ADVANCED REFRACTIVE EFFECTS PREDICTION SYSTEM

Wayne L. Patterson
Space and Naval Warfare Systems Center, San Diego, D858
49170 Propagation Path
San Diego, CA 92152-7385

The Space and Naval Warfare System Center, San Diego has a full spectrum research and
development program with a long and proud history of rapidly responding to critical fleet
requirements and deploying systems to address these requirements. One such system is the new
Advanced Refractive Effects Prediction System (AREPS).

AREPS computes and displays radar probability of detection, propagation loss and signal-
to-noise ratios, Electronic Support Measures (ESM) vulnerability, UHF/VHF communications,
and surface-borne surface-search radar capability versus range, height, and bearing from the
transmitter.

The power of AREPS derives from its Windows 95/NT interface, making full use of pop-
up menus, object linking and embedding (OLE) features such as file drag and drop and graphics
export, and an extensive on-line help with colorful graphic examples.

At the core of AREPS is our Advanced Propagation Model (APM) a hybrid ray-optic and
parabolic equation (PE) model that uses the complimentary strengths of both methods to
construct a fast, but yet very accurate composite model. Depending upon the requirements of the
tactical decision aid, APM will run in several different modes. For the full hybrid mode, APM has
proven to be much faster than PE models alone, with overall accuracy at least as good as the pure
PE models. With its airborne sub-model, APM can solve problems for very high elevation angles,
where PE methods would not normally be used.

APM allows for range-dependent refractivity over various sea and/or terrain paths. Not
only does the terrain path include variable terrain heights but may also include range-varying
dielectric ground constants for finite conductivity and vertical polarization calculations. APM
considers absorption of electromagnetic energy by oxygen and water vapor. APM accounts for
all normal propagation mechanism including troposcatter and the anomalous propagation
mechanisms of subrefraction, superrefraction, and ducting.
The primary displays of AREPS are height-versus-range and bearing coverage and a pathloss-versus-height/range and Figure 1 illustrates such a coverage display for shipborne air-search radar with its probability of detecting a “small” sized jet. For this case, the atmosphere is range-dependent, with a surface-based duct existing at the transmitter location, rising to become an elevated duct over the terrain features. To the lower right of the coverage display is a small map, in a simulated plan-position-indicator (ppi) picture format, showing the transmitter location, the display’s current bearing, and the terrain heights.

At the top of the display window is a series of buttons, which allow you to animate the display in bearing, both forward and backward, to pause the animation, and obtain a printed copy of the display. Because AREPS is a Windows 95/NT program, the full capabilities of the operating system are available. For example, should you desire to brief the display, you may “copy” the display to the Windows 95/NT clipboard and “paste” it directly into a presentation package such as Microsoft PowerPoint. To obtain loss versus range and or height displays (figures 2 and 3), simply click the right mouse button on the coverage display.

Figure 1: AREPS radar probability of detection coverage display

Figure 2: AREPS loss-versus range display.

Figure 3: AREPS loss-versus-height display.
Figures 4, 5, and 6, illustrate the coverage for an airborne transmitter in the presence of an elevated duct, simultaneous surface-based radar coverage and ESM vulnerability, and UHF communication assessment respectively. Note also the three earth surface depictions of dual curved, curved, and flat.

In addition to coverage displays, the effects of radar cross-section variability as a function of viewing angle, ship displacement, ship height and range are combined with the APM capabilities of range-dependent environments and terrain to produce a bar-graph display, figure 7, of detection for five classes of ship targets. These classes range from small (a patrol boat) to a very large warship (aircraft carrier). The viewing angle variability is displayed as subbars within each ship class. These angles are labeled minimum, maximum, and average that correspond to a view of bow, beam, and quarter.
EM systems database

AREPS is a completely unclassified program and as such, does not include any pre-established EM system parameter database. You are solely responsible for creating a system parameter database appropriate to your situation. To assist you in this task, a database creation and maintenance capability is provided using fill-in-the-blank forms. Figure 8 is an example of such a form for a radar system. As you navigate about the form, input prompts, parameter limits, and other guidance are displayed in a status bar located at the bottom of the window.

AREPS capabilities include antenna radiation patterns of specific system height-finder antennas and a user defined antenna pattern. Detection threshold calculations include radars using incoherent and coherent integration techniques.

In addition to pulsed radar systems, you may enter continuous wave and other non-pulsed systems, UHF and VHF communications systems, Electronic Support Measures (ESM) receivers, and radar target descriptions.

Terrain data

AREPS primarily derives its terrain height data from the Digital Terrain Elevation Data (DTED) provided by the National Imagery and Mapping Agency (NIMA) either on CD-ROM or from their Internet homepage. DTED data are provided in level 0, level 1, and level 2 formats. Level 0 data spacing is 30 arc seconds in horizontal resolution (approximately 1 kilometer). DTED level 0 data is unlimited distribution and may be obtained directly from NIMA’s Internet homepage. DTED level 1 data spacing is 3 arc seconds in horizontal resolution (approximately 100 meters). Level 2 data spacing is 1 arc seconds in horizontal resolution (approximately 30 meters). Level 1 and 2 data are limited distribution. For this reason, DTED data are not and may not be distributed with AREPS. For ease of input when using DTED CD-ROMs, you need only specify the latitude and
longitude location of your transmitter. The AREPS program will determine which CD-ROM is
required, prompt you to insert the CD-ROM into the drive, and automatically extract the terrain
data needed.

In addition to terrain elevations, the APM allows for the specification of range-dependent
surface conditions should you be concerned about surface types for vertically polarized antennas.
AREPS uses the surface conditions as defined by the International Telecommunication Union,
International Radio Consultative Committee (CCIR). These conditions are provided by plain
language descriptors, selected from a drop down menu.

Environmental Input

Atmospheric data may be derived from World Meteorological Organization (WMO)
upper-air observations. The entry of environmental data into AREPS has been completely
automated by using the capabilities of the Windows 95/NT operating system. Within normal
naval message traffic, WMO coded radiosonde messages are routinely available. Figure 9
illustrates such a message.

```
FM COMSIXTHFLT
TO OCEANO EAST
USS GEORGE WASHINGTON
USS ARTHUR W RADFORD
USS CONOLLY
USS GUAM
BT
SUBJ/UPPER AIR OBSERVATION //
RMKS/ 1. UUAA 77003 99424 10053 18025 99018 17822 29023 00171 18258 31535 92838
16461 32022 85554 13464 31029 70169 05272 31032 50581 13764 29033 40747 25976 30041
30949 421// 30458 25069 /// 88999 77999
UUBB  77005 99424 10053 18025 00018 17822 11989 19063 22845 13466 33835 14268
44817 13069 55/// /// 66771 10467 77754 09667 88/// /// 99731 08874 11730 08873 22///
/// 33707 06073 44578 07359 55551 09757 66540 10158 77539 09558 88511 12369 99463
18546 11429 22563 22414 24760 33406 25373 44381 27780 55258 505// 41414 12345 21212
00018 29023 11012 31532 22002 31535 33934 32022 44826 31030 55/// /// 66718 30528
77496 29034 88258 31049
BT
NNNN
```

Figure 9: WMO radiosonde message from Commander, Sixth Fleet.

You need only locate the message (for a ship, the message is usually available on the
ship’s local area network); open the message file using any ASCII text editor such as Notepad
that is provided with Windows 95/NT; “copy” the text to the Windows clipboard and “paste” it
into the Import WMO Code window of AREPS, figure 10.
All extraneous text is filtered, the message is decoded, and a height versus M-unit profile is automatically created. Should the observation be from a sea-based platform, the surface temperature and humidity are used to calculate a neutral profile evaporation duct profile and this profile is appended to the upper-air portion of the observation. If you have surface observations available, you may override the neutral profile and include full stability dependency.

It is not always necessary to have access to a local area network for the WMO observation. Many shore organizations and ships post their local radiosonde observations on their Internet or SIPRNET homepage. Once such a homepage is found for your particular area of interest, the WMO report may be copied to the Windows 95/NT clipboard directly from the browser (such as Netscape or Microsoft Internet Explorer), and then pasted into the Import WMO Code window. For military users, WMO reports are also available from the Fleet Numerical Meteorology and Oceanography Center via the Joint METOC Viewer (JMV) and/or the METCAST client.

For those without access to observational data in the WMO format, AREPS contains options to import observational data in a generic column format. Should real-time data be unavailable, AREPS contains a 921 observing station worldwide climatology of ducting conditions.

Distribution and support

AREPS is configured for Defense Information Infrastructure (DII) Common Operating Environment (COE) compliance and has been submitted as a Global Command and Control System - Maritime (GCCS-M) segment. We also provide distribution and technical support for the AREPS program. Distribution is provided on CD-ROM through the U.S. mail system or by direct download of the program from our Internet homepage (http://sunspot.spawar.navy.mil). In addition to the program software, our homepage includes help topics, frequently asked questions, and program service packages as necessary.