On the MUSIC-derived Approaches of Angle Estimation for Bistatic MIMO Radar

Xin Gao (Robin)

Department of Electrical Engineering
Nanjing University of Aeronautics & Astronautics

Email: rabbitgx@sina.com
gaoxx127@umn.edu
Abstract

We investigate the topic for the direction of departure (DOD) and direction of arrival (DOA) estimation in bistatic multiple-input-multiple-output (MIMO) radar systems with the exploitation of array invariance. Several MUSIC-derived algorithms for angle estimation in MIMO radar have been presented and compared for their complexity costs against that of ESPRIT. The proposed scheme of multi-invariance multiple signal classification (MI-MUSIC) has the best performance and also can be considered as a generalization of MUSIC. Simulations verify the collaborative usefulness of our algorithm.

Keywords-

Array signal processing, MUSIC, angle estimation, MIMO radar
• **Inspiration from the literal beauty of Greece Folk**

----the will, the strength and human’s creativity

• **The concept & geometry essence displayed in array signal processing**

----of symmetric beauty, rational and equilibrium

(Show the models)

• **Several relevant fields and the applications for array signals**

----MIMO, Sensor Array Processing & Networks, Radar Waveform Design, Underwater Sonar Detection
A brief summary for signal parameter estimation

• Mainly focus on the high-order of signal identification
• Independent Component Analysis (ICA) / Blind source separation
• Polarization-sensitive array from Far-fields
• Deterministic or statistical characteristics?
• Waveform design and beamforming
• Identifiability concern via capacity limits
• Comparable measurements

Signal parameter estimation: of paramount importance

Our Approach: MUSIC-derived algorithms for Direction-Of-Departure (DOD) and Direction-of-Arrival (DOA) estimation
Distinguished milestone and representative works in collaboration with array signal processing

(Mar. 00) Blind PARAFAC receivers in DS-CDMA systems, (Aug. 00) Parallel factor analysis in sensor array processing, (2001' Distinguished milestones, Best paper award in sensor array processing, SP society),
(Nov. 01) Exploiting Arrays with Multi-invariances Using MUSIC and MODE;

Summary in Ch4 PARAFAC Separation Techniques in Signal Processing, Vol II, Signal processing advances in wireless and mobile communications

Notable development of research interests in the recent decades

Blind source separation, channel estimation, multiuser detection, multicarrier communications

MIMO techniques
- (Capacity scaling, OFDM-based, MIMO radar signal processing)

Underwater sonar, beamforming, sensor remotes, multi-scale Image,

Angle and time delay estimation, Joint DOD/DOA estimation, Target detection

Ultra-wideband communication
- Cooperative communication
- Cognitive radio

Wireless Sensor Network (WSN)
- Physical-Layer Design
- Wimax, Virtual networks

Interference channel, Network Coding

Distributed linear/nonlinear Optimization

PHY-APP Layer Interaction, Protocol Design
I. Introduction

Outstandingly established by an innovative concept which utilizes multiple antennas for simultaneously transmitting diverse waveforms and receiving reflected signals in similar ways, multiple-input-multiple-output (MIMO) radar has been demonstrated for its potential advantages for radar systems via showing more degrees of freedom over conventional phased-array counterparts [1]–[4].

The algorithms of multiple signal classification (MUSIC) and its relevant approaches [9] for DOD and DOA estimation have been tried out in collaboration with a variety of subspace optimal methods, and also match some kind of irregularly-spaced array with high popularity [9].
II. Model and Constructions

Model: A bistatic MIMO radar system with both ULAs for its transmit/receive array, where \(M \) and \(N \) elements are orderly arranged with half-wavelength spacing between adjacent antennas

\[
X = [a_r(\phi_1) \otimes a_t(\theta_1), a_r(\phi_2) \otimes a_t(\theta_2), ..., a_r(\phi_K) \otimes a_t(\theta_K)]B^T
\]
(1)

Critical Parameter: transmit/receive angles (elevation-azimuth), phases and amplitudes of the \(K \) sources, \(a_r(\phi_k) \otimes a_t(\theta_k) \) represents the Kronecker product of the transmit and the receive steering vectors for the \(k \)th target.

\[
X = [A_T \circ A_R]B^T = \begin{bmatrix}
X_1 \\
X_2 \\
M \\
X_M
\end{bmatrix} = \begin{bmatrix}
A_R D_1 (A_T) \\
A_R D_2 (A_T) \\
M \\
A_R D_M (A_T)
\end{bmatrix} B^T
\]
(2)

\[
X_m = A_R D_m (A_T) B^T, \quad m = 1, \ldots, M
\]
(3)
III. Music-derived Algorithms for angle estimation in Bistatic MIMO Radar

A. Multi-invariance MUSIC (MI-MUSIC) algorithm for angle estimation

The covariance matrix R_x can be given by

$$R_x = XX^H = E_s D_s E_s^H + E_n D_n E_n^H$$ \hspace{1cm} (4)

The matrix $E_s : E_s = \Lambda T =$

$$[a_r(\phi_1) \otimes a_t(\theta_1), a_r(\phi_2) \otimes a_t(\theta_2), ..., a_r(\phi_K) \otimes a_t(\theta_K)]$$ \hspace{1cm} (5)

The subspace fitting : $\hat{T}, \hat{\Lambda} = \text{arg min} \text{tr}(\Lambda^H \prod_{E_s}^\perp \Lambda)$ \hspace{1cm} (6)

The minimization of Eq. (6):

$$a_r(\phi), a_t(\theta) = \text{arg min} \sum_{k=1}^K [a_r(\phi_k) \otimes a_t(\theta_k)]^H \prod_{E_s}^\perp [a_r(\phi_k) \otimes a_t(\theta_k)]$$ \hspace{1cm} (7)
The minimization for Eq.(7) via searching the deepest K minimum:

\[V(\phi, \theta) = [a_r(\phi) \otimes a_t(\theta)]^H \prod_{E_s} a_r(\phi) \otimes a_t(\theta) \]

\[= a_t(\theta)^H [a_r(\phi) \otimes I_M]^H \prod_{E_s} a_r(\phi) \otimes I_M] a_t(\theta) = a_t(\theta)^H Q(\phi) a_t(\theta) \] (8)

The optimization problem comes with the linear constraint minimum variance solution

\[\min_\phi a_t(\theta)^H Q(\phi) a_t(\theta), \quad \text{s.t.} \quad e^T a_t(\theta) = 1 \] (9)

Make solution to Eq.(9):

\[\hat{\phi} = \arg \min_\phi \frac{1}{e^T Q(\phi)^{-1} e} = \arg \max_\phi e^T Q(\phi)^{-1} e \] (10)

Searching \(\phi \in [0, 360^\circ] \) we find the K largest peak of the (1, 1) element of \(Q(\phi)^{-1} \). Note that the K largest peak corresponds to the receive angle.
Another denotation can be given by

\[
V(\phi, \theta) = [a_r(\phi) \otimes a_t(\theta)]^H \prod_{E_s}^{\perp} [a_r(\phi) \otimes a_t(\theta)]
\]

\[
= a_r(\theta)^H [I_N \otimes a_t(\theta)]^H \prod_{E_s}^{\perp} [I_N \otimes a_t(\theta)] a_r(\phi) = a_r(\theta)^H P(\theta) a_r(\theta) \quad (11)
\]

where \(P(\theta) = [I_N \otimes a_t(\theta)]^H \prod_{E_s}^{\perp} [I_N \otimes a_t(\theta)] \).

Similarly, the solution for \(\theta \) is shown as

\[
\hat{\theta} = \text{arg max}_\theta e^T P(\theta)^{-1} e \quad (12)
\]

We also find the K largest peak of the \((1, 1)\) element of \(P(\theta)^{-1} \) via searching \(\theta \in [0, 360^\circ] \). Note that the K largest peak corresponds to the transmit angle.
The major steps of MI-MUSIC:

1) Perform eigen-decomposition operations for covariance matrix R_x to \hat{E}_s, then calculate $\prod_{\hat{E}_s}^\perp$;

2) Search ϕ to find the K largest peak of the (1, 1) element of $Q(\phi)^{-1}$ (from Eq.(10)), then get the estimate of receive angle;

3) Search θ, similarly find the K largest peak of the (1, 1) element of $P(\theta)^{-1}$ (from Eq.(12)), and obtain the estimate of transmit angle.
B. 2D-MUSIC and 1D-MUSIC for angle estimation

Construct the 2D-MUSIC spatial spectrum function in this form

\[
f_{2dmusic}(\phi, \theta) = \frac{1}{[a_r(\phi) \otimes a_t(\theta)]^H E_n E_n^H [a_r(\phi) \otimes a_t(\theta)]}
\]

(13)

2D-MUSIC requires an exhaustive 2D search, their approaches are normally inefficient due to high computational costs.

Comparing to 2D-MUSIC, 1D-MUSIC exploits the trilinear decomposition [11] method and thus reduces the range of spectrum searching:

The signal model is denoted as the trilinear model [11]

\[
x_{m,n,l} = \sum_{k=1}^{K} A_t(m,k) A_r(n,k) B(l,k), \ (m = 1, \ldots, M; \ n = 1, \ldots, N; \ l = 1, \ldots, L)
\]

(14)
\[X_m = A_R D_m (A_T)^T B^T \]

\(m = 1, \ldots, M \), can be interpreted as slicing the 3-D data in a series of slices (2-D data) along the spatial direction. The symmetry of the trilinear model in (4) allows another matrix system rearrangement, \(Y'_n = BD_n (A_R)A_T^T \)

\(n = 1, \ldots, N \). Similarly we get

\[Y_n = Y'_n = A_T D_n (A_R)B^T, \quad n = 1, \ldots, N \quad (15) \]

With respect to (3), we form the following matrix

\[X' = \begin{bmatrix} X_1 & X_2 & \cdots & X_M \end{bmatrix} = A_R \begin{bmatrix} D_1 (A_T)^T B^T & D_2 (A_T)^T B^T & \cdots & D_M (A_T)^T B^T \end{bmatrix} \quad (16) \]

Construct the MUSIC spectrum function for DOA estimation as follows

\[f_{doa-music} = \frac{1}{a_r(\phi)^H E_{n_1} E_{n_1}^H a_r(\phi)} \quad (17) \]
The Y matrix can also be constructed by

$$
Y = \begin{bmatrix}
Y_1 & Y_2 & \cdots & Y_N
\end{bmatrix}
= A_T \begin{bmatrix}
D_1(A_R)B^T & D_2(A_R)B^T & \cdots & D_N(A_R)B^T
\end{bmatrix}
$$

(18)

Construct covariance matrix by $R_Y = YY^H$, obtain the noise subspace E_{n_2} and estimate its DOD by constructing the MUSIC spectrum function

$$
f_{\text{dod-music}} = \frac{1}{a_t(\theta)^H E_{n_2}^H E_{n_2}^H a_t(\theta)}
$$

(19)

The detailed steps can be summarized as follows:

1) Perform eigen-decomposition for the covariance matrix R_X to get the noise subspace E_n, where DOA is estimated by adopting of Eq. (17).

2) Operate the eigen-decomposition for cov. matrix R_Y to get the noise subspace E_{n_2}, where DOD estimation is similarly obtained by Eq. (19).
C. Complexity Analysis

TABLE I. The algorithmic comparisons (n is the total searching times)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity</th>
<th>The dimension of searching</th>
<th>Identifiable targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-MUSIC</td>
<td>$O{LM^2N^2 + M^3N^3 + n^2[2MN (MN - K) + MN]}$</td>
<td>2</td>
<td>$MN - 1$</td>
</tr>
<tr>
<td>1D-MUSIC</td>
<td>$O{LMN^2 + LM^2N + M^3 + N^3 + n [2N (N - K) + 2M (M - K) + N + M]}$</td>
<td>1</td>
<td>$\min(M-1, N-1)$</td>
</tr>
<tr>
<td>MI-MUSIC</td>
<td>$O{LM^2N^2 + M^3N^3 + KM^2N^2 + n[M^3N^2 + M^2N^3 + M^3N + MN^3 + N^2 + M^2]}$</td>
<td>1</td>
<td>$MN - 1$</td>
</tr>
<tr>
<td>ESPRIT</td>
<td>$O(LM^2N^2 + M^3N^3 + 2K^2(M-1)N + 2K^2 (N-1) M + 6K^3)$</td>
<td>None</td>
<td>$MN - 1$</td>
</tr>
</tbody>
</table>
IV. Simulation Analysis

Monte Carlo trials are experimented to assess the angle estimation performance of the methods aforementioned. Set its trial numbers as 1000. \(L \) stands for the number of snapshots; \(M \) and \(N \) represent the number of transmit antennas and receive antennas, respectively.

Define root mean squared error (RMSE) as

\[
\text{RMSE} = \sqrt{\frac{1}{1000} \sum_{m=1}^{1000} (\hat{\phi}^m - \phi_0)^2},
\]

where \(\hat{\phi}^m \) is the estimated transmit / receive angle of the \(m \)-th Monte Carlo trial, \(\phi_0 \) is the perfect transmit / receive angle.

Define SNR:

\[
\text{SNR} = 10 \log_{10} \left(\sum_{m=1}^{M} \frac{\left\| A_R D_m (A_T) B^T \right\|_F^2}{\sum_{m=1}^{M} \left\| W_m \right\|_F^2} \right) dB
\]

(20)
Fig. 1. DOD and DOA estimation performance comparison for target 1 with $L = 50$, $M = N = 8$

It is verified in Fig. 1 that among the three algorithms, MI–MUSIC has the best performance. 1D-MUSIC even does not perform better than ESPRIT, while the MI-MUSIC algorithm that we presented has much better performance than both ESPRIT and 1D-MUSIC.
The DOD and DOA estimation performance for target 3 with $L = 100$ is displayed in Fig. 2, it is also depicted that MI–MUSIC performs better than ESPRIT, and the latter even better than 1D-MUSIC.
Fig. 3. DOD and DOA estimation performance for target 2 with different L.

We confirm that the performance of angles estimation for MIMO radar becomes better in collaboration with L increasing. The proposed MI-MUSIC algorithm even supports small sampling sizes.
Fig. 4. DOD and DOA estimation performance for target 2 with different M and N ($L = 50$)

Fig. 4 illustrates the DOD and DOA estimation performance by MI-MUSIC algorithm for target 2 with different transmit / receive antennas, respectively. It is obviously shown that the estimation performance of MI-MUSIC is gradually enhancing with the number of antennas increasing due to diversity gain.
Fig. 5. DOD and DOA estimation performance under different K $(L = 50)$

Fig. 5 displays the algorithmic performance of MI-MUSIC under different K when $M = 8$, $N = 8$, and $L = 50$. From Fig. 5, we conclude that DOD and DOA estimation performance levels down with the increment of target numbers.
V. Conclusions

2D-MUSIC and 1D-MUSIC rely on the necessity of peak searching and thus have higher costs. Due to the necessity of two-dimension searching, 2D-MUSIC has the highest complexity. Notably, it is suggested that MI-MUSIC represents the balanced approach from complexity evaluation.

• Derived the algorithms of MI-MUSIC, 2D-MUSIC, and 1D-MUSIC for angle estimation in bistatic MIMO radar systems.
• The usefulness of our methods has been illustrated as compatible for the MIMO radar system with three identified targets.
• The MUSIC-derived approaches as stated above works well and exhibits expansions for their adoptions in other array manifolds.
• The proposed MI-MUSIC can be viewed as a generalized approach of multiple signal classification.
VI. Future Work

• *The beampattern designs via convex optimization for bistatic MIMO radar*

• *The predicts of angle estimation schemes*

• *The corresponding identifiability conditions in MIMO radar systems.*
References

Thank you for your attention!

Dec. 28, 2009, Shanghai, China