47.NERO_TRACK_INFO
	7.1.48.NERO_TRACK_TYPE
	7.1.49.NERO_TRACKMODE_TYPE
	7.1.50.NERO_VIDEO_ITEM_TYPE
	7.1.51.NERO_VIDEO_ITEM
	7.1.52.NERO_VIDEO_RESOLUTION
	7.1.53.NERO_VMS_INFO
	7.1.54.NERO_VMSSESSION
	7.1.55.NERO_WAITCD_TYPE
	7.1.56.NERO_WRITE_CD
	7.1.57.NERO_WRITE_FILE_SYSTEM_CONTENT
	7.1.58.NERO_WRITE_FREESTYLE_CD
	7.1.59.NERO_WRITE_IMAGE
	7.1.60.NERO_WRITE_VIDEO_CD
	7.1.61.NEROAPI_BURN_ERROR
	7.1.62.NEROAPI_OPTION
	7.1.63.NEROAPI_INIT_ERROR
	7.1.64.NEROAPI_SCSI_DEVTYPE
	7.1.65.NERODLG_ICON_TYPE
	7.1.66.NERODLG_MESSAGE_TYPE
	7.1.67.NERODLG_MESSAGEBOX
	7.1.68.NeroUserDlgInOutEnum
	7.1.69.ROBOMOVEMESSAGE
	7.1.70.ROBOMOVENODE
	7.1.71.ROBOUSERMESSAGE
	7.1.72.ROBOUSERMESSAGETYPE

	7.2.Functions
	7.2.1.NeroAudioCreateTargetItem
	7.2.2.NeroAudioCloseItem
	7.2.3.NeroAudioGetFormatInfo
	7.2.4.NeroAudioGUIConfigureItem
	7.2.5.NeroBurn
	7.2.6.NeroClearErrors
	7.2.7.NeroCloseDevice
	7.2.8.NeroCopyIsoItem
	7.2.9.NeroCreateIsoItem
	7.2.10.NeroCreateIsoItemOfSize
	7.2.11.NeroCreateIsoTrackEx
	7.2.12.NeroCreateProgress
	7.2.13.NeroDAE
	7.2.14.NeroDone
	7.2.15.NeroEjectLoadCD
	7.2.16.NeroEraseCDRW
	7.2.17.NeroEraseDisc
	7.2.18.NeroEstimateTrackSize
	7.2.19.NeroFreeCDStamp
	7.2.20.NeroFreeIsoItem
	7.2.21.NeroFreeIsoTrack
	7.2.22.NeroFreeIsoItemTree
	7.2.23.NeroFreeMem
	7.2.24.NeroGetAPIVersion
	7.2.25.NeroGetAPIVersionEx
	7.2.26.NeroGetAvailableDrivesEx
	7.2.27.NeroGetAvailableSpeeds
	7.2.28.NeroGetCDInfo
	7.2.29.NeroGetCDRWErasingTime
	7.2.30.NeroGetDeviceOption
	7.2.31.NeroGetDiscImageInfo
	7.2.32.NeroGetErrorLog
	7.2.33.NeroGetLastDriveError
	7.2.34.NeroGetLastError
	7.2.35.NeroGetLastErrors
	7.2.36.NeroGetLocalizedWaitCDTexts
	7.2.37.NeroGetTypeNameOfMedia
	7.2.38.NeroGetVMSInfo
	7.2.39.NeroGetWaitCDTexts
	7.2.40.NeroImportDataTrack
	7.2.41.NeroImportIsoTrackEx
	7.2.42.NeroInit
	7.2.43.NeroInitImageRecorder
	7.2.44.NeroIsDeviceReady
	7.2.45.NeroOpenDevice
	7.2.46.NeroRegisterDriveChangeCallback
	7.2.47.NeroRegisterDriveStatusCallback
	7.2.48.NeroSetDeviceOption
	7.2.49.NeroSetExpectedAPIVersion
	7.2.50.NeroSetExpectedAPIVersionEx
	7.2.51.NeroSetOption
	7.2.52.NeroUpdateDeviceInfo
	7.2.53.NeroUnregisterDriveChangeCallback
	7.2.54.NeroUnregisterDriveStatusCallback
	7.2.55.NeroUserDlgInOut
	7.2.56.NeroWaitForDisc
	7.2.57.NeroWaitForMedia

	8.ISO Track Creation
	9.ISO Track Classes
	9.1.Overview
	9.2.CNeroDataCallback
	9.3.CNeroIsoHandle
	9.4.CNeroIsoIterator
	9.5.CNeroIsoEntry
	9.6.CNeroIsoTrack

	10.The FileSystemContent Interface
	10.1.Overview
	10.2.Namespace setting
	10.3.InterfaceBase
	10.4.File System Reading Interfaces
	10.4.1.IFileContent
	10.4.2.IDirectoryEntry
	10.4.3.IDirectory
	10.4.4.IFileSystemContent

	10.5.File System Content Creation Interfaces
	10.5.1.IDataInputStream
	10.5.2.IFileProducer
	10.5.3.IDirectoryEntryContainer
	10.5.4.IDirectoryContainer
	10.5.5.IFileSystemDescContainer

	11.The Burn-at-once Interface
	11.1.The NERO_WRITE_BURN_AT_ONCE struct
	11.2.The IBurnAtOnceInfo Interface
	11.2.1.GetOffset

	11.3.Functions
	11.3.1.NeroBurnAtOnce
	11.3.2.NeroBAOCreateHandle
	11.3.3.NeroBAOOpenFile
	11.3.4.NeroBAOWriteToFile
	11.3.5.NeroBAOCloseFile
	11.3.6.NeroBAOCloseHandle

	12.The Packet Writing API
	12.1.Packet Writing Interface
	12.1.1.Access Mode
	12.1.2.ImageAccessMode
	12.1.3.NeroCreateBlockWriterInterface
	12.1.4.NeroCreateBlockReaderInterface
	12.1.5.NeroCreateBlockAccessFromImage
	12.1.6.NeroGetSupportedAccessModesForDevice

	12.2.File System Block Access Interface
	12.2.1.INeroFileSystemBlockAccess
	12.2.2.INeroFileSystemBlockAccessExtension
	12.2.3.INeroFileSystemBlockReader
	12.2.4.INeroFileSystemBlockWriter
	12.2.5.InterfaceType
	12.2.6.NeroFSBlockAccessExtensionsType
	12.2.7.NeroFSError
	12.2.8.NeroFSPartitionInfo
	12.2.9.NeroFSTrackType
	12.2.10.NeroFSSecNo

	13.Robot Control Interface
	13.1.NERO_COMMNODE_TYPE Enumeration
	13.2.NEROAPI_ROBO_ERROR Enumeration
	13.3.NeroPrintLabelCallback_t Callback
	13.4.NERO_ROBO_DRIVER_INFO Structure
	13.5.NERO_ROBO_DRIVER_INFOS Structure
	13.6.NeroGetAvailableRoboDrivers Function
	13.7.NeroAssociateRobo Function
	13.8.NERO_ROBO_FLAG Enumeration
	13.9.NeroSetRoboFlag Function

	14.Media Type Formats
	14.1.Audio
	14.2.Video
	14.2.1.SVCD Creation with Nero

	15.FAQ
	15.1.NeroSDK License
	15.2.NeroSDK/NeroAPI Features
	15.3.General Programming Issues
	15.4.DVD Issues
	15.5.Video CD and Super Video CD
	15.6.Audio
	15.7.Multisession
	15.8.Size Information, Calculation and Estimation
	15.9.Packet Writing
	15.10.Concurrency
	15.11.Miscellaneous

	16.Known Limitations
	17.Bibliography
	17.1.C Programming Books
	17.2.C Programming Online Resources
	17.3.C++ Programming Books
	17.4.C++ Online Resources
	17.5.General CD/CD-ROM Online Resources
	17.6.Audio CD Online Resources
	17.7.Super Video CD Online Resources

