Part II: Populations of Spiking Neurons
 Chapter 6: Population Equations
 Chapter 7: Signal Transmission and Coding
 Chapter 8: Oscillations and Synchrony
 Chapter 9: Spatially Structured Networks

Part III: Models of Synaptic Plasticity
 Chapter 10: Hebbian Models
 Chapter 11: Learning Equations
 Chapter 12: Plasticity and Coding

Bibliography and Index
Preface

The task of understanding the principles of information processing in the brain poses, apart from numerous experimental questions, challenging theoretical problems on all levels from molecules to behavior. This book concentrates on modeling approaches on the level of neurons and small populations of neurons, since we think that this is an appropriate level to address fundamental questions of neuronal coding, signal transmission, or synaptic plasticity. The focus of the text is on phenomenological models and theoretical concepts. We think of a neuron primarily as a dynamic element that emits output pulses whenever the excitation exceeds some threshold. The resulting sequence of pulses or `spikes' contains all the information that is transmitted from one neuron to the next. In order to understand signal transmission and signal processing in neuronal systems, we need an understanding of their basic elements, i.e., the neurons, which is the topic of part-I. New phenomena emerge when several neurons are coupled. Part-II introduces network concepts, in particular pattern formation, collective excitations, and rapid signal transmission between neuronal populations. Learning concepts presented in Part-III are based on spike-time dependent synaptic plasticity.

We wrote this book as an introduction to spiking neuron models for advanced undergraduate or graduate students. It can be used either as the main text for a course that focuses on neuronal dynamics; or as part of a larger course in Computational Neuroscience, theoretical biology, neuronal modeling, biophysics, or...
neural networks. For a one-semester course on neuronal modeling, we usually teach one chapter per week focusing on the first sections of each chapter for lectures and give the remainder as reading assignment. Many of the examples can be reformulated as exercises. While writing the book we had in mind students of physics, mathematics, or computer science with an interest in biology; but it might also be useful for students of biology who are interested in mathematical modeling. All the necessary mathematical concepts are introduced in an elementary fashion. No prior knowledge beyond undergraduate mathematics should be necessary to read the book. An asterisk (*) marks those sections that have a more mathematical focus. These sections can be skipped at a first reading.

We have also tried to keep the book self-contained with respect to the underlying Neurobiology. The fundamentals of neuronal excitation and synaptic signal transmission are briefly introduced in Chapter 1 together with an outlook on the principal topics of the book, viz., formal spiking neuron models and the problem of neuronal coding. In Chapter 2 we review biophysical models of neuronal dynamics such as the Hodgkin-Huxley model and models of dendritic integration based on the cable equation. These models are the starting point for a systematic reduction to neuron models with a reduced complexity that are open to an analytical treatment. Whereas Chapter 3 is dedicated to two-dimensional differential equations as a description of neuronal dynamics, Chapter 4 introduces formal spiking neuron models, namely the integrate-and-fire model and the Spike Response Model. These formal neuron models are the foundation for all the following chapters. Part I on ``Single Neuron Models'' is completed by Chapter 5 which gives an overview of spike-train statistics and illustrates how noise can be implemented in spiking neuron models.

The step from single neuron models to networks of neurons is taken in Chapter 6 where equations for the macroscopic dynamics of large populations of neurons are derived. Based on these equations phenomena like signal transmission and coding (Chapter 7), oscillations and synchrony (Chapter 8), and pattern formation in spatially structured networks (Chapter 9) are investigated. So far, only networks with a fixed synaptic connectivity have been discussed. The third part of the book, finally, deals with synaptic plasticity and its role for development, learning, and memory. In Chapter 10, principles of Hebbian plasticity are presented and various models of synaptic plasticity are described that are more or less directly inspired by neurobiological findings. Equations that relate the synaptic weight dynamics to statistical properties of the neuronal spike activity are derived in Chapter 11. Last but not least, Chapter 12 presents an -- admittedly personal -- choice of illustrative applications of spike-timing dependent synaptic plasticity to fundamental problems of neuronal coding.

While the book contains material which is now considered as standard for courses in Computational Neuroscience, neuronal modeling, or neural networks, it also provides a bridge to current research which has developed over the last few years. In most chapters, the reader will find some sections which either report recent results or shed new light on well-known models. The viewpoint taken in the presentation of the material is of course highly subjective and a bias towards our own research is obvious. Nevertheless, we hope that the book will find the interest of students and researchers in the field.

Werner M. Kistler and W. Gerstner
Lausanne, November 2001
Spiking Neuron Models
Single Neurons, Populations, Plasticity

Wulfram Gerstner and Werner M. Kistler

Contents

I. Single Neuron Models
 1. Detailed Neuron Models
 2. Two-Dimensional Neuron Models
 3. Formal Spiking Neuron Models
 4. Noise in Spiking Neuron Models

II. Population Models
 5. Population Equations
 6. Signal Transmission and Neuronal Coding
 7. Oscillations and Synchrony
 8. Spatially Structured Networks

III. Models of Synaptic Plasticity
 9. Hebbian Models
 10. Learning Equations
 11. Plasticity and Coding

Bibliography
Index
Gerstner and Kistler

Spiking Neuron Models. Single Neurons, Populations, Plasticity

Cambridge University Press, 2002
Contents

- 1. Introduction
 - 1.1 Elements of Neuronal Systems
 - 1.1.1 The Ideal Spiking Neuron
 - 1.1.2 Spike Trains
 - 1.1.3 Synapses
 - 1.2 Elements of Neuronal Dynamics
 - 1.2.1 Postsynaptic Potentials
 - 1.2.2 Firing Threshold and Action Potential
 - 1.3 A Phenomenological Neuron Model
 - 1.3.1 Definition of the Model SRM₀
 - 1.3.2 Limitations of the Model
 - 1.4 The Problem of Neuronal Coding
 - 1.5 Rate Codes
 - 1.5.1 Rate as a Spike Count (Average over Time)
 - 1.5.2 Rate as a Spike Density (Average over Several Runs)
 - 1.5.3 Rate as a Population Activity (Average over Several Neurons)
 - 1.6 Spike Codes
 - 1.6.1 Time-to-First-Spike
 - 1.6.2 Phase
 - 1.6.3 Correlations and Synchrony
 - 1.6.4 Stimulus Reconstruction and Reverse Correlation
 - 1.7 Discussion: Spikes or Rates?
 - 1.8 Summary

- I. Single Neuron Models
 - 2. Detailed Neuron Models
2.1 Equilibrium potential
 ■ 2.1.1 Nernst potential
 ■ 2.1.2 Reversal Potential

2.2 Hodgkin-Huxley Model
 ■ 2.2.1 Definition of the model
 ■ 2.2.2 Dynamics

2.3 The Zoo of Ion Channels
 ■ 2.3.1 Sodium Channels
 ■ 2.3.2 Potassium Channels
 ■ 2.3.3 Low-Threshold Calcium Current
 ■ 2.3.4 High-threshold calcium current and Ca\(^{2+}\)-Activated Potassium Channels
 ■ 2.3.5 Calcium Dynamics

2.4 Synapses
 ■ 2.4.1 Inhibitory Synapses
 ■ 2.4.2 Excitatory Synapses

2.5 Spatial Structure: The Dendritic Tree
 ■ 2.5.1 Derivation of the Cable Equation
 ■ 2.5.2 Green's Function (*)
 ■ 2.5.3 Non-linear Extensions to the Cable Equation

2.6 Compartmental Models

2.7 Summary

3. Two-Dimensional Neuron Models
 ■ 3.1 Reduction to two dimensions
 ■ 3.1.1 General approach
 ■ 3.1.2 Mathematical steps (*)
 ■ 3.2 Phase plane analysis
 ■ 3.2.1 Nullclines
 ■ 3.2.2 Stability of Fixed Points
 ■ 3.2.3 Limit cycles
 ■ 3.2.4 Type I and type II models
 ■ 3.3 Threshold and excitability
 ■ 3.3.1 Type I models
 ■ 3.3.2 Type II models
3.3.3 Separation of time scales

3.4 Summary

4. Formal Spiking Neuron Models

4.1 Integrate-and-fire model

4.1.1 Leaky Integrate-and-Fire Model

4.1.2 Nonlinear integrate-and-fire model

4.1.3 Stimulation by Synaptic Currents

4.2 Spike response model (SRM)

4.2.1 Definition of the SRM

4.2.2 Mapping the Integrate-and-Fire Model to the SRM

4.2.3 Simplified Model SRM₀

4.3 From Detailed Models to Formal Spiking Neurons

4.3.1 Reduction of the Hodgkin-Huxley Model

4.3.2 Reduction of a Cortical Neuron Model

4.3.3 Limitations

4.4 Multi-compartment integrate-and-fire model

4.4.1 Definition of the Model

4.4.2 Relation to the Model SRM₀

4.4.3 Relation to the Full Spike Response Model (*)

4.5 Application: Coding by Spikes

4.6 Summary

5. Noise in Spiking Neuron Models

5.1 Spike train variability

5.1.1 Are neurons noisy?

5.1.2 Noise sources

5.2 Statistics of spike trains

5.2.1 Input-dependent renewal systems

5.2.2 Interval distribution

5.2.3 Survivor function and hazard

5.2.4 Stationary renewal theory and experiments

5.2.5 Autocorrelation of a stationary renewal process

5.3 Escape noise

5.3.1 Escape rate and hazard function

5.3.2 Interval distribution and mean firing rate
5.4 Slow noise in the parameters

5.5 Diffusive noise
 - 5.5.1 Stochastic spike arrival
 - 5.5.2 Diffusion limit (*)
 - 5.5.3 Interval distribution

5.6 The subthreshold regime
 - 5.6.1 Sub- and superthreshold stimulation
 - 5.6.2 Coefficient of variation C_V

5.7 From diffusive noise to escape noise

5.8 Stochastic resonance

5.9 Stochastic firing and rate models
 - 5.9.1 Analog neurons
 - 5.9.2 Stochastic rate model
 - 5.9.3 Population rate model

5.10 Summary

II. Population Models

6. Population Equations
 - 6.1 Fully Connected Homogeneous Network
 - 6.2 Density Equations
 - 6.2.1 Integrate-and-Fire Neurons with Stochastic Spike Arrival
 - 6.2.2 Spike Response Model Neurons with Escape Noise
 - 6.2.3 Relation between the Approaches
 - 6.3 Integral Equations for the Population Activity
 - 6.3.1 Assumptions
 - 6.3.2 Integral equation for the dynamics
 - 6.4 Asynchronous firing
 - 6.4.1 Stationary Activity and Mean Firing Rate
 - 6.4.2 Gain Function and Fixed Points of the Activity
 - 6.4.3 Low-Connectivity Networks
 - 6.5 Interacting Populations and Continuum Models
 - 6.5.1 Several Populations
 - 6.5.2 Spatial Continuum Limit
6.6 Limitations
6.7 Summary

7. Signal Transmission and Neuronal Coding

7.1 Linearized Population Equation

7.1.1 Noise-free Population Dynamics (*)
7.1.2 Escape noise (*)
7.1.3 Noisy reset (*)

7.2 Transients

7.2.1 Transients in a Noise-Free Network
7.2.2 Transients with Noise

7.3 Transfer Function

7.3.1 Signal Term
7.3.2 Signal-to-Noise Ratio

7.4 The Significance of a Single Spike

7.4.1 The Effect of an Input Spike
7.4.2 Reverse Correlation - the Significance of an Output Spike

7.5 Summary

8. Oscillations and Synchrony

8.1 Instability of the Asynchronous State
8.2 Synchronized Oscillations and Locking

8.2.1 Locking in Noise-Free Populations
8.2.2 Locking in SRM_0 Neurons with Noisy Reset (*)
8.2.3 Cluster States

8.3 Oscillations in reverberating loops

8.3.1 From oscillations with spiking neurons to binary neurons
8.3.2 Mean field dynamics
8.3.3 Microscopic dynamics

8.4 Summary

9. Spatially Structured Networks

9.1 Stationary patterns of neuronal activity

9.1.1 Homogeneous solutions
9.1.2 Stability of homogeneous states
9.1.3 ‘Blobs’ of activity: inhomogeneous states

9.2 Dynamic patterns of neuronal activity

9.2.1 Oscillations

9.2.2 Traveling waves

9.3 Patterns of spike activity

9.3.1 Traveling fronts and waves (*)

9.3.2 Stability (*)

9.4 Robust transmission of temporal information

9.5 Summary

III. Models of Synaptic Plasticity

10. Hebbian Models

10.1 Synaptic Plasticity

10.1.1 Long-Term Potentiation

10.1.2 Temporal Aspects

10.2 Rate-Based Hebbian Learning

10.2.1 A Mathematical Formulation of Hebb's Rule

10.3 Spike-Time Dependent Plasticity

10.3.1 Phenomenological Model

10.3.2 Consolidation of Synaptic Efficacies

10.3.3 General Framework (*)

10.4 Detailed Models of Synaptic Plasticity

10.4.1 A Simple Mechanistic Model

10.4.2 A Kinetic Model based on NMDA Receptors

10.4.3 A Calcium-Based Model

10.5 Summary

11. Learning Equations

11.1 Learning in Rate Models

11.1.1 Correlation Matrix and Principal Components

11.1.2 Evolution of synaptic weights

11.1.3 Weight Normalization

11.1.4 Receptive Field Development

11.2 Learning in Spiking Models

11.2.1 Learning Equation
1. Introduction

The aim of this chapter is to introduce several elementary notions of neuroscience, in particular the concepts of action potentials, postsynaptic potentials, firing thresholds, and refractoriness. Based on these notions a first phenomenological model of neuronal dynamics is built that will be used as a starting point for a discussion of neuronal coding. Due to the limitations of space we cannot - and do not want to - give a comprehensive introduction into such a complex field as neurobiology. The presentation of the biological background in this chapter is therefore highly selective and simplistic. For an in-depth discussion of neurobiology we refer the reader to the literature mentioned at the end of this chapter. Nevertheless, we try to provide the reader with a minimum of information necessary to appreciate the biological background of the theoretical work presented in this book.

Subsections

- 1.1 Elements of Neuronal Systems
 - 1.1.1 The Ideal Spiking Neuron
 - 1.1.2 Spike Trains
 - 1.1.3 Synapses

- 1.2 Elements of Neuronal Dynamics
 - 1.2.1 Postsynaptic Potentials
 - 1.2.2 Firing Threshold and Action Potential

- 1.3 A Phenomenological Neuron Model
 - 1.3.1 Definition of the Model SRM0
 - 1.3.2 Limitations of the Model

- 1.4 The Problem of Neuronal Coding
- 1.5 Rate Codes
 - 1.5.1 Rate as a Spike Count (Average over Time)
1.5.2 Rate as a Spike Density (Average over Several Runs)

1.5.3 Rate as a Population Activity (Average over Several Neurons)

1.6 Spike Codes

1.6.1 Time-to-First-Spike

1.6.2 Phase

1.6.3 Correlations and Synchrony

1.6.4 Stimulus Reconstruction and Reverse Correlation

1.7 Discussion: Spikes or Rates?

1.8 Summary

- Literature

Gerstner and Kistler

Spiking Neuron Models. Single Neurons, Populations, Plasticity

Cambridge University Press, 2002
1.1 Elements of Neuronal Systems

Over the past hundred years, biological research has accumulated an enormous amount of detailed knowledge about the structure and function of the brain. The elementary processing units in the central nervous system are neurons which are connected to each other in an intricate pattern. A tiny portion of such a network of neurons is sketched in Fig. 1.1 which shows a drawing by Ramón y Cajal, one of the pioneers of neuroscience around 1900. We can distinguish several neurons with triangular or circular cell bodies and long wire-like extensions. This picture can only give a glimpse of the network of neurons in the cortex. In reality, cortical neurons and their connections are packed into a dense network with more than 10^4 cell bodies and several kilometers of `wires' per cubic millimeter. In other areas of the brain the wiring pattern may look different. In all areas, however, neurons of different sizes and shapes form the basic elements.

The cortex does not consist exclusively of neurons. Beside the various types of neuron there is a large number of `supporter' cells, so-called glia cells, that are required for energy supply and structural stabilization of brain tissue. Since glia cells are not directly involved in information processing, we will not discuss them any further. We will also neglect a few rare subtypes of neuron, such as analog neurons in the mammalian retina. Throughout this book we concentrate on spiking neurons only.

![Figure 1.1: This reproduction of a](http://diwww.epfl.ch/~gerstner/SPNM/node3.html)
drawing of Ramón y Cajal shows a few neurons in the mammalian cortex that he observed under the microscope. Only a small portion of the neurons contained in the sample of cortical tissue have been made visible by the staining procedure; the density of neurons is in reality much higher. Cell b is a nice example of a pyramidal cell with a triangularly shaped cell body. Dendrites, which leave the cell laterally and upwards, can be recognized by their rough surface. The axons are recognizable as thin, smooth lines which extend downwards with a few branches to the left and right. From Ramón y Cajal (1909).

1.1.1 The Ideal Spiking Neuron

A typical neuron can be divided into three functionally distinct parts, called dendrites, soma, and axon; see Fig. 1.2. Roughly speaking, the dendrites play the role of the `input device' that collects signals from other neurons and transmits them to the soma. The soma is the `central processing unit' that performs an important non-linear processing step: If the total input exceeds a certain threshold, then an output signal is generated. The output signal is taken over by the `output device', the axon, which delivers the signal to other neurons.

The junction between two neurons is called a synapse. Let us suppose that a neuron sends a signal across a synapse. It is common to refer to the sending neuron as the presynaptic cell and to the receiving neuron as the postsynaptic cell. A single neuron in vertebrate cortex often connects to more than 10^4 postsynaptic neurons. Many of its axonal branches end in the direct neighborhood of the neuron, but the axon can also stretch over several centimeters so as to reach to neurons in other areas of the brain.

Figure 1.2: A. Single neuron in a drawing by Ramón y Cajal. Dendrite, soma, and axon can
be clearly distinguished. The inset shows an example of a neuronal action potential (schematic). The action potential is a short voltage pulse of 1-2 ms duration and an amplitude of about 100 mV. B. Signal transmission from a presynaptic neuron j to a postsynaptic neuron i. The synapse is marked by the dashed circle. The axons at the lower right end lead to other neurons (schematic figure).

1.1.2 Spike Trains

The neuronal signals consist of short electrical pulses and can be observed by placing a fine electrode close to the soma or axon of a neuron; see Fig. 1.2. The pulses, so-called action potentials or spikes, have an amplitude of about 100 mV and typically a duration of 1-2 ms. The form of the pulse does not change as the action potential propagates along the axon. A chain of action potentials emitted by a single neuron is called a spike train - a sequence of stereotyped events which occur at regular or irregular intervals. Since all spikes of a given neuron look alike, the form of the action potential does not carry any information. Rather, it is the number and the timing of spikes which matter. The action potential is the elementary unit of signal transmission.

Action potentials in a spike train are usually well separated. Even with very strong input, it is impossible to excite a second spike during or immediately after a first one. The minimal distance between two spikes defines the absolute refractory period of the neuron. The absolute refractory period is followed by a phase of relative refractoriness where it is difficult, but not impossible to excite an action potential.

1.1.3 Synapses

The site where the axon of a presynaptic neuron makes contact with the dendrite (or soma) of a postsynaptic cell is the synapse. The most common type of synapse in the vertebrate brain is a chemical synapse. At a chemical synapse, the axon terminal comes very close to the postsynaptic neuron, leaving only a tiny gap between pre- and postsynaptic cell membrane, called the synaptic cleft. When an action potential arrives at a synapse, it triggers a complex chain of bio-chemical processing steps that lead to a release of neurotransmitter from the presynaptic terminal into the synaptic cleft. As soon as transmitter molecules have reached the postsynaptic side, they will be detected by specialized receptors in the postsynaptic cell membrane and open (either directly or via a biochemical signaling chain) specific channels so that ions from the extracellular fluid flow into the cell. The ion influx, in turn, leads to a change of the membrane potential at the postsynaptic site so that, in the end, the chemical signal is translated into an electrical response. The voltage response of the postsynaptic neuron to a presynaptic action potential is called the postsynaptic potential.

Apart from chemical synapses neurons can also be coupled by electrical synapses, so-called gap junctions. Specialized membrane proteins make a direct electrical connection between the two neurons. Not very much is known about the functional aspects of gap junctions, but they are thought to be involved in the synchronization of neurons.
The effect of a spike on the postsynaptic neuron can be recorded with an intracellular electrode which measures the potential difference $u(t)$ between the interior of the cell and its surroundings. This potential difference is called the membrane potential. Without any spike input, the neuron is at rest corresponding to a constant membrane potential. After the arrival of a spike, the potential changes and finally decays back to the resting potential, cf. Fig. 1.3A. If the change is positive, the synapse is said to be excitatory. If the change is negative, the synapse is inhibitory.

At rest, the cell membrane has already a strong negative polarization of about -65mV. An input at an excitatory synapse reduces the negative polarization of the membrane and is therefore called depolarizing. An input that increases the negative polarization of the membrane even further is called hyperpolarizing.

1.2.1 Postsynaptic Potentials

Let us formalize the above observation. We study the time course $u_i(t)$ of the membrane potential of neuron i. Before the input spike has arrived, we have $u_i(t) = u_{\text{rest}}$. At $t = 0$ the presynaptic neuron j fires its spike. For $t > 0$, we see at the electrode a response of neuron i

$$u_i(t) - u_{\text{rest}} = : \varepsilon_{ij}(t) .$$

The right-hand side of Eq. (1.1) defines the postsynaptic potential (PSP). If the voltage difference $u_i(t) - u_{\text{rest}}$ is positive (negative) we have an excitatory
(inhibitory) postsynaptic potential or short EPSP (IPSP). In Fig. 1.3A we have sketched the EPSP caused by the arrival of a spike from neuron j at an excitatory synapse of neuron i.

![Figure 1.3](http://diwww.epfl.ch/~gerstner/SPNM/node4.html (2 of 3) [25.9.2002 7:33:39])

Figure 1.3: A postsynaptic neuron i receives input from two presynaptic neurons $j = 1, 2$. **A.** Each presynaptic spike evokes an excitatory postsynaptic potential (EPSP) that can be measured with an electrode as a potential difference $u_i(t) - u_{\text{rest}}$. The time course of the EPSP caused by the spike of neuron $j = 1$ is $e_{i1}(t - t^{(f)}_1)$. **B.** An input spike from a second presynaptic neuron $j = 2$ that arrives shortly after the spike from neuron $j = 1$, causes a second postsynaptic potential that adds to the first one. **C.** If $u_i(t)$ reaches the
threshold \(\vartheta \), an action potential is triggered. As a consequence, the membrane potential starts a large positive pulse-like excursion (arrow). On the voltage scale of the graph, the peak of the pulse is out of bounds. After the pulse the voltage returns to a value below the resting potential.

1.2.2 Firing Threshold and Action Potential

Consider two presynaptic neurons \(j = 1, 2 \), which both send spikes to the postsynaptic neuron \(i \). Neuron \(j = 1 \) fires spikes at \(t_1^{(1)}, t_1^{(2)}, \ldots \), similarly neuron \(j = 2 \) fires at \(t_2^{(1)}, t_2^{(2)}, \ldots \). Each spike evokes a postsynaptic potential \(\xi_{i1} \) or \(\xi_{i2} \), respectively. As long as there are only few input spikes, the total change of the potential is approximately the sum of the individual PSPs,

\[
\nu_i(t) = \sum_j \sum_f \xi_{ij}(t - t_j^{(f)}) + \nu_{\text{rest}},
\]

i.e., the membrane potential responds linearly to input spikes; see Fig. 1.3B.

On the other hand, linearity breaks down if too many input spikes arrive during a short interval. As soon as the membrane potential reaches a critical value \(\vartheta \), its trajectory shows a behavior that is quite different from a simple summation of PSPs: The membrane potential exhibits a pulse-like excursion with an amplitude of about 100 mV, viz., an action potential. This action potential will propagate along the axon of neuron \(i \) to the synapses of other neurons. After the pulse the membrane potential does not directly return to the resting potential, but passes through a phase of hyperpolarization below the resting value. This hyperpolarization is called `spike-afterpotential'.

Single EPSPs have amplitudes in the range of one millivolt. The critical value for spike initiation is about 20 to 30 mV above the resting potential. In most neurons, four spikes - as shown schematically in Fig. 1.3C - are thus not sufficient to trigger an action potential. Instead, about 20-50 presynaptic spikes have to arrive within a short time window before postsynaptic action potentials are triggered.
1.3 A Phenomenological Neuron Model

In order to build a phenomenological model of neuronal dynamics, we describe the critical voltage for spike initiation by a formal threshold ϑ. If $u_i(t)$ reaches ϑ from below we say that neuron i fires a spike. The moment of threshold crossing defines the firing time $t_i^{(f)}$. The model makes use of the fact that action potentials always have roughly the same form. The trajectory of the membrane potential during a spike can hence be described by a certain standard time course denoted by $\tau_j(t - t_i^{(f)})$.

1.3.1 Definition of the Model SRM$_0$

Putting all elements together we have the following description of neuronal dynamics. The variable u_i describes the momentary value of the membrane potential of neuron i. It is given by

$$u_i(t) = \vartheta(t - \hat{t}_i) + \sum_j \sum_f \epsilon_{ij}(t - t_j^{(f)}) + u_{\text{rest}}$$ \hspace{1cm} (1.3)

where \hat{t}_i is the last firing time of neuron i, i.e., $\hat{t}_i = \max\{t_i^{(f)} \mid t_i^{(f)} < t\}$. Firing occurs whenever u_i reaches the threshold ϑ from below,

$$u_i(t) = \vartheta \text{ and } \frac{d}{dt} u_i(t) > 0 \quad \Rightarrow \quad t = t_i^{(f)}$$ \hspace{1cm} (1.4)
The term ϵ_{ij} in (1.3) describes the response of neuron i to spikes of a presynaptic neuron j. The term η in (1.3) describes the form of the spike and the spike-afterpotential.

Note that we are only interested in the potential difference, viz., the distance from the resting potential. By an appropriate shift of the voltage scale, we can always set $u_{\text{rest}} = 0$. The value of $u(t)$ is then directly the distance from the resting potential. This is implicitly assumed in most neuron models discussed in this book.

The model defined in equations (1.3) and (1.4) is called SRM_0 where SRM is short for Spike Response Model (Gerstner, 1995). The subscript zero is intended to remind the reader that it is a particularly simple `zero order' version of the full model that will be introduced in Chapter 4. Phenomenological models of spiking neurons similar to the models SRM_0 have a long tradition in theoretical neuroscience (Hill, 1936; Stein, 1965; Weiss, 1966; Geisler and Goldberg, 1966). Some important limitations of the model SRM_0 are discussed below in Section 1.3.2. Despite the limitations, we hope to be able to show in the course of this book that spiking neuron models such as the Spike Response Model are a useful conceptual framework for the analysis of neuronal dynamics and neuronal coding.

1.3.1.1 Example: Formal pulses

In a simple model, we may replace the exact form of the trajectory η during an action potential by, e.g., a square pulse, followed by a negative spike-afterpotential,

$$
\eta(t - t_i^{(f)}) = \begin{cases}
1/\Delta t & \text{for } 0 < t - t_i^{(f)} < \Delta t \\
-\eta_0 \exp\left(-\frac{t - t_i^{(f)}}{\tau}\right) & \text{for } \Delta t < t - t_i^{(f)}
\end{cases}
$$

with parameters $\eta_0, \tau, \Delta t > 0$. In the limit of $\Delta t \to 0$ the square pulse approaches a Dirac δ function; see Fig. 1.4.

The positive pulse marks the moment of spike firing. For the purpose of the model, it has no real significance, since the spikes are recorded explicitly in the set of firing times $t_i^{(1)}, t_i^{(2)}, \ldots$. The negative spike-afterpotential, however, has an important implication. It leads after the pulse to a `reset' of the membrane potential to a value below threshold. The idea of a simple reset of the variable u_i after each spike is one of the essential components of the integrate-and-fire model that will be discussed in detail in Chapter 4.

If $\eta_0 \gg \delta$ then the membrane potential after the pulse is significantly lower than the resting potential. The emission of a second pulse immediately after the first one is therefore more difficult, since many input spikes are needed to reach the threshold. The negative spike-after potential in Eq. (1.5) is thus a simple model of neuronal refractoriness.
In formal models of spiking neurons
the shape of an action potential (dashed line) is
usually replaced by a δ pulse (vertical line). The
negative overshoot (spike-afterpotential) after the
pulse is included in the kernel \(\eta(t - t_i^{(1)}) \) (thick
line) which takes care of `reset' and
`refractoriness'. The pulse is triggered by the
threshold crossing at \(t_i^{(1)} \). Note that we have set
\(u_{\text{rest}} = 0 \).

1.3.1.2 Example: Formal spike trains

Throughout this book, we will refer to the moment when a given neuron emits an action potential
as the firing time of that neuron. In models, the firing time is usually defined as the moment of
threshold crossing. Similarly, in experiments firing times are recorded when the membrane
potential reaches some threshold value \(u_{\text{th}} \) from below. We denote firing times of neuron \(i \)
by \(t_i^{(f)} \) where \(f = 1, 2, \ldots \) is the label of the spike. Formally, we may denote the spike train of a neuron \(i \) as
the sequence of firing times

\[
S_i(t) = \sum_f \delta(t - t_i^{(f)})
\]

(1.6)

where \(\delta(x) \) us the Dirac \(\delta \) function with \(\delta(x) = 0 \) for \(x \neq 0 \) and \(\int_{-\infty}^{\infty} \delta(x)dx = 1 \). Spikes are
thus reduced to points in time.

1.3.2 Limitations of the Model

The model presented in Section 1.3.1 is highly simplified and neglects many aspects of neuronal
dynamics. In particular, all postsynaptic potentials are assumed to have the same shape,
independently of the state of the neuron. Furthermore, the dynamics of neuron \(i \) depends only on
its most recent firing time \hat{t}_1. Let us list the major limitations of this approach.

(i) Adaptation, Bursting, and Inhibitory Rebound

![Figure 1.5: Response to a current step.](image)

To study neuronal dynamics experimentally, neurons can be isolated and stimulated by current injection through an intracellular electrode. In a standard experimental protocol we could, for example, impose a stimulating current that is switched at time t_0 from a value I_1 to a new value I_2. Let us suppose that $I_1 = 0$ so that the neuron is quiescent for $t < t_0$. If the current I_2 is sufficiently large, it will evoke spikes for $t > t_0$. Most neurons will respond to the current step with a spike train where intervals between spikes increase successively until a steady state of periodic firing is reached; cf. Fig. 1.5A. Neurons that show this type of adaptation are called regularly-firing neurons (Connors and Gutnick, 1990). Adaptation is a slow process that builds up over several spikes. Since the model SRM$_0$ takes only the most recent spike into account, it cannot capture adaptation. Detailed neuron models which will be discussed in Chapter 2 describe the slow processes that lead to adaptation explicitly. To mimic adaptation with formal spiking neuron models we would have to add up the contributions to refractoriness of several spikes back in the past; cf. Chapter 4.

A second class of neurons are fast-spiking neurons. These neurons show now adaptation and can therefore be well approximated by the model SRM$_0$ introduced in Section 1.3.1. Many inhibitory neurons are fast-spiking neurons. Apart from regular-spiking and fast-spiking neurons, there are also bursting neurons which form a separate group (Connors and Gutnick, 1990). These neurons respond to constant stimulation by a sequence of spikes that is periodically interrupted by rather
long intervals; cf. Fig. 1.5C. Again, a neuron model that takes only the most recent spike into account cannot describe bursting. For a review of bursting neuron models, the reader is referred to (Izhikevich, 2000).

Another frequently observed behavior is post-inhibitory rebound. Consider a step current with $I_1 < 0$ and $I_2 = 0$, i.e., an inhibitory input that is switched off at time t_0; cf. Fig. 1.5D. Many neurons respond to such a change with one or more `rebound spikes': Even the release of inhibition can trigger action potentials. We will return to inhibitory rebound in Chapter 2.

(ii) **Saturating excitation and shunting inhibition**

Figure 1.6: The shape of postsynaptic potentials depends on the momentary level of depolarization. A. A presynaptic spike that arrives at time $t^{(f)}$ at an inhibitory synapse has hardly any effect on the membrane potential when the neuron is at rest, but a large effect if the membrane potential u is above the resting potential. If the membrane is hyperpolarized below the reversal potential of the inhibitory synapse, the response to the presynaptic input changes sign. B. A spike at an excitatory synapse evokes a postsynaptic potential with an amplitude that depends only slightly on the momentary voltage u. For large depolarizations the amplitude becomes smaller (saturation). Schematic figure.

In the model SRM$_0$ introduced in Section 1.3.1, the form of a postsynaptic potential generated by a presynaptic spike at time $t^{(f)}_j$ does not depend on the state of the postsynaptic neuron i. This is of course a simplification and reality is somewhat more complicated. In Chapter 2 we will discuss detailed neuron models that describe synaptic input as a change of the membrane conductance. Here we simply summarize the major phenomena.

In Fig. 1.6 we have sketched schematically an experiment where the neuron is driven by a constant current I_0. We assume that I_0 is too weak to evoke firing so that, after some relaxation time, the membrane potential settles at a constant value u_0. At $t = t^{(f)}$ a presynaptic spike is triggered. The spike generates a current pulse at the postsynaptic neuron (postsynaptic current, PSC) with amplitude

$$PSC \propto u_0 - E_{\text{syn}}$$

where u_0 is the membrane potential and E_{syn} is the `reversal potential' of the synapse. Since the amplitude of the current input depends on u_0, the response of the postsynaptic potential does so as well. Reversal potentials are systematically introduced in Chapter 2.2; models of synaptic input are discussed in Chapter 2.4.

1.3.2.1 Example: Shunting Inhibition and Reversal Potential

The dependence of the postsynaptic response upon the momentary state of the neuron is most
pronounced for inhibitory synapses. The reversal potential of inhibitory synapses E_{syn} is below, but usually close to the resting potential. Input spikes thus have hardly any effect on the membrane potential if the neuron is at rest; cf. 1.6a. However, if the membrane is depolarized, the very same input spikes evoke a nice inhibitory postsynaptic potentials. If the membrane is already hyperpolarized, the input spike can even produce a depolarizing effect. There is an intermediate value $u_0 = E_{syn}$ - the reversal potential - where the response to inhibitory input `reverses' from hyperpolarizing to depolarizing.

Though inhibitory input usually has only a small impact on the membrane potential, the local conductivity of the cell membrane can be significantly increased. Inhibitory synapses are often located on the soma or on the shaft of the dendritic tree. Due to their strategic position a few inhibitory input spikes can `shunt' the whole input that is gathered by the dendritic tree from hundreds of excitatory synapses. This phenomenon is called `shunting inhibition'.

The reversal potential for excitatory synapses is usually significantly above the resting potential. If the membrane is depolarized $u_0 \gg u_{rest}$ the amplitude of an excitatory postsynaptic potential is reduced, but the effect is not as pronounced as for inhibition. For very high levels of depolarization a saturation of the EPSPs can be observed; cf. 1.6b.

1.3.2.2 Example: Conductance Changes after a Spike

![Figure 1.7: The shape of postsynaptic potentials (dashed lines) depends on the time $t - \hat{t}_i$ that has passed since the last output spike current if neuron i. The postsynaptic spike has been triggered at time \hat{t}_i. A presynaptic spike that arrives at time $t_j^{(f)}$ shortly after the spike of the postsynaptic neuron has a smaller effect than a spike that arrives much later. The spike arrival time is indicated by an arrow. Schematic figure.]

The shape of the postsynaptic potentials does not only depend on the level of depolarization but, more generally, on the internal state of the neuron, e.g., on the timing relative to previous action potentials.

Suppose that an action potential has occured at time \hat{t}_i and that a presynaptic spike arrives at a
time $t_j^{(f)} > \hat{t}_j$. The form of the postsynaptic potential depends now on the time $t_j^{(f)} - \hat{t}_j$; cf. Fig. 1.7. If the presynaptic spike arrives during or shortly after a postsynaptic action potential it has little effect because some of the ion channels that were involved in firing the action potential are still open. If the input spike arrives much later it generates a postsynaptic potential of the usual size. We will return to this effect in Chapter 2.2.

1.3.2.3 Example: Spatial Structure

The form of postsynaptic potentials also depends on the location of the synapse on the dendritic tree. Synapses that are located at the distal end of the dendrite are expected to evoke a smaller postsynaptic response at the soma than a synapse that is located directly on the soma; cf. Chapter 2. If several inputs occur on the same dendritic branch within a few milliseconds, the first input will cause local changes of the membrane potential that influence the amplitude of the response to the input spikes that arrive slightly later. This may lead to saturation or, in the case of so-called ’active’ currents, to an enhancement of the response. Such nonlinear interactions between different presynaptic spikes are neglected in the model SRM0. A purely linear dendrite, on the other hand, can be incorporated in the model as we will see in Chapter 4.
The mammalian brain contains more than 10^{10} densely packed neurons that are connected to an intricate network. In every small volume of cortex, thousands of spikes are emitted each millisecond. An example of a spike train recording from thirty neurons is shown in Fig. 1.8. What is the information contained in such a spatio-temporal pattern of pulses? What is the code used by the neurons to transmit that information? How might other neurons decode the signal? As external observers, can we read the code and understand the message of the neuronal activity pattern?

The above questions point to the problem of neuronal coding, one of the fundamental issues in neuroscience. At present, a definite answer to these questions...
exactly is a pulse code - and what is a rate code? The question of neuronal coding has important implications for modeling, because pulse codes require a more detailed description of neuronal dynamics than rate codes. Models of neurons at different levels of detail will be the topic of part I of the book.
1.5 Rate Codes

A quick glance at the experimental literature reveals that there is no unique and well-defined concept of `mean firing rate'. In fact, there are at least three different notions of rate which are often confused and used simultaneously. The three definitions refer to three different averaging procedures: either an average over time, or an average over several repetitions of the experiment, or an average over a population of neurons. The following three subsections will reconsider the three concepts. An excellent discussion of rate codes can be found in (Rieke et al., 1996).

1.5.1 Rate as a Spike Count (Average over Time)

The first and most commonly used definition of a firing rate refers to a temporal average. As discussed in the preceding section, this is essentially the spike count in an interval of duration T divided by T; see Fig. 1.9. The length T of the time window is set by the experimenter and depends on the type of neuron recorded from and the stimulus. In practice, to get sensible averages, several spikes should occur within the time window. Typical values are $T = 100$ ms or $T = 500$ ms, but the duration may also be longer or shorter.

![Figure 1.9: A. Definition of the mean firing rate via a temporal average. B. Gain function, schematic. The output rate ν is given as a function of the total input I_0.](http://diwww.epfl.ch/~gerstner/SPNM/node7.html)

This definition of rate has been successfully used in many preparations, particularly in experiments on sensory or motor systems. A classical example is the stretch receptor in a muscle spindle (Adrian, 1926). The number of spikes emitted by the receptor neuron increases with the force applied to the muscle. Another textbook example is the touch receptor in the leech (Kandel and Schwartz, 1991). The stronger the touch stimulus, the more spikes occur during a stimulation period of 500 ms.
These classical results show that the experimenter as an external observer can evaluate and classify neuronal firing by a spike count measure - but is this really the code used by neurons in the brain? In other words, is a neuron which receives signals from a sensory neuron only looking at and reacting to the number of spikes it receives in a time window of, say, 500 ms? We will approach this question from a modeling point of view later on in the book. Here we discuss some critical experimental evidence.

From behavioral experiments it is known that reaction times are often rather short. A fly can react to new stimuli and change the direction of flight within 30-40 ms; see the discussion in (Rieke et al., 1996). This is not long enough for counting spikes and averaging over some long time window. The fly has to respond after a postsynaptic neuron has received one or two spikes. Humans can recognize visual scenes in just a few hundred milliseconds (Thorpe et al., 1996), even though recognition is believed to involve several processing steps. Again, this does not leave enough time to perform temporal averages on each level. In fact, humans can detect images in a sequence of unrelated pictures even if each image is shown for only 14 - 100 milliseconds (Keysers et al., 2001).

Temporal averaging can work well in cases where the stimulus is constant or slowly varying and does not require a fast reaction of the organism - and this is the situation usually encountered in experimental protocols. Real-world input, however, is hardly stationary, but often changing on a fast time scale. For example, even when viewing a static image, humans perform saccades, rapid changes of the direction of gaze. The image projected onto the retinal photo receptors changes therefore every few hundred milliseconds.

Despite its shortcomings, the concept of a firing rate code is widely used not only in experiments, but also in models of neural networks. It has led to the idea that a neuron transforms information about a single input variable (the stimulus strength) into a single continuous output variable (the firing rate); cf. Fig. 1.9B. The output rate ν increases with the stimulus strength and saturates for large input I_0 towards a maximum value ν^max. In experiments, a single neuron can be stimulated by injecting with an intra-cellular electrode a constant current I_0. The relation between the measured firing frequency ν and the applied input current I_0 is sometimes called the frequency-current curve of the neuron. In models, we formalize the relation between firing frequency (rate) and input current and write $\nu = g(I_0)$. We refer to g as the neuronal gain function or transfer function.

From the point of view of rate coding, spikes are just a convenient way to transmit the analog output variable ν over long distances. In fact, the best coding scheme to transmit the value of the rate ν would be by a regular spike train with intervals $1/\nu$. In this case, the rate could be reliably measured after only two spikes. From the point of view of rate coding, the irregularities encountered in real spike trains of neurons in the cortex must therefore be considered as noise. In order to get rid of the noise and arrive at a reliable estimate of the rate, the experimenter (or the postsynaptic neuron) has to average over a larger number of spikes. A critical discussion of the temporal averaging concept can be found in (Shadlen and Newsome, 1994; Softky, 1995; Rieke et al., 1996).

1.5.2 Rate as a Spike Density (Average over Several Runs)
There is a second definition of rate which works for stationary as well as for time-dependent stimuli. The experimenter records from a neuron while stimulating with some input sequence. The same stimulation sequence is repeated several times and the neuronal response is reported in a Peri-Stimulus-Time Histogram (PSTH); see Fig. 1.10. The time \(t \) is measured with respect to the start of the stimulation sequence and \(\Delta t \) is typically in the range of one or a few milliseconds. The number of occurrences of spikes \(n_K(t; t + \Delta t) \) summed over all repetitions of the experiment divided by the number \(K \) of repetitions is a measure of the typical activity of the neuron between time \(t \) and \(t + \Delta t \). A further division by the interval length \(\Delta t \) yields the spike density of the PSTH

\[
\rho(t) = \frac{1}{\Delta t} \frac{n_K(t; t + \Delta t)}{K}
\]

(1.9)

Sometimes the result is smoothed to get a continuous ‘rate’ variable. The spike density of the PSTH is usually reported in units of Hz and often called the (time-dependent) firing rate of the neuron.

As an experimental procedure, the spike density measure is a useful method to evaluate neuronal activity, in particular in the case of time-dependent stimuli. The obvious problem with this approach is that it cannot be the decoding scheme used by neurons in the brain. Consider for example a frog which wants to catch a fly. It cannot wait for the insect to fly repeatedly along exactly the same trajectory. The frog has to base its decision on a single ‘run’ - each fly and each trajectory is different.

Nevertheless, the experimental spike density measure can make sense, if there are large populations of independent neurons that receive the same stimulus. Instead of recording from a population of \(N \) neurons in a single run, it is experimentally easier to record from a single neuron and average over \(N \) repeated runs. Thus, the spike density coding relies on the implicit assumption that there are always populations of neurons and therefore leads us to the third notion of a firing rate, viz., a rate defined as a population average.
1.5.3 Rate as a Population Activity (Average over Several Neurons)

A postsynaptic neuron receives spike input from the population \(A_m \) with activity \(A_m \). The population activity is defined as the fraction of neurons that are active in a short interval \([t, t + \Delta t]\) divided by \(\Delta t \).

The number of neurons in the brain is huge. Often many neurons have similar properties and respond to the same stimuli. For example, neurons in the primary visual cortex of cats and monkeys are arranged in columns of cells with similar properties (Hubel, 1988; Hubel and Wiesel, 1962, 1977). Let us idealize the situation and consider a population of neurons with identical properties. In particular, all neurons in the population should have the same pattern of input and output connections. The spikes of the neurons in a population \(m \) are sent off to another population \(n \). In our idealized picture, each neuron in population \(n \) receives input from all neurons in population \(m \). The relevant quantity, from the point of view of the receiving neuron, is the proportion of active neurons in the presynaptic population \(m \); see Fig. 1.11A. Formally, we define the population activity

\[
A(t) = \frac{1}{\Delta t} \frac{n_{\text{act}}(t; t + \Delta t)}{N} = \frac{1}{\Delta t} \frac{1}{N} \int_{t}^{t+\Delta t} \sum_j \sum f \delta(t - t_j^{(f)}) \, dt
\]

(1.10)

where \(N \) is the size of the population, \(n_{\text{act}}(t; t + \Delta t) \) the number of spikes (summed over all neurons in the population) that occur between \(t \) and \(t + \Delta t \) and \(\Delta t \) a small time interval; see Fig. 1.11. Eq. (1.10) defines a variable with units \(s^{-1} \) - in other words, a rate.

The population activity may vary rapidly and can reflect changes in the stimulus conditions nearly instantaneously (Brunel et al., 2001; Gerstner, 2000a). Thus the population activity does not suffer from the disadvantages of a firing rate defined by temporal averaging at the single-unit level. A potential problem with the definition (1.10) is that we have formally required a homogeneous population of neurons with identical connections which is hardly realistic. Real populations will always have a certain degree of heterogeneity both in their internal parameters and in their connectivity pattern. Nevertheless, rate as a population activity (of suitably defined pools of neurons) may be a useful coding principle in many areas of the brain. For inhomogeneous populations, the definition (1.10) may be replaced by a weighted average over the population.
1.5.3.1 Example: Population vector coding

We give an example of a weighted average in an inhomogeneous population. Let us suppose that we are studying a population of neurons which respond to a stimulus \mathbf{x}. We may think of \mathbf{x} as the location of the stimulus in input space. Neuron i responds best to stimulus \mathbf{x}_i, another neuron j responds best to stimulus \mathbf{x}_j. In other words, we may say that the spikes for a neuron i `represent' an input vector \mathbf{x}_i and those of j an input vector \mathbf{x}_j. In a large population, many neurons will be active simultaneously when a new stimulus \mathbf{x} is represented. The location of this stimulus can then be estimated from the weighted population average

$$\mathbf{x}^{est}(t) = \frac{\int_{t}^{t+\Delta t} \sum_j \sum_f \mathbf{x}_j \delta(t - t_j^{(f)}) \, dt}{\int_{t}^{t+\Delta t} \sum_j \sum_f \delta(t - t_j^{(f)}) \, dt}$$ (1.11)

Both numerator and denominator are closely related to the population activity (1.10). The estimate (1.11) has been successfully used for an interpretation of neuronal activity in primate motor cortex (Wilson and McNaughton, 1993; Georgopoulos et al., 1986). It is, however, not completely clear whether postsynaptic neurons really evaluate the fraction (1.11). In any case, eq. (1.11) can be applied by external observers to `decode' neuronal signals, if the spike trains of a large number of neurons are accessible.
1.6 Spike Codes

In this section, we will briefly introduce some potential coding strategies based on spike timing.

1.6.1 Time-to-First-Spike

Let us study a neuron which abruptly receives a `new' input at time t_0. For example, a neuron might be driven by an external stimulus which is suddenly switched on at time t_0. This seems to be somewhat academic, but even in a realistic situation abrupt changes in the input are quite common. When we look at a picture, our gaze jumps from one point to the next. After each saccade, the photo receptors in the retina receive a new visual input. Information about the onset of a saccade would easily be available in the brain and could serve as an internal reference signal. We can then imagine a code where for each neuron the timing of the first spike after the reference signal contains all information about the new stimulus. A neuron which fires shortly after the reference signal could signal a strong stimulation, firing somewhat later would signal a weaker stimulation; see Fig. 1.12.

![Figure 1.12: Time-to-first spike. The spike train of three neurons are shown. The third neuron from the top is the first one to fire a spike after the stimulus onset (arrow). The dashed line indicates the time course of the stimulus.](http://diwww.epfl.ch/~gerstner/SPNM/node8.html)

In a pure version of this coding scheme, each neuron only needs to fire a single spike to transmit information. (If it emits several spikes, only the first spike after the reference signal counts. All following spikes would be irrelevant.) To implement a clean version of such a coding scheme, we...
imagine that each neuron is shut off by inhibition as soon as it has fired a spike. Inhibition ends with the onset of the next stimulus (e.g., after the next saccade). After the release from inhibition the neuron is ready to emit its next spike that now transmits information about the new stimulus. Since each neuron in such a scenario transmits exactly one spike per stimulus, it is clear that only the timing conveys information and not the number of spikes.

A coding scheme based on the time-to-first-spike is certainly an idealization. In a slightly different context coding by first spikes has been discussed by S. Thorpe (Thorpe et al., 1996). Thorpe argues that the brain does not have time to evaluate more than one spike from each neuron per processing step. Therefore the first spike should contain most of the relevant information. Using information-theoretic measures on their experimental data, several groups have shown that most of the information about a new stimulus is indeed conveyed during the first 20 or 50 milliseconds after the onset of the neuronal response (Tovee and Rolls, 1995; Kjaer et al., 1994; Optican and Richmond, 1987; Tovee et al., 1993). Rapid computation during the transients after a new stimulus has also been discussed in model studies (Treves et al., 1997; Hopfield and Herz, 1995; van Vreeswijk and Sompolinsky, 1997; Tsodyks and Sejnowski, 1995). Since time-to-first spike is a highly simplified coding scheme, analytical studies are possible (Maass, 1998).

1.6.2 Phase

We can apply a code by 'time-to-first-spike' also in the situation where the reference signal is not a single event, but a periodic signal. In the hippocampus, in the olfactory system, and also in other areas of the brain, oscillations of some global variable (for example the population activity) are quite common. These oscillations could serve as an internal reference signal. Neuronal spike trains could then encode information in the phase of a pulse with respect to the background oscillation. If the input does not change between one cycle and the next, then the same pattern of phases repeats periodically; see Fig. 1.13.

![Figure 1.13: Phase](image)

Figure 1.13: Phase. The neurons fire at different phases with respect to the background oscillation (dashed). The phase could code relevant information.

The concept of coding by phases has been studied by several different groups, not only in model studies (Hopfield, 1995; Maass, 1996; Jensen and Lisman, 1996), but also experimentally (O'Keefe, 1993). There is, for example, evidence that the phase of a spike during an oscillation in the hippocampus of the rat conveys information on the spatial location of the animal which is not fully accounted for by the firing rate of the neuron (O'Keefe, 1993).
1.6.3 Correlations and Synchrony

We can also use spikes from other neurons as the reference signal for a spike code. For example, synchrony between a pair or many neurons could signify special events and convey information which is not contained in the firing rate of the neurons; see Fig. 1.14. One famous idea is that synchrony could mean `belonging together' (Milner, 1974; von der Malsburg, 1981). Consider for example a complex scene consisting of several objects. It is represented in the brain by the activity of a large number of neurons. Neurons which represent the same object could be `labeled' by the fact that they fire synchronously (von der Malsburg and Buhmann, 1992; Eckhorn et al., 1988; Gray and Singer, 1989; von der Malsburg, 1981). Coding by synchrony has been studied extensively both experimentally (Kreiter and Singer, 1992; Eckhorn et al., 1988; Gray and Singer, 1989; Singer, 1994; Engel et al., 1991b; Gray et al., 1989; Engel et al., 1991a) and in models (Eckhorn et al., 1990; Terman and Wang, 1995; Wang et al., 1990; König and Schillen, 1991; Gerstner et al., 1993a; von der Malsburg and Buhmann, 1992; Ritz et al., 1994; Wang, 1995; Schillen and König, 1991; Aertsen and Arndt, 1993). For a review of potential mechanism, see (Ritz and Sejnowski, 1997).

Figure 1.14: Synchrony. The upper four neurons are nearly synchronous, two other neurons at the bottom are not synchronized with the others.

More generally, not only synchrony but any precise spatio-temporal pulse pattern could be a meaningful event. For example, a spike pattern of three neurons, where neuron 1 fires at some arbitrary time \(t_1 \) followed by neuron 2 at time \(t_1 + \delta_{12} \) and by neuron 3 at \(t_1 + \delta_{13} \), might represent a certain stimulus condition. The same three neurons firing with different relative delays might signify a different stimulus. The relevance of precise spatio-temporal spike patterns has been studied intensively by Abeles (Abeles, 1994; Abeles et al., 1993; Abeles, 1991). Similarly, but on a somewhat coarse time scale, correlations of auditory and visual neurons are found to be stimulus dependent and might convey information beyond that contained in the firing rate alone (Steinmetz et al., 2000; deCharms and Merzenich, 1996).

1.6.4 Stimulus Reconstruction and Reverse Correlation

Let us consider a neuron which is driven by a time dependent stimulus \(s(t) \). Every time a spike
occurs, we note the time course of the stimulus in a time window of about 100 milliseconds immediately before the spike. Averaging the results over several spikes yields the typical time course of the stimulus just before a spike (de Boer and Kuyper, 1968). Such a procedure is called a `reverse correlation' approach; see Fig. 1.15. In contrast to the PSTH experiment sketched in Section 1.5.2 where the experimenter averages the neuron's response over several trials with the same stimulus, reverse correlation means that the experimenter averages the input under the condition of an identical response, viz., a spike. In other words, it is a spike-triggered average; see, e.g., (de Ruyter van Stevenick and Bialek, 1988; Rieke et al., 1996). The results of the reverse correlation, i.e., the typical time course of the stimulus which has triggered the spike, can be interpreted as the `meaning' of a single spike. Reverse correlation techniques have made it possible to measure, for example, the spatio-temporal characteristics of neurons in the visual cortex (Eckhorn et al., 1993; DeAngelis et al., 1995).

Figure 1.15: Reverse correlation technique (schematic). The stimulus in the top trace has caused the spike train shown immediately below. The time course of the stimulus just before the spikes (dashed boxes) has been averaged to yield the typical time course (bottom).

With a somewhat more elaborate version of this approach, W. Bialek and his co-workers have been able to `read' the neural code of the H1 neuron in the fly and to reconstruct a time-dependent stimulus (Bialek et al., 1991; Rieke et al., 1996). Here we give a simplified version of their argument.

Results from reverse correlation analysis suggest, that each spike signifies the time course of the stimulus preceding the spike. If this is correct, a reconstruction of the complete time course of the stimulus \(s(t) \) from the set of firing times \(\mathcal{F} = \{t^{(1)}, \ldots, t^{(n)}\} \) should be possible; see Fig. 1.16.

As a simple test of this hypothesis, Bialek and coworkers have studied a linear reconstruction. A spike at time \(t^{(f)} \) gives a contribution \(\kappa(t - t^{(f)}) \) to the estimation \(s_{\text{est}}(t) \) of the time course of the stimulus. Here, \(t^{(f)} \in \mathcal{F} \) is one of the firing times and \(\kappa(t - t^{(f)}) \) is a kernel which is nonzero during some time before and around \(t^{(f)} \); cf. Fig. 1.16B. A linear estimate of the stimulus is

\[
s_{\text{est}}(t) = \sum_{f=1}^{n} \kappa(t - t^{(f)}) . \tag{1.12}
\]

The form of the kernel \(\kappa \) was determined through optimization so that the average reconstruction error \(\int dt [s(t) - s_{\text{est}}(t)]^2 \) was minimal. The quality of the reconstruction was then tested on additional data which was not used for the optimization. Surprisingly enough, the simple linear
reconstruction (1.12) gave a fair estimate of the time course of the stimulus even though the stimulus varied on a time scale comparable to the typical interspike interval (Bialek et al., 1991; Bialek and Rieke, 1992; Rieke et al., 1996). This reconstruction method shows nicely that information about a time dependent input can indeed be conveyed by spike timing.

Figure 1.16: Reconstruction of a stimulus (schematic). A. A stimulus evokes a spike train of a neuron. The time course of the stimulus may be estimated from the spike train; redrawn after [Rieke et al., 1996]. B. In the framework of linear stimulus reconstruction, the estimation $s^{est}(t)$ (dashed) is the sum of the contributions κ (solid lines) of all spikes.
1.7 Discussion: Spikes or Rates?

The dividing line between spike codes and firing rates is not always as clearly drawn as it may seem at first sight. Some codes which were first proposed as pure examples of pulse codes have later been interpreted as variations of rate codes. For example the stimulus reconstruction (1.12) with kernels seems to be a clear example of a spike code. Nevertheless, it is also not so far from a rate code based on spike counts (Abbott, 1994; Theunissen and Miller, 1995). To see this, consider a spike count measure with a running time window $K(.)$. We can estimate the rate ν at time t by

$$\nu(t) = \frac{\int K(\tau) S(t - \tau) d\tau}{\int K(\tau) d\tau}$$ (1.13)

where $S(t) = \sum_{f=1}^{n} \delta(t - t^{(f)})$ is the spike train under consideration. The integrals run from minus to plus infinity. For a rectangular time window $K(\tau) = 1$ for $-T/2 < \tau < T/2$ and zero otherwise, (1.13) reduces exactly to our definition (1.8) of a rate as a spike count measure.

The time window in (1.13) can be made rather short so that at most a few spikes fall into the interval T. Furthermore, there is no need that the window $K(.)$ be symmetric and rectangular. We may just as well take an asymmetric time window with smooth borders. Moreover, we can perform the integration over the δ function which yields

$$\nu(t) = c \sum_{f=1}^{n} K(t - t^{(f)})$$ (1.14)

where $c = \left[\int K(s)ds \right]^{-1}$ is a constant. Except for the constant c (which sets the
overall scale to units of one over time), the generalized rate formula (1.14) is now identical to the reconstruction formula (1.12). In other words, the linear reconstruction is just the firing rate measured with a cleverly optimized time window.

Similarly, a code based on the 'time-to-first-spike' is also consistent with a rate code. If, for example, the mean firing rate of a neuron is high for a given stimulus, then the first spike is expected to occur early. If the rate is low, the first spike is expected to occur later. Thus the timing of the first spike contains a lot of information about the underlying rate.

Finally, a code based on population activities introduced above as an example of a rate code may be used for very fast temporal coding schemes. As discussed later in Chapter 6, the population activity reacts quickly to any change in the stimulus. Thus rate coding in the sense of a population average is consistent with fast temporal information processing, whereas rate coding in the sense of a naïve spike count measure is not.

The discussion of whether or not to call a given code a rate code is still ongoing, even though precise definitions have been proposed (Theunissen and Miller, 1995). What is important, in our opinion, is to have a coding scheme which allows neurons to quickly respond to stimulus changes. A naïve spike count code with a long time window is unable to do this, but many of the other codes are. The name of such a code, whether it is deemed a rate code or not is of minor importance.

1.7.0.1 Example: Towards a definition of rate codes

We have seen above in Eq. (1.14) that stimulus reconstruction with a linear kernel can be seen as a special instance of a rate code. This suggests a formal definition of a rate code via the reconstruction procedure: If all information contained in a spike train can be recovered by the linear reconstruction procedure of Eq. (1.12), then the neuron is, by definition, using a rate code. Spike codes would then be codes where a linear reconstruction is not successful. Theunissen and Miller have proposed a definition of rate coding that makes the above ideas more precise (Theunissen and Miller, 1995).

To see how their definition works, we have to return to the reconstruction formula (1.12). It is, in fact, the first term of a systematic Volterra expansion for the estimation of the stimulus from the spikes (Bialek et al., 1991)

\[
s^{\text{est}}(t) = \sum_f \kappa_1 (t - t^{(f)}) + \sum_{f,f'} \kappa_2 (t - t^{(f)}, t - t^{(f')}) + \ldots \]

(1.15)
For a specific neuron, inclusion of higher-order terms \(\kappa_2, \kappa_3, \ldots \) may or may not improve the quality of the estimation. For most neurons where the reconstruction has been carried through it seems that the higher-order terms do not contribute a large amount of information (Rieke et al., 1996). The neurons would then be classified as rate coding.

Let us now suppose that the reconstruction procedure indicates a significant contribution of the second-order term. Does this exclude rate coding? Unfortunately this is not the case. We have to exclude two other possibilities. Firstly, we might have chosen a suboptimal stimulus. A neuron might for example encode the variable \(x \) by a rate code, so that a nearly perfect linear reconstruction of \(x \) would be possible,

\[
x(t) \approx x^{\text{est}} = \sum_{f=1}^{n} \kappa_{1,x} (t - t(f)) ;
\]

But if we chose a stimulus \(s = x^2 \) instead of \(x \), then the reconstruction for \(s^{\text{est}} \) would involve second-order terms, even though the neuron is really using rate code.

Secondly, according to Theunissen and Miller [1995] a spike code should show a temporal structure that is more precise than the temporal structure of the stimulus. The fact that neurons show precise and reliable spike timing as such is, for them, not sufficient to classify the neuron as a temporal encoder, since the neuronal precision could just be the image of precise temporal input. Let us consider a stimulus with cut-off frequency \(\omega \). In order to exclude the possibility that the timing is induced by the stimulus, Theunissen and Miller propose to consider the Fourier spectrum of the higher-order reconstruction kernels. If the Fourier transform of the higher-order kernels contains frequencies less than \(\omega \) only, then the code is a rate code. If higher-order kernels are significant and contain frequencies above \(\omega \), then the information is encoded temporally. A positive example of a spike code (or of "temporal encoding") according to this definition would be the code by correlation and synchrony introduced above. Another example would be the phase code, in particular if the number of spikes per cycle is independent of the stimulus strength. For the exact mathematical definition of a temporal code according to Theunissen and Miller, the reader is refered to the original literature (Theunissen and Miller, 1995).
1.8 Summary

The neuronal signal consists of short voltage pulses called action potentials or spikes. These pulses travel along the axon and are distributed to several postsynaptic neurons where they evoke postsynaptic potentials. If a postsynaptic neuron receives several spikes from several presynaptic neurons within a short time window, its membrane potential may reach a critical value and an action potential is triggered. This action potential is the output signal which is, in turn, transmitted to other neurons.

The sequence of action potentials contains the information that is conveyed from one neuron to the next - but what is the code used by the neurons? Even though it is a question of fundamental importance the problem of neuronal coding is still not fully resolved. We have reviewed three concepts of rate codes, viz. spike count over some time window, spike density in a histogram, and population activity in an ensemble of neurons. All three concepts have been successfully used in experimental data analysis. All of these concepts are, however, problematic when they are interpreted as the actual code used for neuronal information transmission. A constructive criticism of rate codes may come from a presentation of potential spike codes, if their usefulness in terms of computational power or ease of implementation in biological hardware can be shown. It should be clear that modeling cannot give definite answers to the problem of neuronal coding. The final answers have to come from experiments. One task of modeling may be to discuss possible coding schemes, study their computational potential, exemplify their utility, and point out their limitations.

It is difficult to draw a clear border line between pulse and rate codes. Whatever the name of the code, it should offer a neural system the possibility to react quickly to changes in the input. This seems to be a minimum requirement if fast behavioral reaction times are to be accounted for.

If pulse coding is relevant, a description of information processing in the brain must be based on spiking neuron models. If all information is contained in the mean firing rate, then models on the level of rates suffice. Since we do not want to take any decision a priori about the neuronal code, we concentrate in this book on models of spiking neurons. In some cases, for example for stationary input, it will turn out that the spiking neuron models can be strictly reduced to rate models; in other cases such
a reduction is not possible. By modeling on the level of spiking neurons, the question of neuronal coding can thus be kept open.

Literature

Phenomenological spiking neuron models similar to the model discussed in Section 1.3.1 have a long tradition in theoretical neuroscience, e.g., (McCulloch and Pitts, 1943; Stein, 1967b; Hill, 1936; Lapicque, 1907; Stein, 1965; Geisler and Goldberg, 1966; Weiss, 1966). They are reviewed in Holden (1976), Tuckwell (1988), and Maass and Bishop (1998).

An excellent discussion of the problem of neuronal coding can be found in the book `SPIKES - Exploring the neural code' by Rieke et al. (1996). The debate of spikes versus rates is also highlighted in several papers (Maass and Bishop, 1998; Abbott, 1994; Abeles, 1994; Theunissen and Miller, 1995; Shadlen and Newsome, 1994; Softky, 1995).
I. Single Neuron Models

Subsections

- 2. Detailed Neuron Models
 - 2.1 Equilibrium potential
 - 2.2 Hodgkin-Huxley Model
 - 2.3 The Zoo of Ion Channels
 - 2.4 Synapses
 - 2.5 Spatial Structure: The Dendritic Tree
 - 2.6 Compartmental Models
 - 2.7 Summary

- 3. Two-Dimensional Neuron Models
 - 3.1 Reduction to two dimensions
 - 3.2 Phase plane analysis
 - 3.3 Threshold and excitability
 - 3.4 Summary

- 4. Formal Spiking Neuron Models
 - 4.1 Integrate-and-fire model
 - 4.2 Spike response model (SRM)
 - 4.3 From Detailed Models to Formal Spiking Neurons
 - 4.4 Multi-compartment integrate-and-fire model
 - 4.5 Application: Coding by Spikes
 - 4.6 Summary

- 5. Noise in Spiking Neuron Models
5.1 Spike train variability
5.2 Statistics of spike trains
5.3 Escape noise
5.4 Slow noise in the parameters
5.5 Diffusive noise
5.6 The subthreshold regime
5.7 From diffusive noise to escape noise
5.8 Stochastic resonance
5.9 Stochastic firing and rate models
5.10 Summary
From a biophysical point of view, action potentials are the result of currents that pass through ion channels in the cell membrane. In an extensive series of experiments on the giant axon of the squid, Hodgkin and Huxley succeeded to measure these currents and to describe their dynamics in terms of differential equations. In Section 2.2, the Hodgkin-Huxley model is reviewed and its behavior illustrated by several examples.

The Hodgkin-Huxley equations are the starting point for detailed neuron models which account for numerous ion channels, different types of synapse, and the specific spatial geometry of an individual neuron. Ion channels, synaptic dynamics, and the spatial structure of dendrites are the topics of Sections 2.3-2.5. The Hodgkin-Huxley model is also an important reference model for the derivation of simplified neuron models in Chapters 3 and 4. Before we can turn to the Hodgkin-Huxley equations, we need to give some additional information on the equilibrium potential of ion channels.

Subsections

- 2.1 Equilibrium potential
 - 2.1.1 Nernst potential
 - 2.1.2 Reversal Potential

- 2.2 Hodgkin-Huxley Model
 - 2.2.1 Definition of the model
 - 2.2.2 Dynamics

- 2.3 The Zoo of Ion Channels
 - 2.3.1 Sodium Channels
 - 2.3.2 Potassium Channels
 - 2.3.3 Low-Threshold Calcium Current
 - 2.3.4 High-threshold calcium current and Ca\(^{2+}\)-Activated Potassium
Channels
 2.3.5 Calcium Dynamics

• 2.4 Synapses
 2.4.1 Inhibitory Synapses
 2.4.2 Excitatory Synapses

• 2.5 Spatial Structure: The Dendritic Tree
 2.5.1 Derivation of the Cable Equation
 2.5.2 Green's Function (*)
 2.5.3 Non-linear Extensions to the Cable Equation

• 2.6 Compartmental Models
• 2.7 Summary
 • Literature

Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
2.1 Equilibrium potential

Neurons are just as other cells enclosed by a membrane which separates the interior of the cell from the extracellular space. Inside the cell the concentration of ions is different from that in the surrounding liquid. The difference in concentration generates an electrical potential which plays an important role in neuronal dynamics. In this section, we want to provide some background information and give an intuitive explanation of the equilibrium potential.

2.1.1 Nernst potential

From the theory of thermodynamics, it is known that the probability that a molecule takes a state of energy E is proportional to the Boltzmann factor $p(E) \propto \exp(-E/kT)$ where k is the Boltzmann constant and T the temperature. Let us consider positive ions with charge q in a static electrical field. Their energy at location x is $E(x) = q u(x)$ where $u(x)$ is the potential at x. The probability to find an ion in the region around x is therefore proportional to $\exp[-q u(x)/kT]$. Since the number of ions is huge, we may interpret the probability as a ion density. For ions with positive charge $q > 0$, the ion density is therefore higher in regions with low potential u. Let us write $n(x)$ for the ion density at point x. The relation between the density at point x_1 and point x_2 is

$$\frac{n(x_1)}{n(x_2)} = \exp \left[-\frac{q u(x_1) - q u(x_2)}{k T} \right]$$

(2.1)
A difference in the electrical potential $\Delta u = u(x_1) - u(x_2)$ generates therefore a difference in ion density; cf. Fig. 2.1.

Figure 2.1: A. At thermal equilibrium, positive ions in an electric field will be distributed so that less ions are in a state of high energy and more at low energy. Thus a voltage difference generates a gradient in concentration. B. Similarly, a difference in ion concentration generates an electrical potential. The concentration n_2 inside the neuron is different from the concentration n_1 of the surround. The resulting potential is called the Nernst-potential. The solid line indicates the cell membrane. Ions can pass through the gap.

Since this is a statement about an equilibrium state, the reverse must also be true. A difference in ion density generates a difference Δu in the electrical potential. We consider two regions of ions with concentration n_1 and n_2, respectively. Solving (2.1) for Δu we find that, at equilibrium, the concentration difference generates a voltage

$$\Delta u = \frac{kT}{q} \ln \frac{n_2}{n_1}$$

which is called the Nernst potential ([Hille, 1992]).

2.1.2 Reversal Potential

The cell membrane consists of a thin bilayer of lipids and is a nearly perfect electrical insulator. Embedded in the cell membrane are, however, specific proteins which act as ion gates. A first type of gate are the ion pumps, a second one are ion channels. Ion pumps actively transport ions from one side to the other. As a result, ion concentrations in the intra-cellular liquid differ from that of the surround. For
example, the sodium concentration inside the cell (≈ 60 mM/l) is lower than that in the extracellular liquid (≈ 440 mM/l). On the other hand, the potassium concentration inside is higher (≈ 400 mM/l) than in the surround (≈ 20 mM/l).

Let us concentrate for the moment on sodium ions. At equilibrium the difference in concentration causes a Nernst potential E_{Na} of about +50 mV. That is, at equilibrium the interior of the cell has a positive potential with respect to the surround. The interior of the cell and the surrounding liquid are in contact through ion channels where Na$^+$ ions can pass from one side of the membrane to the other. If the voltage difference Δu is smaller than the value of the Nernst potential E_{Na}, more Na$^+$ ions flow into the cell so as to decrease the concentration difference. If the voltage is larger than the Nernst potential ions would flow out the cell. Thus the direction of the current is reversed when the voltage Δu passes E_{Na}. For this reason, E_{Na} is called the reversal potential.

2.1.2.1 Example: Reversal Potential for Potassium

As mentioned above, the ion concentration of potassium is higher inside the cell (≈ 400 mM/l) than in the extracellular liquid (≈ 20 mM/l). Potassium ions have a single positive charge $q = 1.6 \times 10^{-19}$ C. Application of the Nernst equation with the Boltzmann constant $k = 1.4 \times 10^{-23}$ J/K yields $E_K \approx -77$ mV at room temperature. The reversal potential for K$^+$ ions is therefore negative.

2.1.2.2 Example: Resting Potential

So far we have considered either sodium or potassium. In real cells, these and other ion types are simultaneously present and contribute to the voltage across the membrane. It is found experimentally that the resting potential of the membrane is about $u_{rest} \approx -65$ mV. Since $E_K < u_{rest} < E_{Na}$, potassium ions will, at the resting potential, flow out of the cell while sodium ions flow into the cell. The active ion pumps balance this flow and transport just as many ions back as pass through the channels. The value of u_{rest} is determined by the dynamic equilibrium between the ion flow through the channels (permeability of the membrane) and active ion transport (efficiency of the ion pumps).
2.2 Hodgkin-Huxley Model

Hodgkin and Huxley (Hodgkin and Huxley, 1952) performed experiments on the giant axon of the squid and found three different types of ion current, viz., sodium, potassium, and a leak current that consists mainly of Cl- ions. Specific voltage-dependent ion channels, one for sodium and another one for potassium, control the flow of those ions through the cell membrane. The leak current takes care of other channel types which are not described explicitly.

2.2.1 Definition of the model

The Hodgkin-Huxley model can be understood with the help of Fig. 2.2. The semipermeable cell membrane separates the interior of the cell from the extracellular liquid and acts as a capacitor. If an input current $I(t)$ is injected into the cell, it may add further charge on the capacitor, or leak through the channels in the cell membrane. Because of active ion transport through the cell membrane, the ion concentration inside the cell is different from that in the extracellular liquid. The Nernst potential generated by the difference in ion concentration is represented by a battery.

Let us now translate the above considerations into mathematical equations. The conservation of electric charge on a piece of membrane implies that the applied current $I(t)$ may be split in a capacitive current I_C which charges the capacitor C and further components I_K which pass through the ion channels. Thus
\[I(t) = I_C(t) + \sum_k I_k(t) \tag{2.3} \]

where the sum runs over all ion channels. In the standard Hodgkin-Huxley model there are only three types of channel: a sodium channel with index Na, a potassium channel with index K and an unspecific leakage channel with resistance \(R \); cf. Fig. 2.2. From the definition of a capacity \(C = Q/u \) where \(Q \) is a charge and \(u \) the voltage across the capacitor, we find the charging current \(I_C = C \frac{du}{dt} \). Hence from (2.3)

\[C \frac{du}{dt} = - \sum_k I_k(t) + I(t). \tag{2.4} \]

In biological terms, \(u \) is the voltage across the membrane and \(\sum_k I_k \) is the sum of the ionic currents which pass through the cell membrane.

Figure 2.3: Equilibrium function (A) and time constant (B) for the three variables \(m, n, h \) in the Hodgkin-Huxley model. The resting potential is at \(u = 0 \).

As mentioned above, the Hodgkin-Huxley model describes three types of channel. All channels may be characterized by their resistance or, equivalently, by their conductance. The leakage channel is described by a voltage-independent conductance \(g_L = 1/R \); the conductance of the other ion channels is voltage and time dependent. If all channels are open, they transmit currents with a maximum conductance \(g_{Na} \) or \(g_{K} \), respectively. Normally, however, some of the channels are blocked. The probability that a channel is open is described by additional variables \(m \), \(n \), and \(h \). The combined action of \(m \) and \(h \) controls the \(Na^+ \) channels. The \(K^+ \) gates are controlled by \(n \). Specifically, Hodgkin and Huxley formulated the three current components as

\[\sum_k I_k = g_{Na} m^3 h (u - E_{Na}) + g_{K} n^4 (u - E_{K}) + g_L (u - E_L). \tag{2.5} \]

The parameters \(E_{Na} \), \(E_{K} \), and \(E_L \) are the reversal potentials. Reversal potentials and conductances are empirical parameters. In Table 2.1 we have summarized the original values reported by Hodgkin and Huxley (Hodgkin and Huxley, 1952). These values are based on a voltage scale where the resting potential is zero. To get the values accepted today, the voltage scale has to be shifted by -65 mV. For example, the corrected value of the sodium reversal potential is \(E_{Na} = 50 \) mV that of the potassium ions is \(E_{K} = -77 \) mV.
The parameters of the Hodgkin-Huxley equations. The membrane capacity is \(C = 1 \mu \text{F/cm}^2 \). The voltage scale is shifted so that the resting potential vanishes.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(E_x)</th>
<th>(g_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>115 mV</td>
<td>120 mS/cm²</td>
</tr>
<tr>
<td>K</td>
<td>-12 mV</td>
<td>36 mS/cm²</td>
</tr>
<tr>
<td>L</td>
<td>10.6 mV</td>
<td>0.3 mS/cm²</td>
</tr>
</tbody>
</table>

The three variables \(m, n, \) and \(h \) are called gating variables. They evolve according to the differential equations

\[
\begin{align*}
\tau \frac{\partial n}{\partial t} &= \alpha_n(u) (1 - n) - \beta_n(u) n \\
\tau \frac{\partial m}{\partial t} &= \alpha_m(u) (1 - m) - \beta_m(u) m \\
\tau \frac{\partial h}{\partial t} &= \alpha_h(u) (1 - h) - \beta_h(u) h
\end{align*}
\]

(2.6)

with \(\tau \frac{\partial}{\partial t} \) for \(m, n, \) or \(h \). The various functions \(\alpha \) and \(\beta \), given in Table 2.1, are empirical functions of \(u \) that have been adjusted by Hodgkin and Huxley to fit the data of the giant axon of the squid. Eqs. (2.4) - (2.6) with the values given in Table 2.1 define the Hodgkin-Huxley model.

In order to get a better understanding of the three equations (2.6), it is convenient to rewrite each of the equations in the form

\[
\dot{x} = - \frac{1}{\tau_x(u)} [x - x_0(u)]
\]

(2.7)

where \(x \) stands for \(m, n, \) or \(h \). For fixed voltage \(u \), the variable \(x \) approaches the value \(x_0(u) \) with a time constant \(\tau_x(u) \). The asymptotic value \(x_0(u) \) and the time constant \(\tau_x(u) \) are given by the transformation \(x_0(u) = \alpha_x(u) / [\alpha_x(u) + \beta_x(u)] \) and \(\tau_x(u) = [\alpha_x(u) + \beta_x(u)]^{-1} \). Using the parameters given by Hodgkin and Huxley (Hodgkin and Huxley, 1952), we have plotted in Fig. 2.3 the functions \(x_0(u) \) and \(\tau_x(u) \).
2.2.2 Dynamics

In this subsection we study the dynamics of the Hodgkin-Huxley model for different types of input. Pulse input, constant input, step current input, and time-dependent input are considered in turn. These input scenarios have been chosen so as to provide an intuitive understanding of the dynamics of the Hodgkin-Huxley model.

2.2.2.1 Example: Spike generation

We see from Fig. 2.3A that \(m_0 \) and \(n_0 \) increase with \(u \) whereas \(h_0 \) decreases. Thus, if some external input causes the membrane voltage to rise, the conductance of sodium channels increases due to increasing \(m \). As a result, positive sodium ions flow into the cell and raise the membrane potential even further. If this positive feedback is large enough, an action potential is initiated.

\[\Delta u(t) = u(t) - u_{rest} \]

For \(t > 0 \) shows the action potential (positive peak) followed by a relative refractory period where the potential is below the resting potential. In the spike response framework, the time course \(u(t) - u_{rest} \) of the action potential for \(t > 0 \) defines the kernel \(\tau(t) \). B. Threshold effect in the initiation of an action potential. A current pulse of 1 ms duration has been applied at \(t=10 \) ms. For a current amplitude of 7.0 \(\mu \)A/cm², an action potential with an amplitude of about 100 mV as in a is initiated (solid line, the peak of the action potential is out of bounds). If the stimulating current pulse is slightly weaker (6.9 \(\mu \)A/cm²) no action potential is emitted (dashed line) and the voltage \(\Delta u(t) = u(t) - u_{rest} \) stays always below 10mV. Note that the voltage scale in B is different from the one in A.

At high values of \(u \) the sodium conductance is shut off due to the factor \(h \). As indicated in Fig. 2.3B, the `time constant' \(\tau_h \) is always larger than \(\tau_m \). Thus the variable \(h \) which closes the channels reacts more slowly to the voltage increase than the variable \(m \) which opens the channel. On a similar slow time scale, the potassium (K⁺) current sets in. Since it is a current in outward direction, it lowers the potential. The overall effect of the sodium and potassium currents is a short action potential followed by a negative overshoot; cf. Fig. 2.4A. The amplitude of the spike is about 100 mV.

In Fig. 2.4A, The spike has been initiated by a short current pulse of 1 ms duration applied at \(t < 0 \). If the amplitude of the stimulating current pulse is reduced below some critical value, the membrane potential returns to the rest value without a large spike-like excursion; cf. Fig. 2.4B.
Thus we have a threshold-type behavior.

2.2.2.2 Example: Mean firing rates and gain function

The Hodgkin-Huxley equations (2.4)-(2.6) may also be studied for constant input $I(t) = I_0$ for $t > 0$. (The input is zero for $t \leq 0$). If the value I_0 is larger than a critical value $I_{\theta} \approx 6 \mu A/cm^2$, we observe regular spiking; Fig. 2.5A. We may define a firing rate $\nu = 1/T$ where T is the inter-spike interval. The firing rate as a function of the constant input I_0 defines the gain function plotted in Fig. 2.5B.

![Figure 2.5: A Spike train of the Hodgkin-Huxley model for constant input current I_0. B. Gain function. The mean firing rate ν is plotted as a function of I_0.](image-url)

2.2.2.3 Example: Step current input

In the previous example we have seen that a constant input current $I_0 > I_{\theta}$ generates regular firing. In this paragraph we study the response of the Hodgkin-Huxley model to a step current of the form

$$I(t) = I_1 + \Delta I \mathcal{H}(t).$$

(2.8)

Here $\mathcal{H}(t)$ denotes the Heaviside step function, i.e., $\mathcal{H}(t) = 0$ for $t \leq 0$ and $\mathcal{H}(t) = 1$ for $t > 0$. At $t = 0$ the input jumps from a fixed value I_1 to a new value $I_2 = I_1 + \Delta I$; see Fig. 2.6A. We may wonder whether spiking for $t > 0$ depends only on the final value I_2 or also on the step size ΔI.

The answer to this question is given by Fig. 2.6B. A large step ΔI facilitates the spike initiation. Even for a target value $I_2 = 0$ (i.e., no stimulation for $t > 0$) a spike is possible, provided that the step size is large enough. This is an example of inhibitory rebound: A single spike is fired, if an inhibitory current $I_1 < 0$ is released. The letter S in Fig. 2.6B denotes the regime where only a single spike is initiated. Repetitive firing (regime R) is possible for $I_2 > 6 \mu A/cm^2$, but must be triggered by sufficiently large current steps.

We may conclude from Fig. 2.6B that there is no unique current threshold for spike initiation: The trigger mechanism for action potentials depends not only on I_2 but also on the size of the current step ΔI. More generally, it can be shown that the concept of a threshold itself is questionable from a mathematical point of view (Koch et al., 1995; Rinzel and Ermentrout, 1989). In a mathematical sense, the transition in Fig. 2.4B, that 'looks' like a threshold is, in fact, smooth. If
we carefully tuned the input current in the regime between 6.9 and 7.0 \(\mu A/cm^2 \), we would find a family of response amplitudes in between the curves shown in Fig. 2.4B. For practical purposes, however, the transition can be treated as a threshold effect. A mathematical discussion of the threshold phenomenon can be found in Chapter 3.

Figure 2.6: Phase diagram for stimulation with a step current. A. The input current \(I(t) \) changes at \(t = 0 \) from \(I_1 \) to \(I_2 \). B. Response of the Hodgkin-Huxley model to step current input. Three regimes denoted by \(S \), \(R \), and \(I \) may be distinguished. In \(I \) no action potential is initiated (inactive regime). In \(S \), a single spike is initiated by the current step (single spike regime). In \(R \), periodic spike trains are triggered by the current step (repetitive firing). Examples of voltage traces in the different regimes are presented in the smaller graphs to the left and right of the phase diagram in the center.

2.2.2.4 Example: Stimulation by time-dependent input

In order to explore a more realistic input scenario, we stimulate the Hodgkin-Huxley model by a time-dependent input current \(I(t) \) that is generated by the following procedure. Every 2 ms, a random number is drawn from a Gaussian distribution with zero mean and standard deviation \(\sigma = 3 \mu A/cm^2 \). To get a continuous input current, a linear interpolation was used between the target values. The resulting time-dependent input current was then applied to the Hodgkin-Huxley model (2.4). The response to the current is the voltage trace shown in Fig. 2.7. Note that action potentials occur at irregular intervals.

Figure 2.7: A. Spike train of the Hodgkin-Huxley model driven by a time dependent input current. The action potentials occur irregularly. The figure shows the voltage \(u \) as a function of time. B.
Refractoriness of the Hodgkin-Huxley model. At $t = 20$ ms the model is stimulated by a short current pulse so as to trigger an action potential. A second current pulse of the same amplitude applied at $t = 25, 27.5, 30, \text{ or } 32, 5$ ms is not sufficient to trigger a second action potential.

2.2.2.5 Example: Refractoriness

In order to study neuronal refractoriness, we stimulate the Hodgkin-Huxley model by a first current pulse that is sufficiently strong to excite a spike. A second current pulse of the same amplitude as the first one is used to probe the responsiveness of the neuron during the phase of hyperpolarization that follows the action potential. If the second stimulus is not sufficient to trigger another action potential, we have a clear signature of neuronal refractoriness. In the simulation shown in Fig. 2.7B, a second spike is possible if we wait at least 15 milliseconds after the first stimulation. It would, of course, be possible to trigger a second spike after a shorter interval, if a significantly stronger stimulation pulse was used; for classical experiments along those lines, see, e.g. (Fuortes and Mantegazzini, 1962).

If we look more closely at the voltage trajectory of Fig. 2.7B, we see that neuronal refractoriness manifests itself in two different forms. First, due to the hyperpolarizing spike afterpotential the voltage is lower. More stimulation is therefore needed to reach the firing threshold. Second, since a large portion of channels is open immediately after a spike, the resistance of the membrane is reduced compared to the situation at rest. The depolarizing effect of a stimulating current pulse decays therefore faster immediately after the spike than ten milliseconds later. An efficient description of refractoriness plays a major role for simplified neuron models discussed in Chapter 4.
The equations of Hodgkin and Huxley provide a good description of the electro-physiological properties of the giant axon of the squid. These equations capture the essence of spike generation by sodium and potassium ion channels. The basic mechanism of generating action potentials is a short influx of sodium ions that is followed by an efflux of potassium ions. This mechanism is essentially preserved in higher organisms. Cortical neurons in vertebrates, however, exhibit a much richer repertoire of electro-physiological properties than the squid axon studied by Hodgkin and Huxley. These properties are mostly due to a large variety of different ion channels (Hille, 1992; Llinás, 1988; Koch, 1999).

In this section we give an overview of some of the ion channels encountered in different neurons. The basic equation of detailed neuron models is more or less the same as that of the Hodgkin-Huxley model (Hodgkin and Huxley, 1952) except that it contains more types of ion channels. The membrane potential \(u \) of the neuron is given by

\[
C \frac{du(t)}{dt} = I_{\text{syn}}(t) + \sum_k I_k(t) .
\]

(2.9)

Here, \(C \) is the membrane capacity, \(I_{\text{syn}} \) the synaptic input current, and \(I_k \) is the current through ion channel \(k \). As in the Hodgkin-Huxley model, sodium and potassium currents are described by equations of the form

\[
I_k = g_k m^{p_k} h^{q_k} (u - E_k) ,
\]

(2.10)

with \(g_k \) being the maximum conductance of ion channel \(k \), \(E_k \) is the reversal potential, and \(m \) and \(h \) are activation and inactivation variables, respectively. The exponents \(p_k \) and \(q_k \) are parameters. The potassium current of the Hodgkin-Huxley model, for example, has \(p_k = 4 \) and \(q_k = 0 \) so that that variable \(h \) can be omitted. Figures 2.8 and 2.9 give an overview of equilibrium values and time constants of the activation and inactivation variables for various types of ion channel.
2.3.1 Sodium Channels

Apart from fast sodium ion channels, which are qualitatively similar to those of the Hodgkin-Huxley model and denoted by I_{Na}, some neurons contain a ‘persistent’ or ‘non-inactivating’ sodium current I_{NaP}. ‘Non-inactivating’ means that this current has $q_{NaP} = 0$. In other words, it is described by an activation variable m only and does not have a separate inactivation variable h,

$$I_{NaP} = \bar{g}_{NaP} \cdot m \cdot (v - E_{Na}) \quad (2.11)$$

Figure 2.8: Stationary values (left) and time constants (right) of the activation variable m (solid line) and the inactivation variable h (dashed line) of various ion currents. A. Persistent sodium current I_{NaP}. B. Transient sodium current I_{Na}. C. Low-threshold calcium current I_T. Small circles indicate the equilibrium values of m and h at the resting potential. Note that the activation and inactivation curves for the low-threshold calcium current are shifted towards a more hyperpolarized level of the membrane potential as compared to those of the transient sodium current. Note also that different scales have been used for τ_m and τ_h since the dynamics of the inactivation variable h is slower by a factor 10-100 than that of the activation variable m. Numerical values of parameters correspond to a model of neurons in the deep cerebellar nuclei (Kistler et al., 2000).
The current I_{NaP} increases the overall excitability of the neuron because the corresponding channels open when the membrane gets depolarized so that an influx of positive sodium ions then leads to an even larger depolarization. Typical equilibrium values and time constants of the non-inactivating sodium current I_{NaP} are presented in Fig. 2.8A and may be compared with that of the fast sodium current I_{Na} in Fig. 2.8B.

2.3.2 Potassium Channels

Voltage clamp experiments on various neurons have revealed that there is more than just one type of potassium channel. In thalamic relay neurons, for example, two different types of potassium channels are present, viz. a rapidly inactivating potassium current I_A (inactivation time constant $\tau_h \approx 10$ ms) and a slowly inactivating potassium current I_{K2} (time constant $\tau_h \approx 200\ldots2000$ ms); cf. Fig. 2.9. Both classes can even be further subdivided into two different subtypes I_{A1}, I_{A2}, and I_{K2a}, I_{K2b}, respectively, in order to fit activation and inactivation curves that contain more than a single time constant (Huguenard and McCormick, 1992).

![Figure 2.9: Stationary values (left) and time constants (right) of the activation (solid line) and inactivation (dashed line) variables of the rapidly inactivating potassium currents I_{A1} and I_{A2} (A) and the slowly inactivating potassium currents I_{K2a} and I_{K2b} (B).](image)

2.3.2.1 Example: Slowly firing neurons

The afore mentioned A-current I_A is just one member of a large class of transient potassium currents. These currents have in common an inactivation time constant of a few tens of milliseconds which is rather long as compared to the sodium dynamics. Since potassium currents are outward currents, the current I_A tends to hyperpolarize the membrane potential and therefore slows down the firing of action potentials. For weak sustained stimulation, new action potentials only occur after the A-current has become sufficiently inactivated (Connor et al., 1977).

In a similar way, A-currents are responsible for a long delay between the sudden onset of an excitatory stimulus...
and the very first action potential; cf. Fig. 2.10. The onset of a depolarizing current will quickly lead to an activation of the A-current which in turn counteracts a depolarization of the membrane potential. Following the slow inactivation of the A-current, the membrane potential finally rises to the firing threshold and an action potential is released.

Figure 2.10: Slowly firing neuron and long-latency response to a sudden onset of an excitatory stimulus. A. Membrane potential of a neuron with a pronounced A-type potassium conductance. Repetitive firing at a very low frequency is started by a depolarizing current step at $t = 500$ ms. The first spike occurs with a delay of about 120 ms after the onset of the input current. B. Time course of the inactivation variable h of the A-current in the same simulation as in A. The delay between stimulus onset and the first action potential is due to the slowly inactivating A-current which is apparent here by the smooth decay of $h(t)$.

2.3.2.2 Example: Model of a neocortical interneuron

The gain function of the Hodgkin-Huxley model is discontinuous at the firing threshold which means that it cannot produce low-frequency spike trains with a constant input current. Nevertheless, low firing rates can also be achieved without the inactivating current I_A provided that the potassium currents have suitable characteristics. In a model of neocortical interneurons (Erisir et al., 1999), there are two non-inactivating potassium channels and an inactivating sodium channel of the Hodgkin-Huxley type. With a suitable choice of parameters, the gain function is continuous, i.e., repetitive firing is possible in the full range of frequencies between zero and a few hundred Hertz; cf. Fig. 2.11B. A short current pulse from rest can elicit action potentials if a critical threshold voltage is exceeded. In contrast to the Hodgkin-Huxley model, stimulation that is only slightly above threshold leads to delayed pulse generation; cf. Fig. 2.11B. Neurons with continuous gain function and delayed pulse generation are called type I whereas neurons with discontinuous gain function are called type II. The distinction between type I and type II plays an important role in Chapter 3.

Figure 2.11: A. Gain function of a neocortical interneuron model. The firing rate ν is shown as a function of a constant input current I. B. Delayed spike initiation. A short current pulse of 2 ms duration is applied at $t = 10$ ms. The action potential that is elicited in response to the current pulse is shown for decreasing pulse amplitudes of (from left to right). Note that the action potential can occur 10 ms after the end of the current pulse.

2.3.3 Low-Threshold Calcium Current

Apart from channels for sodium and potassium ions, many central neurons contain also channels for calcium ions.
Similarly to the common sodium and potassium currents, calcium currents are described in terms of a maximum permeability \bar{p}_k times a combination of activation m and inactivation h variables. In contrast to sodium and potassium the intracellular calcium concentration is very low and can be significantly affected by the calcium influx during an action potential. The current that passes through open channels thus depends on the actual calcium concentrations $[Ca^{2+}]_i$ inside and outside the cell, and on the voltage u across the membrane. The conductivity of a calcium channel is described by the Goldman-Hodgkin-Katz equation which accounts for a small nonlinearity in the voltage/current-relation of the open channel that is caused by the large concentration gradient across the membrane (Hille, 1992, chapt. 13). Altogether, the current through calcium channel x is given by

$$ I_x = \bar{p}_x m^p_x h^q_x \frac{u \cdot z^2 \cdot F^2}{R \cdot T} \frac{[Ca^{2+}]_o \cdot e^{-u \cdot z \cdot F \cdot R / T} - [Ca^{2+}]_i}{1 - e^{-u \cdot z \cdot F \cdot R / T}}, \quad (2.12) $$

with $z = 2$ for Ca$^{2+}$, Faraday’s constant $F = 9.648\times10^4$ C mol$^{-1}$, and the gas constant $R = 8.314$ V C K$^{-1}$ mol$^{-1}$. The extracellular calcium concentration is usually assumed to be constant at $[Ca^{2+}]_o = 2.0$ mM, whereas the intracellular calcium concentration $[Ca^{2+}]_i$ may depend on the amount of Ca$^{2+}$-influx in the recent past.

Neurons of the deep cerebellar nuclei, for example, contain two different types of calcium channels that give rise to a so-called high-threshold calcium current (I_T) and a low-threshold calcium current (I_T), respectively (Llinás and Mühlethaler, 1988; Jahnsen, 1986). From a functional point of view, the low-threshold calcium current is particularly interesting, because it is responsible for a phenomenon called post-inhibitory rebound. Post-inhibitory rebound means that a hyperpolarizing current, which is suddenly switched off, results in an overshoot of the membrane potential or even in the triggering of one or more action potentials. Through this mechanism, action potentials can be triggered by inhibitory input. These action potentials, however, occur with a certain delay after the arrival of the inhibitory input, viz., after the end of the IPSP (Aizenman and Linden, 1999).

The low-threshold calcium current is `inactivating', i.e., the corresponding ion channel is shutting down after the membrane has become depolarized ($q_x = 1$). In this respect, the I_T current is similar to the fast sodium current of the Hodgkin-Huxley model. The discerning feature of the I_T current, however, is the fact that the activation and inactivation curves are shifted significantly towards a hyperpolarized membrane potential so that the channel is completely inactivated ($h \approx 0$) at the resting potential; see Fig. 2.8C. This is qualitatively different from the situation of the sodium channels of the Hodgkin-Huxley model. These channels are also closed at rest; the reason, however, is different. In the Hodgkin-Huxley model the sodium channels are not activated ($m \approx 0$) whereas the T-type calcium current is inactivated ($h \approx 0$); cf. Fig. 2.8B and C.

2.3.3.1 Example: Post-inhibitory rebound

The basic mechanism of post-inhibitory rebound can be easily understood by means of Fig. 2.8C which shows the stationary values of the activation and the inactivation variables, together with their time constants as a function of the membrane potential. In order to open the T-type calcium channels it is first of all necessary to remove its inactivation by h. But even if the channels have been successfully `de-inactivated' they remain in a closed state, because the activation variable m is zero as long as the membrane is hyperpolarized; cf. left panel of Fig. 2.8C. However, the channels will be transiently opened if the membrane potential is rapidly relaxed from the hyperpolarized level to the resting potential, because activation is faster than inactivation and, thus, there is a short period when both m and h are non-zero. The current that passes through the channels is terminated (`inactivated') as soon as the inactivation variable h has dropped to zero again. The resulting current pulse is called a low-threshold calcium spike.

The increase in the membrane potential caused by the low-threshold calcium spike may be sufficient to trigger ordinary sodium action potentials. We will refer to action potentials generated by this mechanism as rebound spikes. Figure 2.12A shows an example of rebound spikes that are triggered by an inhibitory current pulse. The time course of the activation and inactivation variables of the low-threshold calcium-current are plotted in Fig. 2.12B.
2.3.4 High-threshold calcium current and Ca$^{2+}$-Activated Potassium Channels

In addition to the low-threshold calcium current, some neurons, e.g., cortical pyramidal cells, contain a second type of calcium current, called high-threshold calcium current, or I_L-current for short. Similar to the persistent sodium current this current is non-inactivating (or 'long-lasting' - hence the index L), but it is activated only at rather high levels of depolarization; cf. Fig. 2.13A. The I_L-channels are thus open during action potentials, but otherwise closed. The current through these channels is described by the Goldman-Hodgkin-Katz equation Eq. (2.12) with $p_x = 2$ and $q_x = 0$, i.e., the inactivation variable h is absent.

The role of calcium for generating spikes is twofold. On the one hand, calcium ions carry a positive electrical charge and contribute therefore to the depolarization of the membrane. On the other hand, calcium ions are an important second messenger that is involved in all kinds of intracellular signaling. An example of the latter role of calcium ions is provided by Ca$^{2+}$-activated potassium channels. The potassium current I_C that passes through these channels is described by the familiar equation

$$ I_C = \overline{g}_C \, m \, (u - E_K) , $$

2.3 The Zoo of Ion Channels
with \(\bar{g}_C \) being the maximum conductance, \(m \) the activation variable, and \(E_K = -85 \) mV the potassium reversal potential. In contrast to previous equations of this form, the differential equation for \(m \) depends explicitly on the intracellular calcium concentration. A typical parameterization is

\[
\frac{dm}{dt} = \alpha \, m - \beta \, (1 - m),
\]

(2.14)

with

\[
\alpha = 2.5 \cdot 10^5 \, [Ca^{2+}]_i \exp(u/24) \quad \text{and} \quad \beta = 0.1 \exp(-u/24).
\]

(2.15)

Here, \([Ca^{2+}]_i\) is the intracellular calcium concentration in mol/l; \(u \) is the membrane potential in mV. The stationary value of the activation variable, \(m_\infty = \alpha/(\alpha + \beta) \), and its time constant, \(\tau = (\alpha + \beta)^{-1} \), are shown in Fig. 2.14.

Figure 2.14: Calcium-activated potassium channels. A. Stationary values of the activation variable for the calcium-dependent potassium channel \(I_C \) as a function of membrane potential. Different traces correspond to different concentrations of intracellular calcium \([Ca^{2+}]_i\) = 0.1 (dashed line), 0.2, 0.5, 1.0, 2.0, 5.0 μmol/l (solid line). B. Corresponding time constants for various calcium concentrations as in A.

The plot in Fig. 2.14 shows that the stationary value of \(m \) is growing with increasing calcium concentration. Similarly, the relaxation towards the stationary value becomes faster since the time constant \(\tau_m \) decreases with increasing calcium concentration; cf. Fig. 2.14B. The \(I_C \) current is thus activated by intracellular calcium, as indicated by its name. Due to the short time constant of its activation variable the maximum of this potassium current is reached during or immediately after an action potential. If present, the calcium-activated potassium channels can provide a major contribution to the repolarization of the membrane after an action potential.

2.3.4.1 Example: Adaptation

Closely related to the \(I_C \)-current is another \(Ca^{2+} \)-activated potassium current, the so-called \(I_{AHP} \)-current (AHP is short for afterhyperpolarization). In contrast to its C-type sibling the activation of this current is much slower and purely \([Ca^{2+}]_i\)-dependent, i.e., voltage independent. This current is activated by calcium ions that enter through (voltage-gated) L-type channels during an action potential (Tanabe et al., 1998). More precisely, we have

\[
I_{AHP} = \bar{g}_{AHP} \, m \, (u - E_K),
\]

(2.16)

with
\[\frac{dm}{dt} = \alpha m - \beta (1 - m), \]

as usual, and, in case of hippocampal pyramidal neurons, \(\alpha = \min \left(c \ [\text{Ca}^{2+}]_i, 0.01 \right), \) \(\beta = 0.001, \) and \(c \) an appropriate constant (Traub et al., 1991).

Because of the fact that the AHP-channels are not inactivating and because of their low time constant at rest, each action potential simply increases the activation \(m \) by a more or less fixed amount. If the neuron is stimulated by a constant depolarizing current each action potential increases the amount of open AHP-channels and the corresponding potassium current subtracts from the applied stimulus. The firing frequency is thus decreasing, a phenomenon that is known as firing frequency adaptation; cf. Fig. 2.15.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2_15.png}
\caption{Firing frequency adaptation as it is produced by the calcium-activated potassium current \(I_{\text{AHP}} \). A. Membrane potential of a neuron equipped with AHP-type ion channels. In this simulation a constant depolarizing input current is switched on at time \(t = 500 \) ms. B. Time course of the activation \(m \) of the AHP-channels (solid line) and intracellular calcium concentration (dashed line, arbitrary units) in the same simulation as in A. Note that the activation of the \(I_{\text{AHP}} \)-current is increased stepwise by each \(\text{Ca}^{2+} \) transient which occurs in the wake of an action potential.}
\end{figure}

2.3.5 Calcium Dynamics

Among all ions of the intra- and extra-cellular fluid calcium ions are particularly interesting. On the one hand, they contribute to the ionic current across the membrane; see Section 2.3.3. On the other hand, some potassium channels are controlled by the intracellular calcium concentration; see Section 2.3.4. These channels are not present in the model of Hodgkin and Huxley, but they are responsible for interesting electro-physiological properties of neurons in different brain areas.

Whereas sodium and potassium concentrations are large as compared to the ionic in- or efflux during an action potential, the intracellular calcium concentration is not and, hence, it cannot be treated as a constant. Since both the influx through calcium channels and the state of the afore mentioned potassium channels depend on the intracellular calcium concentration we have to describe this concentration explicitly by a variable \([\text{Ca}^{2+}]_i\).

Modeling the calcium concentration, however, is no trivial task because both diffusion and chemical calcium buffers ought to be taken into account. To avoid these difficulties a purely phenomenological approach can be adopted. The intracellular calcium concentration \([\text{Ca}^{2+}]_i\) is described by a linear differential equation,

\[\frac{d[\text{Ca}^{2+}]_i}{dt} = - \tau_{\text{Ca}}^{-1} [\text{Ca}^{2+}]_i + \phi_{\text{Ca}} I_{\text{Ca}}, \]

where \(I_{\text{Ca}} \) is the calcium current across the membrane, \(\tau_{\text{Ca}} \) is the time constant that governs the decay of a
calcium transient, and ϕ_{Ca} is a constant that scales the amplitude of the calcium transient as it is produced during an action potential. Both τ_{Ca} and ϕ_{Ca} are adjusted so as to fit experimental results.
2.4 Synapses

So far we have encountered two classes of ion channel, namely *voltage*-activated and *calcium*-activated ion channels. A third type of ion channel we have to deal with is that of *transmitter*-activated ion channels involved in synaptic transmission. Activation of a presynaptic neuron results in a release of neurotransmitters into the synaptic cleft. The transmitter molecules diffuse to the other side of the cleft and activate receptors that are located in the postsynaptic membrane. So-called *ionotropic receptors* have a direct influence on the state of an associated ion channel whereas *metabotropic receptors* control the state of the ion channel by means of a biochemical cascade of g-proteins and second messengers. In any case the activation of the receptor results in the opening of certain ion channels and, thus, in an excitatory or inhibitory postsynaptic current (EPSC or IPSC).

Instead of developing a mathematical model of the transmitter concentration in the synaptic cleft we try to keep things simple and describe transmitter-activated ion channels as an explicitly time-dependent conductivity $g_{syn}(t)$ that will open whenever a presynaptic spike arrives. The current that passes through these channels depends, as usual, on the difference of its reversal potential E_{syn} and the actual value of the membrane potential,

$$I_{syn}(t) = g_{syn}(t) (u - E_{syn}). \quad (2.19)$$

The parameter E_{syn} and the function $g_{syn}(t)$ can be used to characterize different types of synapse. Typically, a superposition of exponentials is used for $g_{syn}(t)$. For inhibitory synapses E_{syn} equals the reversal potential of potassium ions (about -75 mV), whereas for excitatory synapses $E_{syn} \approx 0$.

2.4.1 Inhibitory Synapses

The effect of fast inhibitory neurons in the central nervous system of higher vertebrates is almost exclusively conveyed by a neuro-transmitter called γ-aminobutyric acid, or GABA for short. In addition to many different types of inhibitory interneurons, cerebellar Purkinje cells form a prominent example of projecting neurons that use GABA as their neuro-transmitter. These neurons synapse onto neurons in the deep cerebellar nuclei (DCN) and are particularly important for an understanding of cerebellar function.

The parameters that describe the conductivity of transmitter-activated ion channels at a certain synapse are chosen so as to mimic the time course and the amplitude of experimentally observed spontaneous postsynaptic currents. For example, the conductance $\tilde{g}_{syn}(t)$ of inhibitory synapses in DCN neurons can be described by a simple exponential decay with a time constant of $\tau = 5 \text{ ms}$ and an amplitude of $\tilde{g}_{syn} = 40 \text{ pS},$
Here, $t^{(f)}$ denotes the arrival time of a presynaptic action potential. The reversal potential is given by that of potassium ions, viz. $E_{\text{syn}} = -75$ mV.

Of course, more attention can be paid to account for the details of synaptic transmission. In cerebellar granule cells, for example, inhibitory synapses are also GABAergic, but their postsynaptic current is made up of two different components. There is a fast component, that decays with a time constant of about 5 ms, and there is a component that is ten times slower. The underlying postsynaptic conductance is thus of the form

$$g_{\text{syn}}(t) = \sum_f \bar{g}_{\text{syn}} e^{-(t-t^{(f)})/\tau} \Theta(t - t^{(f)}). \quad (2.20)$$

2.4.2 Excitatory Synapses

Most, if not all, excitatory synapses in the vertebrate central nervous system rely on glutamate as their neurotransmitter. The postsynaptic receptors, however, can have very different pharmacological properties and often different types of glutamate receptors are present in a single synapse. These receptors can be classified by certain amino acids that may be selective agonists. Usually, NMDA (N-methyl-D-aspartate) and non-NMDA receptors are distinguished. The most prominent among the non-NMDA receptors are AMPA-receptors. Ion channels controlled by AMPA-receptors are characterized by a fast response to presynaptic spikes and a quickly decaying postsynaptic current. NMDA-receptor controlled channels are significantly slower and have additional interesting properties that are due to a voltage-dependent blocking by magnesium ions (Hille, 1992).

Excitatory synapses in cerebellar granule cells, for example, contain two different types of glutamate receptors, viz. AMPA- and NMDA-receptors. The time course of the postsynaptic conductivity caused by an activation of AMPA-receptors at time $t = t^{(f)}$ can be described as follows,

$$g_{\text{AMPA}}(t) = \bar{g}_{\text{AMPA}} \cdot N \cdot \left[e^{-(t-t^{(f)})/\tau_{\text{rise}}} \cdot e^{-(t-t^{(f)})/\tau_{\text{decay}}} \right] \Theta(t - t^{(f)}), \quad (2.22)$$

with rise time $\tau_{\text{rise}} = 0.09$ ms, decay time $\tau_{\text{decay}} = 1.5$ ms, and maximum conductance $\bar{g}_{\text{AMPA}} = 720$ pS; cf. (Gabbiani et al., 1994). The numerical constant $N = 1.273$ normalizes the maximum of the braced term to unity.

NMDA-receptor controlled channels exhibit a significantly richer repertoire of dynamic behavior because their state is not only controlled by the presence or absence of their agonist, but also by the membrane potential. The voltage dependence itself arises from the blocking of the channel by a common extracellular ion, Mg$^{2+}$ (Hille, 1992). Unless Mg$^{2+}$ is removed from the extracellular medium, the channels remain closed at the resting potential even in the presence of NMDA. If the membrane is depolarized beyond -50 mV, then the Mg$^{2+}$-block is removed, the channel opens, and, in contrast to AMPA-controlled channels, stays open for 10 - 100 milliseconds. A simple ansatz that accounts for this additional voltage dependence of NMDA-controlled channels in cerebellar granule cells is
\[g_{\text{NMDA}}(t) = \tilde{g}_{\text{NMDA}} \cdot \mathcal{N} \cdot \left[e^{-(t-t(f))/\tau_{\text{rise}}} - e^{-(t-t(f))/\tau_{\text{decay}}} \right] g_\infty \Theta(t - t(f)), \]

with \(g_\infty = (1 + e^{3 \nu [\text{Mg}^{2+}]_o / \beta})^{-1} \), (2.1)

with \(\tau_{\text{rise}} = 3 \text{ ms}, \ \tau_{\text{decay}} = 40 \text{ ms}, \ \tilde{g}_{\text{NMDA}} = 1.2 \text{ nS}, \ \alpha = 0.062 \text{ mV}^{-1}, \ \beta = 3.57 \text{ mM}, \) and the extracellular magnesium concentration \([\text{Mg}^{2+}]_o = 1.2 \text{ mM} \) (Gabbiani et al., 1994).

A final remark on the role of NMDA-receptors in learning is in order. Though NMDA-controlled ion channels are permeable to sodium and potassium ions, their permeability to Ca\(^{2+}\) is even five or ten times larger. Calcium ions are known to play an important role in intracellular signaling and are probably also involved in long-term modifications of synaptic efficacy. Calcium influx through NMDA-controlled ion channels, however, is bound to the coincidence of presynaptic (NMDA release from presynaptic sites) and postsynaptic (removal of the Mg\(^{2+}\)-block) activity. Hence, NMDA-receptors operate as a kind of a molecular coincidence detectors as they are required for a biochemical implementation of Hebb's learning rule; cf. Chapter 10.
2.5 Spatial Structure: The Dendritic Tree

Neurons in the cortex and other areas of the brain often exhibit highly developed dendritic trees that may extend over several hundreds of μm. Synaptic input to a neuron is mostly located on its dendritic tree, spikes, however, are generated at the soma near the axon hillock. What are the consequences of the spatial separation of input and output? Up to now we have discussed point neurons only, i.e., neurons without any spatial structure. The electrical properties of point neurons have been described as a capacitor that is charged by synaptic currents and other transversal ion currents across the membrane. A non-uniform distribution of the membrane potential on the dendritic tree and the soma induces additional longitudinal current along the dendrite. We are now going to derive the cable equation that describes the membrane potential along a passive dendrite as a function of time and space. In Section 2.6 we will see how geometric and electrophysiological properties of a certain type of neuron can be integrated in a comprehensive biophysical model.

2.5.1 Derivation of the Cable Equation

Consider a piece of a dendrite decomposed in short cylindric segments of length dx each. The schematic drawing in Fig. 2.16 shows the corresponding circuit diagram. Using Kirchhoff’s laws we find equations that relate the voltage $u(x)$ across the membrane at location x with longitudinal and transversal currents. First, a
longitudinal current \(i(x) \) passing through the dendrite causes a voltage drop across the longitudinal resistor \(R_L \) according to Ohm's law,

\[
u(t, x + dx) - u(t, x) = R_L \ i(t, x) ,
\]

where \(u(t, x + dx) \) is the membrane potential at the neighboring point \(x + dx \). Second, the transversal current that passes through the RC-circuit is given by \(C \ \partial u(t, x)/\partial t + u(t, x)/R_T \). Kirchhoff's law regarding the conservation of current at each node leads to

\[
i(t, x + dx) - i(t, x) = C \ \frac{\partial}{\partial t} u(t, x) + \frac{u(t, x)}{R_T} - I_{\text{ext}}(t, x) .
\]

The values of the longitudinal resistance \(R_L \), the transversal conductivity \(R_T^{-1} \), the capacity \(C \), and the externally applied current can be expressed in terms of specific quantities per unit length \(r_L \), \(r_T^{-1} \), \(c \), and \(i_{\text{ext}} \), respectively, viz.

\[
R_L = r_L \ dx , \quad R_T^{-1} = r_T^{-1} \ dx , \quad C = c \ dx , \quad I_{\text{ext}}(t, x) = i_{\text{ext}}(t, x) \ dx .
\]

These scaling relations express the fact that the longitudinal resistance and the capacity increase with the length of the cylinder, whereas the transversal resistance is decreasing, simply because the surface the current can pass through is increasing. Substituting these expressions in Eqs. (2.24) and (2.25), dividing by \(dx \), and taking the limit \(dx \to 0 \) leads to

\[
\frac{\partial}{\partial x} u(t, x) = r_L \ i(t, x) \quad \quad (2.26a)
\]

\[
\frac{\partial}{\partial x} i(t, x) = c \ \frac{\partial}{\partial t} u(t, x) + \frac{u(t, x)}{R_T} - i_{\text{ext}}(t, x) . \quad (2.26b)
\]

Taking the derivative of these equations with respect to \(x \) and crosswise substitution yields

\[
\frac{\partial^2}{\partial x^2} u(t, x) = c \ r_L \ \frac{\partial}{\partial t} u(t, x) + \frac{r_L}{r_T} u(t, x) - r_L i_{\text{ext}}(t, x) \quad \quad (2.27a)
\]

\[
\frac{\partial^2}{\partial x^2} i(t, x) = c \ r_L \ \frac{\partial}{\partial t} i(t, x) + \frac{r_L}{r_T} i(t, x) - \ \frac{\partial}{\partial x} i_{\text{ext}}(t, x) . \quad (2.27b)
\]

We introduce the characteristic length scale \(\lambda^2 = r_T/r_L \) ("electrotonic length scale") and the membrane time constant \(\tau = r_T c \). If we multiply Eq. (2.28) by \(\lambda^2 \) we get

\[
\lambda^2 \ \frac{\partial^2}{\partial t^2} u(t, x) = \tau \ \frac{\partial}{\partial t} u(t, x) + u(t, x) - r_T i_{\text{ext}}(t, x) \quad \quad (2.28a)
\]

\[
\lambda^2 \ \frac{\partial^2}{\partial x^2} i(t, x) = \tau \ \frac{\partial}{\partial t} i(t, x) + i(t, x) - \ \frac{r_T}{r_L} \ \frac{\partial}{\partial x} i_{\text{ext}}(t, x) . \quad (2.28b)
\]

After a transformation to unit-free coordinates,

\[
x \to \hat{x} = x/\lambda , \quad t \to \hat{t} = t/\tau ,
\]

and rescaling the current variables,
\[i \rightarrow \hat{i} = \sqrt{RTL} i, \quad i_{\text{ext}} \rightarrow \hat{i}_{\text{ext}} = r_T i_{\text{ext}}, \quad (2.30) \]

we obtain the cable equations (where we have dropped the hats)

\[
\frac{\partial}{\partial t} u(t, x) = \frac{\partial^2}{\partial x^2} u(t, x) - u(t, x) + i_{\text{ext}}(t, x), \quad (2.31a)
\]

\[
\frac{\partial}{\partial t} i(t, x) = \frac{\partial^2}{\partial x^2} i(t, x) - i(t, x) + \frac{\partial}{\partial \hat{r}_{\text{ext}}} i_{\text{ext}}(t, x), \quad (2.31b)
\]

in a symmetric, unit-free form. Note that it suffices to solve one of these equations due to the simple relation between \(u \) and \(i \) given in Eq. (2.27a).

The cable equations can be easily interpreted. These equations describe the change in time of voltage and longitudinal current. Both equations contain three different contributions. The first term on the right-hand side of Eq. (2.32) is a diffusion term that is positive if the voltage (or current) is a convex function of \(x \). The voltage at \(x \) thus tends to decrease, if the values of \(u \) are lower in a neighborhood of \(x \) than at \(x \) itself. The second term on the right-hand side of Eq. (2.32) is a simple decay term that causes the voltage to decay exponentially towards zero. The third term, finally, is a source term that acts as an inhomogeneity in the otherwise autonomous differential equation. This source can be due to an externally applied current, to synaptic input, or to other (non-linear) ion channels; cf. Section 2.5.3.

2.5.1.1 Example: Stationary solutions of the cable equation

In order to get an intuitive understanding of the behavior of the cable equation we look for stationary solutions of Eq. (2.32a), i.e., for solutions with \(\frac{\partial u(t, x)}{\partial t} = 0 \). In that case, the partial differential equation reduces to an ordinary differential equation in \(x \), viz.

\[
\frac{\partial^2}{\partial x^2} u(t, x) - u(t, x) = -i_{\text{ext}}(t, x). \quad (2.32)
\]

The general solution to the homogenous equation with \(i_{\text{ext}}(t, x) \equiv 0 \) is

\[
u(t, x) = c_1 \sinh(x) + c_2 \cosh(x), \quad (2.33)\]

as can easily be checked by taking the second derivative with respect to \(x \). Here, \(c_1 \) and \(c_2 \) are constants that are determined by the boundary conditions.

Solutions for non-vanishing input current can be found by standard techniques. For a stationary input current \(i_{\text{xt}}(t, x) = \delta(x) \) localized at \(x = 0 \) and boundary conditions \(u(\pm \infty) = 0 \) we find

\[
u(t, x) = \frac{1}{2} e^{-|x|}, \quad (2.34)
\]

cf. Fig. 2.17. This solution is given in units of the intrinsic length scale \(\lambda = (r_T / r_L)^{1/2} \). If we re-substitute the physical units we see that \(\lambda \) is the length over which the stationary membrane potential drops by a factor \(1/e \). In the literature \(\lambda \) is referred to as the electrotonic length scale (Rall, 1989). Typical values for the specific resistance of intracellular medium and the cell membrane are 100 \(\Omega \) cm and 30 k\(\Omega \) cm\(^2\), respectively. In a dendrite with radius \(\rho = 1 \mu m \) this amounts to a transversal and a longitudinal resistance of \(r_L = 100 \Omega \) cm/(...
\[\pi \rho^2 = 3 \cdot 10^5 \ \Omega \ \mu m^{-1} \] and \[r_\tau = 30 \ k \ \Omega \ cm^2/(2 \pi \ \rho) = 5 \cdot 10^{11} \ \Omega \ \mu m. \] The corresponding electrotonic length scale is \(\lambda = 1.2 \ \text{mm}. \) Note that the electrotonic length can be significantly smaller if the transversal conductivity is increased, e.g., due to open ion channels.

\[r_T = 30 \ \text{k cm}^2/(2 \pi) = 5 \cdot 10^{11} \ \text{m}. \]

The corresponding electrotonic length scale is \(\lambda = 1.2 \ \text{mm}. \) Note that the electrotonic length can be significantly smaller if the transversal conductivity is increased, e.g., due to open ion channels.

For arbitrary stationary input current \(\dot{i}_{\text{ext}}(x) \) the solution of Eq. (2.32a) can be found by a superposition of translated fundamental solutions (2.35), viz.,

\[u(t, x) = \int dx' \frac{1}{2} e^{-|x - x'|} \dot{i}_{\text{ext}}(x'). \] (2.35)

This is an example of the Green's function approach applied here to the stationary case. The general time-dependent case will be treated in the next section.

2.5.2 Green's Function (*)

In the following we will concentrate on the equation for the voltage and start our analysis by deriving the Green's function for a cable extending to infinity in both directions. The Green's function is defined as the solution of a linear equation such as Eq. (2.32) with a Dirac \(\delta \) -pulse as its input. It can be seen as an elementary solution of the differential equation because - due to linearity - the solution for any given input can be constructed as a superposition of these Green's functions.

In order to find the Green's function for the cable equation we thus have to solve Eq. (2.32a) with \(\dot{i}_{\text{ext}}(t, x) \) replaced by a \(\delta \) impulse at \(x = 0 \) and \(t = 0, \)

\[\frac{\partial}{\partial t} u(t, x) - \frac{\partial^2}{\partial x^2} u(t, x) + u(t, x) = \delta(t) \delta(x). \] (2.36)

Fourier transformation with respect to the spatial variable yields

\[\frac{\partial}{\partial t} u(t, k) + k^2 u(t, k) + u(t, k) = \delta(t)/\sqrt{2\pi}. \] (2.37)
This is an ordinary differential equation in t and has a solution of the form

$$u(t, k) = \exp \left[- \left(1 + k^2 \right) t \right] / \sqrt{2\pi} \ \Theta(t) \ \ \ (2.38)$$

with $\Theta(t)$ denoting the Heaviside function. After an inverse Fourier transform we obtain the desired Green's function $G_\infty(t, x)$,

$$u(t, x) = \frac{\Theta(t)}{\sqrt{4\pi t}} \exp \left[- t - \frac{x^2}{4t} \right] \equiv G_\infty(t, x) \ \ \ (2.39)$$

The general solution for an infinitely long cable is therewith given through

$$u(t, x) = \int_{-\infty}^{t} \int_{-\infty}^{\infty} G_\infty(t - t', x - x') i_{\text{ext}}(t', x') \ \ \ (2.40)$$

2.5.2.1 Example: Checking the Green's property

We can check the validity of Eq. (2.40) by substituting $G_\infty(t, x)$ into the left-hand side of Eq. (2.37). After a short calculation we find

$$- \frac{\partial}{\partial t} \frac{\partial^2}{\partial x^2} + 1 \ G_\infty(t, x) = \frac{1}{\sqrt{4\pi t}} \exp \left(- t - \frac{x^2}{4t} \right) \ \ \ (2.41)$$

where we have used $\partial \Theta(t) / \partial t = \delta(t)$. As long as $t \neq 0$ the right-hand side of Eq. (2.42) vanishes, as required by Eq. (2.37). For $t \to 0$ we find

$$\lim_{t \to 0} \frac{1}{\sqrt{4\pi t}} \exp \left(- t - \frac{x^2}{4t} \right) = \delta(x) \ \ \ (2.42)$$

which proves that the right-hand side of Eq. (2.42) is indeed equivalent to the right-hand side of Eq. (2.37).

Having established that

$$- \frac{\partial}{\partial t} \frac{\partial^2}{\partial x^2} + 1 \ G_\infty(t, x) = \delta(x) \ \ \ (2.43)$$

we can readily show that Eq. (2.41) is the general solution of the cable equation for arbitrary input currents $i_{\text{ext}}(t_0, x_0)$. We substitute Eq. (2.41) into the cable equation, exchange the order of integration and differentiation, and find
2.5.2.2 Example: Finite cable

Real cables do not extend from \(-\infty\) to \(+\infty\) and we have to take extra care to correctly include boundary conditions at the ends. We consider a finite cable extending from \(x = 0\) to \(x = L\) with sealed ends, i.e., \(i(t, x = 0) = i(t, x = L) = 0\) or, equivalently, \(\frac{\partial}{\partial x} u(t, x = 0) = \frac{\partial}{\partial x} u(t, x = L) = 0\).

The Green's function \(G_{0, L}\) for a cable with sealed ends can be constructed from \(G_{\infty}\) by applying a trick from electro-statics called ``mirror charges'' (Jackson, 1962). Similar techniques can also be applied to treat branching points in a dendritic tree (Abbott, 1991). The cable equation is linear and, therefore, a superposition of two solutions is also a solution. Consider a \(\delta\) current pulse at time \(t_0\) and position \(x_0\) somewhere along the cable. The boundary condition \(\frac{\partial}{\partial x} u(t, x = 0) = 0\) can be satisfied if we add a second, virtual current pulse at a position \(x = -x_0\) outside the interval \([0, L]\). Adding a current pulse outside the interval \([0, L]\) comes for free since the result is still a solution of the cable equation on that interval. Similarly, we can fulfill the boundary condition at \(x = L\) by adding a mirror pulse at \(x = 2L - x_0\). In order to account for both boundary conditions simultaneously, we have to compensate for the mirror pulse at \(-x_0\) by adding another mirror pulse at \(2L + x_0\) and for the mirror pulse at \(x = 2L - x_0\) by adding a fourth pulse at \(-2L + x_0\) and so forth. Altogether we have

\[
G_{0,L}(t_0, x_0; t, x) = \sum_{n=\infty}^{\infty} G_{\infty}(t - t_0, x - 2nL - x_0) + G_{\infty}(t - t_0, x - 2nL + x_0). \tag{2.33}
\]

We emphasize that in the above Green's function we have to specify both \((t_0, x_0)\) and \((t, x)\) because the setup is no longer translation invariant. The general solution on the interval \([0, L]\) is given by

\[
u(t, x) = \int_{-\infty}^{t} dt_0 \int_{0}^{L} dx_0 \ G_{0,L}(t_0, x_0; t, x) \ i_{ext}(t_0, x_0). \tag{2.44}
\]

An example for the spatial distribution of the membrane potential along the cable is shown in Fig. 2.18A, where a current pulse has been injected at location \(x = 1\). In addition to Fig. 2.18A, subfigure B exhibits the time course of the membrane potential measured in various distances from the point of injection. It is clearly visible that the peak of the membrane potential measured at, e.g., \(x = 3\) is more delayed than at, e.g., \(x = 2\). Also the amplitude of the membrane potential decreases significantly with the distance from the injection point. This is a well-known phenomenon that is also present in neurons. In the absence of active amplification mechanisms, synaptic input at distal dendrites produces broader and weaker response at the soma as compared to synaptic input at proximal dendrites.
2.5.3 Non-linear Extensions to the Cable Equation

In the context of a realistic modeling of ‘biological’ neurons two non-linear extensions of the cable equation have to be discussed. The obvious one is the inclusion of non-linear elements in the circuit diagram of Fig. 2.16 that account for specialized ion channels. As we have seen in the Hodgkin-Huxley model, ion channels can exhibit a complex dynamics that is in itself governed by a system of (ordinary) differential equations. The current through one of these channels is thus not simply a (non-linear) function of the actual value of the membrane potential but may also depend on the time course of the membrane potential in the past. Using the symbolic notation $i_{ion}[u](t, x)$ for this functional dependence the extended cable equation takes the form

$$\frac{\partial}{\partial t} u(t, x) = \frac{\partial^2}{\partial x^2} u(t, x) - u(t, x) - i_{ion}[u](t, x) + i_{ext}(t, x). \quad (2.45)$$

A more subtle complication arises from the fact that a synapse can not be treated as an ideal current source. The effect of an incoming action potential is the opening of ion channels. The resulting current is proportional to the difference of the membrane potential and the corresponding ionic reversal potential. Hence, a time-dependent conductivity as in Eq. (2.19) provides a more realistic description of synaptic input than an ideal current source with a fixed time course.

If we replace in Eq. (2.32a) the external input current $i_{ext}(t, x)$ by an appropriate synaptic input current $- i_{syn}(t, x) = - g_{syn}(t, x)[u(t, x) - E_{syn}]$ with g_{syn} being the synaptic conductivity and E_{syn} the corresponding reversal potential, we obtain

$$\frac{\partial}{\partial t} u(t, x) = \frac{\partial^2}{\partial x^2} u(t, x) - u(t, x) - g_{syn}(t, x)[u(t, x) - E_{syn}]. \quad (2.46)$$

This is still a linear differential equation but its coefficients are now time-dependent. If the time course of the synaptic conductivity can be written as a solution of a differential equation then the cable equation can be reformulated so that synaptic input reappears as an inhomogeneity to an autonomous equation. For example, if the synaptic conductivity is simply given by an exponential decay with time constant τ_{syn} we have

\[g_{syn}(t) = g_{syn0} e^{-t/\tau_{syn}}\]
\[
\frac{\partial}{\partial t} u(t, x) - \frac{\partial^2}{\partial x^2} u(t, x) + u(t, x) + g_{\text{syn}}(t, x)[u(t, x) - E_{\text{syn}}] = 0, \quad (2.47a)
\]

\[
\frac{\partial}{\partial t} g_{\text{syn}}(t, x) - \tau_{\text{syn}}^{-1} g_{\text{syn}}(t, x) = S(t, x). \quad (2.47b)
\]

Here, \(S(t, x) \) is a sum of Dirac \(\delta \) functions which describe the presynaptic spike train that arrives at a synapse located at position \(x \). Note that this equation is non-linear because it contains a product of \(g_{\text{syn}} \) and \(u \) which are both unknown functions of the differential equation. Consequently, the formalism based on Green's functions can not be applied.
2.6 Compartmental Models

We have seen that analytical solutions can be given for the voltage along a passive cable with uniform geometrical and electrical properties. If we want to apply the above results in order to describe the membrane potential along the dendritic tree of a neuron we face several problems. Even if we neglect ‘active’ conductances formed by non-linear ion channels a dendritic tree is at most locally equivalent to an uniform cable. Numerous bifurcations and variations in diameter and electrical properties along the dendrite render it difficult to find a solution for the membrane potential analytically (Abbott et al., 1991).

Numerical treatment of partial differential equations such as the cable equation requires a discretization of the spatial variable. Hence, all derivatives with respect to spatial variables are approximated by the corresponding quotient of differences. Essentially we are led back to the discretized model of Fig. 2.16, that has been used as the starting point for the derivation of the cable equation. After the discretization we have a large system of ordinary differential equations for the membrane potential at the chosen discretization points as a function of time. This system of ordinary differential equations can be treated by standard numerical methods.

In order to solve for the membrane potential of a complex dendritic tree numerically, compartmental models are used that are the result of the above mentioned discretization (Bower and Beeman, 1995; Yamada et al., 1989; Ekeberg et al., 1991). The dendritic tree is divided into small cylindric compartments with an approximatively uniform membrane potential. Each compartment is characterized by its capacity and transversal conductivity. Adjacent compartments are coupled by the longitudinal resistance that are determined by their geometrical properties (cf. Fig. 2.19).

![Multi-compartment neuron model](image)

Figure 2.19: Multi-compartment neuron model. Dendritic compartments with membrane capacitance C_μ and transversal resistance $R_{\mu T}$ are coupled by a longitudinal resistance $r_{\nu \mu} = (R_{\nu L} + R_{\mu L})/2$. External input to compartment μ is denoted by I_μ. Some or all compartments may also contain nonlinear ion channels (variable resistor in leftmost compartment).

Once numerical methods are used to solve for the membrane potential along the dendritic tree, some or all compartments can be equipped with nonlinear ion channels as well. In this way, effects of nonlinear integration of synaptic input can be studied (Mel, 1994). Apart from practical problems that arise from a growing complexity of the underlying differential equations, conceptual problems are related to a drastically increasing...
number of free parameters. The more so, since almost no experimental data regarding the distribution of any specific type of ion channel along the dendritic tree is available. To avoid these problems, all nonlinear ion channels responsible for generating spikes are usually lumped together at the soma and the dendritic tree is treated as a passive cable. For a review of the compartmental approach we refer the reader to the book of Bower and Beeman (Bower and Beeman, 1995). In the following we illustrate the compartmental approach by a model of a cerebellar granule cell.

2.6.0.1 A multi-compartment model of cerebellar granule cells

As an example for a realistic neuron model we discuss a model for cerebellar granule cells in turtle developed by Gabbiani and coworkers (Gabbiani et al., 1994). Granule cells are extremely numerous tiny neurons located in the lowest layer of the cerebellar cortex. These neurons are particularly interesting because they form the sole type of excitatory neuron of the whole cerebellar cortex (Ito, 1984).

Figure 2.20 shows a schematic representation of the granule cell model. It consists of a spherical soma and four cylindrical dendrites that are made up of two compartments each. There is a third compartment at the end of each dendrite, the dendritic bulb, that contains synapses with mossy fibers and Golgi cells.

![Figure 2.20: Schematic representation of the granule cell model (not to scale). The model consists of a spherical soma (radius 5.0 \(\mu \)m) and four cylindrical dendrites (diameter 1.2 \(\mu \)m, length 88.1 \(\mu \)m) made up of two compartments each. There is a third compartment at the end of each dendrite, the dendritic bulb, that contains synapses with mossy fibers (mf) and Golgi cells (GoC). The active ion channels are located at the soma. The dendrites are passive. The axon of the granule cell, which rises vertically towards the surface of the cerebellar cortex before it undergoes a T-shaped bifurcation, is not included in the model.](http://diwww.epfl.ch/~gerstner/SPNM/node18.html)

One of the major problems with multi-compartment models is the fact that the spatial distribution of ion channels along the surface of the neuron is almost completely unknown. In the present model it is therefore assumed for the sake of simplicity that all active ion channels are concentrated at the soma. The dendrites, on the other hand, are described as a passive cable.

The granule cell model contains a fast sodium current \(I_{Na} \) and a calcium-activated potassium current \(I_{K(Ca)} \) that...
provide a major contribution for generating action potentials. There is also a high-voltage activated calcium current \(I_{\text{Ca(HVA)}} \) similar to the \(I_L \)-current discussed in Section 2.3.4. Finally, there is a so-called delayed rectifying potassium current \(I_{\text{KDR}} \) that also contributes to the rapid repolarization of the membrane after an action potential (Hille, 1992).

Cerebellar granule cells receive excitatory input from mossy fibers and inhibitory input from Golgi cells. Inhibitory input is conveyed by fast GABA-controlled ion channels with a conductance that is characterized by a bi-exponential decay; cf. Section [209]. Excitatory synapses contain both fast AMPA and voltage-dependent NMDA-receptors. How these different types of synapse can be handled in the context of conductance-based neuron models has been explained in Section 2.4.

Figure 2.21 shows a simulation of the response of a granule cell to a series of excitatory and inhibitory spikes. The plots show the membrane potential measured at the soma as a function of time. The arrows indicate the arrival time of excitatory and inhibitory spikes, respectively. Figure 2.21A shows nicely how subsequent EPSPs add up almost linearly until the firing threshold is finally reached and an action potential is triggered. The response of the granule cell to inhibitory spikes is somewhat different. In Fig. 2.21B a similar scenario as in subfigure A is shown, but the excitatory input has been replaced by inhibitory spikes. It can be seen that the activation of inhibitory synapses does not have a huge impact on the membrane potential. The reason is that the reversal potential of the inhibitory postsynaptic current of about -75 mV is close to the resting potential of -68 mV. The major effect of inhibitory input therefore is a modification of the membrane conductivity and not so much of the membrane potential. This form of inhibition is also called `silent inhibition'.

![Figure 2.21: Simulation of the response of a cerebellar granule cell to three subsequent excitatory (A) and inhibitory (B) spikes. The arrival time of each spike is indicated by an arrow. A. Excitatory postsynaptic potentials nicely sum up almost linearly until the firing threshold is finally reached and an action potential is fired. B. In granule cells the reversal potential of the inhibitory postsynaptic current is close to the resting potential. The effect of inhibitory spikes on the membrane potential is therefore almost negligible, though there is a significant modification of the membrane conductivity (`silent inhibition').](http://diwww.epfl.ch/~gerstner/SPNM/node18.html)
which is approximately equal to the resting potential. The excitatory input to the other dendrite results in a local depolarization of the membrane. The soma is located at the center of this voltage divider and its membrane potential is accordingly increased through the excitatory input.

The difference in the somatic membrane potential between the activation of excitatory and inhibitory synapses located on the same or on two different dendrites may decide whether a spike is triggered or not. In cerebellar granule cells this effect is not very prominent because these cells are small and electrotonically compact. Nevertheless, the influence of geometry on synaptic integration can be quite substantial in neurons with a large dendritic tree. Effects based on the geometry of the dendritic tree may even have important implications for the computational “power” of a single neuron (Koch and Segev, 2000).

Figure 2.22: Effect of geometry on neuronal integration of synaptic input demonstrated in the granule cell model. The cell receives an inhibitory action potential at time \(t = 100 \) ms followed by three excitatory spikes at \(t = 130 \) ms, 135 ms, and 140 ms. The plots show the membrane potential measured at the soma (lower trace) and at the dendritic bulb that receives the excitatory input (upper trace). **A.** If excitation and inhibition arrive at the same dendritic bulb (see inset) the inhibitory input is strong enough to `shunt' the excitatory input so that no action potential can be triggered. **B.** If, however, excitation and inhibition arrive at two different dendrites, then an action potential occurs.
2.7 Summary

`Real' neurons are extremely complex biophysical and biochemical entities. Before designing a model it is therefore necessary to develop an intuition for what is important and what can be safely neglected. The Hodgkin-Huxley model describes the generation of action potentials on the level of ion channels and ion current flow. It is the starting point for detailed neuron models which in general include more than the three types of currents considered by Hodgkin and Huxley.

Electrophysiologists have described an overwhelming richness of different ion channels. The set of ion channels is different from one neuron to the next. The precise channel configuration in each individual neuron determines a good deal of its overall electrical properties. Synapses are usually modeled as specific ion channels that open for a certain time after presynaptic spike arrival.

The geometry of the neuron can play an important role in synaptic integration because the effect of synaptic input on the somatic membrane potential depends on the location of the synapses on the dendritic tree. Though some analytic results can be obtained for passive dendrites, it is usually necessary to resort to numerical methods and multi-compartment models in order to account for complex geometry and active ion channels.

Literature

A comprehensive and readable introduction to the biophysics of single neurons is provided by the book of Christof Koch (Koch, 1999). Even more detailed information on ion channels and non-linear effects of the nervous membrane can be found in B. Hille's book on `Ionic channels of excitable membranes' (Hille, 1992). A practical guideline for do-it-yourself experiments with computer simulations of detailed neuron models is the book of Bower and Beeman (Bower and Beeman, 1995).
The behavior of high-dimensional nonlinear differential equations is difficult to visualize - and even more difficult to analyze. Two-dimensional differential equations, however, can be studied in a transparent manner by means of a phase plane analysis. A reduction of the four-dimensional equation of Hodgkin and Huxley to a two-variable neuron model is thus highly desirable. In the first section of this chapter we exploit the temporal properties of the gating variables of the Hodgkin-Huxley model so as to approximate the four-dimensional differential equation by a two-dimensional one. Section 3.2 is devoted to the phase plane analysis of generic neuron models consisting of two coupled differential equations, one for the membrane potential and the other one for the so-called relaxation variable. One of the questions to which we will return repeatedly throughout this chapter is the problem of the firing threshold. Section 3.3 summarizes some results on threshold and excitability in two-dimensional models. As a first step, however, we have to go through the approximations that are necessary for a reduction of the Hodgkin-Huxley model to two dimensions.

Subsections

- 3.1 Reduction to two dimensions
 - 3.1.1 General approach
 - 3.1.2 Mathematical steps (*)
- 3.2 Phase plane analysis
 - 3.2.1 Nullclines
 - 3.2.2 Stability of Fixed Points
 - 3.2.3 Limit cycles
 - 3.2.4 Type I and type II models
- 3.3 Threshold and excitability
 - 3.3.1 Type I models
3.3.2 Type II models
3.3.3 Separation of time scales

3.4 Summary

Literature

Gerstner and Kistler
Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
3.1 Reduction to two dimensions

In this section we perform a systematic reduction of the four-dimensional Hodgkin-Huxley model to two dimensions. To do so, we have to eliminate two of the four variables. The essential ideas of the reduction can also be applied to detailed neuron models that may contain many different ion channels. In this case, more than two variables would have to be eliminated, but the procedure would be completely analogous (Kepler et al., 1992).

3.1.1 General approach

We focus on the Hodgkin-Huxley model discussed in Chapter 2.2 and start with two qualitative observations. First, we see from Fig. 2.3B that the time scale of the dynamics of the gating variable \(m \) is much faster than that of the variables \(n, h, \) and \(u \). This suggests that we may treat \(m \) as an instantaneous variable. The variable \(m \) in the ion current equation (2.5) of the Hodgkin-Huxley model can therefore be replaced by its steady-state value, \(m(t) \rightarrow m_0[u(t)] \). This is what we call a quasi steady state approximation.

Second, we see from Fig. 2.3B that the time constants \(\tau_n(u) \) and \(\tau_h(u) \) are roughly the same, whatever the voltage \(u \). Moreover, the graphs of \(n_0(u) \) and \(1 - h_0(u) \) in Fig. 2.3A are rather similar. This suggests that we may approximate the two variables \(n \) and \((1 - h) \) by a single effective variable \(w \). To keep the formalism slightly more general we use a linear approximation \((b - h) \approx a n \) with some constants \(a, b \) and set \(w = b - h = a n \). With \(h = b - w, n = w/a, \) and \(m = m_0(u) \), equations (2.4) - (2.5) become

\[
C \frac{du}{dt} = - g_{Na}[m_0(u)]^3 (b - w) (u - V_{Na}) - g_K \left(\frac{w}{a} \right)^4 (u - V_K) - g_L (u - V_L) + I, \quad (3.1)
\]

or

\[
\frac{du}{dt} = \frac{1}{\tau} \left[F(u, w) + R I \right], \quad (3.2)
\]

with \(R = g_L^{-1}, \tau = R C \) and some function \(F \). We now turn to the three equations (2.6). The \(m \)}
equation has disappeared since \(m \) is treated as instantaneous. Instead of the two equations (2.6) for \(n \) and \(h \), we are left with a single effective equation

\[
\frac{d\hat{w}}{dt} = \frac{1}{\tau_w} G(u, \hat{w}),
\]

(3.3)

where \(\tau_w \) is a parameter and \(G \) a function that has to be specified. Eqs. (3.2) and (3.3) define a general two-dimensional neuron model. The mathematical details of the reduction of the four-dimensional Hodgkin-Huxley model to the two equations (3.2) and (3.3) are given below. Before we go through the mathematical step, we will present two examples of two-dimensional neuron dynamics. We will return to these examples repeatedly throughout this chapter.

3.1.1.1 Example: Morris-Lecar model

Morris and Lecar (1981) proposed a two-dimensional description of neuronal spike dynamics. A first equation describes the evolution of the membrane potential \(u \), the second equation the evolution of a slow ‘recovery’ variable \(\hat{w} \). In dimensionless variables, the Morris-Lecar equations read

\[
\frac{d\hat{u}}{dt} = -g_1 \hat{m}_0(u)(u-1) - g_2 \hat{w}(u-V_2) - g_L(u-V_L) + I,
\]

(3.4)

\[
\frac{d\hat{w}}{dt} = -\frac{1}{\tau(u)} \left[\hat{w} - w_0(u) \right].
\]

(3.5)

The voltage has been scaled so that one of the reversal potentials is unity. Time is measured in units of \(\tau = RC \). If we compare Eq. (3.4) with Eq. (3.1), we note that the first current term on the right-hand side of Eq. (3.1) has a factor \((b - w)\) which closes the channel for high voltage and which is absent in (3.4). Another difference is that neither \(\hat{m}_0 \) nor \(\hat{w} \) in Eq. (3.4) have exponents. To clarify the relation between the two models, we could set \(\hat{m}_0 = [m_0(u)]^3 \) and \(\hat{w} = (w/a)^4 \). In the following, we consider Eqs. (3.4) and (3.5) as a model in its own rights and drop the hats over \(m_0 \) and \(w \).

The equilibrium functions shown in Fig. 2.3A typically have a sigmoidal shape. It is reasonable to approximate the voltage dependence by

\[
m_0(u) = \frac{1}{2} \left[1 + \tanh \left(\frac{u - u_1}{u_2} \right) \right]
\]

(3.6)

\[
w_0(u) = \frac{1}{2} \left[1 + \tanh \left(\frac{u - u_3}{u_4} \right) \right]
\]

(3.7)

with parameters \(u_1, \ldots, u_4 \), and to approximate the time constant by
with a further parameter \(\tau_w \).

The Morris-Lecar model (3.4)-(3.8) gives a phenomenological description of action potentials. Action potentials occur, if the current \(I \) is sufficiently strong. We will see later on that the firing threshold in the Morris-Lecar model can be discussed by phase plane analysis.

3.1.1.2 Example: FitzHugh-Nagumo model

FitzHugh and Nagumo where probably the first to propose that, for a discussion of action potential generation, the four equations of Hodgkin and Huxley can be replaced by two, i.e., Eqs. (3.2) and (3.3). They obtained sharp pulse-like oscillations reminiscent of trains of action potentials by defining the functions

\[
F(u, w) = u - \frac{1}{3} u^3 - w \\
G(u, w) = b_0 + b_1 u - w,
\]

where \(u \) is the membrane voltage and \(w \) is a recovery variable (FitzHugh, 1961; Nagumo et al., 1962). Note that both \(F \) and \(G \) are linear in \(w \); the sole non-linearity is the cubic term in \(u \). The FitzHugh-Nagumo model is one of the simplest model with non-trivial behavior lending itself to a phase plane analysis, which will be discussed below in Sections 3.2 and 3.3.

3.1.2 Mathematical steps (*)

The reduction of the Hodgkin-Huxley model to Eqs. (3.2) and (3.3) presented in this paragraph is inspired by the geometrical treatment of Rinzel (1985); see also the slightly more general method of Abbott and Kepler (1990) and Kepler et al. (1992).

The overall aim of the approach is to replace the variables \(n \) and \(h \) in the Hodgkin-Huxley model by a single effective variable \(w \). At each moment of time, the values \((n(t), h(t))\) can be visualized as points in the two-dimensional plane spanned by \(n \) and \(h \); cf. Fig. 3.1. We have argued above that the time course of the variable \(n \) is expected to be similar to that of \(1 - h \). If, at each time, \(n \) was equal to \(1 - h \), then all possible points \((n, h)\) would lie on the straight line \(h = 1 - n \) passing through the points \((0, 1)\) and \((1, 0)\) of the plane. To keep the model slightly more general we allow for an arbitrary line \(h = b - a n \) which passes through \((0, b)\) and \((1, b - a)\). It would be unreasonable to expect that all points \((n(t), h(t))\) that occur during the temporal evolution of the Hodgkin-Huxley model fall exactly on that line. The reduction of the number of variables is achieved by a projection of those points onto the line. The position along the line \(h = b - a n \) gives the new variable \(w \); cf. Fig. 3.1. The projection is the essential approximation during the reduction.
Figure 3.1: Arbitrary points \((n, h)\) are projected onto the line in direction of \(\vec{e}_1\) and passing through the point \((n_0(u_{\text{rest}}), h_0(u_{\text{rest}}))\). The dotted line gives the curve \((n_0(u), h_0(u))\).

To perform the projection, we will proceed in three steps. A minimal condition for the projection is that the approximation introduces no error while the neuron is at rest. As a first step, we therefore shift the origin of the coordinate system to the rest state and introduce new variables

\[
x = n - n_0(u_{\text{rest}}) \\
y = h - h_0(u_{\text{rest}}).
\]

At rest, we have \(x = y = 0\).

Second, we turn the coordinate system by an angle \(\alpha\) which is determined as follows. For a given constant voltage \(u\), the dynamics of the gating variables \(n\) and \(h\) approaches the equilibrium values \((n_0(u), h_0(u))\). The points \((n_0(u), h_0(u))\) as a function of \(u\) define a curve in the two-dimensional plane. The slope of the curve at \(u = u_{\text{rest}}\) yields the turning angle \(\alpha\) via

\[
\tan \alpha = \left. \frac{\frac{dh_0}{du}}{\frac{dn_0}{du}} \right|_{u_{\text{rest}}}.
\]

Turning the coordinate system by \(\alpha\) moves the abscissa \(\vec{e}_1\) of the new coordinate system in a direction tangential to the curve. The coordinates \((z_1, z_2)\) in the new system are

\[
\begin{pmatrix}
z_1 \\
z_2
\end{pmatrix} = \begin{pmatrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{pmatrix} \begin{pmatrix}
x \\
y
\end{pmatrix}.
\]

Third, we set \(z_2 = 0\) and retain only the coordinate \(z_1\) along \(\vec{e}_1\). The inverse transform,

\[
\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix} \begin{pmatrix}
z_1 \\
z_2
\end{pmatrix},
\]
yields $x = z_1 \cos \alpha$ and $y = z_1 \sin \alpha$ since $z_2 = 0$. Hence, after the projection, the new values of the variables n and h are

\begin{align*}
n' &= n_0(u_{\text{rest}}) + z_1 \cos \alpha, \quad (3.15) \\
h' &= h_0(u_{\text{rest}}) + z_1 \sin \alpha. \quad (3.16)
\end{align*}

In principle, z_1 can directly be used as the new effective variable. From (3.13) we find the differential equation

\[
\frac{d z_1}{dt} = \cos \alpha \frac{dn}{dt} + \sin \alpha \frac{dh}{dt}.
\] (3.17)

We use (2.7) and replace, on the right-hand side, $n(t)$ and $h(t)$ by (3.15) and (3.16). The result is

\[
\frac{d z_1}{dt} = - \cos \alpha \frac{z_1 \cos \alpha + n_0(u_{\text{rest}}) - n_0(u)}{\tau_n(u)} - \sin \alpha \frac{z_1 \sin \alpha + h_0(u_{\text{rest}}) - h_0(u)}{\tau_h(u)},
\] (3.18)

which is of the form $d z_1/dt = G(u, z_1)$, as desired.

To see the relation to Eqs. (3.1) and (3.3), it is convenient to rescale z_1 and define

\[
w = - \tan \alpha \ n_0(u_{\text{rest}}) - z_1 \sin \alpha. \quad (3.19)
\]

If we introduce $a = - \tan \alpha$, we find from Eq. (3.15) $n' = w/a$ and from Eq. (3.16) $h' = b - w$ which are the approximations that we have used in (3.1). The differential equation for the variable w is of the desired form $d w/dt = G(u, w)$ and can be found from Eq. (3.18). If we approximate the time constants τ_n and τ_h by a common function $\tau(u)$, the dynamics of w is

\[
\frac{d w}{dt} = - \frac{1}{\tau(u)} [w - w_0(u)].
\] (3.20)

with a new equilibrium function $w_0(u)$ that is a linear combination of the functions h_0 and n_0. From Eqs. (3.18) and (3.19) we find

\[
w_0(u) = - \sin \alpha \ [\cos \alpha \ n_0(u) + \sin \alpha \ h_0(u) - c]
\] (3.21)

with a parameter c that is determined by direct calculation. In practice, both $w_0(u)$ and $\tau(u)$ are fitted by the expressions (3.7) and (3.8).
3.1 Reduction to two dimensions
3.2 Phase plane analysis

In two-dimensional models, the temporal evolution of the variables \((u, w)^T\) can be visualized in the so-called phase plane. From a starting point \((u(t), w(t))^T\) the system will move in a time \(\Delta t\) to a new state \((u(t + \Delta t), w(t + \Delta t))^T\) which has to be determined by integration of the differential equations (3.2) and (3.3). For \(\Delta t\) sufficiently small, the displacement \((\Delta u, \Delta w)^T\) is in the direction of the flow \((\dot{u}, \dot{w})^T\), i.e.,

\[
\begin{pmatrix}
\Delta u \\
\Delta w
\end{pmatrix}
= \begin{pmatrix}
\dot{u} \\
\dot{w}
\end{pmatrix} \Delta t,
\]

(3.22)

which can be plotted as a vector field in the phase plane. Here \(\dot{u} = du/dt\) is given by (3.2) and \(\dot{w} = dw/dt\) by (3.3). The flow field is also called the phase portrait of the system. An important tool in the construction of the phase portrait are the nullclines which are introduced now.

3.2.1 Nullclines

Let us consider the set of points with \(\dot{u} = 0\), called the \(u\)-nullcline. The direction of flow on the \(u\)-nullcline is in direction of \((0, \dot{w})^T\), since \(\dot{u} = 0\). Hence arrows in the phase portrait are vertical on the \(u\)-nullcline. Similarly, the \(w\)-nullcline is defined by the condition \(\dot{w} = 0\) and arrows are horizontal. The fixed points of the dynamics, defined by \(\dot{u} = \dot{w} = 0\) are given by the intersection of the \(u\)-nullcline with the \(w\)-nullcline. In Fig. 3.2 we have three fixed points.
Figure 3.2: A. Phase portrait of the FitzHugh-Nagumo model. The u-nullcline (curved line) and the w-nullcline (straight line) intersect at the three fixed points. The direction of the arrows indicates the flow $(\dot{u}, \dot{w})^T$. B. Arrows on the u-nullcline point vertically upward or downward, on the w nullcline arrows are horizontal. In the neighborhood of the fixed points arrows have short length indicating slow movement. At the fixed point, the direction of arrows changes.

So far we have argued that arrows on the u-nullcline are vertical, but we do not know yet whether they point up or down. To get the extra information needed, let us return to the w-nullcline. By definition, it separates the region with $\dot{w} > 0$ from the area with $\dot{w} < 0$. Suppose we evaluate $G(u, w)$ on the right-hand side of Eq. (3.3) at a single point, e.g., at $(0, 1)$. If $G(0, 1) > 0$, then the whole area on that side of the w-nullcline has $\dot{w} > 0$. Hence, all arrows along the u-nullcline that lie on the same side of the w-nullcline as the point $(0, 1)$ point upwards. The direction of arrows normally changes where the nullclines intersect; cf. Fig. 3.2B.

3.2.2 Stability of Fixed Points

In Fig. 3.2 there are three fixed points, but which of these are stable? The local stability of a fixed point (u_{FP}, w_{FP}) is determined by linearization of the dynamics at the intersection. With $\vec{x} = (u - u_{FP}, w - w_{FP})^T$, we have after the linearization

$$\frac{d}{dt} \vec{x} = \begin{pmatrix} F_u & F_w \\ G_u & G_w \end{pmatrix} \vec{x} , \quad (3.23)$$

where $F_u = \partial F / \partial u$, $F_w = \partial F / \partial w$, ..., are evaluated at the fixed point. To study the stability we set $\vec{x}(t) = \vec{\varepsilon} \exp(\lambda t)$ and solve the resulting eigenvalue problem. There are two solutions with eigenvalues λ_+ and λ_- and eigenvectors $\vec{\varepsilon}_+$ and $\vec{\varepsilon}_-$, respectively. Stability of the fixed point $\vec{x} = 0$ in Eq. (3.23) requires that the real part of both eigenvalues be negative. The solution of the eigenvalue problem yields $\lambda_+ + \lambda_- = F_u + G_w$ and $\lambda_+ \lambda_- = F_u G_w - F_w G_u$. The necessary and sufficient condition for stability is therefore

$$F_u + G_w < 0 \quad \text{and} \quad F_u G_w - F_w G_u > 0 . \quad (3.24)$$

If $F_u G_w - F_w G_u < 0$, then the imaginary part of both eigenvalues vanishes. One of the eigenvalues is positive, the other one negative. The fixed point is then called a saddle point.

Eq. (3.23) is obtained by Taylor expansion of Eqs. (3.2) and (3.3) to first order in \vec{x}. If the real part of one or both eigenvalues of the matrix in Eq. (3.23) vanishes, the complete characterization of the stability properties of the fixed point requires an extension of the Taylor expansion to higher order.
3.2.2.1 Example: Linear model

Let us consider the linear dynamics

\[
\begin{align*}
\dot{u} &= a \, u - w \\
\dot{w} &= \varepsilon \left(b \, u - w \right),
\end{align*}
\] (3.25)

with positive constants \(b, \, \varepsilon > 0 \). The \(u \)-nullcline is \(w = a \, u \), the \(w \)-nullcline is \(w = b \, u \). For the moment we assume \(a < 0 \). The phase diagram is that of Fig. 3.3A. Note that by decreasing the parameter \(\varepsilon \), we may slow down the \(w \)-dynamics in Eq. (3.25) without changing the nullclines.

Because of \(F_u + G_w = a - \varepsilon < 0 \) for \(a < 0 \) and \(F_u G_w - F_w G_u = \varepsilon (b - a) > 0 \), it follows from (3.23) that the fixed point is stable. Note that the phase portrait around the left fixed point in Fig. 3.2 has locally the same structure as the portrait in Fig. 3.3A. We conclude that the left fixed point in Fig. 3.2 is stable.

Let us now keep the \(w \)-nullcline fixed and turn the \(u \)-nullcline by increasing \(a \) to positive values; cf. Fig. 3.3B and C. Stability is lost if \(a > \text{min}\{ \varepsilon, b \} \). Stability of the fixed point in Fig. 3.3B can therefore not be decided without knowing the value of \(\varepsilon \). On the other hand, in Fig. 3.3C we have \(a > b \) and hence \(F_u G_w - F_w G_u = \varepsilon (b - a) < 0 \). In this case one of the eigenvalues is positive (\(\lambda_+ > 0 \)) and the other one negative (\(\lambda_- < 0 \)), hence we have a saddle point. The imaginary part of the eigenvalues vanishes. The eigenvectors \(\vec{\varepsilon}_- \) and \(\vec{\varepsilon}_+ \) are therefore real and can be visualized in the phase space. A trajectory through the fixed point in direction of \(\vec{\varepsilon}_- \) is attracted towards the fixed point. This is, however, the only direction by which a trajectory may reach the fixed point. Any small perturbation around the fixed point, which is not strictly in direction of \(\vec{\varepsilon}_- \) grows exponentially. A saddle point as in Fig. 3.3C plays an important role in so-called type I neuron models that will be introduced in

Figure 3.3: Four examples of phase portraits around a fixed point. Case A is stable, case C and D are unstable. Stability in case B cannot be decided with the information available from the picture alone. C and D are saddle points.
For the sake of completeness we also study the linear system
\[\begin{align*}
\dot{u} &= -a \ u + w \\
\dot{w} &= \varepsilon (b \ u - w), \ 	ext{with } 0 < a < b,
\end{align*} \] (3.26)

with positive constants \(a\), \(b\), and \(\varepsilon\). This system is identical to Eq. (3.26) except that the sign of the first equation is flipped. As before we have nullclines \(w = a \ u\) and \(w = b \ u\); cf. Fig. 3.3D. Note that the nullclines are identical to those in Fig. 3.3B, only the direction of the horizontal arrows on the \(w\)-nullcline has changed.

Since \(F_u G_w - F_w G_u = \varepsilon (a - b) < 0\), the fixed point is unstable if \(a < b\). In this case, the imaginary part of the eigenvalues vanishes and one of the eigenvalues is positive (\(\lambda_+ > 0\)) while the other one is negative (\(\lambda_- < 0\)). This is the definition of a saddle point.

3.2.3 Limit cycles

One of the attractive features of phase plane analysis is that there is a direct method to show the existence of limit cycles. The theorem of Poincaré-Bendixson (Verhulst, 1996; Hale and Koçak, 1991) tells us that, if (i) we can construct a bounding surface around a fixed point so that all flux arrows on the surface are pointing towards the interior, and (ii) the fixed point in the interior is repulsive (real part of both eigenvalues positive), then there must exist a stable limit cycle around that fixed point.

The proof follows from the uniqueness of solutions of differential equations which implies that trajectories cannot cross each other. If all trajectories are pushed away from the fixed point, but cannot leave the bounded surface, then they must finally settle on a limit cycle; cf. Fig. 3.4. Note that this argument holds only in two dimensions.

Figure 3.4: Bounding surface around an unstable fixed point and the limit cycle (schematic figure).

3.2.3.1 Example: FitzHugh-Nagumo model

In dimensionless variables the FitzHugh-Nagumo model is
\[\begin{align*}
\frac{\text{d}u}{\text{d}t} &= u - \frac{1}{3} u^3 - w + I \\
\frac{\text{d}w}{\text{d}t} &= \varepsilon (b_0 + b_1 u - w).
\end{align*} \] (3.27) (3.28)
Time is measured in units of τ and $\varepsilon = \tau_0 / \tau_w$ is the ratio of the two time scales. The u-nullcline is $w = u - u^3/3 + I$ with maxima at $u = \pm 1$. The maximal slope of the u-nullcline is $dw/du = 1$ at $u = 0$; for $I = 0$ the u-nullcline has zeros at 0 and $\pm \sqrt{3}$. For $I \neq 0$ the u-nullcline is shifted vertically. The w-nullcline is a straight line $w = b_0 + b_1 u$. For $b_1 > 1$, there is always exactly one intersection, whatever I. The two nullclines are shown in Fig. 3.5.

Figure 3.5: A. The nullclines of the FitzHugh-Nagumo model for zero input. The thin solid line is the u-nullcline; the w-nullcline is the straight dashed line, $w = b_0 + b_1 u$, with $b_0 = 2, b_1 = 1.5$. The fat line is a trajectory that starts at (-3, -1) and converges to the fixed point at (-1.5, -0.3). B. Time course of the membrane potential of the trajectory shown in A. C. Same as in A but with positive input $I = 2$ so that the fixed point in A is replaced by a limit cycle (fat line). D. Voltage time course of the trajectory shown in C.

Trajectories are the result of numerical integration of (3.27) and (3.28) with $\varepsilon = 0.1$.

A comparison of Fig. 3.5A with the phase portrait of Fig. 3.3A, shows that the fixed point is stable for $I = 0$. If we increase I the intersection of the nullclines moves to the right; cf. Fig. 3.5C. According to the calculation associated with Fig. 3.3B, the fixed point loses stability as soon as the slope of the u-nullcline becomes larger than ε. It is possible to construct a bounding surface around the unstable fixed point so that we know from the Poincaré-Bendixson theorem that a limit cycle must exist. Figures 3.5A and C show two trajectories, one for $I = 0$ converging to the fixed point and another one for $I = 2$ converging towards the limit cycle. The horizontal phases of the limit cycle correspond to a rapid change of the voltage, which results in voltage pulses similar to a train of action potentials; cf. Fig. 3.5D.

3.2.3.2 Hopf bifurcation (*)

We have seen in the previous example that, while I is increased, the behavior of the system changes qualitatively from a stable fixed point to a limit cycle. The point where the transition occurs is called a bifurcation point, and I is the bifurcation parameter. Note that the fixed point $(u(t), w(t)) = (u_{FP}, w_{FP})$ remains a solution of the dynamics whatever the value of I. At some point, however, the fixed point loses its stability, which implies that the real part of at least one of the eigenvalues changes from negative to positive. In other words, the real part passes through zero. From the solution of the stability problem (3.23) we find that at this point, the eigenvalues are...
\[\lambda_{\pm} = \pm i \sqrt{F_u G_w - G_u F_w}. \]

These eigenvalues correspond to an oscillatory solution (of the linearized equation) with a frequency given by \(\sqrt{F_u G_w - G_u F_w} \). The above scenario of stability loss in combination with an emerging oscillation is called a Hopf-bifurcation.

Unfortunately, the discussion so far does not tell us anything about the stability of the oscillatory solution. If the new oscillatory solution, which appears at the Hopf bifurcation, is itself unstable (which is more difficult to show), the scenario is called a subcritical Hopf-bifurcation. This is the case in the FitzHugh-Nagumo model where due to the instability of the oscillatory solution in the neighborhood of the Hopf bifurcation the dynamics blows up and approaches another limit cycle of large amplitude; cf. Fig. 3.5. The stable large-amplitude limit cycle solution exists in fact already slightly before \(I \) reaches the critical value of the Hopf bifurcation. Thus there is a small regime of bistability between the fixed point and the limit cycle.

In a supercritical Hopf bifurcation, on the other hand, the new periodic solution is stable. In this case, the limit cycle would have a small amplitude if \(I \) is just above the bifurcation point. The amplitude of the oscillation grows with the stimulation \(I \).

Whenever we have a Hopf bifurcation, be it subcritical or supercritical, the limit cycle starts with finite frequency. Thus if we plot the frequency of the oscillation in the limit cycle as a function of the (constant) input \(I \), we find a discontinuity at the bifurcation point. Models where the onset of oscillations occurs with nonzero frequency are called type II excitable membrane models. Type I models have an onset of oscillations with zero frequency as will be discussed in the next subsection.

3.2.4 Type I and type II models

In the previous example, there was exactly one fixed point whatever \(I \). If \(I \) is slowly increased, the neuronal dynamics changes from stationary to oscillatory at a critical value of \(I \) where the fixed point changes from stable to unstable via a (subcritical) Hopf bifurcation. In this case, the onset occurs with nonzero frequency and the model is classified as type II.

![Figure 3.6: The nullclines of a type I model.](http://diwww.epfl.ch/~gerstner/SPNM/node22.html)

A different situation is shown in Fig. 3.6. For zero input, there are three fixed points: A stable fixed point to the left, a saddle point in the middle, and an unstable fixed point to the right. If \(I \) is increased, the \(u \)-nullcline moves upwards and the stable fixed point merges with the saddle and disappears. We are left with the unstable fixed point around which there must be a limit cycle provided the flux is bounded. At the transition point the limit
cycle has zero frequency because it passes through the two merging fixed points where the velocity of the trajectory is zero. If \(I \) is increased a little, the limit cycle still ‘feels’ the disappeared fixed points in the sense that the velocity of the trajectory in that region is very low. Thus the onset of oscillation is continuous and occurs with zero frequency. Models which fall into this class are called type I; cf. Fig. 3.7.

From the above discussion it should be clear that, if we increase \(I \), we encounter a transition point where two fixed points disappear, viz., the saddle and the stable fixed point (node). At the same time a limit cycle appears. If we come from the other side, we have first a limit cycle which disappears at the moment when the saddle-node pair shows up. The transition is therefore called a saddle-node bifurcation on a limit cycle.

3.2.4.1 Example: FitzHugh-Nagumo model

The appearance of oscillations in the FitzHugh-Nagumo Model discussed above is of type II. If the slope of the \(w \)-nullcline is larger than one, there is only one fixed point, whatever \(I \). This fixed point looses stability via a Hopf bifurcation.

On the other hand, if the slope of the \(w \)-nullcline is smaller than one, it is possible to have three fixed points, one of them unstable the other two stable; cf. Fig. 3.2. The system is then bistable and no oscillation occurs.

3.2.4.2 Example: Morris-Lecar model

Depending on the choice of parameters, the Morris-Lecar model is of either type I or type II. In contrast to the FitzHugh-Nagumo model the \(w \)-nullcline is not a straight line but has positive curvature. It is therefore possible to have three fixed points so that two of them lie in the unstable region where \(u \) has large positive slope as indicated schematically in Fig. 3.6. Comparison of the phase portrait of Fig. 3.6 with that of Fig. 3.3 shows that the left fixed point is stable as in Fig. 3.3A, the middle one is a saddle point as in Fig. 3.3C, and the right one is unstable as in Fig. 3.3B provided that the slope of the \(u \)-nullcline is sufficiently positive. Thus we have the sequence of three fixed points necessary for a type I model.

![Figure 3.7](http://diwww.epfl.ch/~gerstner/SPNM/node22.html)

Figure 3.7: A. Gain function for models of type I. The frequency \(\nu \) during a limit cycle oscillation is a continuous function of the applied current \(I \). B. The gain function of type II models has a discontinuity.

3.2.4.3 Example: Canonical type I model

Consider the one-dimensional model

\[
\frac{d\phi}{dt} = q (1 - \cos \phi) + I (1 + \cos \phi)
\]

(3.30)

where \(q > 0 \) is a parameter and \(I \) with \(0 < |I| < q \) the applied current. The variable \(\phi \) is the phase along the limit cycle trajectory. For all currents \(I > 0 \), we have \(d\phi/dt > 0 \), so that the system is circling along the limit cycle.

The minimal velocity is \(d\phi/dt = I \) for \(\phi = 0 \). Formally, a spike is said to occur whenever \(\phi = \pi \). The period of the limit cycle can be found by integration of (3.30) around a full cycle.
Let us now reduce the amplitude of the applied current \(I \). For \(I \to 0 \), the velocity along the trajectory around \(\phi = 0 \) tends to zero. The period of one cycle \(T(I) \) therefore tends to infinity. In other words, for \(I \to 0 \), the frequency of the oscillation \(\nu = 1/T(I) \) decreases (continuously) to zero. For \(I < 0 \), Eq. (3.30) has a stable fixed point at \(\phi = 0 \); see Fig. 3.8.

The model (3.30) is a canonical model in the sense that all type I neuron models close to the bifurcation point can be mapped onto (3.30) (Ermentrout, 1996).

![Figure 3.8: Type I model as a phase model. A. For \(I > 0 \), the system is on a limit cycle. The phase velocity \(d\phi/dt \) is everywhere positive. B. For \(I < 0 \), the phase has a stable fixed point at \(\phi = \phi_r \) and an unstable fixed point at \(\phi = \theta \).](http://diwww.epfl.ch/~gerstner/SPNM/node22.html)
3.3 Threshold and excitability

We have seen in the previous chapter the Hodgkin-Huxley model does not have a clear-cut firing threshold. Nevertheless, there is a critical regime where the sensitivity to input current pulses is so high that it can be fairly well approximated by a threshold. For weak stimuli, the voltage trace returns more or less directly to the resting potentials. For stronger stimuli it makes a large detour, that is, emits a spike; see Fig. 3.10B. This property is characteristic for a large class of systems collectively termed excitable systems.

For two-dimensional models, excitability can be discussed in phase space in a transparent manner. We will pose the following questions. What are the conditions for a threshold behavior? If there is no sharp threshold, what are the conditions for a regime of high (threshold-like) sensitivity? We will see that type I models indeed have a threshold whereas type II models have not. On the other hand, even type II models can show threshold-like behavior if the dynamics of w is considerably slower than that of u.

Throughout this section we use the following stimulation paradigm. We assume that the neuron is at rest (or in a known state) and apply a short current pulse $I(t) = q \delta(t)$ of amplitude $q > 0$. The input pulse influences the neuronal dynamics via Eq. (3.2). As a consequence, the voltage u jumps at $t = 0$ by an amount $\Delta u = q R/\tau$; the time course of the recovery variable w, on the other hand, is continuous. In the phase plane, the current pulse therefore shifts the state (u, w) of the system horizontally to a new value $(u + \Delta u, w)$. How does the system return to equilibrium? How does the behavior depend on the amplitude q of the current pulse?

We will see that the behavior can depend on q in two qualitatively distinct ways. In type I models, the response to the input shows an `all-or-nothing' behavior and consists either of a significant pulse (that is, an action potential) or a simple decay back to rest. In this sense, type I models exhibit a threshold behavior. If the action potential occurs, it has always roughly the same amplitude, but occurs at different delays depending on the strength q of the stimulating current pulse. In type II models, on the other hand, the amplitude of the response depends continuously on the amplitude q. Therefore, type II models do not have a sharp threshold.

Note that even in a model with threshold, a first input pulse that lifts the state of the system above the threshold can be counterbalanced by a second negative input which pulls the state of the system back. Thus, even in models with a threshold, the threshold is only `seen' for the specific input scenario considered here, viz., one isolated short current pulse.

3.3.1 Type I models
Figure 3.9: Threshold in a type I model. A. The stable manifold (fat solid line) of the saddle point [open circle at about $(u, w) = (-0.4, -0.3)$] acts as a threshold. Trajectories (thin solid lines) that start to the right of the stable manifold, cannot return directly to the stable fixed point (filled circle) but have to take a detour around the repulsive fixed point [open circle at $(u, w) = (0.7, 0.6)$]. The result is a spike-like excursion of the u-variable. Thin dashed lines are the nullclines; the fat dashed line is the unstable manifold of the saddle point. B. Blow-up of the rectangular region in A. The starting points of the two sample trajectories are marked by small dots.

As discussed above, type I models are characterized by a set of three fixed points, a stable one to the right, a saddle point in the middle, and an unstable one to the left. The linear stability analysis at the saddle point reveals, by definition of a saddle, one positive and one negative eigenvalue, λ_+ and λ_-, respectively. The imaginary part of the eigenvalues vanishes. Associated with λ_- is the (real) eigenvector \vec{e}_-. A trajectory which approaches the saddle in direction of \vec{e}_- from either side will eventually converge towards the fixed point. There are two of these trajectories. The first one starts at infinity and approaches the saddle from below. The second one starts at the unstable fixed point and approaches the saddle from above. The two together define the stable manifold of the fixed point (Verhulst, 1996; Hale and Koçak, 1991). A perturbation around the fixed point that lies on the stable manifold returns to the fixed point. All other perturbations will grow exponentially.

The stable manifold plays an important role for the excitability of the system. Due to the uniqueness of solutions of differential equations, trajectories cannot cross. This implies that all trajectories with initial conditions to the right of the stable manifold must make a detour around the unstable fixed point before they can reach the stable fixed point. Trajectories with initial conditions to the left of the stable manifold return immediately towards the stable fixed point; cf. Fig. 3.9.

Let us now apply these considerations to models of neurons. At rest, the neuron model is at the stable fixed point. A short input current pulse moves the state of the system to the right. If the current pulse is small, the new state of the system is to the left of the stable manifold. Hence the membrane potential u decays back to rest. If the current pulse is sufficiently strong, it will shift the state of the system to the right of the stable manifold. Since the resting point is the only stable fixed point, the neuron model will eventually return to the resting potential. To do so, it has, however, to take a large detour which is seen as a pulse in the voltage variable u. The stable manifold thus acts as a threshold for spike initiation.

3.3.1.1 Example: Canonical type I model

For $I < 0$ on the right-hand side of Eq. (3.30), the phase equation $d\phi/dt$ has two fixed points. The resting state is at the stable fixed point $\phi = \phi_r$. The unstable fixed point at $\phi = \bar{\theta}$ acts as a threshold; cf. Fig. 3.8.

Let us now assume initial conditions slightly above threshold, viz., $\phi_0 = \bar{\theta} + \delta \phi$. Since $d\phi/dt|_{\phi_0} > 0$ the system starts to fire an action potential but for $\delta \phi \ll 1$ the phase velocity is still close to zero and the maximum of the spike (corresponding to $\phi = \pi$) is reached only after a long delay. This delay depends critically on the initial condition.
3.3.2 Type II models

In contrast to type I models, Type II models do not have a stable manifold and, hence, there is no ‘forbidden line’ that acts as a sharp threshold. Instead of the typical all-or-nothing behavior of type I models there is a continuum of trajectories; see Fig. 3.10A.

Nevertheless, if the time scale of the u dynamics is much faster than that of the w-dynamics, then there is a critical regime where the sensitivity to the amplitude of the input current pulse can be extremely high. If the amplitude of the input pulse is increased by a tiny amount, the amplitude of the response increases a lot (‘soft’ threshold).

![Figure 3.10: Threshold behavior in a type II model. A. Trajectories in the phase starting with initial conditions (u_0, w_{rest}) where $u_0 = -0.5, -0.25, 0, 0.25$. B. Projection of the trajectories on the voltage axis. For $u_0 \leq -0.25$, the trajectories return rapidly to rest. The trajectories with $u_0 \geq -0.1$ develop a voltage pulse. Parameters as in Fig. 3.5 with $I = 0$.](image)

In practice, the consequences of a sharp and a ‘soft’ threshold are similar. There is, however, a subtle difference in the timing of the response between type I and type II models. In type II models, the peak of the response is always reached with roughly the same delay, independently of the size of the input pulse. It is the amplitude of the response that increases rapidly but continuously; see Fig. 3.10B. On the other hand, in type I model the amplitude of the response is rather stereotyped: either there is an action potential or not. For input currents which are just above threshold, the action potential occurs, however, with an extremely long delay. The long delay is due to the fact that the trajectory starts in the region where the two fixed points (saddle and node) have just disappeared, i.e., in a region where the velocity in phase space is very low.

3.3.3 Separation of time scales

Consider the generic two-dimensional neuron model given by Eqs. (3.2) and (3.3). We measure time in units of τ and take $R = 1$. Equations (3.2) and (3.3) are then

$$\frac{du}{dt} = F(u, w) + I \quad (3.31)$$

$$\frac{dw}{dt} = \varepsilon G(u, w) \quad (3.32)$$

where $\varepsilon = \tau / \tau_w$. If $\tau_w \gg \tau$, then $\varepsilon \ll 1$. In this situation the time scale that governs the evolution of u is much faster than that of w. This observation can be exploited for the analysis of the system. The general idea is that of a ‘separation of time scales’; in the mathematical literature the limit of $\varepsilon \rightarrow 0$ is called ‘singular perturbation’. Oscillatory behavior for small ε is called a ‘relaxation oscillation’.
What are the consequences of the large difference of time scales for the phase portrait of the system? Recall that the flow is in direction of \((\dot{u}, \dot{w})\). In the limit of \(\varepsilon \to 0\), all arrows in the flow field are therefore horizontal, except those in the neighborhood of the \(u\)-nullcline. On the \(u\)-nullcline, \(\dot{u} = 0\) and arrows are vertical as usual. Their length, however, is only of order \(\varepsilon\). Intuitively speaking, the horizontal arrows rapidly push the trajectory towards the \(u\)-nullcline. Only close to the \(u\)-nullcline directions of movement other than horizontal are possible. Therefore, trajectories slowly follow the \(u\)-nullcline, except at the knees of the nullcline where they jump to a different branch.

Excitability can now be discussed with the help of Fig. 3.11. A current pulse shifts the state of the system horizontally away from the stable fixed point. If the current pulse is small, the system returns immediately (i.e., on the fast time scale) to the stable fixed point. If the current pulse is large enough so as to put the system beyond the middle branch of the \(u\)-nullcline, then the trajectory is pushed towards the right branch of the \(u\) nullcline. The trajectory follows the \(u\)-nullcline slowly upwards until it jumps back (on the fast time scale) to the left branch of the \(u\)-nullcline. The ‘jump’ between the branches of the nullcline correspond to a rapid voltage change. In terms of neuronal modeling, the jump from the right to the left branch corresponds to downstroke of the action potential. The middle branch of the \(u\) nullcline (where \(\dot{u} > 0\)) acts as a threshold for spike initiation. This is shown in the simulation of the FitzHugh-Nagumo model in Fig. 3.12.

Figure 3.11: Excitability in a type II model with separated time scales. The \(u\)-dynamics are much faster than the \(w\)-dynamics. The flux is therefore close to horizontal, except in the neighborhood of the \(u\)-nullcline (schematic figure). Initial conditions (circle) to the left of the middle branch of the \(u\)-nullcline return directly to the stable fixed point; a trajectory starting to the right of the middle branch develops a voltage pulse.

Figure 3.12: FitzHugh-Nagumo model with separated time scales. All parameters are identical to those of Fig. 3.10 except for \(\varepsilon\) which has been reduced by a factor of 10. **A.** A trajectory which starts to the left-hand side of the middle branch of the \(u\)-nullcline, returns directly to the rest state; all other trajectories develop a pulse. **B.** Due to slow \(w\) dynamics pulses are much broader than in Fig. 3.10.
3.3.3.1 Example: Piecewise linear nullclines I

Let us study the piecewise linear model shown in Fig. 3.13.

\[
\frac{du}{dt} = f(u) - w + I \quad (3.33)
\]

\[
\frac{dw}{dt} = \varepsilon (b u - w) \quad (3.34)
\]

with \(f(u) = a u \) for \(u < 0.5 \), \(f(u) = a (1 - u) \) for \(0.5 < u < 1.5 \) and \(f(u) = c_0 + c_1 u \) for \(u > 1.5 \) where \(a, c_1 < 0 \) are parameters and \(c_0 = -0.5a - 1.5c_1 \). Furthermore, \(b > 0 \) and \(0 < \varepsilon \ll 1 \).

The rest state is at \(u = w = 0 \). Suppose that the system is stimulated by a short current pulse that shifts the state of the system horizontally. As long as \(u < 1 \), we have \(f(u) < 0 \). According to (3.33), \(\dot{u} < 0 \) and \(u \) returns to the rest state. For \(u < 0.5 \) the relaxation to rest is exponential with \(u(t) = \exp(a t) \) in the limit of \(\varepsilon \to 0 \). Thus, the return to rest after a small perturbation is governed by the fast time scale.

If the current pulse moves \(u \) to a value larger than unity, we have \(\dot{u} = f(u) > 0 \). Hence the voltage \(u \) increases and a pulse is emitted. That is to say, \(u = 1 \) acts as a threshold.

Let us now assume that an input spike from a presynaptic neuron \(j \) arrives at time \(t_j(f) \). Spike reception at the neuron generates a sub-threshold current pulse \(I(t) = c \delta(t - t_j(f)) \), where \(0 < c \ll 1 \) is the amplitude of the pulse. The perturbation causes a voltage response,

\[
\kappa(t - t_j(f)) = c \exp\left(-\frac{t - t_j(f)}{\tau_a}\right). \quad (3.35)
\]

with \(\tau_a = 1/\alpha \). If several input pulses arrive in an interval shorter than \(\tau_a \), then the responses are summed up and move the neuronal state beyond the middle branch of the \(u \)-nullcline. At this point a spike is triggered.

![Figure 3.13: Piecewise linear model. The inset shows the trajectory (arrows) which follows the \(u \) nullcline at a distance of order \(\varepsilon \).](image)

3.3.3.2 Trajectory during a pulse (*)

We have argued above that, during the pulse, the trajectory is always pushed towards the \(u \)-nullcline. We will show in this paragraph that the trajectory \((u(t), w(t)) \) of the piecewise linear system (3.33)-(3.34) follows the \(u \)-nullcline \(w = f(u) + I \) at a distance of order \(\varepsilon \). We set

\[
w(t) = f[u(t)] + I + \varepsilon x[u(t)] + \mathcal{O}(\varepsilon^2) \quad (3.36)
\]
where \(x(u) \) is the momentary distance at location \(u \). We show that (3.36) gives a consistent solution.

To do so we use Eq. (3.36) on the right-hand-side of (3.33) and (3.34). Thus, along the trajectory

\[
\frac{\text{d}u}{\text{d}t} = -\varepsilon x(u) + \ldots \quad (3.37)
\]

\[
\frac{\text{d}w}{\text{d}t} = \varepsilon \left[b u - f(u) - I + \ldots \right] \quad (3.38)
\]

where we have neglected terms of order \(\varepsilon^2 \). On the other hand, the derivative of (3.36) is

\[
\frac{\text{d}w}{\text{d}t} = \frac{df}{du} \frac{\text{d}u}{\text{d}t} + \varepsilon \frac{\text{d}x}{\text{d}u} \frac{\text{d}u}{\text{d}t} + \ldots \quad (3.39)
\]

We solve (3.38) and (3.39) for \(\text{d}u/\text{d}t \). The result to order \(\varepsilon \) is

\[
\frac{\text{d}u}{\text{d}t} = \frac{\varepsilon}{df/du} \left[b u - f(u) - I \right] . \quad (3.40)
\]

Comparison with (3.37) shows that the distance \(x \) is indeed of order one.

3.3.3.3 Example: Piecewise linear nullcline II

Let us study the relaxation to the stable fixed point after a pulse in the piecewise linear model. We use \(f' = a \) for the slope of the \(u \)-nullcline and \(b \) for the slope of the \(w \)-nullcline. Evaluation of (3.40) gives

\[
\frac{\text{d}u}{\text{d}t} = -\varepsilon \left(1 - \frac{b}{a} \right) u \quad (3.41)
\]

The decay is exponential with a time constant of recovery \(\varepsilon^{-1} [1 - (b/a)]^{-1} \). Hence the relaxation to the resting potential is governed by the slow recovery dynamics with a time scale of order \(\varepsilon \). The slow relaxation is one of the causes of neuronal refractoriness.

Similarly, the voltage during the spike is given by integrating

\[
\frac{\text{d}u}{\text{d}t} = -\varepsilon \left(1 - \frac{b}{c_1} \right) u - \varepsilon \frac{c_0 + I}{c_1} \quad \text{for } u > 1.5 . \quad (3.42)
\]

Let us denote by \(t_1 \) the time when the spike was triggered (i.e., when \(u \) crossed the middle branch of the \(u \)-nullcline). After the voltage increase during the initial phase of the limit cycle, the state of the system is on the right branch of the \(u \)-nullcline. There it evolves according to (3.42). When it reaches the knee of the nullcline, it jumps to the left branch where it arrives at time \(t_{1\text{ left}} \). On the left branch, the relaxation to the resting potential is governed by (3.41). If we neglect the time needed for the jumps, the voltage during the limit cycle is therefore
\[\eta(t - \hat{t}) = \begin{cases}
(u_{\text{right}} - \bar{u}) \exp \left(-\frac{t - \hat{t}}{\tau_{\text{spike}}} \right) + \bar{u} & \text{for } \hat{t} < t < t_{\text{left}} \\
(u_{\text{left}} - u_r) \exp \left(-\frac{t - \hat{t}}{\tau_{\text{reco}}} \right) + u_r & \text{for } t_{\text{left}} < t \end{cases} \]

(3.43)

with \(\tau_{\text{spike}} = e^{-\frac{1}{2}} \left[1 - (b/c_1)^{-1} \right] \), \(\tau_{\text{reco}} = e^{-\frac{1}{2}} \left[1 - (b/a)^{-1} \right] \) and parameters \(u_{\text{right}} = 1.5 + a/c_1, u_{\text{left}} = -0.5, \bar{u} = (c_0 + I)/(b - c_1) \), and \(u_t = I/(b - a) \). The representation of neuronal dynamics in terms of a response function as in equation (3.35) and a recovery function as in (3.43) plays a key role in formal spiking neuron models discussed in the following chapter.

Next: 3.4 Summary Up: 3. Two-Dimensional Neuron Models Previous: 3.2 Phase plane analysis

Gerstner and Kistler

Spiking Neuron Models. Single Neurons, Populations, Plasticity

Cambridge University Press, 2002
3.4 Summary

The four-dimensional model of Hodgkin-Huxley can be reduced to two dimensions under the assumption that the m-dynamics is fast as compared to u, h, and n, and that the latter two evolve on the same time scale. Two-dimensional models can readily be visualized and studied in the phase plane. In type II models oscillation onset for increasing input starts with nonzero frequency as it is typical for Hopf bifurcations. Type I models exhibit oscillation onset with zero frequency. This behavior can be obtained in two-dimensional models with three fixed points, a stable one, an unstable one, and a saddle point. Oscillations arise through a saddle-node bifurcation when the stable fixed point merges with the saddle. Type I models have a sharp voltage threshold whereas type II models have not. Nevertheless, type II models exhibit a threshold-like behavior if the u dynamics is much faster than that of the recovery variable w.

Literature

An in-depth introduction to dynamical systems, stability of fixed points, and (un)stable manifolds can be found, for example, in the books of Hale and Koçak (1991) and Verhulst (1996). The book of Strogatz (1994) presents the theory of dynamical systems in the context of various problems of physics, chemistry, biology, and engineering. A wealth of applications of dynamical systems to various (mostly non-neuronal) biological systems can be found in the comprehensive book of Murray (1993) which also contains a thorough discussion of the FitzHugh-Nagumo model. Phase plane methods applied to neuronal dynamics are discussed in the clearly written review paper of Rinzel and Ermentrout (1989). A systematic approach to reduction of dimensionality is presented in Kepler et al. (1992). For a further reduction of the two-dimensional model to an integrate-and-fire model, see the article of Abbott and Kepler (1990). The classification of neuron models as type I and type II can be found in Rinzel and Ermentrout (1989) and in Ermentrout (1996). For a systematic discussion of canonical neuron models based on their bifurcation behavior see the monograph of Hoppensteadt and Izhikevich (1997).
4. Formal Spiking Neuron Models

Detailed conductance-based neuron models can reproduce electrophysiological measurements to a high degree of accuracy, but because of their intrinsic complexity these models are difficult to analyze. For this reason, simple phenomenological spiking neuron models are highly popular for studies of neural coding, memory, and network dynamics. In this chapter we discuss formal threshold models of neuronal firing. Spikes are generated whenever the membrane potential u crosses some threshold ϑ from below. The moment of threshold crossing defines the firing time $t^{(f)}$,

$$
t^{(f)} : \quad u(t^{(f)}) = \vartheta \quad \text{and} \quad \left. \frac{du(t)}{dt} \right|_{t=t^{(f)}} > 0.
$$

(4.1)

Since spikes are stereotyped events they are fully characterized by their firing time. We focus on models that are based on a single variable u. Some well-known instances of spiking neuron models differ in the specific way the dynamics of the variable u is defined. We start our discussion with the integrate-and-fire neuron (Section 4.1) and turn then to the Spike Response Model (Section 4.2). In Section 4.3 we illustrate the relation of spiking neuron models to conductance-based models. Section 4.4 outlines an analytical approach for a study of integrate-and-fire neurons with passive dendrites. As a first application of spiking neuron models we reconsider in Section 4.5 the problem of neuronal coding. The spiking neuron models introduced in this chapter form the basis for the analysis of network dynamics and learning in the following chapters.

Subsections

- 4.1 Integrate-and-fire model
 - 4.1.1 Leaky Integrate-and-Fire Model
 - 4.1.2 Nonlinear integrate-and-fire model
 - 4.1.3 Stimulation by Synaptic Currents
4.2 Spike response model (SRM)
 - 4.2.1 Definition of the SRM
 - 4.2.2 Mapping the Integrate-and-Fire Model to the SRM
 - 4.2.3 Simplified Model SRM₀

4.3 From Detailed Models to Formal Spiking Neurons
 - 4.3.1 Reduction of the Hodgkin-Huxley Model
 - 4.3.2 Reduction of a Cortical Neuron Model
 - 4.3.3 Limitations

4.4 Multi-compartment integrate-and-fire model
 - 4.4.1 Definition of the Model
 - 4.4.2 Relation to the Model SRM₀
 - 4.4.3 Relation to the Full Spike Response Model (*)

4.5 Application: Coding by Spikes

4.6 Summary
 - Literature

Next: 4.1 Integrate-and-fire model Up: I. Single Neuron Models Previous: 3.4 Summary

Gerstner and Kistler
Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
4.1 Integrate-and-fire model

In this section, we give an overview of integrate-and-fire models. The leaky integrate-and-fire neuron introduced in Section 4.1.1 is probably the best-known example of a formal spiking neuron model. Generalizations of the leaky integrate-and-fire model include the nonlinear integrate-and-fire model that is discussed in Section 4.1.2. All integrate-and-fire neurons can either be stimulated by external current or by synaptic input from presynaptic neurons. Standard formulations of synaptic input are given in Section 4.1.3.

4.1.1 Leaky Integrate-and-Fire Model

![Figure 4.1: Schematic diagram of the integrate-and-fire model.](image)

The basic circuit is the module inside the dashed circle on the right-hand side. A current $I(t)$ charges the RC circuit. The voltage $u(t)$ across the capacitance (points) is compared to a threshold ϑ. If $u(t) = \vartheta$ at time $t_i^{(f)}$ an output pulse $\delta(t - t_i^{(f)})$ is generated. Left part: A presynaptic spike $\delta(t - t_j^{(f)})$ is low-pass filtered at the synapse and generates an output pulse $\delta(t - t_j^{(f)})$. This pulse is then added to the input current $I(t)$.
input current pulse $\alpha(t - t_j(t))$.

The basic circuit of an integrate-and-fire model consists of a capacitor C in parallel with a resistor R driven by a current $I(t)$; see Fig. 4.1. The driving current can be split into two components, $I(t) = I_R + I_C$. The first component is the resistive current I_R which passes through the linear resistor R. It can be calculated from Ohm's law as $I_R = u/R$ where u is the voltage across the resistor. The second component I_C charges the capacitor C.

From the definition of the capacity as $C = q/u$ (where q is the charge and u the voltage), we find a capacitive current $I_C = C \, du/dt$. Thus

$$I(t) = \frac{u(t)}{R} + C \, \frac{du}{dt}.$$ \hspace{1cm} (4.2)

We multiply (4.2) by R and introduce the time constant $\tau_m = R \, C$ of the `leaky integrator'. This yields the standard form

$$\tau_m \, \frac{du}{dt} = -u(t) + R \, I(t).$$ \hspace{1cm} (4.3)

We refer to u as the membrane potential and to τ_m as the membrane time constant of the neuron.

In integrate-and-fire models the form of an action potential is not described explicitly. Spikes are formal events characterized by a `firing time' $t_f(t)$. The firing time $t_f(t)$ is defined by a threshold criterion $t_f(t): u(t_f(t)) = \vartheta$. (4.4)

Immediately after $t_f(t)$, the potential is reset to a new value $u_r < \vartheta$,

$$\lim_{t \to t_f(t); t > t_f(t)} u(t) = u_r.$$ \hspace{1cm} (4.5)

For $t > t_f(t)$ the dynamics is again given by (4.3) until the next threshold crossing occurs. The combination of leaky integration (4.3) and reset (4.5) defines the basic integrate-and-fire model (Stein, 1967b). We note that, since the membrane potential is never above threshold, the threshold condition (4.1) reduces to the criterion (4.4), i.e., the condition on the slope du/dt can be dropped.

In its general version, the leaky integrate-and-fire neuron may also incorporate an absolute refractory period, in which case we proceed as follows. If u reaches the threshold at time $t = t_f(t)$, we interrupt the dynamics (4.3) during an absolute refractory time Δ_{abs} and restart the integration at time $t_f(t) + \Delta_{\text{abs}}$ with the new initial condition u_r.

4.1.1.1 Example: Constant stimulation and firing rates

Before we continue with the definition of the integrate-and-fire model and its variants, let us study a simple example. Suppose that the integrate-and-fire neuron defined by (4.3)-(4.5) is stimulated by a constant input current $I(t) = I_0$. For the sake of simplicity we take the reset potential to be $u_r = 0$.

As a first step, let us calculate the time course of the membrane potential. We assume that a spike has occurred at $t = t_f(t)$. The trajectory of the membrane potential can be found by integrating (4.3) with the initial condition $u(t_f(t)) = u_r = 0$. The solution is
\[u(t) = R I_0 \left[1 - \exp \left(-\frac{t - t^{(1)}}{\tau_m} \right) \right]. \] (4.6)

The membrane potential (4.6) approaches for \(t \to \infty \) the asymptotic value \(u(\infty) = R I_0 \). For \(R I_0 < \bar{\vartheta} \) no further spike can occur. For \(R I_0 > \bar{\vartheta} \), the membrane potential reaches the threshold \(\bar{\vartheta} \) at time \(t^{(2)} \), which can be found from the threshold condition \(u(t^{(2)}) = \bar{\vartheta} \) or

\[\bar{\vartheta} = R I_0 \left[1 - \exp \left(-\frac{t^{(2)} - t^{(1)}}{\tau_m} \right) \right]. \] (4.7)

Solving (4.7) for the time interval \(T = t^{(2)} - t^{(1)} \) yields

\[T = \tau_m \ln \frac{R I_0}{R I_0 - \bar{\vartheta}}. \] (4.8)

After the spike at \(t^{(2)} \) the membrane potential is again reset to \(u_t = 0 \) and the integration process starts again. If the stimulus \(I_0 \) remains constant, the following spike will occur after another interval of duration \(T \). We conclude that for a constant input current \(I_0 \), the integrate-and-fire neuron fires regularly with period \(T \) given by (4.8). For a neuron with absolute refractory period the firing period \(T' \) is given by \(T' = T + \Delta^{\text{abs}} \) with \(T \) defined by Eq. (4.8). In other words, the interspike interval is longer by an amount \(\Delta^{\text{abs}} \) compared to that of a neuron without absolute refractory period.

Figure 4.2: A. Time course of the membrane potential of an integrate-and-fire neuron driven by constant input current \(I_0 = 1.5 \). The voltage \(u(t) \) is normalized by the value of the threshold \(\bar{\vartheta} = 1 \). B. Gain function.

The firing rate \(\nu \) of an integrate-and-fire neuron without (solid line) and with absolute refractoriness of \(\delta^{\text{abs}} = 4 \) ms (dashed line) as a function of a constant driving current \(I_0 \). Current units are normalized so that the onset of repetitive firing is at \(I_0 = 1 \). Other parameters are \(R = 1 \), \(\tau_m = 10 \) ms, and \(u_t = 0 \).

The mean firing rate of a noiseless neuron is defined as \(\nu = 1/T \). The firing rate of an integrate-and-fire model with absolute refractory period \(\Delta^{\text{abs}} \) stimulated by a current \(I_0 \) is therefore
\[\nu = \left[\Delta^{\text{abs}} + \tau_m \ln \frac{R I_0}{R I_0 - \vartheta} \right]^{-1}. \] (4.9)

In Fig. 4.2B the firing rate is plotted as a function of the constant input \(I_0 \) for neurons with and without absolute refractory period.

4.1.1.2 Example: Time-dependent stimulus \(I(t) \)

The results of the preceding example can be generalized to arbitrary stimulation conditions and an arbitrary reset value \(u_r < \vartheta \). Let us suppose that a spike has occurred at \(\hat{t} \). For \(t > \hat{t} \) the stimulating current is \(I(t) \). The value \(u_r \) will be treated as an initial condition for the integration of (4.3), i.e.,

\[u(t) = u_r \exp \left(-\frac{t - \hat{t}}{\tau_m} \right) + \frac{1}{C} \int_0^{t-\hat{t}} \exp \left(-\frac{s}{\tau_m} \right) I(t - s) \, ds. \] (4.10)

This expression describes the membrane potential for \(t > \hat{t} \) and is valid up to the moment of the next threshold crossing. If \(u(t) = \vartheta \), the membrane potential is reset to \(u_r \) and integration restarts; see Fig. 4.3.

Figure 4.3: Voltage \(u(t) \) of an integrate-and-fire model (top) driven by the input current \(I(t) \) shown at the bottom. The input \(I(t) \) consists of a superposition of four sinusoidal components at randomly chosen frequencies plus a positive bias current \(I_0 = 1.2 \) which drives the membrane potential towards the threshold.

4.1.2 Nonlinear integrate-and-fire model

In a general nonlinear integrate-and-fire model, Eq. (4.3) is replaced by
\[\tau \frac{du}{dt} = F(u) + G(u) I; \quad (4.11)\]

cf. Abbott and van Vreeswijk (1993). As before, the dynamics is stopped if \(u\) reaches the threshold \(\theta\) and reinitialized at \(u = u_r\). A comparison with Eq. (4.3) shows that \(G(u)\) can be interpreted as a voltage-dependent input resistance while \(-F(u)/(u - u_{\text{rest}})\) corresponds to a voltage-dependent decay constant. A specific instance of a nonlinear integrate-and-fire model is the quadratic model (Feng, 2001; Hansel and Mato, 2001; Latham et al., 2000),

\[\tau \frac{du}{dt} = a_0 (u - u_{\text{rest}}) (u - u_c) + RI, \quad (4.12)\]

with parameters \(a_0 > 0\) and \(u_c > u_{\text{rest}}\); cf. Fig. 4.4. For \(I = 0\) and initial conditions \(u < u_c\), the voltage decays to the resting potential \(u_{\text{rest}}\). For \(u > u_c\) it increases so that an action potential is triggered. The parameter \(u_c\) can therefore be interpreted as the critical voltage for spike initiation by a short current pulse. We will see in the next example that the quadratic integrate-and-fire model is closely related to the so-called \(\Theta\)-neuron, a canonical type-I neuron model (Ermentrout, 1996; Latham et al., 2000).

\[\text{Figure 4.4: Quadratic integrate-and-fire model. A. Without external current } I = 0, \text{the membrane potential relaxes for all initial condition } u < u_c \text{ to the resting potential } u_{\text{rest}}. \text{If the membrane potential is moved above } u_c, \text{the potential increases further since } du/dt > 0. \text{The neuron is said to fire if } u \text{ reaches the threshold } \theta = -40\text{mV. B. A constant super-threshold current } I \text{ is characterized by the fact that } du/dt > 0 \text{ for all } u. \text{If } u \text{ reaches the firing threshold of } -40\text{mV, it is reset to } -80\text{mV. This results in repetitive firing.}\]

4.1.2.1 Rescaling and standard forms (*)

It is always possible to rescale the variables so that threshold and membrane time constant are equal to unity and that the resting potential vanishes. Furthermore, there is no need to interpret the variable \(u\) as the membrane potential. For example, starting from the nonlinear integrate-and-fire model Eq. (4.11), we can introduce a new variable \(\tilde{u}\) by the transformation

\[u(t) \rightarrow \tilde{u}(t) = \tau \int_0^t \frac{u(x)}{G(x)} \, dx \quad (4.13)\]

which is possible if \(G(x) \neq 0\) for all \(x\) in the integration range. In terms of \(\tilde{u}\) we have a new nonlinear integrate-and-fire model of the form
\[
\frac{du}{dt} = \gamma(\tilde{u}) + I(t)
\]
(4.14)

with \(\gamma(\tilde{u}) = \tau F(u)/G(u) \). In other words, a general integrate-and-fire model (4.11) can always be reduced to the standard form (4.14). By a completely analogous transformation, we could eliminate the function \(F \) in Eq. (4.11) and move all the dependence into a new voltage dependent \(G \) (Abbott and van Vreeswijk, 1993).

4.1.2.2 Example: Relation to a canonical type I model (*)

In this section, we show that there is a close relation between the quadratic integrate-and-fire model (4.12) and the canonical type I phase model,

\[
\varphi = [1 - \cos \varphi] + \Delta I [1 + \cos \varphi];
\]

(4.15)

cf. Section 3.2.4 (Strogatz, 1994; Ermentrout and Kopell, 1986; Ermentrout, 1996; Latham et al., 2000; Hoppensteadt and Izhikevich, 1997).

Let us denote by \(I_\theta \) the minimal current necessary for repetitive firing of the quadratic integrate-and-fire neuron. With a suitable shift of the voltage scale and constant current \(I = I_\theta + \Delta I \) the equation of the quadratic neuron model can then be cast into the form

\[
\frac{du}{dt} = u^2 + \Delta I.
\]

(4.16)

For \(\Delta I > 0 \) the voltage increases until it reaches the firing threshold \(\varphi \gg 1 \) where it is reset to a value \(u_r \ll -1 \). Note that the firing times are insensitive to the actual values of firing threshold and reset value because the solution of Eq. (4.16) grows faster than exponentially and diverges for finite time (hyperbolic growth). The difference in the firing times for a finite threshold of, say, \(\varphi = 10 \) and \(\varphi = 10000 \) is thus negligible.

We want to show that the differential equation (4.16) can be transformed into the canonical phase model (4.15) by the transformation

\[
u(t) = \tan \left(\frac{\phi(t)}{2} \right).
\]

(4.17)

To do so, we take the derivative of (4.17) and use the differential equation (4.15) of the generic phase model. With help of the trigonometric relations \(\tan x = \sec^2(x)/2 \) and \(1 + \cos x = \cos^2(x/2) \) we find

\[
\frac{du}{dt} = \frac{1}{\cos^2(\phi/2)} \frac{1}{2} \frac{d\phi}{dt} = \tan^2(\phi/2) + \Delta I = u^2 + \Delta I.
\]

(4.18)

Thus Eq. (4.17) with \(\phi(t) \) given by (4.15) is a solution to the differential equation of the quadratic integrate-and-fire neuron. The quadratic integrate-and-fire neuron is therefore (in the limit \(\varphi \to \infty \) and \(u_r \to -\infty \)) equivalent to the generic type I neuron (4.15).
4.1.3 Stimulation by Synaptic Currents

So far we have considered an isolated neuron that is stimulated by an external current $I(t)$. In a more realistic situation, the integrate-and-fire model is part of a larger network and the input current $I(t)$ is generated by the activity of presynaptic neurons.

In the framework of the integrate-and-fire model, each presynaptic spike generates a postsynaptic current pulse. More precisely, if the presynaptic neuron j has fired a spike at $t_j^{(f)}$, a postsynaptic neuron i `feels' a current with time course $\alpha(t - t_j^{(f)})$. The total input current to neuron i is the sum over all current pulses,

$$ I_i(t) = \sum_j w_{ij} \sum_f \alpha(t - t_j^{(f)}) . $$

(4.19)

The factor w_{ij} is a measure of the efficacy of the synapse from neuron j to neuron i.

Though Eq. (4.19) is a reasonable model of synaptic interaction, reality is somewhat more complicated, because the amplitude of the postsynaptic current pulse depends on the actual value of the membrane potential u_i. As we have seen in Chapter 2, each presynaptic action potential evokes a change in the conductance of the postsynaptic membrane with a certain time course $g(t - t_j^{(f)})$. The postsynaptic current generated by a spike at time $t_j^{(f)}$ is thus

$$ \alpha(t - t_j^{(f)}) = - g(t - t_j^{(f)}) \left[u_i(t) - E_{\text{syn}} \right] . $$

(4.20)

The parameter E_{syn} is the reversal potential of the synapse.

The level of the reversal potential depends on the type of synapse. For excitatory synapses, E_{syn} is much larger than the resting potential. For a voltage $u_i(t)$ close to the resting potential, we have $u_i(t) < E_{\text{syn}}$. Hence the current I_i induced by a presynaptic spike at an excitatory synapse is positive and increases the membrane potential. The higher the voltage, the smaller the amplitude of the input current. Note that a positive voltage $u_i > u_{\text{rest}}$ is itself the result of input spikes which have arrived at other excitatory synapses. Hence, there is a saturation of the postsynaptic current and the total input current is not just the sum of independent contributions. Nevertheless, since the reversal potential of excitatory synapses is usually significantly above the firing threshold, the factor $[u_i - E_{\text{syn}}]$ is almost constant and saturation can be neglected.

For inhibitory synapses, the reversal potential is close to the resting potential. An action potential arriving at an inhibitory synapse pulls the membrane potential towards the reversal potential E_{syn}. Thus, if the neuron is at rest, inhibitory input hardly has any effect on the membrane potential. If the membrane potential is instead considerably above the resting potential, then the same input has a strong inhibitory effect. This is sometimes described as silent inhibition: inhibition is only seen if the membrane potential is above the resting potential. Strong silent inhibition is also called `shunting' inhibition, because a significantly reduced resistance of the membrane potential forms a short circuit that literally shunts excitatory input the neuron might receive from other synapses.

4.1.3.1 Example: Pulse-coupling and α-function

The time course of the postsynaptic current $\alpha(s)$ introduced in Eq. (4.19) can be defined in various ways. The simplest choice is a Dirac δ-pulse, $\alpha(s) = q \delta(s)$, where q is the total charge that is injected in a postsynaptic neuron via a synapse with efficacy $w_{ij} = 1$. More realistically, the postsynaptic current α should have a finite duration, e.g., as in the case of an exponential decay with time constant τ_s.
\[\alpha(s) = \frac{q}{\tau_s} \exp \left(-\frac{s}{\tau_s} \right) \Theta(s). \] (4.21)

As usual, \(\Theta \) is the Heaviside step function with \(\Theta(s) = 1 \) for \(s > 0 \) and \(\Theta(s) = 0 \) else. Equation (4.21) is a simple way to account for the low-pass characteristics of synaptic transmission; cf. Fig. 4.1.

An even more sophisticated version of \(\alpha \) includes a finite rise time \(\tau_r \) of the postsynaptic current and a transmission delay \(\Delta^{\alpha x} \),

\[\alpha(s) = \frac{q}{\tau_s - \tau_r} \left[\exp \left(-\frac{s - \Delta^{\alpha x}}{\tau_s} \right) - \exp \left(-\frac{s - \Delta^{\alpha x}}{\tau_r} \right) \right] \Theta(s - \Delta^{\alpha x}). \] (4.22)

In the limit of \(\tau_r \to \tau_s \), (4.22) yields

\[\alpha(s) = q \frac{s - \Delta^{\alpha x}}{\tau_s^2} \exp \left(-\frac{s - \Delta^{\alpha x}}{\tau_s} \right) \Theta(s - \Delta^{\alpha x}). \] (4.23)

In the literature, a function of the form \(x \exp(-x) \) such as (4.23) is often called an \(\alpha \)-function. While this has motivated our choice of the symbol \(\alpha \) for the synaptic input current, \(\alpha \) may stand for any form of an input current pulse.

Gerstner and Kistler

Spiking Neuron Models. Single Neurons, Populations, Plasticity

Cambridge University Press, 2002
4.2 Spike response model (SRM)

The Spike Response Model (SRM) is - just like the nonlinear integrate-and-fire model - a generalization of
the leaky integrate-and-fire model. The direction of the generalization is, however, somewhat different. In
the nonlinear integrate-and-fire model, parameters are made voltage dependent whereas in the SRM they
depend on the time since the last output spike. Another difference between integrate-and-fire models and the
SRM concerns the formulation of the equations. While integrate-and-fire models are usually defined in
terms of differential equations, the SRM expresses the membrane potential at time t as an integral over the
past.

The explicit dependence of the membrane potential upon the last output spike allows us to model
refractoriness as a combination of three components, viz., (i) a reduced responsiveness after an output spike;
(ii) an increase in threshold after firing; and (iii) a hyperpolarizing spike after-potential. In Section 4.2.1 the
Spike Response Model is introduced and its properties illustrated. Its relation to the integrate-and-fire model
is the topic of Section 4.2.2. An important special case of the Spike Response Model is the simplified model
SRM$_0$ that we have already encountered in Chapter 1.3.1. Section 4.2.3 will discuss it in more detail.

4.2.1 Definition of the SRM

In the framework of the Spike Response Model the state of a neuron i is described by a single variable u_i. In
the absence of spikes, the variable \(u_i \) is at its resting value, \(u_{\text{rest}} = 0 \). Each incoming spike will perturb \(u_i \) and it takes some time before \(u_i \) returns to zero. The function \(\varepsilon \) describes the time course of the response to an incoming spike. If, after the summation of the effects of several incoming spikes, \(u_i \) reaches the threshold \(\vartheta \), an output spike is triggered. The form of the action potential and the after-potential is described by a function \(\eta \). Let us suppose neuron \(i \) has fired its last spike at time \(\hat{t}_i \). After firing the evolution of \(u_i \) is given by

\[
u_i(t) = \eta(t - \hat{t}_i) + \sum_j w_{ij} \sum_f \varepsilon_{ij}(t - \hat{t}_i, t - t_j(f)) + \int_0^\infty \kappa(t - \hat{t}_i, s) f^\text{ext}(t - s) \, ds \tag{4.24}
\]

where \(t_j(f) \) are spikes of presynaptic neurons \(j \) and \(w_{ij} \) is the synaptic efficacy. The last term accounts for an external driving current \(f^\text{ext} \). The two sums run over all presynaptic neurons \(j \) and all firing times \(t_j(f) < t \) of neuron \(j \). We emphasize that all terms depend on \(t - \hat{t}_i \), i.e., the time since the last output spike.

In contrast to the integrate-and-fire neuron discussed in Section (4.1) the threshold \(\vartheta \) is not fixed but may also depend on \(t - \hat{t}_i \)

\[
\vartheta \rightarrow \vartheta(t - \hat{t}_i) \tag{4.25}
\]

During an absolute refractory period \(\Delta_{\text{abs}} \), we may for example set \(\vartheta \) to a large and positive value to avoid firing and let it relax back to its equilibrium value for \(t > \hat{t}_i + \Delta_{\text{abs}} \). Firing occurs whenever the membrane potential \(u_i \) reaches the dynamic threshold \(\vartheta(t - \hat{t}_i) \) from below

\[
t = t_i(f) \iff u_i(t) = \vartheta(t - \hat{t}_i) \text{ and } \frac{du_i}{dt}(t) > 0 . \tag{4.26}
\]

As mentioned before \(\hat{t}_i \) is the last firing time,

\[
\hat{t}_i = \max \left\{ t_i(f) < t \right\} . \tag{4.27}
\]

Dynamic thresholds are a standard feature of phenomenological neuron models (Fuortes and Mantegazzini, 1962; Stein, 1967b; MacGregor and Oliver, 1974; Eckhorn et al., 1990; Abeles, 1991; Geisler and Goldberg, 1966; Weiss, 1966; Horn and Usher, 1989). Models similar to Eqs. (4.24)-(4.26) can be traced back much further; see, e.g., Hill (1936).
4.2.1.1 Interpretation

So far Eqs. (4.1) and (4.24) define a mathematical model. Can we give a biological interpretation of the terms? Let us identify the variable u_i with the membrane potential of neuron i. The functions η, κ and ϵ_{ij} are response kernels that describe the effect of spike emission and spike reception on the variable u_i. This interpretation has motivated the name `Spike Response Model', SRM for short (Gerstner, 1995; Kistler et al., 1997). Let us discuss the meaning of the response kernels.

Figure 4.5: Schematic interpretation of the Spike Response Model. The figure shows the time course $u_i(t)$ of the membrane potential of neuron i as a function of time t. A spike of neuron i has been initiated at \hat{t}_i. The kernel $\eta(t - \hat{t}_i)$ for $t > \hat{t}_i$ describes the form of the action potential (positive pulse) and the (negative) spike after-potential that follows the pulse (thick solid line). If an input current pulse is applied at a time t'' a long time after the firing at \hat{t}_i, it evokes a standard response described by the function $\kappa(\infty, t - t'')$ and indicated by the dashed line starting at t'' (arrow). An input current pulse at t' (arrow) which arrives shortly after the postsynaptic spike at \hat{t}_i evokes, due to refractoriness of the neuron, a response of significantly shorter duration. Its time course is described by the response kernel $\kappa(t - \hat{t}_i, t - t')$; see the dashed line after t'.

Immediately after firing at \hat{t}_i, the threshold is increased (dot-dashed line).

The kernel η describes the standard form of an action potential of neuron i including the negative overshoot which typically follows a spike (after-potential). Graphically speaking, a contribution η is `pasted in' each time the membrane potential reaches the threshold ϑ; cf. Fig. 4.5. Since the form of the spike is always the same, the exact time course of the action potential carries no information. What matters is whether there is the event `spike' or not. The event is fully characterized by the firing time $t_i(f)$. In a simplified model, the
form of the action potential may therefore be neglected as long as we keep track of the firing times \(t_i^{(f)} \). The kernel \(\tau_j \) describes then simply the ‘reset’ of the membrane potential to a lower value after the spike at \(\hat{t}_i \) just like in the integrate-and-fire model. The leaky integrate-and-fire model is in fact a special case of the SRM as we will see below in Section 4.2.2.

The kernel \(\kappa(t - \hat{t}_i, s) \) is the linear response of the membrane potential to an input current. It describes the time course of a deviation of the membrane potential from its resting value that is caused by a short current pulse ("impulse response"). We have already seen in Chapters 2.2 and 3 that the response depends, in general, on the time that has passed since the last output spike at \(\hat{t}_i \). Immediately after \(\hat{t}_i \) many ion channels are open so that the resistance of the membrane is reduced. The voltage response to an input current pulse decays therefore more rapidly back to zero than in a neuron that has been inactive. A reduced or shorter response is one of the signatures of neuronal refractoriness. This form of refractory effect is taken care of by making the kernel \(\kappa \) depend, via its first argument, on the time difference \(t - \hat{t}_i \). We illustrate the idea in Fig. 4.5. The response to a first input pulse at \(t' \) is shorter and less pronounced than that to a second one at \(t'' \), an effect which is well-known experimentally (Fuortes and Mantegazzini, 1962; Stevens and Zador, 1998; Powers and Binder, 1996).

The kernel \(\varepsilon_{ij}(t - \hat{t}_i, s) \) as a function of \(s = t - t_j^{(f)} \) can be interpreted as the time course of a postsynaptic potential evoked by the firing of a presynaptic neuron \(j \) at time \(t_j^{(f)} \). Depending on the sign of the synapse from \(j \) to \(i \), \(\varepsilon_{ij} \) models either an excitatory or inhibitory postsynaptic potential (EPSP or IPSP). Similarly as for the kernel \(\kappa \), the exact shape of the postsynaptic potential depends on the time \(t - \hat{t}_i \) that has passed since the last spike of the postsynaptic neuron \(i \). In particular, if neuron \(i \) has been active immediately before the arrival of a presynaptic action potential, the postsynaptic neuron is in a state of refractoriness. In this case, the response to an input spike is smaller than that of an ‘unprimed’ neuron. The first argument of \(\varepsilon_{ij}(t - \hat{t}_i, s) \) accounts for the dependence upon the last firing time of the postsynaptic neuron.

4.2.1.2 Total Postsynaptic Potential

In order to simplify the notation for later use, it is convenient to introduce the total postsynaptic potential,

\[
h(t|\hat{t}_i) = \sum_j w_{ij} \sum_{t_j^{(f)}} \varepsilon_{ij}(t - \hat{t}_i, t - t_j^{(f)}) + \int_0^{\infty} \kappa(t - \hat{t}_i, s) I_i^{ext}(t - s) \, ds . \quad (4.28)
\]

Equation (4.24) can then be written in compact form,

\[
u_i(t) = \tau_j(t - \hat{t}_i) + h(t|\hat{t}_i) . \quad (4.29)
\]
4.2.1.3 Refractoriness

Refractoriness may be characterized experimentally by the observation that immediately after a first action potential it is impossible (absolute refractoriness) or more difficult (relative refractoriness) to excite a second spike (Fuortes and Mantegazzini, 1962).

Absolute refractoriness can be incorporated in the SRM by setting the dynamic threshold during a time \(\Delta_{\text{ref}} \) to an extremely high value that cannot be attained.

Relative refractoriness can be mimicked in various ways; see Fig. 4.5. First, after the spike the membrane potential, and hence \(\eta \), passes through a regime of hyperpolarization (after-potential) where the voltage is below the resting potential. During this phase, more stimulation than usual is needed to drive the membrane potential above threshold. This is equivalent to a transient increase of the firing threshold (see below). Second, \(\varepsilon \) and \(\kappa \) contribute to relative refractoriness because, immediately after an action potential, the response to incoming spikes is shorter and, possibly, of reduced amplitude (Fuortes and Mantegazzini, 1962). Thus more input spikes are needed to evoke the same depolarization of the membrane potential as in an `unprimed' neuron. The first argument of the \(\varepsilon \) function (or \(\kappa \) function) allows us to incorporate this effect.

4.2.1.4 Removing the dynamic threshold

From a formal point of view, there is no need to interpret the variable \(u \) as the membrane potential. It is, for example, often convenient to transform the variable \(u \) so as to remove the time-dependence of the threshold. In fact, a general Spike Response Model with arbitrary time-dependent threshold \(\vartheta(t - \hat{t}) = \vartheta_0 + \Delta(t - \hat{t}) \), can always be transformed into a Spike Response Model with fixed threshold \(\vartheta_0 \) by a change of variables

\[
 u(t) \rightarrow \tilde{u}(t) = u(t) - \Delta(t - \hat{t}).
\]

The function \(\Delta(t - \hat{t}) \) can easily be absorbed in the definition of the \(\eta \) kernel.

4.2.1.5 Example: Impulse response of the FitzHugh-Nagumo model

In Chapter 3 we have studied the FitzHugh-Nagumo model as an example of a two-dimensional neuron model. Here we want to show that the response of the FitzHugh-Nagumo model to a short input current pulse depends on the time since the last spike. Let us trigger, in a simulation of the model, an action potential at \(t = 0 \). This can be done by applying a short, but strong current pulse. The result is a voltage trajectory of large amplitude which we identify with the kernel \(\eta(t) \). Figure 4.6 shows the hyperpolarizing spike after-potential which decays slowly back to the resting level. To test the responsiveness of the FitzHugh-Nagumo model during the recovery phase after the action potential, we apply, at a time \(\ell(t) > 0 \), a second short input current pulse of low amplitude. The response to this test pulse is compared with the unperturbed trajectory. The difference between the two trajectories defines the kernel \(\kappa(t - \hat{t}, t - \ell(t)) \). In Fig. 4.6 several trajectories are overlayed showing the response to stimulation at \(t = 10, 15, 20, 30 \) or 40. The shape and duration of the response curve depends on the time that has passed since the initiation of the action potential. Note that the time constant of the response kernel \(\kappa \) is always shorter than that of the hyperpolarizing spike after-potential. Analogous results for the Hodgkin-Huxley model will be discussed.
below in Section 4.3.1.

Figure 4.6: FitzHugh-Nagumo model. An action potential has been triggered at $t = 0$. After the action potential additional pulse input occurs at $t = 10, 15, 20, 30, \text{ or } 40$ [arbitrary units]. In A the trajectories of all runs are plotted on top of each other. Part B shows a zoomed-in section of two trajectories. A pulse input at time $t=10$ after the onset of the action potential has a short lasting effect (top right) compared to a pulse at $t=40$ (bottom right). All parameters as in Fig. 3.5. There is no constant bias current.

4.2.1.6 Example: A motoneuron model

Figure 4.7: Effect of recovery time constant τ_{rec}. Top: Input current consisting of a sequence of pulses superimposed on a constant bias. Bottom: The membrane potential response (thick line) to the input pulses clearly shows that the response amplitude increases as a function of the time since the last spike. Parameters: $\tau_{\text{rec}} = \tau_{\text{refr}} = 100\text{ms}; \tau_{\text{in}} = 4\text{ms}$; taken from Herrmann and Gerstner (2001b).

Motoneurons exhibit a rather slow return to the resting potential after an action potential (Powers and Binder, 1996). The time constant of the decay of the hyperpolarizing spike after-potential can be in the
range of 100ms or more and is therefore much slower than the membrane time constant that characterizes the response to a short current input. On the other hand, it is found that if motoneurons are stimulated by a constant super-threshold current, their membrane potential has a roughly linear trajectory when approaching threshold. To qualitatively describe these observations, we can use a Spike Response Model with the following kernels:

$$\eta(t - \hat{t}) = -\eta_0 e^{-\frac{t - \hat{t}}{\tau_{\text{refr}}}} \Theta(t - \hat{t})$$ \hspace{1cm} (4.31)

$$\kappa(t - \hat{t}, s) = \frac{R}{\tau_m} \left[1 - e^{-\frac{t - \hat{t}}{\tau_{\text{rec}}}} \right] e^{-\frac{s}{\tau_m}} \Theta(s) \Theta(t - \hat{t} - s)$$ \hspace{1cm} (4.32)

where τ_m is an effective passive membrane time constant, R is the input resistance, τ_{refr} is the `refractory' time constant, τ_{rec} is the `response recovery' time constant, η_0 is a scale factor for the refractory function. The passive membrane time constant τ_m and input resistance R characterize the membrane response to small current pulses. The refractory function η describes the return of the membrane potential to baseline after an action potential. It is characterized by a slow time constant τ_{refr}. For the κ-kernel we use a decaying exponential in s with time constant τ_m, modulated by the `recovery' factor $\{1 - \exp[-(t - \hat{t})/\tau_{\text{rec}}]\}$. This results in a spike-time dependent scaling of the amplitude of postsynaptic potentials. The recovery time τ_{rec} is taken much longer than τ_m.

The effect of the modulation of the input conductance as a function of $t - \hat{t}$ is depicted in Fig. 4.7. An input current pulse shortly after the reset at time \hat{t} evokes a postsynaptic potential of much lower amplitude than an input current pulse that arrives much later. Fig. 4.7 qualitatively reproduces the membrane trajectory of motoneurons when stimulated by the same input pattern (Poliakov et al., 1996; Powers and Binder, 1996).

4.2.2 Mapping the Integrate-and-Fire Model to the SRM

In this section, we show that the leaky integrate-and-fire neuron defined in Section 4.1 is a special case of the Spike Response Model. We consider an integrate-and-fire neuron driven by external current I_{ext} and postsynaptic current pulses $\alpha_i(t - t_{i}^{(f)})$. The potential u_i is thus given by

$$\tau_m \frac{d u_i}{d \hat{t}} = -u_i(t) + R \sum_j w_{ij} \sum_f \alpha_i(t - t_{j}^{(f)}) + R I_{i}^{\text{ext}}(t) .$$ \hspace{1cm} (4.33)

In order to construct a mapping of the integrate-and-fire model to the Spike Response Model, we integrate Eq. (4.33) with $u(\hat{t}_i) = u_r$ as its initial condition. The result is in analogy to Eq. (4.10)

$$u(t) = u_r \exp \left(-\frac{t - \hat{t}_i}{\tau_m} \right)$$ \hspace{1cm} (4.34)
\[
+ \sum_j w_{ij} \sum_f \frac{1}{C} \int_0^{t-t_i} \exp \left(- \frac{s}{\tau_m} \right) \alpha(t - f(t_i) - s) \, ds \\
+ \frac{1}{C} \int_0^{t-t_i} \exp \left(- \frac{s}{\tau_m} \right) I_i^{\text{ext}}(t - s) \, ds \\
= \eta_i(t - \hat{t}_i) + \sum_j w_{ij} \sum_f \varepsilon(t - \hat{t}_i, t - f(t_i)) + \int_0^{\infty} \kappa_i(t - \hat{t}_i, s) I_i^{\text{ext}}(t - s) \, ds,
\]

with

\[
\eta_i(s) = u_i \exp \left(- \frac{s}{\tau_m} \right),
\]

\[
\varepsilon(s, t) = \frac{1}{C} \int_0^s \exp \left(- \frac{t'}{\tau_m} \right) \alpha(t - t') \, dt',
\]

\[
\kappa_i(s, t) = \frac{1}{C} \exp \left(- \frac{t}{\tau_m} \right) \Theta(s - t) \Theta(t).
\]

As usual, \(\Theta(x) \) denotes the Heaviside step function. The kernels (4.35)-(4.37) allow us to map the integrate-and-fire neuron exactly to the Spike Response Model, as desired; cf. Eq. (4.24).

In order to obtain an explicit expression for the \(\varepsilon \) kernel (4.36) we have to specify the time course of the postsynaptic current \(\alpha(s) \). Here, we take \(\alpha(s) \) as defined in (4.21), viz.,

\[
\alpha(s) = \frac{q}{\tau_s} \exp \left(- s/\tau_s \right) \Theta(s).
\]

With \(q = C = 1 \), the integration of Eq. (4.36) yields

\[
\varepsilon(s, t) = \frac{\exp \left(- \frac{\max(t-s,0)}{\tau_s} \right)}{1 - \frac{\tau_s}{\tau_m}} \left[\exp \left(- \frac{\min(s, t)}{\tau_m} \right) - \exp \left(- \frac{\min(s, t)}{\tau_s} \right) \right] \Theta(s) \Theta(t); (4.39)
\]

cf. Fig. 4.8. If presynaptic spikes arrive before the last postsynaptic spike, then they have only a small effect on the actual value of the membrane potential because only that part of the postsynaptic current that arrives after \(\hat{t}_i \) contributes to the postsynaptic potential. Spikes that arrive after \(\hat{t}_i \) produce a full postsynaptic potential. Note that causality implies that the \(\varepsilon \) kernel has to vanish for negative arguments.
4.2.2.1 Example: Spike-time dependent time constant

We have seen above that the Spike Response Model contains the integrate-and-fire model as a special case. In this example, we show in addition that even a generalization of the integrate-and-fire model that has a time dependent membrane time constant can be described within the SRM framework.

To be specific, we consider an integrate-and-fire model with spike-time dependent time constant, i.e., with a membrane time constant \(\tau(t) \), which is a function of the time since the last postsynaptic spike, \(t = -u(t) + I_{\text{ext}}(t) \); cf. Stevens and Zador (1998); Wehmeier et al. (1989). As usual, \(\hat{t} \) denotes the last firing time of the neuron. The neuron is insensitive to input during an absolute refractory period of duration \(\Delta_{\text{abs}} \). After the refractory period, the membrane potential is reset to a value \(u_r \). Starting the integration of Eq. (4.40) at \(u(\hat{t} + \Delta_{\text{abs}}) = u_r \), we find for \(t > \hat{t} + \Delta_{\text{abs}} \)

\[
\begin{align*}
u(t) &= u_r \exp \left[- \int_{t+\Delta_{\text{abs}}}^{t} \frac{dt'}{\tau(t' - \hat{t})} \right] + \frac{1}{C} \int_{0}^{\infty} \Theta(t - \hat{t} - \Delta_{\text{abs}} - s) \exp \left[- \int_{s}^{t} \frac{dt'}{\tau(t' - \hat{t})} \right] f_{\text{ext}}(t - s) \, ds,
\end{align*}
\]

\(\Theta \) is the Heaviside step function.

\(\Delta_{\text{abs}} \) is the absolute refractory period.
which is a special case of Eq. (4.24). As we have seen above in Fig. 4.6, the effective membrane time constant of many standard neuron models is reduced immediately after a spike. The reason is that, after a spike, many ion channels are open so that conductance is increased. Since the time constant is inversely proportional to the conductance, the time constant is decreased. The relation between ion channels and spike-time dependent time constant will be discussed in more detail in Section 4.3.2.

4.2.3 Simplified Model SRM₀

The phenomenological neuron model SRM₀ introduced in Chapter 1.3.1 is a special case of the Spike Response Model. In this section we review its relation to the SRM and the integrate-and-fire model.

4.2.3.1 Relation to the SRM

A simplified version of the spike response model can be constructed by neglecting the dependence of κ and ε upon the first argument. We set

\[\epsilon_0(s) = \epsilon_{ij}(\infty, s) \]
\[\kappa_0(s) = \kappa_{ij}(\infty, s) \]

and use (4.24) in the form

\[u_i(t) = \eta(t - \hat{t}_i) + \sum_j w_{ij} \sum_{\hat{t}_j} \epsilon_0(t - \hat{t}_j) + \int_0^{\infty} \kappa_0(s) I_{\text{ext}}(t - s) \, ds. \quad (4.42) \]

Each presynaptic spike thus evokes a postsynaptic potential with the same time course, independent of the index j of the presynaptic neuron and independent of the last firing time \hat{t}_i of the postsynaptic neuron. The amplitude of the response is scaled with the synaptic efficacy w_{ij}. The postsynaptic potentials are summed until the firing threshold \hat{V} is reached. In Fig. 4.9 we have assumed a constant threshold. Each output spike is approximated by a δ pulse, followed by a reset to a value below resting potential so as to account for a hyperpolarizing spike after-potential,

\[\eta(t - \hat{t}_i) = \delta(t - \hat{t}_i) - \eta_0 \exp \left(-\frac{t - \hat{t}_i}{\tau_{\text{reco}}} \right), \quad (4.43) \]

with a parameter $\eta_0 > 0$. The spike after-potential decays back to zero with a recovery time constant τ_{reco}. This simple version of the Spike Response Model (SRM₀ for short) has been used in the analysis of the computational power of spiking neurons (Maass, 1996, 1998), of network synchronization (Gerstner et al., 1999b), and collective phenomena in locally coupled networks (Kistler et al., 1998; Kistler, 2000). The model defined in Eq. (4.42) can also be fitted to experimental data (Brillinger and Segundo, 1979; Brillinger, 1988, 1992).
4.2.3.2 Dynamic threshold interpretation

The simplified model SRM$_0$ defined in (4.42) with the η kernel defined in (4.43) can be reinterpreted as a model with a dynamic threshold,

$$\vartheta(t - \hat{t}) = \vartheta - \eta_0(t - \hat{t}), \tag{4.44}$$

that is increased after each spike. Firing occurs if

$$h_i(t) = \vartheta(t - \hat{t}), \tag{4.45}$$

where h_i is the input potential,

$$h_i(t) = \sum_j w_{ij} \sum_{t_j^{(l)}} \varepsilon_G(t - t_j^{(l)}) + \int_0^\infty \kappa_G(s) I_{ext}(t - s) \, ds. \tag{4.46}$$

We emphasize that h_i depends on the input only. In particular, there is no dependence upon \hat{t}_i. The next spike occurs if the input potential $h_i(t)$ reaches the dynamic threshold $\vartheta(t - \hat{t})$; cf. Fig. 4.10.
4.2.3.3 Relation to the integrate-and-fire model

The basic equation of the leaky integrate-and-fire model, Eq. (4.3), is a linear differential equation. However, because of the reset of the membrane potential after firing, the integration is not completely trivial. In fact, there are two different ways of proceeding with the integration of Eq. (4.3). In Section 4.2.2 we have treated the reset as a new initial condition and thereby constructed an exact mapping of the integrate-and-fire model to the Spike Response Model. We now turn to the second method and describe the reset as a current pulse. As we will see, the result is an approximative mapping to the simplified model SRM₀.

Let us consider a short current pulse \(I_{\text{out}}^i = -q \, \delta(t) \) applied to the RC circuit of Fig. 4.1. It removes a charge \(q \) from the capacitor \(C \) and lowers the potential by an amount \(\Delta u = -q/C \). Thus, a reset of the membrane potential from a value of \(u = \vartheta \) to a new value \(u = u_r \) corresponds to an 'output' current pulse which removes a charge \(q = C \, (\vartheta - u_r) \). The reset takes place every time when the neuron fires. The total reset current is therefore

\[
I_{\text{out}}^i(t) = -C \, (\vartheta - u_r) \sum_j \delta(t - t_{i(f)}) , \quad (4.47)
\]

where the sum runs over all firing times \(t_{i(f)} \). We add the output current (4.47) on the right-hand side of (4.3),

\[
\tau_m \frac{du_i}{dt} = -u_i(t) + R \, I_i(t) + R \, I_{\text{out}}^i(t) . \quad (4.48)
\]

Here, \(I_i \) is the total input current to neuron \(i \), generated by presynaptic spike arrival and by external stimulation \(I_i^{\text{ext}}(t) \). Let us assume that each presynaptic pulse evokes a postsynaptic current with time course \(\alpha(t - t_{j(f)}) \). The total input current is then

\[
I_i(t) = \sum_j w_{ij} \sum_f \alpha(t - t_{j(f)}) + I_i^{\text{ext}}(t) . \quad (4.49)
\]
Since (4.48) is a linear equation, we can integrate each term separately and superimpose the result at the end. The output pulse $I_{i\text{out}}$ yields a refractory kernel η_0 while each postsynaptic current pulse α generates a postsynaptic potential ϵ_0. More specifically, we have after integration with initial condition
\[
\lim_{t_0 \to -\infty} u_i(t_0) = 0
\]
\[
u_i(t) = \sum_f \eta_0(t - t_f) + \sum_j w_{ij} \sum_f \epsilon_0(t - t_f) + \int_0^\infty \kappa_0(s) I_i^{\text{ext}}(t - s) \, ds,
\] (4.50)

with kernels
\[
\eta_0(s) = - (\bar{\nu} - u_r) \exp \left(- \frac{s}{\tau_m} \right) \Theta(s),
\] (4.51)
\[
\epsilon_0(s) = \frac{1}{C} \int_0^\infty \exp \left(- \frac{s'}{\tau_m} \right) \alpha (s - s') \, ds' \Theta(s),
\] (4.52)
\[
\kappa_0(s) = \frac{1}{C} \exp \left(- \frac{s}{\tau_m} \right) \Theta(s).
\] (4.53)

The refractory kernel $\eta_0(s)$ and the postsynaptic potential ϵ_0 are shown in Fig. 4.11.

Figure 4.11: A. The refractory kernel η_0 of the integrate-and-fire model with membrane time constant $\tau_m = 10\text{ms}$. B. The postsynaptic potential $\epsilon_0(t)$ generated by an exponential current pulse $\alpha(t) \propto \exp(-t/\tau_m)$.

We note that, in contrast to Eq. (4.42), we still have on the right-hand side of Eq. (4.50) a sum over past spikes of neuron i. According to Eq. (4.51) the effect of the η_0-kernel decays with a time constant τ_m. In realistic spike trains, the interval between two spikes is typically much longer than the membrane time.
constant τ_m. Hence the sum over the η_0 terms is usually dominated by the most recent firing time $t_i^{(f)} < t$ of neuron i. We therefore truncate the sum over f and neglect the effect of earlier spikes,

$$\sum_f \eta_0(t - t_i^{(f)}) \rightarrow \eta_0(t - \hat{t}_i), \quad (4.54)$$

where $\hat{t}_i = \max\{t_i^{(f)} < t\}$ is the last firing time of neuron i. The approximation (4.54) is good if the mean firing rate of the neuron is low, i.e., if the intervals between two spikes are much longer than τ_m. Loosely speaking, the neuron remembers only its most recent firing. Equation (4.54) is therefore called `short-term memory approximation' (Gerstner et al., 1996b). The final equation is

$$u_i(t) = \eta_0(t - \hat{t}_i) + \sum_j w_{ij} \sum_f \epsilon_0(t - t_j^{(f)}) + \int_0^\infty \kappa(s) I_{\text{ext}}(t - s) \, ds. \quad (4.55)$$

This is exactly the equation for the model SRM$_0$, defined in (4.42). Note that we have kept, on the right-hand side of (4.55), the sum over all presynaptic firing times $t_j^{(f)}$. Only the sum over the η_0’s has been truncated.

A careful comparison of Eq. (4.51) with Eq. (4.35) shows that the kernel η_0 is different from the kernel η derived previously for the exact mapping of the integrate-and-fire model to the full Spike Response Model. The difference is most easily seen if we set the reset potential to $u_r = 0$. While the kernel η in Eq. (4.35) vanishes in this case, the kernel η_0 is nonzero. In fact, whereas in the full SRM the reset is taken care of by the definition of $\epsilon(t - \hat{t}, s)$ and $\kappa(t - \hat{t}, s)$, the reset in the simplified model SRM$_0$ is included in the kernel η_0. The relation between the kernels of the simplified model SRM$_0$ to that of the full model are discussed below in more detail.

4.2.3.4 Example: Postsynaptic potential ϵ_0

If $\alpha(s)$ is given by (4.21), then the integral on the right-hand side of (4.52) can be done and yields

$$\epsilon_0(s) = \frac{1}{1 - (\tau_s/\tau_m)} \left[\exp\left(-\frac{s}{\tau_m}\right) - \exp\left(-\frac{s}{\tau_s}\right) \right] \Theta(s), \quad (4.56)$$

where we have set $q = C = 1$. This is the postsynaptic potential ϵ_0 illustrated in Fig. 4.11B. We note that ϵ_0 defined in Eq. (4.56) is closely related, but not identical to the kernel ϵ introduced in Eq. (4.39).

4.2.3.5 Relation between the kernels ϵ_0 and ϵ (*).

What is the relation between the ϵ kernel derived in (4.36) and the ϵ_0 introduced in (4.52)? We will show in this paragraph that
holds. To this end we rewrite Eq. (4.36) as

\[\varepsilon(s, t) = \frac{1}{C} \int_0^\infty \exp \left(-\frac{t'}{\tau_m} \right) \alpha(t - t') \, dt' - \frac{1}{C} \int_s^\infty \exp \left(-\frac{t'}{\tau_m} \right) \alpha(t - t') \, dt'
\]

\[= \frac{1}{C} \int_0^\infty \exp \left(-\frac{t'}{\tau_m} \right) \alpha(t - t') \, dt'
- \exp \left(-\frac{s}{\tau_m} \right) \frac{1}{C} \int_0^\infty \exp \left(-\frac{t'}{\tau_m} \right) \alpha(t - t' - s) \, dt'. \]

(4.58)

Using the definition (4.52) of \(\varepsilon_0 \) yields Eq. (4.57).

By a completely analogous sequence of transformations it is possible to show that

\[\kappa(x, s) = \kappa_0(s) - \exp \left(-\frac{x}{\tau_m} \right) \kappa_0(s - x). \]

(4.59)

The total postsynaptic potential \(h(t|t_s) \) defined in (4.28) can therefore be expressed via the input potential \(h_i(t) \) (Gerstner, 2000b)

\[h(t|t_s) = h_i(t) - \exp \left(-\frac{t - \hat{t}_i}{\tau_m} \right) h_i(\hat{t}_i) \]

(4.60)

As expected, the reset at \(\hat{t}_i \) has an influence on the total postsynaptic potential. We emphasize that the expressions (4.58)-(4.60) hold only for the integrate-and-fire model.

Similarly we can compare the \(\eta \) kernel in (4.35) and the \(\eta_0 \) kernel defined in (4.51),

\[\eta(s) = \eta_0(s) + \vartheta \exp \left(-\frac{s}{\tau_m} \right). \]

(4.61)

We can thus write the potential in the form

\[u_i(t) = \eta(t - \hat{t}_i) + h(t|\hat{t}_i)
= \eta_0(t - \hat{t}_i) + h(t) - [h(\hat{t}_i) - \vartheta] \exp \left(-\frac{t - \hat{t}_i}{\tau_m} \right). \]

(4.62)
The truncation in (4.54) is therefore equivalent to a neglection of the last term in (4.62).
4.3 From Detailed Models to Formal Spiking Neurons

In this section we study the relation between detailed conductance-based neuron models and formal spiking neurons as introduced above. In Section 4.3.1, we discuss how an approximative mapping between the Spike Response Model and the Hodgkin-Huxley model can be established. While the Hodgkin-Huxley model is of type II, cortical neurons are usually described by type I models. In Subsection 4.3.2 we focus on a type-I model of cortical interneurons and reduce it systematically to different variants of spiking neuron models, in particular to a nonlinear integrate-and-fire model and a Spike Response Model. In all sections, the performance of the reduced models is compared to that of the full model. To do so we test the models with a constant or fluctuating input current.

4.3.1 Reduction of the Hodgkin-Huxley Model

The system of equations proposed by Hodgkin and Huxley (see Chapter 2.2) is rather complicated. It consists of four coupled nonlinear differential equations and as such is difficult to analyze mathematically. For this reason, several simplifications of the Hodgkin-Huxley equations have been proposed. The most common approach reduces the set of four differential equations to a two-dimensional problem as discussed in Chapter 3. In this section, we will take a somewhat different approach to reduce the four Hodgkin-Huxley equations to a single...
variable \(u(t) \), the membrane potential of the neuron (Kistler et al., 1997). As we have seen in Fig. 2.4B, the Hodgkin-Huxley model shows a sharp, threshold-like transition between an action potential (spike) for a strong stimulus and a graded response (no spike) for a slightly weaker stimulus. This suggests the idea that emission of an action potential can be described by a threshold process. We therefore aim for a reduction towards a spiking neuron model where spikes are triggered by a voltage threshold. Specifically, we will establish an approximative mapping between the Spike Response Model and the Hodgkin-Huxley model.

Action potentials in the Hodgkin-Huxley model have the stereotyped time course shown in Fig. 2.4A. Whatever the stimulating current that has triggered the spike, the form of the action potential is always roughly the same (as long as the current stays in a biologically realistic regime). This is the major observation that we will exploit in the following. Let us consider the spike that has been triggered at time \(\hat{t} \). If no further input is applied for \(t > \hat{t} \), the voltage trajectory will have a pulse-like excursion before it eventually returns to the resting potential. For \(t > \hat{t} \), we may therefore set \(u(t) = \eta(t - \hat{t}) + u_{\text{rest}} \) where \(\eta \) is the standard shape of the pulse and \(u_{\text{rest}} \) is the resting potential. We have \(\eta(t - \hat{t}) \to 0 \) for \(t - \hat{t} \to \infty \), because, without further input, the voltage will eventually approach the resting value.

Let us now consider an additional small input current pulse \(I \) which is applied at \(t > \hat{t} \). Due to the input, the membrane potential will be slightly perturbed from its trajectory. If the input current is sufficiently small, the perturbation can be described by a linear impulse response function \(\kappa \). The response to an input pulse, and therewith the response kernel \(\kappa \), can depend on the arrival time of the input relative to the last spike at \(\hat{t} \). For an input with arbitrary time course \(I(t) \) we therefore set

\[
\begin{align*}
 u(t) &= \eta(t - \hat{t}) + \int_0^{t-\hat{t}} \kappa(t - \hat{t}, s) I(t - s) \, ds + u_{\text{rest}}.
\end{align*}
\]

Equation (4.63) is a special case of the Spike Response Model (SRM) introduced in Chapter 4.2. Note that after an appropriate shift of the voltage scale the resting potential can always be set to zero, \(u_{\text{rest}} = 0 \).

To construct an approximative mapping between the SRM (4.63) and the Hodgkin-Huxley equations, we have to determine the following three terms: (i) the kernel \(\eta \) which describes the response to spike emission, (ii) the kernel \(\kappa \) which describes the response to incoming current, and (iii) the value of the threshold \(\hat{\theta} \).

4.3.1.1 The \(\eta \)-kernel

In the absence of input the membrane potential \(u \) is at its resting value \(u_{\text{rest}} \). If we apply a strong current pulse, an action potential will be triggered. The time course of the action potential determines the kernel \(\eta \).

To find the kernel \(\eta \) we use the following procedure. We take a square current pulse of the form

\[
I(t) = c \frac{q_0}{\Delta} \Theta(t) \Theta(\Delta - t)
\]

with duration \(\Delta = 1\text{ms} \), a unit charge \(q_0 \), and \(c \) a parameter chosen large enough to evoke a spike. The kernel \(\eta \) allows us to describe the standard form of the spike and the spike after-potential. We set

\[
\eta(t - \hat{t}) = [u(t) - u_{\text{rest}}] \Theta(t - \hat{t}).
\]

(4.65)
Here, \(u(t) \) is the voltage trajectory caused by the supra-threshold current pulse. The firing time \(\hat{t} \) is defined by the moment when \(u \) crosses the threshold \(\tilde{\theta} \) from below. The kernel \(\eta(s) \) with its pronounced hyperpolarizing spike after-potential that extends over more than 15ms is shown in Fig. 4.12A.

\[
\eta(t) = \begin{cases}
100 & \text{for } t < 0 \\
0 & \text{for } t > 0
\end{cases}
\]

\[
\kappa(t) = \begin{cases}
1 & \text{for } t < 0 \\
0 & \text{for } t > 0
\end{cases}
\]

Figure 4.12: A. The action potential of the Hodgkin-Huxley model defines the kernel \(\eta \). The spike has been triggered at \(t = 0 \). B. The voltage response of the Hodgkin-Huxley model to a short sub-threshold current pulse defines the kernel \(\kappa \). The input pulse has been applied at \(t = 0 \). The last output spike occurred at \(\hat{t} = -\Delta t \). We plot the time course \(\eta(\Delta t + t, t) \). For \(\Delta t \to \infty \) we get the response shown by the solid line. For finite \(\Delta t \) (dashed line, output spike \(\Delta t = 10.5 \text{ ms before the input spike} \); dotted line \(\Delta t = 6.5 \text{ ms} \)), the duration of the response is reduced due to refractoriness; cf. Fig. 2.7B. Taken from [Kistler et al., 1997].

4.3.1.2 The \(\kappa \)-kernel

The kernel \(\kappa \) characterizes the linear response of the neuron to a weak input current pulse. To measure \(\kappa \) we use a first strong pulse to initiate a spike at a time \(\hat{t} < 0 \) and then apply a second weak pulse at \(t = 0 \). The second pulse is a short stimulus as in Eq. (4.64), but with a small amplitude so that nonlinear effects in the response can be neglected. The result is a membrane potential with time course \(u(t) \). Without the second pulse the time course of the potential would be \(u_0(t) = \eta(t - \hat{t}) + u_{\text{rest}} \) for \(t > \hat{t} \). The net effect of the second pulse is \(u(t) - u_0(t) \), hence

\[
\kappa(t - \hat{t}, t) = \frac{1}{C} \left[u(t) - \eta(t - \hat{t}) - u_{\text{rest}} \right].
\]

We repeat the above procedure for various spike times \(\hat{t} \).

The result is shown in Fig. 4.12. Since the input current pulse delivers its charge during a very short amount of time, the \(\kappa \)-kernel jumps instantaneously at time \(t = 0 \) to a value of 1mV. Afterwards it decays, with a slight oscillation, back to zero. The oscillatory behavior is characteristic for type II neuron models ([Izhikevich, 2001]). The decay of the oscillation is faster if there has been a spike in the recent past. This is easy to understand intuitively. During and immediately after an action potential many ion channels are open. The resistance of the cell membrane is therefore reduced and the effective membrane time constant is shorter; cf. Fig. 2.7B.

4.3.1.3 The threshold \(\tilde{\theta} \)

The third term to be determined is the threshold \(\tilde{\theta} \) which we will take as fixed. Even though Fig. 2.4B suggests that the Hodgkin-Huxley equations exhibit a certain form of threshold behavior, the threshold is not well-defined ([Koch et al., 1995; Rinzel and Ermentrout, 1989]) and it is fairly difficult to estimate a voltage threshold directly from a single series of simulations. We therefore take the threshold as a free parameter which will be adjusted by a procedure discussed below.
4.3.1.4 Input scenarios

In order to test the fidelity of the Spike Response Model we use the same input scenarios as in Chapter 2.2 for the Hodgkin-Huxley model. In particular, we consider constant input current, step current, and fluctuating input current. We start with the time-dependent fluctuating input, since this is probably the most realistic scenario. We will see that the Spike Response Model with the kernels that have been derived above can approximate the spike train of the Hodgkin-Huxley model to a high degree of accuracy.

4.3.1.5 Example: Stimulation by time-dependent input

To test the quality of the SRM approximation we compare the spike trains generated by the Spike Response Model (4.63) with that of the full Hodgkin-Huxley model (2.4)-(2.6). We study the case of a time-dependent input current \(I(t) \) generated by the procedure discussed in section 2.2.2; cf. Fig. 2.7. The same current is applied to both the Hodgkin-Huxley and the Spike Response model. The threshold \(\vartheta \) of the Spike Response Model has been adjusted so that the total number of spikes was about the same as in the Hodgkin-Huxley model; see Kistler et al. (1997) for details. In Fig. 4.13 the voltage trace of the Hodgkin-Huxley model is compared to that of the Spike Response Model with the kernels \(\eta \) and \(\kappa \) derived above. We see that the approximation is excellent both in the absence of spikes and during spiking. As an aside we note that it is indeed important to include the dependence of the kernel \(\kappa \) upon the last output spike time \(\hat{t} \). If we neglected that dependence and used \(\kappa(\infty, s) \) instead of \(\kappa(t - \hat{t}, s) \), then the approximation during and immediately after a spike would be significantly worse; see the dotted line in the lower right graph of Fig. 4.13.

![Figure 4.13](http://diwww.epfl.ch/~gerstner/SPNM/node28.html)
To check whether both models generated spikes at the same time we introduce the coincidence rate

\[\Gamma = \frac{N_{\text{coinc}} - \langle N_{\text{coinc}} \rangle}{\frac{1}{2} (N_{\text{SRM}} + N_{\text{full}})} \frac{1}{N}, \]

(4.67)

where \(N_{\text{SRM}} \) is the number of spikes of the Spike Response Model, \(N_{\text{full}} \) is the number of spikes of the full Hodgkin-Huxley model, \(N_{\text{coinc}} \) is the number of coincidences with precision \(\Delta \), and \(\langle N_{\text{coinc}} \rangle = 2 \nu \Delta N_{\text{full}} \) is the expected number of coincidences generated by a homogeneous Poisson process with the same rate \(\nu \) as the Spike Response Model. The factor \(\frac{1}{2} \) normalizes \(\Gamma \) to a maximum value of one which is reached if the spike train of the Spike Response Model reproduces exactly that of the full model. A homogeneous Poisson process with the same number of spikes as the Spike Response Model would yield \(\Gamma = 0 \).

We find that the Spike Response Model reproduces the firing times and the voltage time course of the Hodgkin-Huxley model to a high degree of accuracy; cf. Fig. 4.13. More precisely, the Spike Response Model achieves with a fluctuating input current a coincidence rate \(\Gamma \) of about 0.85 (Kistler et al., 1997). On the other hand, a leaky integrate-and-fire model with optimized time constant and fixed threshold yields coincidence rates in the range of only 0.45. The difference in the performance of Spike Response and integrate-and-fire model is not too surprising because the Spike Response Model accounts for the hyperpolarizing spike after-potential; cf. Fig 4.12A. In fact, an integrate-and-fire model with spike after-potential (or equivalently a dynamic threshold) achieves coincidence rates in the range of \(\Gamma \approx 0.7 \) (Kistler et al., 1997). Furthermore, the \(\kappa \)-kernel of the Spike Response Model describes the reduced responsiveness of the Hodgkin-Huxley model immediately after a spike; cf. Fig 4.12B. The model SRM\(_0\) (with a kernel \(\kappa \) that does not depend on \(t - \hat{t} \)) yields a coincidence rate \(\Gamma \) that is significantly lower than that of the full Spike Response Model.

4.3.1.6 Example: Constant input and mean firing rates

We study the response of the Spike Response Model to constant stimulation using the kernels derived by the procedure described above. The result is shown in Fig. 4.14. As mentioned above, we take the threshold \(\vartheta \) as a free parameter. If \(\vartheta \) is optimized for stationary input, the frequency plots of the Hodgkin-Huxley model and the Spike Response Model are rather similar. On the other hand, if we took the value of the threshold that was found for time-dependent input, the current threshold for the Spike Response Model would be quite different as shown by the dashed line in Fig. 4.14.

Figure 4.14: The firing rate \(\nu \) of the Hodgkin-Huxley model (solid line) is compared to that of the Spike Response Model. Two cases are shown. If the threshold \(\vartheta \) is optimized for the constant-input scenario, we get the dotted line. If we take the same value of the threshold as in the dynamic-input scenario of the previous figure, we find the long-dashed line. Input.
current has a constant value I_0.
Taken from Kistler et al. (1997).

4.3.1.7 Example: Step current input

As a third input paradigm, we test the Spike Response Model with step current input. For ϑ we take the value found for the scenario with time-dependent input. The result is shown in Fig. 4.15. The Spike Response Model shows the same three regimes as the Hodgkin-Huxley model. In particular, the effect of inhibitory rebound is present in the Spike Response Model. The location of the phase boundaries depends on the choice of ϑ.

![Figure 4.15: Phase diagram of the Spike Response Model for stimulation with a step current. Kernels ζ and η are adapted to the Hodgkin-Huxley model. The current I is switched at $t = 0$ from I_1 to I_2. The y-axis is the step size ΔI. Three regimes denoted by S, R, and I may be distinguished. In I no action potential is initiated (inactive regime). In S, a single spike is initiated by the current step (single spike regime). In R, periodic spike trains are triggered by the current step (repetitive firing). Examples of voltage traces in the different regimes are presented in the smaller graphs to the left and right of the phase diagram in the center. The phase diagram should be compared to that of the Hodgkin-Huxley model in Fig. 2.6.](http://diwww.epfl.ch/~gerstner/SPNM/node28.html)

Taken from (Kistler et al., 1997).

4.3.1.8 Example: Spike input

In the Hodgkin-Huxley model (2.4), input is formulated as an explicit driving current $I(t)$. In networks of neurons, input typically consists of the spikes of presynaptic neurons. Let us, for the sake of simplicity, assume that a spike of a presynaptic neuron j which was emitted at time $t_j^{(f)}$ generates in the postsynaptic neuron i a current $I(t) = w_{ij} \zeta(t - t_j^{(f)})$. Here, ζ describes the time course of the postsynaptic current and w_{ij} scales the amplitude of the current. The voltage of the postsynaptic neuron i changes, according to (4.63) by an amount

$$\Delta u_i(t) = w_{ij} \int_0^{t - \hat{t}_i} \kappa(t - \hat{t}_i, s) \zeta(t - t_j^{(f)} - s) \, ds,$$

where \hat{t}_i is the last output spike of neuron i. The voltage response Δu_i to an input current of unit amplitude ($w_{ij} = 1$) defines the postsynaptic potential ζ, hence

$$\zeta(t - \hat{t}_i, t - t_j^{(f)}) = \int_0^{t - \hat{t}_i} \kappa(t - \hat{t}_i, s) \zeta(t - t_j^{(f)} - s) \, ds. \quad (4.68)$$

What is the meaning of the definition (4.68)? If several presynaptic neurons j transmit spikes to neuron i, then the total membrane potential of the postsynaptic neuron is in analogy to Eq. (4.63)

$$u_i(t) = \eta(t - \hat{t}_i) + \sum_j w_{ij} \sum_f \zeta(t - \hat{t}_i, t - t_j^{(f)}) + u_{rest}. \quad (4.69)$$
Equation (4.69) is the standard equation of the Spike Response Model. We emphasize that the time course of the postsynaptic potential depends on $t - \tilde{\tau}$; the first argument of ξ takes care of this dependence.

4.3.2 Reduction of a Cortical Neuron Model

We have seen in the previous section that the Spike Response Model can provide a good quantitative approximation of the Hodgkin-Huxley model. Though the Hodgkin-Huxley equation captures the essence of spike generation it is "only" a model of the giant axon of the squid which has electrical properties that are quite different from those of cortical neurons we are mostly interested in. The natural question is thus whether the Spike Response Model can also be used as a quantitative model of cortical neurons. In the following we discuss a conductance-based neuron model for a cortical interneuron and show how such a model can be reduced to a (nonlinear) integrate-and-fire model or to a Spike Response Model.

The starting point is a conductance-based model that has originally been proposed as a model of fast-spiking neo-cortical interneurons (Erisir et al., 1999). We have chosen this specific model for two reasons: First, just as most other cortical neuron models, this model has - after a minor modification - a continuous gain function (Lewis and Gerstner, 2001) and can hence be classified as a type I model (Ermentrout, 1996). This is in contrast to the Hodgkin-Huxley model which exhibits a discontinuity in the gain function and is hence type II. Second, this is a model for interneurons that show little adaptation, so that we avoid most of the complications caused by slow ionic processes that cannot be captured by the class of spiking neuron models reviewed above. Furthermore, the model is comparatively simple, so that we can hope to illustrate the steps necessary for a reduction to formal spiking neuron models in a transparent manner.

The model neuron consists of a single compartment with a non-specific leak current and three types of ion current, i.e., a Hodgkin-Huxley type sodium current $I_{Na} = g_{Na} m^3 h (u - E_{Na})$, a slow potassium current $I_{slow} = g_{slow} n_{slow}^4 (u - E_{K})$, and a fast potassium current $I_{fast} = g_{fast} n_{fast}^2 (u - E_{K})$. The response properties of the cortical neuron model to pulse input and constant current have already been discussed in Chapter 2.3; cf. Fig. 2.11. We now want to reduce the model to a nonlinear integrate-and-fire model or, alternatively, to a Spike Response Model. We start with the reduction to an integrate-and-fire model.

Table 4.1: Cortical neuron model. The equilibrium value $x_0(u) = \alpha/(\alpha + \beta)$ is reached with a time constant $\tau_x(u) = 1/(\alpha + \beta)$ where x stands for one of the gating variables m, h, n_{slow}, n_{fast}.

<table>
<thead>
<tr>
<th>channel</th>
<th>variable</th>
<th>$\alpha(u/mV)$</th>
<th>$\beta(u/mV)$</th>
<th>$g_x/(mS/cm^2)$</th>
<th>E_x/mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>m</td>
<td>$\frac{-3320 + 69 u}{-u - 72.5}$</td>
<td>$\frac{1.2262}{\exp \left(\frac{u}{47.2} \right)}$</td>
<td>11.25</td>
<td>74.0</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>$\frac{0.0335 \exp \left(\frac{u}{24.9} \right)}{\exp \left(\frac{u}{24.9} \right)}$</td>
<td>$\frac{0.8712 + 0.017 u}{1 - \exp \left(-\frac{51.25 + u}{5.2} \right)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_{slow}</td>
<td>n_{slow}</td>
<td>$\frac{0.014 (4 + u)}{1 - \exp \left(-\frac{44 + u}{2.8} \right)}$</td>
<td>$\frac{0.0043 \exp \left(\frac{44 + u}{34} \right)}{\exp \left(\frac{44 + u}{34} \right)}$</td>
<td>0.225</td>
<td>-90</td>
</tr>
<tr>
<td>K_{fast}</td>
<td>n_{fast}</td>
<td>$\frac{u - 95}{1 - \exp \left(-\frac{u - 95}{11.8} \right)}$</td>
<td>$\frac{0.025 \exp \left(\frac{u - 95}{27.22} \right)}{\exp \left(\frac{u - 95}{27.22} \right)}$</td>
<td>225</td>
<td>-90</td>
</tr>
<tr>
<td>Leak</td>
<td></td>
<td>0.25</td>
<td>-70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Membrane capacity $C = 1.0 \mu F/cm^2$.

4.3.2.1 Reduction to a nonlinear integrate-and-fire model

In order to reduce the dynamics of the full cortical neuron model to that of an integrate-and-fire model we proceed in two steps. As a first step, we keep all variables, but introduce a threshold for spike initiation. We call this the multi-current integrate-and-fire model. In the second step, we separate gating variables into fast and slow ones. ‘Fast’ variables are replaced by their steady state values, while ‘slow’ variables are replaced by constants. The result is the desired nonlinear integrate-and-fire model with a single dynamical variable.

In step (i), we make use of the observation that the shape of an action potential of the cortical neuron model is always roughly the same, independently of the way the spike is initiated; cf. Fig. 4.16. Instead of calculating the shape of an action potential again and again, we can therefore simply stop the costly numerical integration of the nonlinear differential equations as soon as a spike is triggered and restart the integration after the down-stroke of the spike about 1.5-2 ms later. We call such a scheme a multi-current integrate-and-fire model. The interval between the spike trigger time \(\hat{t} \) and the restart of the integration corresponds to an absolute refractory period \(\Delta_{\text{abs}} \).

In order to transform the cortical neuron model into a multi-current integrate-and-fire model we have to define a voltage threshold \(\vartheta \), a refractory time \(\Delta_{\text{abs}} \), and the reset values from which the integration is restarted. We fix the threshold at \(\vartheta = -40 \) mV; the exact value is not critical and we could take values of -20 mV or -45 mV without changing the results. For \(\vartheta = -40 \) mV, a refractory time \(\Delta_{\text{abs}} = 1.7 \) ms and a reset voltage \(u_r = -85 \) mV is suitable; cf. Fig. 4.16.

To restart the integration of the differential equation we also have to specify initial conditions for the gating variables \(m, h, n_{\text{slow}}, \) and \(n_{\text{fast}} \). This, however, involves a severe simplification, because their time course is not as stereotyped as that of the membrane potential, but depends on the choice of the input scenario; cf. Fig. 4.16B.

In the following we optimize the reset values for a scenario with a constant input current \(I_{\text{ext}} = 5 \) \(\mu \) A/cm\(^2\) that leads to repetitive firing at about 40 Hz. The reset values are \(m_r = 0.0; h_r = 0.16; n_{\text{slow, r}} = 0.874; n_{\text{fast, r}} = 0.2; \) and \(u_r = -85 \) mV. This set of parameters yields a near-perfect fit of the time course of the membrane potential during repetitive firing at 40 Hz and approximates the gain function of the full cortical neuron model to a high degree of accuracy; cf. Fig. 4.17.
So far the model contains still all five variables $u, m, h, n_{\text{slow}}, n_{\text{fast}}$. To get rid of all the gating variables we distinguish between variables x that are either fast as compared to u - in which case we replace it by its steady-state value $x_0(u)$ - or slow as compared to u - in which case we replace x by a constant. Here, m is the only fast variable and we replace $m(t)$ by its steady-state value $m_0[u(t)]$. The treatment of the other gating variables deserves some extra discussion.

A thorough inspection of the time course of $n_{\text{fast}}(t)$ shows that n_{fast} is most of the time close to its resting value, except for a 2ms interval during and immediately after the down-stroke of an action potential. If we take a refractory time of $\Delta_{\text{abs}} = 4$ ms, most of the excursion trajectory of n_{fast} falls within the refractory period.

Between spikes we can therefore replace n_{fast} by its equilibrium value at rest $n_{\text{fast, rest}} = n_{0,\text{fast}}(u_{\text{rest}})$.

The gating variables h and n_{slow} vary slowly, so that the variables may be replaced by averaged values h_{av} and $n_{\text{slow, av}}$. The average, however, depends on the input scenario. We stick to a regime with repetitive firing at 40Hz where $h_{\text{av}} = 0.7$ and $n_{\text{slow, av}} = 0.8$.

With $m = m_0(u)$ and constant values for h, n_{slow}, n_{fast}, the dynamics of the full cortical neuron model reduces to

$$C \frac{du}{dt} = g_{\text{Na}} [m_0(u)^3] h_{\text{av}} (u - E_{\text{Na}}) + g_{\text{K slow}} n_{\text{slow, av}}^2 (u - E_{\text{K}})$$

$$+ g_{\text{K fast}} n_{\text{fast, rest}}^4 (u - E_{\text{K}}) + g_1 (u - E_l) + I_{\text{ext}}(t). \quad (4.70)$$

After division by C, we arrive at a single nonlinear equation

$$\frac{du}{dt} = F(u) + \frac{1}{C} I_{\text{ext}}(t). \quad (4.71)$$

The passive membrane time constant of the model is inversely proportional to the slope of F at rest: $\tau = \frac{dF}{du}\big|_{u=u_{\text{rest}}}}^{-1}$. In principle the function F could be further approximated by a linear function with slope $-1/\tau$ and then combined with a threshold at, e.g., $\Theta = -45$ mV. This would yield a linear integrate-and-fire model. Alternatively, F can be approximated by a quadratic function which leads us to a quadratic integrate-and-fire neuron; cf. Fig. 4.18.
Figure 4.18: The function $F(u)$ of a nonlinear integrate-and-fire neuron (solid line) derived from a cortical neuron model is compared to a quadratic (dotted line) and a linear (long-dashed line) approximation. The linear approximation stops at the threshold $\vartheta = -45\,\text{mV}$ (vertical line).

To test the fidelity of the reduction to a nonlinear integrate-and-fire model, we compare its behavior to that of the full cortical neuron model for various input scenarios. It turns out that the behavior of the model is good as long as the mean firing rate is in the range of $40\,\text{Hz}$, which is not too surprising given the optimization of the parameters for this firing rate. Outside the range of $40\pm10\,\text{Hz}$ there are substantial discrepancies between the reduced and the full model.

4.3.2.2 Example: Constant input

Let us focus on constant input first. With our set of parameters we get a fair approximation of the gain function, except that the threshold for repetitive firing is not reproduced correctly; cf. Fig. 4.19A. We note that the firing rate at a stimulation of $5\,\mu\text{A/cm}^2$ is reproduced correctly which is no surprise since our choice of parameters has been based on this input amplitude.

4.3.2.3 Example: Fluctuating input

For a critical test of the nonlinear integrate-and-fire model, we use a fluctuating input current with zero mean. The amplitude of the fluctuations determines the mean firing rate. The nonlinear integrate-and-fire model, however, does not reproduce the firing rate as a function of the fluctuation amplitude of the full model, except at $\nu \approx 40\,\text{Hz}$; cf. Figure 4.19B.

For a more detailed comparison of the nonlinear integrate-and-fire with the full model, we stimulate both models with the same fluctuating current. From Fig. 4.20A, we see that the voltage time course of the two models is most of the time indistinguishable. Occasionally, the nonlinear integrate-and-fire model misses a spike, or adds an extra spike. For this specific input scenario (where the mean firing rate is about $40\,\text{Hz}$), a coincidence rate of about $\sum = 85$ is achieved (based on a precision of $\Delta = \pm2\,\text{ms}$). Outside the regime of $\nu \approx 40\,\text{Hz}$, the coincidence rate \sum breaks down drastically; cf. Fig. 4.20B.
4.3.2.4 Reduction to a Spike Response Model

As a second approximation scheme, we consider the reduction of the conductance-based neuron model to a Spike Response Model. We thus have to determine the kernels \(\eta(t - \hat{t}) \), \(\kappa(t - \hat{t}, s) \), and adjust the

(time-dependent) threshold \(\vartheta(t - \hat{t}) \). We proceed in three steps. As a first step we reduce the model to an integrate-and-fire model with spike-time dependent time constant. As a second step, we integrate the model so as to derive the kernels \(\eta \) and \(\kappa \). As a final step, we choose an appropriate spike-time dependent threshold.

Figure 4.20: A. The spike train of the nonlinear integrate-and-fire model (dashed line) compared to that of the full cortical neuron model (solid line). The integrate-and-fire model fires an extra spike at about \(t = 1652 \) ms but misses the spike that occurs about 4 ms later. Spikes are replaced by triangular pulses that span the refractory period of \(\Delta^\text{abs} = 4 \) ms. For this input scenario (viz. fluctuation amplitude 0.4), a coincidence rate of about 0.85 is achieved (\(\Delta = 2 \) ms). B. Comparison of the coincidence rates \(\Gamma \) for the multi-current integrate-and-fire model (dotted line) and the nonlinear integrate-and-fire model (solid line).

A value of \(\Gamma = 1 \) implies perfectly coincident spike trains, while a value of \(\Gamma = 0 \) implies that coincidences can be explained by chance. For the definition of \(\Gamma \), see Eq. (4.67).
In step (i), we stimulate the full model by a short super-threshold current pulse in order to determine the time course of the action potential and its hyper-polarizing spike after-potential. Let us define \(\hat{t} \) as the time when the membrane potential crosses an (arbitrarily fixed) threshold \(\theta \), e.g., \(\theta = -50 \text{ mV} \). The time course of the membrane potential for \(t > \hat{t} \), i.e., during and after the action potential, defines the kernel \(\eta(t - \hat{t}) \). If we were interested in a purely phenomenological model, we could simply record the numerical time course \(u(t) \) and define \(\eta(t - \hat{t}) = u(t) - u_{\text{rest}} \) for \(t > \hat{t} \); cf. Section 4.3.1. It is, however, instructive to take a semi-analytical approach and study the four gating variables \(m, h, n_{\text{slow}} \) and \(n_{\text{fast}} \). About 2ms after initiation of the spike, all four variables have passed their maximum or minimal values and are on their way back to equilibrium. We set \(\Delta^{\text{abs}} = 2 \text{ms} \). For \(t \geq \hat{t} + \Delta^{\text{abs}} \), we fit the approach to equilibrium by an exponential

\[
x(t) = [x_r - x_{\text{rest}}] \exp \left(-\frac{t - \hat{t} - \Delta^{\text{abs}}}{\tau_x} \right) + x_{\text{rest}}, \tag{4.72}
\]

where \(x = m, h, n_{\text{slow}}, n_{\text{fast}} \) stands for the four gating variables, \(\tau_x \) is a fixed time constant, \(x_r \) is the initial condition at \(t = \hat{t} + \Delta^{\text{abs}} \), and \(x_{\text{rest}} = x_0(u_{\text{rest}}) \) is the equilibrium value of the gating variable at the resting potential.

Given the time course of the gating variables, we know the conductance of each ion channel as a function of time. For example, the potassium current \(I_{\text{K fast}} \) is

\[
I_{\text{K fast}} = g_{\text{K fast}} n_{\text{fast}}^2 (u - E_K) = g_{\text{fast}} (t - \hat{t}) (u - E_K) \tag{4.73}
\]

where \(g_{\text{fast}}(t - \hat{t}) \) is an exponential function with time constant \(\tau_{n_{\text{fast}}}/2 \). We insert the time-dependent conductance into the current equation and find for \(t \geq \hat{t} + \Delta^{\text{abs}} \)

\[
C \frac{d}{dt} u = - \sum_j g_j(t - \hat{t}) [u - E_j] + I_{\text{ext}}. \tag{4.74}
\]

Here, the sum runs over the four ion channels \(I_{\text{Na}}, I_{\text{K slow}}, I_{\text{K fast}}, \) and \(I_l \). With the definition of an effective time constant, \(\tau(t - \hat{t}) = C \sum_j g_j(t - \hat{t}) \), and with \(I_{\text{ion}} = \sum_j g_j(t - \hat{t}) E_j \) we arrive at

\[
C \frac{d}{dt} u = - \frac{u}{\tau(t - \hat{t})} + \frac{1}{C} I_{\text{ion}}(t - \hat{t}) + \frac{1}{C} I_{\text{ext}}(t), \tag{4.75}
\]

which is a linear differential equation with spike-time dependent time constant; cf. Eq. (4.40). The effective time constant is shown in Fig. 4.21.

In step (ii) we integrate Eq. (4.75) with the initial condition

\[
u(\hat{t} + \Delta^{\text{abs}}) = I_{\text{ion}}(\Delta^{\text{abs}}) \tau(\Delta^{\text{abs}})/C \tag{4.76}
\]
and obtain
\[u(t) = \eta(t - \hat{\tau}) + \int_0^{t - \Delta^{abs}} \kappa(t - \hat{\tau}, s) f^{ext}(t - s) \, ds, \quad (4.77) \]

with
\[\kappa(s, t) = \frac{1}{C} \exp \left[- \int_{s-t}^{s} \frac{d\theta'}{\tau(\theta')} \right] \Theta(s - \Delta^{abs} - t) \Theta(t), \quad (4.78) \]
\[\eta(s) = \frac{1}{C} \int_{0}^{s - \Delta^{abs}} \exp \left[- \int_{s-t}^{s} \frac{d\theta'}{\tau(\theta')} \right] \Theta(s - \Delta^{abs}) \, ds. \quad (4.79) \]

Figure 4.21: Variable time constant. The Spike Response Model with kernels (4.78) and (4.79) can be interpreted as an integrate-and-fire model with a time constant \(\tau \) that depends on the time \(s \) since the last spike. Integration restarts after an absolute refractory period of 2ms with a time constant of 0.1ms. The time constant (solid line) relaxes first rapidly and then more slowly towards its equilibrium value of \(\tau \approx 4 \) ms (dashed line).

Finally, in step (iii) we introduce a dynamical threshold
\[\vartheta(s) = \begin{cases} \vartheta^{refr} & \text{for } 0 < s < \Delta^{abs} \\ \vartheta_0 \left[1 - \exp \left(-\frac{s - \Delta^{abs}}{\tau_\vartheta} \right) \right] & \text{for } s \geq \Delta^{abs} \end{cases} \quad (4.80) \]

in order to fit the gain function for stationary input. During the absolute refractory period \(\Delta^{abs} \) the threshold has been set to a value \(\vartheta^{refr} = 100 \) mV that is sufficiently high to prevent the neuron from firing. After refractoriness, the threshold starts at zero and relaxes with a time constant of \(\tau_\vartheta = 6 \) ms to an asymptotic value.
of \(\theta_0 = -50 \text{mV} \). With this set of parameters, we get a fair approximation of the gain function of the full cortical neuron model. The approximation for currents that are just super-threshold is bad, but for \(I_{\text{ext}} \geq 5 \mu \text{A/cm}^2 \) the rates are not too far off, cf. Fig. 4.22A.

4.3.2.5 Example: Fluctuating input

We now test the Spike Response Model with the above set of parameters on a scenario with fluctuating input current. The mean firing rate of the full cortical neuron model and the Spike Response Model as a function of the fluctuation amplitude are similar; cf. Fig. 4.22B. Moreover, there is a high percentage of firing times of the Spike Response Model that coincide with those of the full model with a precision of \(\Delta = \pm 2\text{ms} \) [coincidence rate \(\Gamma = 0.75 \); cf. Eq. (4.67)]. A sample spike train is shown in Fig. 4.23A. Figure 4.23B exhibits a plot of the coincidence measure \(\Gamma \) defined in equation (4.67) as a function of the fluctuation amplitude. In contrast to the nonlinear integrate-and-fire neuron, the coincidence rate is fairly constant over a broad range of stimulus amplitudes. At low rates, however, the coincidence rate drops off rapidly.

Figure 4.22: A. Stationary input. Gain function of the full model (solid line) and the Spike Response Model with constant (dotted line) and dynamic threshold (long-dashed line). B. Fluctuating input. The mean rate of the Spike Response Model (symbols) stimulated by random input is compared with that of the full model for the same input. The amplitude of the random input changes along the horizontal axis.

Figure 4.23: A. The spike train of the full model (solid line) is compared to that of the reduced model (dashed line). At about \(t = 1655 \) the reduced model misses a spike while it adds an extra spike about 10ms later. For this scenario about 80 percent of the spike times are correct within \(\pm 2 \text{ms} \). B. Comparison of the coincidence rates \(\Gamma \) for the multi-current integrate-and-fire model (dotted line), the nonlinear integrate-and-fire model (solid line), and the Spike Response Model (long-dashed line); cf. Fig. 4.20B.
4.3.3 Limitations

Not surprisingly, each approximation scheme is only valid in a limited regime. The natural question is thus whether this is the biologically relevant regime. Since a fluctuating input is probably the most realistic scenario, we have focused our discussion on this form of stimulation. We have seen that in case of a fluctuating input current, integrate-and-fire and Spike Response Model reproduce - to a certain extend - not only the mean firing rate, but also the firing times of the corresponding detailed neuron model. In this discipline, the multi-current integrate-and-fire model clearly yields the best performance. While it is easy to implement and rapid to simulate, it is difficult to analyze mathematically. Strictly speaking, it does not fall in the class of spiking neuron models reviewed in this chapter. It is interesting to see, however, that even the multi-current integrate-and-fire model which is based on a seemingly innocent approximation exhibits, for time-dependent input, a coincidence rate Γ significantly below one. On the fluctuating-input task, we find that the single-variable (nonlinear) integrate-and-fire model exhibits a pronounced peak of Γ at the optimal input, but does badly outside this regime. A Spike Response Model without adapting threshold yields coincidence rates that are not significantly different from the results for the nonlinear integrate-and-fire model. This indicates that the time-dependent threshold that has been included the definition of the Spike Response Model is an important component to achieve generalization over a broad range of different inputs. This also suggests that the nonlinear dependence of $F(u)$ upon the membrane potential is not of eminent importance for the random-input task.

On the other hand, in the immediate neighborhood of the firing threshold, the nonlinear integrate-and-fire model performs better than the Spike Response Model. In fact, the Spike Response Model systematically fails to reproduce delayed action potentials triggered by input that is just slightly super-threshold. As we have seen, the nonlinear integrate-and-fire model is related to a canonical type I model and, therefore, exhibits the `correct' behavior in the neighborhood of the firing threshold.

In summary, it is always possible to design an input scenario where formal spiking neuron models fail. For example, none of the models discussed in this chapter is capable of reproducing effects of a slow adaptation to changes in the input.
4.4 Multi-compartment integrate-and-fire model

The models discussed in this chapter are point neurons, i.e., models that do not take into account the spatial structure of a real neuron. In Chapter 2 we have already seen that the electrical properties of dendritic trees can be described by compartmental models. In this section, we want to show that neurons with a linear dendritic tree and a voltage threshold for spike firing at the soma can be mapped, at least approximatively, to the Spike Response Model.

4.4.1 Definition of the Model

We study an integrate-and-fire model with a passive dendritic tree described by n compartments. Membrane resistance, core resistance, and capacity of compartment μ are denoted by R_T^μ, R_L^μ, and C_μ, respectively.

The longitudinal core resistance between compartment μ and a neighboring compartment ν is $r_{\mu,\nu} = (R_L^\mu + R_L^\nu)/2$; cf. Fig. [C]. Compartment $\mu = 1$ represents the soma and is equipped with a simple mechanism for spike generation, i.e., with a threshold criterion as in the standard integrate-and-fire model. The remaining dendritic compartments ($2 \leq \mu \leq n$) are passive.

Each compartment $1 \leq \mu \leq n$ of neuron i may receive input $I_i(\mu)(t)$ from presynaptic neurons. As a result of spike generation, there is an additional reset current $\Omega_i(t)$ at the soma. The membrane potential $V_i(\mu)$ of compartment μ is given by

$$\frac{d}{dt} V_i(\mu) = \frac{1}{C_i^{\mu}} \left[\frac{V_i(\mu)}{R_{T,i}^{\mu}} + \sum_{\nu} \frac{V_i(\mu) - V_i(\nu)}{r_{i,\nu}} + I_i(\mu)(t) - \delta^{\mu,1} \Omega_i(t) \right], \quad (4.81)$$

where the sum runs over all neighbors of compartment μ. The Kronecker symbol $\delta^{\mu,\nu}$ equals unity if the upper indices are equal; otherwise, it is zero. The subscript i is the index of the neuron; the upper indices μ or ν refer to compartments. Below we will identify the somatic voltage V_i^1 with the potential u_i of the Spike Response Model.
Equation (4.81) is a system of linear differential equations if the external input current is independent of the membrane potential. The solution of Eq. (4.81) can thus be formulated by means of Green’s functions $G_{i\mu\nu}(s)$ that describe the impact of a current pulse injected in compartment ν on the membrane potential of compartment μ. The solution is of the form

$$V_{i\mu}(t) = \sum_\nu \frac{1}{C_{i\nu}} \int_0^\infty G_{i\mu\nu}(s) \left[I_{i\nu}(t-s) - \delta^{\nu i} \int_0^\infty \Omega_{i\nu}(t-s) \right] \, ds. \quad (4.82)$$

Explicit expressions for the Green’s function $G_{i\mu\nu}(s)$ for arbitrary geometry have been derived by Abbott et al. (1991) and Bressloff and Taylor (1994).

We consider a network made up of a set of neurons described by Eq. (4.11) and a simple threshold criterion for generating spikes. We assume that each spike $t_{j}(t)$ of a presynaptic neuron j evokes, for $t > t_{j}(f)$, a synaptic current pulse $\alpha(t - t_{j}(f))$ into the postsynaptic neuron i; cf. Eq. (4.19). The voltage dependence of the synaptic input is thus neglected and the term $(u_i - E_{\text{syn}})$ in Eq. (4.20) is replaced by a constant. The actual amplitude of the current pulse depends on the strength w_{ij} of the synapse that connects neuron j to neuron i. The total input to compartment μ of neuron i is thus

$$I_{i\mu}(t) = \sum_{j \in \Gamma_{i}^\mu} w_{ij} \sum_f \alpha(t - t_{j}(f)). \quad (4.83)$$

Here, Γ_{i}^μ denotes the set of all neurons that have a synapse with compartment μ of neuron i. The firing times of neuron j are denoted by $t_{j}(f)$.

In the following we assume that spikes are generated at the soma in the manner of the integrate-and-fire model. That is to say, a spike is triggered as soon as the somatic membrane potential reaches the firing threshold, ϑ. After each spike the somatic membrane potential is reset to $V_{i1} = u_r < \vartheta$. This is equivalent to a current pulse

$$\gamma_{i}(s) = C_{i1} (\vartheta - u_r) \delta(s), \quad (4.84)$$

so that the overall current due to the firing of action potentials at the soma of neuron i amounts to

$$\Omega_{i}(t) = \sum_f \gamma_{i}(t - t_{i}(f)). \quad (4.85)$$

We will refer to equations (4.82)-(4.85) together with the threshold criterion for generating spikes as the multi-compartment integrate-and-fire model.

4.4.2 Relation to the Model SRM$_0$

Using the above specializations for the synaptic input current and the somatic reset current the membrane potential $V_{i\mu}$ of compartment μ in neuron i can be rewritten as
\[V_{i\mu}(t) = \sum_f \eta_{i\mu}^f(t - t_i^{(f)}) + \sum_{\nu} \sum_{j \in \Gamma_{i\nu}} w_{ij} \sum_f \epsilon_{ij}^{\mu\nu}(t - t_j^{(f)}). \] (4.86)

with

\[\epsilon_{ij}^{\mu\nu}(s) = \frac{1}{C_{ij}} \int_0^\infty G_{i\mu\nu}(s') \alpha(s - s') \, ds', \] (4.87)

\[\eta_{i\mu}^f(s) = \frac{1}{C_i} \int_0^\infty G_{i\mu i}(s') \gamma_i(s - s') \, ds'. \] (4.88)

The kernel \(\epsilon_{ij}^{\mu\nu}(s) \) describes the effect of a presynaptic action potential arriving at compartment \(\nu \) on the membrane potential of compartment \(\mu \). Similarly, \(\eta_{i\mu}^f(s) \) describes the response of compartment \(\mu \) to an action potential generated at the soma.

The triggering of action potentials depends on the somatic membrane potential only. We define \(u_i = V_i^1, \eta_i(s) = \eta_i^1(s) \) and, for \(j \in \Gamma_i \), we set \(\epsilon_{ij} = \epsilon_{ij}^{1\nu} \). This yields

\[u_i(t) = \sum_f \eta_i(t - t_i^{(f)}) + \sum_j w_{ij} \sum_f \epsilon_{ij}^{(t - t_j^{(f)})}. \] (4.89)

As in (4.54), we use a short-term memory approximation and truncate the sum over the \(\eta_i \)-terms. The result is

\[u_i(t) = \eta_i(t - \hat{\tau}_i) + \sum_j w_{ij} \sum_f \epsilon_{ij}^{(t - t_j^{(f)})}. \] (4.90)

where \(\hat{\tau}_i \) is the last firing time of neuron \(i \). Thus, the multi-compartment model has been reduced to the single-variable model of Eq. (4.42). The approximation is good, if the typical inter-spike interval is long compared to the neuronal time constants.

4.4.2.1 Example: Two-compartment integrate-and-fire model

![Graph A](http://diwww.epfl.ch/~gerstner/SPNM/node29.html (3 of 7) [25.9.2002 7:35:21])

![Graph B](http://diwww.epfl.ch/~gerstner/SPNM/node29.html (3 of 7) [25.9.2002 7:35:21])
Figure 4.24: Two-compartment integrate-and-fire model. A. Response kernel $\eta_0(s)$ of a neuron with two compartments and a fire-and-reset threshold dynamics. The response kernel is a double exponential with time constants $\tau_{12} = 2$ ms and $\tau_0 = 10$ ms. The spike at $s = 0$ is indicated by a vertical arrow. B. Response kernel $\varepsilon_0(s)$ for excitatory synaptic input at the dendritic compartment with a synaptic time constant $\tau_s = 1$ ms. The response kernel is a superposition of three exponentials and exhibits the typical time course of an excitatory postsynaptic potential.

We illustrate the Spike Response method by a simple model with two compartments and a reset mechanism at the soma (Rospars and Lansky, 1993). The two compartments are characterized by a somatic capacitance C_1 and a dendritic capacitance $C_2 = a C_1$. The membrane time constant is $\tau_0 = R_1 C_1 = R_2 C_2$ and the longitudinal time constant $\tau_{12} = r_{12} C_1 C_2/(C_1 + C_2)$. The neuron fires, if $V(t) = \vartheta$. After each firing the somatic potential is reset to u_r. This is equivalent to a current pulse

$$\gamma(s) = q \delta(s), \quad (4.91)$$

where $q = C_1 [\vartheta - u_r]$ is the charge lost during the spike. The dendrite receives spike trains from other neurons j and we assume that each spike evokes a current pulse with time course

$$\alpha(s) = \frac{1}{\tau_s} \exp \left(-\frac{s}{\tau_s} \right) \Theta(s). \quad (4.92)$$

For the two-compartment model it is straightforward to integrate the equations and derive the Green’s function. With the Green’s function we can calculate the response kernels $\eta_0(s) = \eta_{10}$ and $\varepsilon_0(s) = \varepsilon_{12}$ as defined in Eqs. (4.87) and (4.88); cf. Tuckwell (1988), Bressloff and Taylor (1994). We find

$$\eta_0(s) = -\frac{\vartheta - u_r}{1 + a} \exp \left(-\frac{s}{\tau_0} \right) \left[1 + a \exp \left(-\frac{s}{\tau_{12}} \right) \right], \quad (4.93)$$

$$\varepsilon_0(s) = \frac{1}{(1 + a)} \exp \left(-\frac{s}{\tau_0} \right) \left[1 - e^{-\delta_1 s} \right] \left[1 - e^{-\delta_2 s} \right], \quad (4.93)$$

with $\delta_1 = \tau_{12}^{-1} - \tau_0^{-1}$ and $\delta_2 = \tau_{s}^{-1} - \tau_{12}^{-1} - \tau_0^{-1}$. Figure 4.24 shows the two response kernels with parameters $\tau_0 = 10$ ms, $\tau_{12} = 2$ ms, and $a = 10$. The synaptic time constant is $\tau_s = 1$ ms. The kernel $\varepsilon_0(s)$ describes the voltage response of the soma to an input at the dendrite. It shows the typical time course of an excitatory or inhibitory postsynaptic potential. The time course of the kernel $\eta_0(s)$ is a double exponential and reflects the dynamics of the reset in a two-compartment model.

4.4.3 Relation to the Full Spike Response Model (*)

In the previous subsection we had to neglect the effect of spikes $t_i^{(i)}$ (except that of the most recent one) on the somatic membrane potential of the neuron i itself in order to map Eq. (4.82) to the Spike Response Model. We can do better if we allow that the response kernels ε depend explicitly on the last firing time of the presynaptic
neuron. This alternative treatment is an extension of the approach that has already been discussed in Section 4.2.2 in the context of a single-compartment integrate-and-fire model.

In order to account for the renewal property of the Spike Response Model we should solve Eq. (4.81) with initial conditions stated at the last presynaptic firing time \(\hat{t}_i \). Unfortunately, the set of available initial conditions at \(\hat{t}_i \) is incomplete because only the somatic membrane potential equals \(u_r \) immediately after \(t = \hat{t}_i \). For the membrane potential of the remaining compartments we have to use initial conditions at \(t = -\infty \), but we can use a short-term memory approximation and neglect indirect effects from earlier spikes on the present value of the somatic membrane potential.

We start with Eq. (4.82) and split the integration over \(s \) at \(s = \hat{t}_i \) into two parts,

\[
V_{i1}^1(t) = \sum_{\nu} \frac{1}{C_{i\nu}} \int_{-\infty}^{t} ds \ G_{i\nu}(t-s) \left[I_{i\nu}(s) - \delta^{1\nu} \Omega_i(s) \right] + \sum_{\nu} \frac{1}{C_{i\nu}} \int_{\hat{t}_i+0}^{t} ds \ G_{i\nu}(t-s) I_{i\nu}(s).
\] (4.94)

The limits of the integration have been chosen to be at \(\hat{t}_i + 0 \) in order to ensure that the Dirac \(\delta \)-pulse for the reset of the membrane potential is included in the first term.

With \(G_{i\nu}(t-s) = \sum_{\mu} G_{i\mu}(t-\hat{t}_i) G_{i\nu}(\hat{t}_i - s) \), which is a general property of Green's functions, we obtain

\[
V_{i1}^1(t) = \sum_{\mu} G_{i\mu}(t-\hat{t}_i) \sum_{\nu} \frac{1}{C_{i\nu}} \int_{-\infty}^{t} ds \ G_{i\mu\nu}(\hat{t}_i - s) \left[I_{i\nu}(s) - \delta^{1\nu} \Omega_i(s) \right] + \sum_{\nu} \frac{1}{C_{i\nu}} \int_{\hat{t}_i+0}^{t} ds \ G_{i\nu}(t-s) I_{i\nu}(s).
\] (4.95)

With the known initial condition at the soma,

\[
V_{i1}^1(\hat{t}_i + 0) = \sum_{\nu} \frac{1}{C_{i\nu}} \int_{-\infty}^{\hat{t}_i+0} ds \ G_{i\nu}(\hat{t}_i - s) \left[I_{i\nu}(s) - \delta^{1\nu} \Omega_i(s) \right] = u_r \quad (4.96)
\]

we find

\[
V_{i1}^1(t) = G_{i11}(t-\hat{t}_i) u_r
+ \sum_{\mu \geq 2} \sum_{\nu} \frac{1}{C_{i\nu}} G_{i\mu}(t-\hat{t}_i) \int_{-\infty}^{\hat{t}_i+0} ds \ G_{i\mu\nu}(\hat{t}_i - s) \left[I_{i\nu}(s) - \delta^{1\nu} \Omega_i(s) \right]
+ \sum_{\nu} \frac{1}{C_{i\nu}} \int_{\hat{t}_i+0}^{t} ds \ G_{i\nu}(t-s) I_{i\nu}(s).
\] (4.97)
The voltage reset at the soma is described by \(\Omega_i(t) = C_i^1 (\Theta - u_r) \sum_j \delta (t - t_j^{(f)}); \) cf. Eqs. (4.84) and (4.85).

After shifting the terms with \(\Omega \) to the end and substituting its definition, we obtain

\[
V_i^1(t) = G_i^{11}(t - \hat{t}_i) u_r \\
+ \sum_{\mu \geq 2} \sum_{\nu} \frac{1}{C_{i\nu}} G_{i\mu}^1(t - \hat{t}_i) \int_{-\infty}^{\hat{t}_i+0} ds \ G_{i\mu \nu}(\hat{t}_i - s) I_{i\nu}(s) \\
+ \sum_{\nu} \frac{1}{C_{i\nu}} \int_{\hat{t}_i+0}^{t} ds \ G_{i\nu}^1(t - s) I_{i\nu}(s) \\
+ (\Theta - u_r) \sum_{\mu \geq 2} \sum_{f} G_{i\mu}^1(t - \hat{t}_i) G_{i\mu \nu}(\hat{t}_i - t_f^{(f)}) \].
\]

(4.98)

If we introduce

\[
\tilde{G}_{i\nu}^1(r, s) = \begin{cases}
\frac{1}{C_{i\nu}} G_{i\nu}^1(s), & r > s \\
\frac{1}{C_{i\nu}} \sum_{\mu \geq 2} G_{i\mu}^1(r) G_{i\mu \nu}^\nu(s - r), & r < s
\end{cases}
\]

(4.99)

we can collect the integrals in Eq. (4.98) and obtain

\[
V_i^1(t) = G_i^{11}(t - \hat{t}_i) u_r \\
+ \sum_{\nu} \int_{-\infty}^{t} ds \ \tilde{G}_{i\nu}^1(t - \hat{t}_i, t - s) I_{i\nu}(s) \\
+ (\Theta - u_r) \sum_{\mu \geq 2} \sum_{f} G_{i\mu}^1(t - \hat{t}_i) G_{i\mu \nu}(\hat{t}_i - t_f^{(f)}) \].
\]

(4.100)

This expression has a clear interpretation. The first term describes the relaxation of the somatic membrane potential in the absence of further input. The second term accounts for external input to any of the compartments integrated up to time \(t \). Finally, the last term reflects an indirect influence of previous spikes on the somatic membrane potential via other compartments that are not reset during an action potential. In fact, the sum over the firing times in the last term stops at the last but one action potential since \(G_{i\mu \nu}(\hat{t}_i - t_f^{(f)}) \), \(\mu > 1 \), is zero if \(\hat{t}_i = t_f^{(f)} \).

If we neglect the last term in Eq. (4.100), that is, if we neglect any indirect effects of previous action potentials on the somatic membrane potential, then Eq. (4.100) can be mapped on the Spike Response Model (4.24) by introducing kernels

\[
\hat{e}_{i\nu}^1(r, s) = \int_0^\infty dt' \ \tilde{G}_{i\nu}^1(r, t') \alpha(t' - s),
\]

(4.101)
\[\eta_i(s) = G_{i11}(s) u_e. \]

(4.102)

Here, \(\alpha(s) \) describes the form of an elementary postsynaptic current; cf. Eq. (4.83). With these definitions the somatic membrane potential \(u_i(t) \equiv V_{i1}(t) \) of neuron \(i \) is

\[
u_i(t) = \eta_i(t - \hat{t}_i) + \sum_{j \in \Gamma_i} \sum_{f} w_{ij} \sum_{v} \varepsilon_{i}^{v}(t - \hat{t}_i, t - \hat{t}_j). \]

(4.103)

which is the equation of the Spike Response Model.
4.5 Application: Coding by Spikes

Formal spiking neuron models allow a transparent graphical discussion of various coding principles. In this section we illustrate some elementary examples.

4.5.0.1 Time-to-First-Spike

We have seen in Chapter 1.4 that the time of the first spike can convey information about the stimulus. In order to construct a simple example, we consider a single neuron i described by the spike response model SRM$_0$. The neuron receives spikes from N presynaptic neurons j via synaptic connections that have all the same weight $w_{ij} = w$. There is no external input. We assume that the last spike of neuron i occurred long ago so that the spike after-potential in (4.42) can be neglected.

At $t = t^{\text{pre}}$, $n < N$ presynaptic spikes are simultaneously generated and produce a postsynaptic potential,

$$u_i(t) = n w \: \varepsilon(t - t^{\text{pre}}).$$

(4.104)

A postsynaptic spike occurs whenever u_i reaches the threshold ϑ. We consider the firing time $t_i^{(f)}$ of the first output spike,

$$t_i^{(f)} = \min\{t > t^{\text{pre}} \mid u_i(t) = \vartheta\},$$

(4.105)

which is a function of n. A larger number of presynaptic spikes n results in a postsynaptic potential with a larger amplitude so that the firing threshold is reached earlier. The time difference $t_i^{(f)} - t^{\text{pre}}$ is hence a measure of the number of presynaptic pulses. To put it differently, the timing of the first spike encodes the strength of the input; cf. Fig. 4.25.
Figure 4.25: Time-to-first-spike. The firing time \(t^f \) encodes the number \(n_1 \) or \(n_2 \) of presynaptic spikes which have been fired synchronously at \(t^{\text{pre}} \). If there are less presynaptic spikes, the potential \(u \) rises more slowly (dashed) and the firing occurs later. For the sake of simplicity, the axonal delay has been set to zero; taken from Gerstner (1998).

4.5.0.2 Phase Coding

Phase coding is possible if there is a periodic background signal that can serve as a reference. We want to show that the phase of a spike contains information about a static stimulus \(h_0 \). As before we take the model SRM0 as a simple description of neuronal dynamics. The periodic background signal is included into the external input. Thus we use an input potential

\[
h(t) = h_0 + h_1 \cos \left(\frac{2\pi}{T} t \right),
\]

where \(h_0 \) is the constant stimulus and \(h_1 \) is the amplitude of the \(T \)-periodic background; cf. Eq. (4.46).

Let us consider a single neuron driven by (4.106). The membrane potential of a SRM0 neuron is, according to (4.42) and (4.46)

\[
u(t) = \eta(t - \hat{t}) + h(t),
\]

As usual \(\hat{t} \) denotes the time of the most recent spike. To find the next firing time, Eq. (4.107) has to be combined with the threshold condition \(u(t) = \vartheta \). We are interested in a solution where the neuron fires regularly and with the same period as the background signal. In this case the threshold condition reads

\[
\vartheta - \eta(T) = h_0 + h_1 \cos \left(\frac{2\pi}{T} \hat{t} \right).
\]

For a given period \(T \), the left-hand side has a fixed value and we can solve for \(\varphi = 2\pi \hat{t}/T \). There are two solutions but only one of them is stable. Thus the neuron has to fire at a certain phase \(\varphi \) with respect to the external signal. The value of \(\varphi \) depends on the level of the constant stimulation \(h_0 \). In other words, the strength \(h_0 \) of the stimulation is encoded in the phase of the spike. In Eq. (4.108) we have moved \(\eta \) to the left-hand side in order to suggest a dynamic threshold interpretation. A graphical interpretation of Eq. (4.108) is given in Fig. 4.26.

Figure 4.26: Phase coding. Firing occurs whenever the total input
potential \(h(t) = h_0 + h_1 \cos(2\pi t/T) \) hits the dynamic threshold \(\vartheta - \eta(t - \hat{t}) \) where \(\hat{t} \) is the most recent firing time; cf. Fig. 1.11. In the presence of a periodic modulation \(h_1 \neq 0 \), a change \(\Delta h_0 \) in the level of (constant) stimulation results in a change \(\Delta \varphi \) in the phase of firing; taken from Gerstner (1998).

4.5.0.3 Correlation coding

Let us consider two uncoupled neurons. Both receive the same constant external stimulus \(h(t) = h_0 \). As a result, they fire regularly with period \(T \) given by \(\eta(T) = h_0 \) as can be seen directly from Eq. (4.108) with \(h_1 = 0 \). Since the neurons are not coupled, they need not fire simultaneously. Let us assume that the spikes of neuron 2 are shifted by an amount \(\delta \) with respect to neuron 1.

Suppose that, at a given moment \(\tau_{\text{pre}} \), both neurons receive input from a common presynaptic neuron \(j \). This causes an additional contribution \(\varepsilon(t - \tau_{\text{pre}}) \) to the membrane potential. If the synapse is excitatory, the two neurons will fire slightly sooner. More importantly, the spikes will also be closer together. In the situation sketched in Fig. 4.27 the new firing time difference \(\hat{\delta} \) is reduced, \(\hat{\delta} < \delta \). In later chapters, we will analyze this phenomenon in more detail. Here we just note that this effect would allow us to encode information using the time interval between the firings of two or more neurons.

![Figure 4.27: The firing time difference \(\delta \) between two independent neurons is decreased to \(\hat{\delta} < \delta \), after both neurons receive a common excitatory input at time \(\tau_{\text{pre}} \); taken from Gerstner (1998).](image)

4.5.0.4 Decoding: Synchronous versus asynchronous input

In the previous paragraphs we have studied how a neuron can encode information in spike timing, phase, or correlations. We now ask the inverse question, viz., how can a neuron read out temporal information? We consider the simplest example and study whether a neuron can distinguish synchronous from asynchronous input. As above we make use of the simplified neuron model SRM0 defined by (4.42) and (4.43). We will show that synchronous input is more efficient than asynchronous input in driving a postsynaptic neuron.

To illustrate this point, let us consider an \(\varepsilon \) kernel of the form

\[
\varepsilon_{\Theta}(s) = J \frac{S}{\tau} \exp \left(-\frac{s}{\tau} \right) \Theta(s). \tag{4.109}
\]

We set \(J = 1 \) mV and \(\tau = 10 \) ms. The function (4.109) has a maximum value of \(J/e \) at \(s = \tau \). The integral over \(s \) is normalized to \(J\tau \).

Let us consider a neuron \(i \) which receives input from 100 presynaptic neurons \(j \). Each presynaptic neuron fires at a rate of 10 Hz. All synapses have the same efficacy \(w = 1 \). Let us first study the case of asynchronous input.
Different neurons fire at different times so that, on average, spikes arrive at intervals of $\Delta t = 1$ ms. Each spike evokes a postsynaptic potential defined by (4.109). The total membrane potential of neuron i is

$$u_i(t) = \eta(t - \hat{t}_i) + \sum_j \sum w \varepsilon_0(t - t_j^{(i)})$$

$$\approx \eta(t - \hat{t}_i) + w \sum_{n=0}^{\infty} \varepsilon_0(t - n \Delta t) \quad (4.110)$$

If neuron i has been quiescent in the recent past ($t - \hat{t}_i \rightarrow \infty$), then the first term on the right-hand side of (4.110) can be neglected. The second term can be approximated by an integral over s, hence

$$u_i(t) \approx \frac{w}{\Delta t} \int_0^{\infty} \varepsilon_0(s) \, ds = \frac{w}{\Delta t} \int J \tau = 10 \, mV \quad (4.111)$$

If the firing threshold of the neuron is at $\theta = 20 \, mV$ the neuron stays quiescent.

Figure 4.28: Potential u of a postsynaptic neuron which receives input from two groups of presynaptic neurons. **A.** Spike trains of the two groups are phase shifted with respect to each other. The total potential u does not reach the threshold. There are no output spikes. **B.** Spikes from two presynaptic groups arrive synchronously. The summed EPSPs reach the threshold and cause the generation of an output spike.

Now let us consider the same amount of input, but fired synchronously at $t_j^{(i)} = 0, 100, 200, \ldots$ ms. Thus each presynaptic neuron fires as before at 10 Hz but all presynaptic neurons emit their spikes synchronously. Let us study what happens after the first volley of spikes has arrived at $t = 0$. The membrane potential of the postsynaptic neuron is

$$u_i(t) = \eta(t - \hat{t}_i) + N w \varepsilon_0(t) \quad (4.112)$$

where $N = 100$ is the number of presynaptic neurons. If the postsynaptic neuron has not been active in the recent past, we can neglect the refractory term η on the right-hand side of Eq. (4.112). The maximum of (4.112) occurs at $t = \tau = 10 \, ms$ and has a value of $wN\mu e \approx 37 \, mV$ which is above threshold. Thus the postsynaptic neuron fires before $t = 10 \, ms$. We conclude that the same number of input spikes can have different effects depending on their level of synchrony; cf. Fig. 4.28.

We will return to the question of coincidence detection, i.e., the distinction between synchronous and asynchronous input, in the following chapter. For a classical experimental study exploring the relevance of temporal structure in the input, see Segundo et al. (1963).
4.5.0.5 Example: Spatio-temporal summation

Figure 4.29: Sensitivity to temporal order of synaptic inputs on a dendrite. **A.** A neuron is stimulated by three synaptic inputs in a sequence that starts at the distal part of the dendrite and ends with an input close to the soma. Since the EPSP caused by the distal input has a longer rise time than that generated by the proximal input, the EPSPs add up coherently and the membrane potential reaches the firing threshold Θ. **B.** If the temporal sequence of spike inputs is reversed, the same number of input spikes does not trigger an action potential (schematic figure).

In neurons with a spatially extended dendritic tree the form of the postsynaptic potential depends not only on the type, but also on the location of the synapse; cf. Chapter 2. To be specific, let us consider a multi-compartment integrate-and-fire model. As we have seen above in Section 4.4, the membrane potential $u_i(t)$ can be described by the formalism of the Spike Response Model. If the last output spike \hat{t}_i is long ago, we can neglect the refractory kernel η_i and the membrane potential is given by

$$u_i(t) = \sum_j w_{ij} \sum_f \epsilon_{ij}(t - t_j^{(0)}).$$

(4.113)

cf. Eq. (4.90). The subscript ij at the ϵ kernel takes care of the fact that the postsynaptic potential depends on the location of the synapse on the dendrite. Due to the low-pass characteristics of the dendrite, synaptic input at the tip of the dendrite causes postsynaptic potentials with a longer rise time and lower amplitude than input directly into the soma. The total potential $u_i(t)$ depends therefore on the temporal order of the stimulation of the synapses. An input sequence starting at the far end of the dendrite and approaching the soma is more effective in triggering an output spike than the same number of input spikes in reverse order; cf. Fig. 4.29.
4.6 Summary

In formal spiking neuron models, spikes are fully characterized by their firing time $t^{(f)}$ defined by a threshold criterion. Integrate-and-fire and Spike Response Model are typical examples of spiking neuron models. Leaky integrate-and-fire point neurons with current input can be mapped exactly to the Spike Response Model. Even multi-compartment integrate-and-fire models can be mapped to the Spike Response Model, if indirect effects due to previous output spikes are neglected. An integrate-and-fire model with *spike-time* dependent parameters, which is a generalization of the leaky integrate-and-fire model, can be seen as a special case of the Spike Response Model. The nonlinear integrate-and-fire model, i.e., a model where parameters are *voltage* dependent is a different generalization. The quadratic integrate-and-fire model is particularly interesting since it is a generic example for a type I neuron model.

Detailed conductance based neuron models can be approximately mapped to formal spiking neuron models. With the help of formal spiking neuron models, problems of pulse coding can be studied in a transparent graphical manner. The Spike Response Model, defined in this chapter, will be reconsidered in part II where systems of spiking neurons are analyzed.

Literature

Formal neuron models where spikes are triggered by a threshold process have been popular in the sixties (Stein, 1967b, 1965; Weiss, 1966; Geisler and Goldberg, 1966), but the ideas can be traced back much further (Hill, 1936; Lapicque, 1907). It has been recognized early that these models lend themselves for hardware implementations (French and Stein, 1970) and mathematical analysis (Stein, 1967a, 1965), and can be fitted to experimental data (Brillinger, 1988, 1992). Recent developments in computation and coding with formal spiking neurons has been reviewed in the book 'Pulsed Neural Networks' edited by Maass and Bishop (1998).
Application: Coding by Gerstner and Kistler

Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
In vivo recordings of neuronal activity are characterized by a high degree of irregularity. The spike train of individual neurons is far from being periodic and relations between the firing patterns of several neurons seem to be random. If the electrical activity picked up by an extra-cellular electrode is made audible by a loudspeaker then we basically hear - noise. The question whether this is indeed just noise or rather a highly efficient way of coding information cannot easily be answered. Listening to a computer modem or a fax machine might also leave the impression that this is just noise. Being able to decide whether we are witnessing the neuronal activity that is underlying the composition of a poem (or the electronic transmission of a love letter) and not just meaningless noise is one of the most burning problems in Neuroscience.

Several experiments have been undertaken to tackle this problem. It seems as if neurons can react in a very reliable and reproducible manner to fluctuating currents that are injected via intracellular electrodes. As long as the same time-course of the injected current is used the action potentials occur with precisely the same timing relative to the stimulation (Bryant and Segundo, 1976; Mainen and Sejnowski, 1995). A related phenomenon can be observed by using non-stationary sensory stimulation. Spatially uniform random flicker, for example, elicits more or less the same spike train in retinal ganglion cells if the same flicker sequence is presented again (Berry et al., 1997). A similar behavior has been reported for motion-sensitive neurons of the visual system in flies (de Ruyter van Steveninck et al., 1997) and monkey cortex (Bair and Koch, 1996). On the other hand, neurons produce irregular spike trains in the absence of any temporally structured stimuli. Irregular spontaneous activity, i.e., activity that is not related in any obvious way to external stimulation, and trial-to-trial variations in neuronal responses are often considered as noise (Shadlen and Newsome, 1994; Softky and Koch, 1993).

The origin of the irregularity in the electrical activity of cortical neurons in vivo is poorly understood. In spiking neuron models such as the integrate-and-fire or Spike Response Model (SRM), noise is therefore often added explicitly to neuronal dynamics so as to mimic the unpredictability of neuronal recordings. In this chapter we present three different ways to implement noise in models of neuronal networks, viz. escape noise (Section 5.3), slow noise in the parameters (Section 5.4), and diffusive noise (Section 5.5). In Section 5.6 we discuss the differences between subthreshold and superthreshold stimulation and explain its consequences for spike
train variability. In the subthreshold regime, it is possible to relate the diffusive noise model to the escape noise model. Section 5.7 illustrates this relation. The noise models are finally applied to the phenomenon of stochastic resonance in Section 5.8 and compared with rate models in Section 5.9. Before we start with the discussion of the noise models, we review in Section 5.1 some experimental evidence for noise in neurons and introduce in Section 5.2 a statistical framework of spike train analysis.

Subsections

- **5.1 Spike train variability**
 - 5.1.1 Are neurons noisy?
 - 5.1.2 Noise sources

- **5.2 Statistics of spike trains**
 - 5.2.1 Input-dependent renewal systems
 - 5.2.2 Interval distribution
 - 5.2.3 Survivor function and hazard
 - 5.2.4 Stationary renewal theory and experiments
 - 5.2.5 Autocorrelation of a stationary renewal process

- **5.3 Escape noise**
 - 5.3.1 Escape rate and hazard function
 - 5.3.2 Interval distribution and mean firing rate

- **5.4 Slow noise in the parameters**
- **5.5 Diffusive noise**
 - 5.5.1 Stochastic spike arrival
 - 5.5.2 Diffusion limit (*)
 - 5.5.3 Interval distribution

- **5.6 The subthreshold regime**
 - 5.6.1 Sub- and superthreshold stimulation
 - 5.6.2 Coefficient of variation C_V

- **5.7 From diffusive noise to escape noise**
5. Noise in Spiking Neuron Models

- 5.8 Stochastic resonance
- 5.9 Stochastic firing and rate models
 - 5.9.1 Analog neurons
 - 5.9.2 Stochastic rate model
 - 5.9.3 Population rate model

- 5.10 Summary
 - Literature
5.1 Spike train variability

If neuron models such as the Hodgkin-Huxley or the integrate-and-fire model are driven by a sufficiently strong constant current, they generate a regular sequence of spikes. In neuronal models with adaptation currents there might be a short transient phase at the beginning, but then all interspike intervals are constant. Spike trains of typical neurons in vivo show a much more irregular behavior. Whether the irregularity is the sign of noise or of a rich code is at present an open question (Softky and Koch, 1993; Shadlen and Newsome, 1994; Bair and Koch, 1996). In the first subsection we review some evidence for neuronal variability and spike train irregularity. We then discuss potential sources of noise.

5.1.1 Are neurons noisy?

Many in vivo experiments show noisy behavior of central neurons. The activity of neurons from the visual cortex, for example, can be recorded while a slowly moving bar is presented on a screen within the visual field of the animal (Hubel and Wiesel, 1977,1959). As soon as the bar enters the neuron's receptive field the firing rate goes up until the bar leaves the receptive field at the opposite border. The spike train, however, varies considerably from trial to trial, if the same experiment is repeated several times. Furthermore, the very same neuron is spontaneously active even if the screen is blank and no external stimulus is applied. During spontaneous activity, the intervals between one spike and the next exhibit a large variability resulting in a broad distribution of interspike intervals; see e.g., Softky and Koch (1993).

Are these experiments convincing evidence for ubiquitous noise in the central nervous system? The above two observations refer to experiments on the neural system as a whole. The cortical neuron that is recorded from, does not only receive input from the retina, but also from many other neurons in the brain. The effective input to this neuron is basically unknown. It is thus possible that there is a substantial fluctuation in the input current to cortical neurons, even though the external (visual) stimulus is only slowly changing.
In fact, when neurons are driven by a known time-dependent intracellular input current, neurons seem to behave more or less deterministically (Zador, 1998; Bryant and Segundo, 1976; Mainen and Sejnowski, 1995). Moreover, if the external visual stimulus changes rapidly, neurons in the visual system react much more reliably than for constant or slowly moving stimuli (Maraálek et al., 1997; Bialek et al., 1991; de Ruyter van Steveninck et al., 1997; Berry et al., 1997; Bair and Koch, 1996). Whether a neuron behaves nearly deterministically or rather randomly thus depends, at least to a certain extent, on the stimulus.

5.1.2 Noise sources

We distinguish between intrinsic noise sources that generate stochastic behavior on the level of the neuronal dynamics; and extrinsic sources that arise from network effects and synaptic transmission (Manwani and Koch, 1999).

A source of noise, which is literally omnipresent, is thermal noise. Due to the discrete nature of electric charge carriers, the voltage u across any electrical resistor R fluctuates at finite temperature (Johnson noise). The variance of the fluctuations at rest is $\left\langle \Delta u^2 \right\rangle \propto R k T B$ where k is the Boltzmann constant, T the temperature and B the bandwidth of the system (Manwani and Koch, 1999). Since neuronal dynamics is described by an equivalent electrical circuit containing resistors (cf. Chapter 2.2), the neuronal membrane potential fluctuates as well. Fluctuations due to Johnson noise are, however, of minor importance compared to other noise sources in neurons (Manwani and Koch, 1999).

Another source of noise that is specific to neurons arises from the finite number of ion channels in a patch of neuronal membrane (White et al., 2000; Schneidman et al., 1998). Most ion channels have only two states: they are either open or closed. The electrical conductivity of a patch of membrane for ion type i is proportional to the number of open ion channels. For a given constant membrane potential u, a fraction $P_i(u)$ of ion channel of type i is open on average. The actual number of open channels fluctuates around $N_i P_i(u)$ where N_i is the total number of ion channels of type i in that patch of membrane. The formulation of the Hodgkin-Huxley equations in terms of ion channel conductivities (see Chapter 2.2) is implicitly based on the assumption of a large number of ion channels so that fluctuations can be neglected. Since, in reality, N_i is finite, the conductivity fluctuates and so does the potential. If the membrane potential is close to the threshold, channel noise can be critical for the generation of action potentials. Models that take the finite number of ion channels into account, can reproduce the observed variability of real neurons with intracellular stimulation (Chow and White, 1996; Schneidman et al., 1998). In particular, they show little spike jitter if the input current is rapidly changing, but are less reliable if the input current is constant.

Apart from intrinsic noise sources at the level of an individual neuron there are also
sources of noise that are due to signal transmission and network effects (extrinsic
noise). Synaptic transmission failures, for instance, seem to impose a substantial
limitation to signal transmission within a neuronal network. Experiments with
double electrode recordings from two synaptically connected neurons suggest that
only 10-30 percent of presynaptic spikes generate a postsynaptic response (Markram
and Tsodyks, 1996; Hessler et al., 1993).

Finally, an important part of the irregularity of neuronal spiking during spontaneous
activity seems to be due to the properties of the network as a whole rather than to
individual neurons. In model studies it has been shown that networks of excitatory
and inhibitory neurons with fixed random connectivity can produce highly irregular
spike trains - even in the absence of any source of noise (van Vreeswijk and
Sompolinsky, 1996; Kistler and De Zeeuw, 2002; Brunel and Hakim, 1999; Nützel
et al., 1994; Fusi et al., 2000). We will discuss the underlying mechanisms in
Sections 6.4.3 and 8.3. As a result of the network activity, each neuron receives as
input an irregular spike sequence that can be described as stochastic spike arrival;
cf. Section 5.5. The difference between the large variability of neurons in vivo
compared to that during intracellular stimulation in vitro can therefore be, at least
partially, attributed to network effects.
5.2 Statistics of spike trains

In this section, we introduce some important concepts for the statistical description of neuronal spike trains. A central notion will be the interspike interval distribution which is discussed in the framework of a generalized input-dependent renewal theory. We start in Section 5.2.1 with the definition of renewal systems and turn then in Section 5.2.2 to interval distributions. The relation between interval distributions and neuronal models will be the topic of Sections 5.3 and 5.5.

5.2.1 Input-dependent renewal systems

We consider a single neuron such as an integrate-and-fire or SRM unit. Let us suppose that we know the last firing time \(\hat{t} \) of the neuron and its input current \(I \). In formal spiking neuron models such as the SRM, the membrane potential \(u \) is then completely determined, i.e.,

\[
u(t|\hat{t}) = \eta(t - \hat{t}) + \int_{0}^{\infty} \kappa(t - \hat{t}, s) I(t - s) \, ds ,
\]

(5.1)
cf. Eq. (4.24). In particular, for the integrate-and-fire model with membrane time constant \(\tau_m \) and capacity \(C \) we have

\[
u(t|\hat{t}) = u_r \exp\left(-\frac{t - \hat{t}}{\tau}\right) + \frac{1}{C} \int_0^{t - \hat{t}} \exp\left(-\frac{s}{\tau}\right) I(t - s) \, ds, \tag{5.2}\]

cf. Eq. (4.10). In general, part or all of the input current \(I \) could arise from presynaptic spikes. Here we simply assume that the input current \(I \) is a known function of time.

Given the input and the firing time \(\hat{t} \) we would like to predict the next action potential. In the absence of noise, the next firing time \(t^{(f)} \) of a neuron with membrane potential (5.1) is determined by the threshold condition \(u = \mathcal{G} \). The first threshold crossing occurs at

\[t^{(f)} = \min \left\{ t > \hat{t} \mid u(t|\hat{t}) \geq \mathcal{G} \right\}. \tag{5.3}\]

In the presence of noise, however, we are no longer able to predict the exact firing time of the next spike, but only the probability that a spike occurs. The calculation of the probability distribution of the next firing time for arbitrary time-dependent input \(I \) is one of the major goals in the theory of noisy spiking neurons.

Equations. (5.1) and (5.2) combined with a (stochastic) spike generation procedure are examples of input-dependent renewal systems. Renewal processes are a class of stochastic point processes that describe a sequence of events (spikes) in time (Cox, 1962; Papoulis, 1991). Renewal systems in the narrow sense (stationary renewal processes), presuppose stationary input and are defined by the fact that the state of the system, and hence the probability of generating the next event, depends only on the `age' \(t - \hat{t} \) of the system, i.e., the time that has passed since the last event (last spike). The central assumption of renewal theory is that the state does not depend on earlier events (i.e., earlier spikes of the same neuron). The aim of renewal theory is to predict the probability of the next event given the age of the system.

Here we use the renewal concept in a broader sense and define a renewal process as a system where the state at time \(t \), (and hence the probability of generating an event at \(t \)), depends both on the time that has passed since the last event (i.e., the firing time \(\hat{t} \) and the input \(I(t') \), \(\hat{t} < t' < t \), that the system received since the last event. Input-dependent renewal systems are also called modulated renewal processes (Reich et al., 1998), non-stationary renewal systems (Gerstner, 1995, 2000b), or inhomogeneous Markov interval processes (Kass and Ventura, 2001). The aim of a theory of input-dependent renewal systems is to predict the probability of the next event, given the timing \(\hat{t} \) of the last event and the input \(I(t') \) for \(\hat{t} < t' < t \).

5.2.1.1 Example: Light bulb failure as a renewal system

A generic example of a (potentially input-dependent) renewal system is a light bulb. The event is the failure of the bulb and its subsequent exchange. Obviously, the state of the system only depends on the age of the current bulb, and not on that of any previous bulb that has already been exchanged. If the usage pattern of the bulbs is stationary (e.g., the bulb is switched on during 10 hours each night) then we have a stationary renewal process. If usage is irregular (higher usage in winter than in summer, no usage during vacation), the aging of the bulb will be more rapid or slower depending on how often it is switched on and off. We can use input-dependent renewal theory if we keep track of
all the times we have turned the switch. The input in this case are the switching times. The aim of renewal theory is to calculate the probability of the next failure given the age of the bulb and the switching pattern.

5.2.2 Interval distribution

The estimation of interspike interval (ISI) distributions from experimental data is a common method to study neuronal variability given a certain stationary input. In a typical experiment, the spike train of a single neuron (e.g., a neuron in visual cortex) is recorded while driven by a constant stimulus. The stimulus might be an external input applied to the system (e.g., a visual contrast grating moving at constant speed); or it may be an intracellularly applied constant driving current. The spike train is analyzed and the distribution of intervals s_k between two subsequent spikes is plotted in a histogram. For a sufficiently long spike train, the histogram provides a good estimate of the ISI distribution which we denote as $P_0(s)$; cf. Fig. 5.1A. We will return to the special case of stationary input in subsection 5.2.4.

We now generalize the concept of interval distributions to time-dependent input. We concentrate on a single neuron which is stimulated by a known input current $I(t)$ and some unknown noise source. We suppose that the last spike occurred at time t_0 and ask the following question. What is the probability that the next spike occurs between t and $t + \Delta t$, given the spike at \hat{t} and the input $I(t')$ for $t' < \hat{t}$? For $\Delta t \to 0$, the answer is given by the probability density of firing $P_1(t|\hat{t})$. Hence, $\int_{t_1}^{t_2} P_1(t|\hat{t}) \, dt$ is the probability to find a spike in the segment $[t_1, t_2]$, given that the last spike was at $\hat{t} < t_1$. The normalization of $P_1(t|\hat{t})$ is

$$\int_{\hat{t}}^{\infty} P_1(t|\hat{t}) \, dt = 1 - \pi_{\text{inact}}$$

where π_{inact} denotes the probability that the neurons stays inactive and will never fire again. For

Figure 5.1: A. Stationary interval distribution. A neuron is driven by a constant input (top). A histogram of the interspike intervals s_1, s_2, \ldots can be used to estimate the interval distribution $P_0(s)$ (bottom). B. Input-dependent interval distribution. A neuron, stimulated by the current $I(t)$ (top), has emitted a first spike at \hat{t}. The interval distribution $P_1(t|\hat{t})$ (bottom) gives the probability density that the next spike occurs after an interval $t - \hat{t}$.
excitatory input and a sufficient amount of noise the neuron will always emit further spikes at some point. We therefore assume in the following that p_{inact} vanishes.

The lower index I of $P_I(t | \hat{t})$ is intended to remind us that the probability density $P_I(t | \hat{t})$ depends on the time course of the input $I(t')$ for $t' < t$. Since $P_I(t | \hat{t})$ is conditioned on the spike at \hat{t}, it can be called a spike-triggered spike density. We interpret $P_I(t | \hat{t})$ as the distribution of interspike intervals in the presence of an input current I. In the following, we will refer to P_I as the input-dependent interval distribution; see Fig. 5.1B. For renewal systems with stationary input $P_I(t | \hat{t})$ reduces to $P_0(t - \hat{t})$.

5.2.3 Survivor function and hazard

The interval distribution $P_I(t | \hat{t})$ as defined above is a probability density. Thus, integration of $P_I(t | \hat{t})$ over time yields a probability. For example, \(\int_{\hat{t}}^t P_I(t' | \hat{t}) \, dt' \) is the probability that a neuron which has emitted a spike at \hat{t} fires the next action potential between \hat{t} and t. Thus

\[
S_I(t | \hat{t}) = 1 - \int_{\hat{t}}^t P_I(t' | \hat{t}) \, dt' \quad (5.5)
\]

is the probability that the neuron stays quiescent between \hat{t} and t. $S_I(t | \hat{t})$ is called the survivor function: it gives the probability that the neuron 'survives' from \hat{t} to t without firing.

The survivor function $S_I(t | \hat{t})$ has an initial value $S_I(\hat{t} | \hat{t}) = 1$ and decreases to zero for $t \to \infty$. The rate of decay of $S_I(t | \hat{t})$ will be denoted by $\rho_I(t | \hat{t})$ and is defined by

\[
\rho_I(t | \hat{t}) = -\frac{d}{dt} S_I(t | \hat{t}) / S_I(t | \hat{t}) \quad . \quad (5.6)
\]

In the language of renewal theory, $\rho_I(t | \hat{t})$ is called the 'age-dependent death rate' or 'hazard' (Cox, 1962; Cox and Lewis, 1966).

Integration of Eq. (5.6) yields the survivor function

\[
S_I(t | \hat{t}) = \exp \left[-\int_{\hat{t}}^t \rho_I(t' | \hat{t}) \, dt' \right] \quad . \quad (5.7)
\]

According to the definition of the survivor function in Eq. (5.5), the interval distribution is given by

\[
P_I(t | \hat{t}) = -\frac{d}{dt} S_I(t | \hat{t}) = \rho_I(t | \hat{t}) \, S_I(t | \hat{t}) \quad . \quad (5.8)
\]
which has a nice intuitive interpretation: In order to emit its next spike at t, the neuron has to survive the interval (\hat{t}, t) without firing and then fire at t. The survival probability is $S_I(t|\hat{t})$ and the hazard of firing a spike at time t is $\rho_I(t|\hat{t})$ which explains the two factors on the right-hand side of Eq. (5.8).

Inserting Eq. (5.7) in (5.8), we obtain an explicit expression for the interval distribution in terms of the hazard:

$$P_I(t|\hat{t}) = \rho_I(t|\hat{t}) \exp \left[- \int_{\hat{t}}^{t} \rho_I(t'|\hat{t}) \, dt' \right].$$ \hfill (5.9)

On the other hand, given the interval distribution we can derive the hazard from

$$\rho_I(t|\hat{t}) = - \frac{P_I(t|\hat{t})}{S_I(t|\hat{t})} = - \frac{P_I(t|\hat{t})}{1 - \int_{\hat{t}}^{t} P_I(t'|\hat{t}) \, dt'}. \hfill (5.10)$$

Thus, each of the three quantities $\rho_I(t|\hat{t})$, $P_I(t|\hat{t})$, and $S_I(t|\hat{t})$ is sufficient to describe the statistical properties of an input-dependent renewal system. For stationary renewal systems, Eqs. (5.5)-(5.10) hold with the replacement

$$P_I(t|\hat{t}) \rightarrow P_0(t - \hat{t}) \hfill (5.11)$$

$$S_I(t|\hat{t}) \rightarrow S_0(t - \hat{t}) \hfill (5.12)$$

$$\rho_I(t|\hat{t}) \rightarrow \rho_0(t - \hat{t}) \hfill (5.13)$$

Eqs. (5.5) - (5.10) are standard results of renewal theory (Perkel et al., 1967a; Gerstein and Perkel, 1972; Cox, 1962; Perkel et al., 1967b; Cox and Lewis, 1966).

5.2.3.1 Example: From interval distribution to hazard function

Let us suppose that we have found under stationary experimental conditions an interval distribution that can be approximated as

$$P_0(s) = \begin{cases} 0 & \text{for } s \leq \Delta_{\text{abs}} \\ a_0 (t - \hat{t} - \Delta_{\text{abs}}) e^{-\frac{a_0}{2}(s-\Delta_{\text{abs}})^2} & \text{for } s > \Delta_{\text{abs}} \end{cases} \hfill (5.14)$$

with a constant $a_0 > 0$; cf. Fig. 5.2A. From Eq. (5.10), the hazard is found to be

$$\rho_0(s) = \begin{cases} 0 & \text{for } s \leq \Delta_{\text{abs}} \\ a_0 (s - \Delta_{\text{abs}}) & \text{for } s > \Delta_{\text{abs}} \end{cases}. \hfill (5.15)$$
Thus, during an interval Δ^{abs} after each spike the hazard vanishes. We may interpret Δ^{abs} as the absolute refractory time of the neuron. For $s > \Delta^{\text{abs}}$ the hazard increases linearly, i.e., the longer the neuron waits the higher its probability of firing. In Section 5.3, the hazard (5.15) will be motivated by a non-leaky integrate-and-fire neuron subject to noise.

![Figure 5.2: A. Interval distribution $P_0(s)$ (top), survivor function $S_0(s)$ (middle) for a hazard function (bottom) defined by $\rho_0(s) = a_0 (s - \Delta^{\text{abs}}) \oplus (s - \Delta^{\text{abs}})$ with $a_0 = 0.01 \text{ ms}^{-2}$ and $\Delta^{\text{abs}} = 2\text{ms}$. B. Similar plots as in A but for a hazard function defined by $\rho_0(s) = \nu \{1 - \exp[- \lambda (s - \Delta^{\text{abs}})]\} \oplus (s - \Delta^{\text{abs}})$ with $\nu = 0.1\text{kHz}$,](http://diwww.epfl.ch/~gerstner/SPNM/node34.html)
\[\lambda = 0.2 \text{kHz}, \text{ and } \Delta^{\text{abs}} = 2\text{ms}. \]

5.2.3.2 Example: From hazard functions to interval distributions

Interval distributions and hazard functions have been measured in many experiments. For example, in auditory neurons of the cat driven by stationary stimuli, the hazard function \(\rho_0(t - \hat{t}) \) increases, after an absolute refractory time, to a constant level (Goldberg et al., 1964). We approximate the time course of the hazard function as

\[
\rho_0(s) = \begin{cases}
0 & \text{for } s \leq \Delta^{\text{abs}} \\
\nu \left[1 - e^{-\lambda(s-\Delta^{\text{abs}})} \right] & \text{for } s > \Delta^{\text{abs}}
\end{cases}
\]

(5.16)

with parameters \(\Delta^{\text{abs}}, \lambda, \text{ and } \nu \); Fig. 5.2B. In Section 5.3 we will see how the hazard (5.16) can be related to neuronal dynamics. Given the hazard function, we can calculate the survivor function and interval distributions. Application of Eq. (5.7) yields

\[
S_0(s) = \begin{cases}
1 & \text{for } s < \Delta^{\text{abs}} \\
e^{-\nu(s-\Delta^{\text{abs}})} e^{\nu \rho_0(s)/\lambda} & \text{for } s > \Delta^{\text{abs}}
\end{cases}
\]

(5.17)

The interval distribution is given by \(P_0(s) = \rho_0(s) S_0(s) \). Interval distribution, survivor function, and hazard are shown in Fig. 5.2B.

5.2.3.3 Example: Poisson process

Let us compare the hazard functions of the two previous examples to the hazard of a homogeneous Poisson process that generates spikes stochastically at a fixed rate \(\nu \). Since different spikes are independent, the hazard of a Poisson process is constant, \(\rho_0(s) \equiv \nu \). In particular, there is no dependence of the hazard upon the last or any earlier spike. From Eq. (5.8) we find the survivor function \(S_0(s) = \exp[-\nu s] \). The interval distribution is exponential

\[
P_0(s) = \nu e^{-\nu s} \quad \text{for } s > 0.
\]

(5.18)

Interval distribution and survivor function of a Poisson neuron with constant rate \(\nu \) are plotted in Fig. 5.3A. The most striking feature of Fig. 5.3A is that the interval distribution has its maximum at \(s = 0 \) so that extremely short intervals are most likely. In contrast to a Poisson process, real neurons show refractoriness so that the interval distribution \(P_0(s) \) vanishes for \(s \to 0 \).

A simple modification of the Poisson process allows us to incorporate absolute refractoriness. We define a hazard function
\[\rho_0(s) = \begin{cases} 0 & \text{for } s < \Delta_{\text{abs}} \\ r & \text{for } s > \Delta_{\text{abs}} \end{cases} \]

(5.19)

We call a process with hazard function (5.19) a Poisson neuron with absolute refractoriness. It generates a spike train with an interval distribution

\[P_0(s) = \begin{cases} \frac{0}{\tau \exp \left[-\tau \left(s - \Delta_{\text{abs}} \right) \right]} & \text{for } s < \Delta_{\text{abs}} \\ r & \text{for } s > \Delta_{\text{abs}} \end{cases} \]

(5.20)

see Fig. 5.3B. We may compare the hazard function of the Poisson neuron with absolute refractoriness with the more realistic hazard of Eq. (5.16). The main difference is that the hazard in Eq. (5.19) jumps from the state of absolute refractoriness to a constant firing rate, whereas in Eq. (5.16) the transition is smooth.
Figure 5.3: Interval distribution $P_0(s)$ (top), survivor function $S_0(s)$ (middle), and hazard function (bottom) for a Poisson neuron (A) and a Poisson neuron with absolute refractoriness ($\Delta_{abs} = 5\text{ms}$) (B).

5.2.4 Stationary renewal theory and experiments

Renewal theory is usually associated with stationary input conditions. The interval distribution P_0 can then be estimated experimentally from a single long spike train. The applicability of renewal theory relies on the hypothesis that a memory back to the last spike suffices to describe the spike statistics. In particular, there should be no correlation between one interval and the next. In experiments, the renewal hypothesis, can be tested by measuring the correlation between subsequent intervals. Under some experimental conditions, correlations are small indicating that a description of spiking as a stationary renewal process is a good approximation (Goldberg et al., 1964).

The notion of stationary input conditions is a mathematical concept that cannot be easily translated into experiments. With intracellular recordings under in vitro conditions, constant input current can be imposed and thus the renewal hypothesis can be tested directly. Under in vivo conditions, the assumption that the input current to a neuron embedded in a large neural system is constant (or has stationary statistics) is questionable; see (Perkel et al., 1967a,b) for a discussion. While the externally controlled stimulus can be made stationary (e.g., a grating drifting at constant speed), the input to an individual neuron is out of control.

Let us suppose that, for a given experiment, we have checked that the renewal hypothesis holds to a reasonable degree of accuracy. From the experimental interval distribution P_0 we can then calculate the survivor function S_0 and the hazard ρ_0 via Eqs. (5.5) and (5.10); see the examples in subsection 5.2.2. If some additional assumptions regarding the nature of the noise are made, the form of the hazard $\rho_0(t|\tilde{t})$ can be interpreted in terms of neuronal dynamics. In particular, a reduced hazard immediately after a spike is a signature of neuronal refractoriness (Goldberg et al., 1964; Berry and Meister, 1998).

In case of a stationary renewal process, the interval distribution P_0 contains all the statistical information, in particular mean firing rate, autocorrelation function and noise spectrum can be derived.

5.2.4.1 Mean firing rate

To arrive at an expression for the mean firing rate, we start with the definition of the mean interval,

$$\langle s \rangle = \int_0^\infty s P_0(s) \, ds .$$ \hspace{1cm} (5.21)$$

The mean firing rate has been defined in Chapter 1.4 as $\nu = 1/\langle s \rangle$. Hence,

$$\nu = \left[\int_0^\infty s P_0(s) \, ds \right]^{-1} = \left[\int_0^\infty S_0(s) \, ds \right]^{-1} .$$ \hspace{1cm} (5.22)$$
The second equality sign follows from integration by parts using $P_0(s) = -dS_0(s)/ds$; cf. Eq. (5.5).

5.2.4.2 Autocorrelation function

Let us consider a spike train $S_i(t) = \sum f \delta (t - t_i(f))$ of length T. The firing times $t_i(f)$ might have been measured in an experiment or else generated by a neuron model. We suppose that T is sufficiently long so that we can formally consider the limit $T \to \infty$. The autocorrelation function $C_{ii}(s)$ of the spike train is a measure for the probability to find two spikes at a time interval s, i.e.

$$C_{ii}(s) = \left\langle S_i(t) S_i(t + s) \right\rangle_t,$$ \hspace{1cm} (5.23)

where $\langle \cdot \rangle_t$ denotes an average over time t,

$$\left\langle f(t) \right\rangle_t = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} f(t) \, dt.$$ \hspace{1cm} (5.24)

We note that the right-hand side of Eq. (5.23) is symmetric so that $C_{ii}(-s) = C_{ii}(s)$ holds.

The calculation of the autocorrelation function for a stationary renewal process is the topic of the next section.

5.2.4.3 Noise spectrum

The power spectrum (or power spectral density) of a spike train is defined as $P(\omega) = \lim_{T \to \infty} P_T(\omega)$, where P_T is the power of a segment of length T of the spike train,

$$P_T(\omega) = \frac{1}{T} \left| \int_{-T/2}^{T/2} S_i(t) e^{i\omega t} \, dt \right|^2.$$ \hspace{1cm} (5.25)

The power spectrum $P(\omega)$ of a spike train is equal to the Fourier transform $\hat{C}_{ii}(\omega)$ of its autocorrelation function (Wiener-Khinchin Theorem). To see this, we use the definition of the autocorrelation function

$$\hat{C}_{ii}(\omega) = \int_{-\infty}^{\infty} \left\langle S_i(t) S_i(t + s) \right\rangle e^{i\omega s} \, ds = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} S_i(t) \int_{-\infty}^{\infty} S_i(t + s) e^{-i\omega s} \, ds \, dt.$$
In the limit of \(T \to \infty \), Eq. (5.25) becomes identical to (5.26) so that the assertion follows. The power spectral density of a spike train during spontaneous activity is called the noise spectrum of the neuron (Bair et al., 1994; Edwards and Wakefield, 1993). As we will see in the next subsection, the noise spectrum of a stationary renewal process is intimately related to the interval distribution \(P_0(s) \).

5.2.5 Autocorrelation of a stationary renewal process

Noise is a limiting factor to all forms of information transmission and in particular to information transmission by neurons. An important concept of the theory of signal transmission is the signal-to-noise ratio. A signal that is transmitted at a certain frequency \(\omega \) should be stronger than (or at least of the same order of magnitude as) the noise at the same frequency. For this reason, the noise spectrum \(\mathcal{P}(\omega) \) of the transmission channel is of interest. In this section we calculate the noise spectrum of a stationary renewal process. As we have seen above, the noise spectrum of a neuron is directly related to the autocorrelation function of its spike train. Both noise spectrum and autocorrelation function are experimentally accessible (Bair et al., 1994; Edwards and Wakefield, 1993).

Let \(\nu_i = \langle S_i \rangle \) denote the mean firing rate (expected number of spikes per unit time) of the spike train. Thus the probability of finding a spike in a short segment \([t, t + \Delta t]\) of the spike train is \(\nu \Delta t \). For large intervals \(s \), firing at time \(t + s \) is independent from whether or not there was a spike at time \(t \). Therefore, the expectation to find a spike at \(t \) and another spike at \(t + s \) approaches for \(s \to \infty \) a limiting value \(\lim_{s \to \infty} \langle S_i(t) S_i(t + s) \rangle = \lim_{s \to \infty} C_{ii}(s) = \nu_i^2 \). It is convenient to subtract the baseline value and introduce a 'normalized' autocorrelation,

\[
C_{ii}^0(s) = C_{ii}(s) - \nu_i^2,
\]

(5.27)

with \(\lim_{s \to \infty} C_{ii}^0(s) = 0 \). Fourier transform of Eq. (5.27) yields

\[
\hat{C}_{ii}(\omega) = \hat{C}_{ii}^0(\omega) + 2\pi \nu_i^2 \delta(\omega).
\]

(5.28)

Thus \(\hat{C}_{ii}(\omega) \) diverges at \(\omega = 0 \); the divergence is removed by switching to the normalized autocorrelation. In the following we will calculate \(\hat{C}_{ii}(\omega) \) for \(\omega \neq 0 \).

In the case of a stationary renewal process, the autocorrelation function is closely related to the interval distribution \(P_0(s) \). This relation will now be derived. Let us suppose that we have found a
first spike at t. To calculate the autocorrelation we need the probability density for a spike at $t + s$. Let us construct an expression for $C_{ii}(s)$ for $s > 0$. The correlation function for positive s will be denoted by $\nu_i C_+(s)$ or

$$C_+(s) = \frac{1}{\nu_i} C_{ii}(s) \Theta(s).$$ \hfill (5.29)

The factor ν_i in Eq. (5.29) takes care of the fact that we expect a first spike at t with rate ν_i. $C_+(s)$ gives the conditional probability density that, given a spike at t, we will find another spike at $t + s$. The spike at $t + s$ can be the first spike after t, or the second one, or the nth one; see Fig. 5.4. Thus for $s > 0$

$$C_+(s) = P_0(s) + \int_0^\infty P_0(s') P_0(s - s') \, ds'$$

$$+ \int_0^\infty \int_0^\infty P_0(s') P_0(s'') P_0(s - s' - s'') \, ds' \, ds'' + ...$$ \hfill (5.30)

or

$$C_+(s) = P_0(s) + \int_0^\infty P_0(s') C_+(s - s') \, ds'$$ \hfill (5.31)

as can be seen by inserting Eq. (5.30) on the right-hand side of (5.31).

Figure 5.4: A. The autocorrelation of a spike train describes the chance to find two spikes at a distance s, independent of the number of spikes that occur in between. B. Fourier transform of the autocorrelation function C_{ii} of a Poisson neuron with absolute refractoriness ($\Delta_{\text{ax}} = 5$ ms) and constant stimulation ($\nu = 100$Hz).

Due to the symmetry of C_{ii}, we have $C_{ii}(s) = \nu_1 C_+(s)$ for $s < 0$. Finally, for $s = 0$, the autocorrelation has a δ peak reflecting the trivial autocorrelation of each spike with itself. Hence,

$$C_{ii}(s) = \nu_1 \left[\delta(s) + C_+(s) + C_+(-s) \right].$$ \hfill (5.32)
In order to solve Eq. (5.31) for C_\pm we take the Fourier transform of Eq. (5.31) and find

$$\hat{C}_+(\omega) = \frac{\hat{P}_0(\omega)}{1 - \hat{P}_0(\omega)}, \quad (5.33)$$

Together with the Fourier transform of Eq. (5.32), $\hat{C}_{ii}(\omega) = \nu_i [1 + 2 \Re\{C_+(\omega)\}]$, we obtain

$$\hat{C}_{ii}(\omega) = \nu_i \Re \left\{ \frac{1 + \hat{P}_0(\omega)}{1 - \hat{P}_0(\omega)} \right\} \quad \text{for} \quad \omega \neq 0. \quad (5.34)$$

For $\omega = 0$, the Fourier integral over the right-hand side of Eq. (5.30) diverges, since $\int_0^\infty P_0(s)ds = 1$. If we add the diverging term from Eq. (5.28), we arrive at

$$\hat{C}_{ii}(\omega) = \nu_i \Re \left\{ \frac{1 + \hat{P}_0(\omega)}{1 - \hat{P}_0(\omega)} \right\} + 2\pi \nu_i^2 \delta(\omega) \quad (5.35)$$

This is a standard result of stationary renewal theory (Cox and Lewis, 1966) which has been repeatedly applied to neuronal spike trains (Bair et al., 1994; Edwards and Wakefield, 1993).

5.2.5.1 Example: Stationary Poisson process

In Section 5.2.3 we have defined the Poisson neuron as a stationary renewal process with constant hazard $\rho_0(t - \hat{t}) = \nu$. In the literature, a Poisson process is often defined via its autocorrelation

$$C_{ii}(s) = \nu \delta(s) + \nu^2 \quad (5.36)$$

We want to show that Eq. (5.36) follows from Eq. (5.30).

Since the interval distribution of a Poisson process is exponential [cf. Eq. (5.18)], we can evaluate the integrals on the right-hand side of Eq. (5.30) in a straightforward manner. The result is

$$C_+(s) = \nu e^{-\nu s} \left[1 + \nu s + \frac{1}{2} (\nu^2 s^2) + ... \right] = \nu. \quad (5.37)$$

Hence, with Eq. (5.32), we obtain the autocorrelation function (5.36) of a homogeneous Poisson process. The Fourier transform of Eq. (5.36) yields a flat spectrum with a δ peak at zero:

$$\hat{C}_{ii}(\omega) = \nu + 2\pi \nu^2 \delta(\omega). \quad (5.38)$$
The result could have also been obtained by evaluating Eq. (5.35).

5.2.5.2 Example: Poisson process with absolute refractoriness

We return to the Poisson neuron with absolute refractoriness defined in Eq. (5.19). Apart from an absolute refractory time Δ^{abs}, the neuron fires with rate r. For $\omega \neq 0$, Eq. (5.35) yields the autocorrelation function

$$
\tilde{C}_{ii}(\omega) = \nu \left\{ 1 + 2 \frac{\nu^2}{\omega^2} [1 - \cos(\omega \Delta^{\text{abs}})] + 2 \frac{\nu}{\omega} \sin(\omega \Delta^{\text{abs}}) \right\}^{-1}, \quad (5.39)
$$

cf. Fig. (5.4)B. In contrast to the stationary Poisson process Eq. (5.36), the noise spectrum of a neuron with absolute refractoriness $\Delta^{\text{abs}} > 0$ is no longer flat. In particular, for $\omega \to 0$, the noise level is decreased by a factor $[1 + 2(\nu \Delta^{\text{abs}}) + (\nu \Delta^{\text{abs}})^2]^{-1}$. Eq. (5.39) and generalizations thereof have been used to fit the power spectrum of, e.g., auditory neurons (Edwards and Wakefield, 1993) and MT neurons (Bair et al., 1994).

Can we understand the decrease in the noise spectrum for $\omega \to 0$? The mean interval of a Poisson neuron with absolute refractoriness is $\langle s \rangle = \Delta^{\text{abs}} + r^{-1}$. Hence the mean firing rate is

$$
\nu = \frac{r}{1 + \Delta^{\text{abs}} r}. \quad (5.40)
$$

For $\Delta^{\text{abs}} = 0$ we retrieve the stationary Poisson process Eq. (5.2.3) with $\nu = r$. For finite Δ^{abs} the firing is more regular than that of a Poisson process with the same mean rate ν. We note that for finite $\Delta^{\text{abs}} > 0$, the mean firing rate remains bounded even if $r \to \infty$. The neuron fires then regularly with period Δ^{abs}. Because the spike train of a neuron with refractoriness is more regular than that of a Poisson neuron with the same mean rate, the spike count over a long interval, and hence the spectrum for $\omega \to 0$, is less noisy. This means that Poisson neurons with absolute refractoriness can transmit slow signals more reliably than a simple Poisson process.
5.3 Escape noise

There are various ways to introduce noise in formal spiking neuron models. In this section we focus on a `noisy threshold' (also called escape or hazard model). In section 5.5 we will discuss `noisy integration' (also called stochastic spike arrival or diffusion model). In both cases, we are interested in the effect of the noise on the distribution of interspike intervals.

In the escape model, we imagine that the neuron can fire even though the formal threshold has not been reached or may stay quiescent even though the formal threshold has been passed. To do this consistently, we introduce an `escape rate' or `firing intensity' which depends on the momentary state of the neuron.

5.3.1 Escape rate and hazard function

Given the input I and the firing time \hat{t} of the last spike, we can calculate the membrane potential of the Spike Response Model or the integrate-and-fire neuron from Eq. (5.1) or (5.2), respectively. In the deterministic model the next spike occurs when u reaches the threshold ϑ. In order to introduce some variability into the neuronal spike generator, we replace the strict threshold by a stochastic firing criterion. In the noisy threshold model, spikes can occur at any time with a probability density,

$$\rho = f(u - \vartheta),$$

(5.41)

that depends on the momentary distance between the (noiseless) membrane potential and the threshold; see Fig. 5.5. We can think of f as an escape rate similar to the one encountered in models of chemical reactions (van Kampen, 1992). In the mathematical theory of point processes, the quantity ρ is called a `stochastic intensity'. Since we use ρ in the context of neuron models we will refer to it as a firing intensity.
Since \(u \) on the right-hand side of Eq. (5.41) is a function of time, the firing intensity \(\rho \) is time-dependent as well. In view of Eqs. (5.1) and (5.2), we write

\[
\rho_f(t|\hat{t}) = f[u(t|\hat{t}) - \vartheta],
\]

(5.42)

where \(\rho_f(t|\hat{t}) \) is the hazard introduced in Eq. (5.10). In other words, the escape rate \(f \) allows us to translate the membrane potential \(u(t|\hat{t}) \) into a hazard \(\rho_f(t|\hat{t}) \).

![Figure 5.5: Noisy threshold. A neuron can fire at time \(t \) with probability density \(\rho[u(t) - \vartheta] \) even though the membrane potential \(u \) has not yet reached the threshold \(\vartheta \).](image)

Is Eq. (5.42) a sufficiently general noise model? We have seen in Chapter 2.2 that the concept of a pure voltage threshold is questionable. More generally, the spike trigger process could, for example, also depend on the slope \(\dot{u} = du/dt \) with which the 'threshold' is approached. In the noisy threshold model, we may therefore also consider an escape rate (or hazard) which depends not only on \(u \) but also on its derivative \(\dot{u} \)

\[
\rho_f(t|\hat{t}) = f[u(t|\hat{t}), \dot{u}(t|\hat{t})].
\]

(5.43)

The choice of the escape function \(f \) in Eq. (5.42) or (5.43) is arbitrary. A reasonable condition is to require \(f \to 0 \) for \(u \to -\infty \). Below we discuss some simple examples of Eq. (5.42). We will return to Eq. (5.43) in Section 5.7.

Note that the hazard \(\rho \) in Eq. (5.43) is implicitly time-dependent, via the membrane potential \(u(t|\hat{t}) \). In an even more general model, we could in addition include an explicit time dependence, e.g., to account for a reduced spiking probability immediately after the spike at \(\hat{t} \). In the following examples we will stick to the hazard function as defined by Eq. (5.42).

5.3.1.1 Example: Hard and soft threshold

We have motivated the escape model by a noisy version of the threshold process. In order to explore the relation between noisy and deterministic threshold models, we consider an escape function \(f \) defined as

\[
f(u - \vartheta) = \begin{cases}
0 & \text{for } u < \vartheta \\
\Delta^{-1} & \text{for } u \geq \vartheta
\end{cases}
\]

(5.44)
Thus, the neuron never fires if \(u < \vartheta \). On the other hand, if the mean escape time \(\Delta \) goes to zero, the neuron fires immediately when it crosses the threshold.

Figure 5.6: Soft threshold escape rates. Exponential function (solid), piecewise linear function (dotted), step function (dashed), and error function (dot-dashed). The step function and error function saturate at a maximum rate of \(\Delta^{-1} \). The threshold is \(\vartheta \).

How can we `soften' the sharp threshold? A simple choice for a soft threshold is an exponential dependence,

\[
f(u - \vartheta) = \frac{1}{\tau_0} \exp[\beta (u - \vartheta)],
\]

where \(\beta \) and \(\tau_0 \) are parameters. For \(\beta \to \infty \), we return to the noiseless model of Eq. (5.44).

Alternatively, we could introduce a piecewise linear escape rate,

\[
f(u - \vartheta) = \beta [u - \vartheta] \delta = \begin{cases}
0 & \text{for } u < \vartheta \\
\beta (u - \vartheta) & \text{for } u \geq \vartheta
\end{cases}
\]

with slope \(\beta \) for \(u > \vartheta \). For \(u > \vartheta \), the firing intensity is proportional to \(u - \vartheta \); cf. Fig. 5.6. This corresponds to the intuitive idea that instantaneous firing rates increase with the membrane potential. Variants of the linear escape-rate model are commonly used to describe spike generation in, e.g., auditory nerve fibers (Miller and Mark, 1992; Siebert and Gray, 1963).

Finally, we can also use a sigmoidal escape rate (Wilson and Cowan, 1972; Abeles, 1982),

\[
f(u - \vartheta) = \frac{1}{2\Delta} \left[1 + \text{erf} \left(\frac{u - \vartheta}{\sqrt{2} \sigma} \right) \right],
\]

with time constant \(\Delta \) and noise parameter \(\sigma \). The error function is defined as
\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-y^2) \, dy
\]
(5.48)

with \(\text{erf}(-x) = - \text{erf}(x) \). For \(u \to \infty \), the escape rate \((5.47) \) saturates at a value \(f = \Delta^{-1} \) independent of the noise parameter \(\sigma \); cf. Fig. 5.7B. For \(\sigma \to 0 \), we retrieve the step function \(f(u - \vartheta) = \Delta^{-1} \Theta(u - \vartheta) \).

5.3.1.2 Example: Motivating a sigmoidal escape rate

We want to motivate the sigmoidal escape rate by a model with stochastic threshold in discrete time \(t_n = n \Delta \). After each time step of length \(\Delta \), a new value of the threshold is chosen from a Gaussian distribution of threshold values \(\vartheta' \) with mean \(\bar{\vartheta} \).

\[
P(\vartheta') = \frac{1}{\sqrt{2\pi}\sigma} \exp \left[- \frac{(\vartheta' - \bar{\vartheta})^2}{2\sigma^2} \right].
\]
(5.49)

The probability of firing at time step \(t_n \) is equal to the probability that the momentary value \(\vartheta' \) of the threshold is below the membrane potential \(u(t_n) \)

\[
\text{Prob} \{ \text{spike at } t_n \} = \text{Prob} \{ u(t_n) > \vartheta' \} = \int_{-\infty}^{u(t_n)} P(\vartheta') \, d\vartheta';
\]
(5.50)

cf. Fig. 5.7A. The firing probability divided by the step size \(\Delta \) can be interpreted as a firing intensity (Wilson and Cowan, 1972)

\[
f(u - \vartheta) = \frac{1}{\Delta} \int_{-\infty}^{(u-\vartheta)} \frac{1}{\sqrt{2\pi}\sigma} \exp \left(- \frac{x^2}{2\sigma^2} \right) \, dx = \frac{1}{2\Delta} \left[1 + \text{erf} \left(\frac{u - \vartheta}{\sqrt{2}\sigma} \right) \right].
\]
(5.51)

which is the sigmoidal escape rate introduced in Eq. (5.47).

Figure 5.7: A. Gaussian distribution of thresholds \(P(\vartheta') \) with mean \(\bar{\vartheta} = 1 \) and variance \(\sigma = 0.2 \). The shaded area gives the probability that \(u \) is above threshold. B. Escape rate according to Eq. (5.51) with \(\bar{\vartheta} = 1 \) for different noise levels \(\sigma = 0.1 \) (dotted line), \(\sigma = 0.2 \) (solid line), and \(\sigma = 0.5 \) (dashed line).
Instead of a model with stochastic threshold, we can also consider a model fixed threshold, but a membrane potential \(u(t_n) + \Delta u(t_n) \) with a stochastic component \(\Delta u \). If \(\Delta u \) is chosen at each time step independently from a Gaussian distribution with variance \(\sigma \) and vanishing mean, we arrive again at formula (5.47) (Abeles, 1982; Geisler and Goldberg, 1966; Weiss, 1966).

The sigmoidal escape rate (5.51) has been motivated here for models in discrete time. There are two potential problems. First, if we keep \(\Delta \) fixed and take \(\sigma \to 0 \) we do not recover the deterministic threshold model. Thus the low-noise limit is problematic. Second, since the firing intensity diverges for \(\Delta \to 0 \), simulations will necessarily depend on the discretization \(\Delta \). This is due to the fact that the bandwidth of the noise is limited by \(\Delta^{-1} \) because any new value of \(\vartheta' \) or \(\Delta u \) is chosen at intervals \(\Delta \).

For \(\Delta \to 0 \), the bandwidth and hence the noise power diverge. Despite its problems, the sigmoidal escape rate is also used in neuronal models in continuous time and either motivated by a Gaussian distribution of threshold values (Wilson and Cowan, 1972) or else for fixed threshold \(\vartheta \) by a Gaussian distribution of membrane potentials with band-limited noise (Abeles, 1982; Weiss, 1966). If we use Eq. (5.47) in continuous time, the time scale \(\Delta \) becomes a free parameter and should be taken proportional to the correlation time \(\tau_{corr} \) of the noise \(\Delta u \) in the membrane potential (i.e., proportional to the inverse of the noise bandwidth). If the correlation time is short, the model becomes closely related to continuous-time escape rate models (Weiss, 1966). A `natural' correlation time of the membrane potential will be calculated in Section 5.5 in the context of stochastic spike arrival.

5.3.1.3 Example: Transition from continuous to discrete time

In the previous example, we have started from a model in discrete time and found that the limit of continuous time is not without problems. Here we want to start from a model in continuous time and discretize time as it is often done in simulations. In a straightforward discretization scheme, we calculate the probability of firing during a time step \(\Delta t \) of a neuron that has fired the last time at \(\hat{t} \) as

\[
\rho_f(t|\hat{t}) \, dt' \approx \rho_f(t|\hat{t}) \, \Delta t. \quad \text{For} \quad u \gg \vartheta, \quad \text{the hazard} \quad \rho_f(t|\hat{t}) = f(u(t|\hat{t}) - \vartheta) \quad \text{can take large values; see, e.g., Eq. (5.45). Thus} \quad \Delta t \quad \text{must be taken extremely short so as to guarantee} \quad \rho_f(t|\hat{t}) \, \Delta t < 1. \]

In order to arrive at an improved discretization scheme, we calculate the probability that a neuron does not fire in a time step \(\Delta t \). Since the integration of Eq. (5.6) over a finite time \(\Delta t \) yields an exponential factor analogous to Eq. (5.7), we arrive at a firing probability

\[
\text{Prob} \{ \text{spike in } [t, t + \Delta t] \mid u(t|\hat{t}) \} \approx 1 - \exp \{- \Delta t f(u(t|\hat{t}) - \vartheta) \}. \quad (5.52)
\]

Even if \(f \) diverges for \(u \to \infty \), the probability remains bounded between zero and one. We see from Fig. 5.8A that an increase in the discretization \(\Delta t \) mainly shifts the firing curve to the left while the form remains roughly the same. An increase of the noise level makes the curve flatter; cf. Fig. 5.8B.
Figure 5.8: A. Probability of firing in a discrete time interval Δt as a function of the membrane potential u for different discretizations $\Delta t = 0.5$ ms (dashed line), $\Delta t = 1$ ms (solid line), and $\Delta t = 2$ ms (dotted line) with $\beta = 5$. B. Similar plot as in A but for different noise levels $\beta = 10$ (dotted line), $\beta = 5$ (solid line), $\beta = 2$ (dashed line), and $\beta = 1$ (dot-dashed line) with $\Delta t = 1$ ms. The escape rate is given by Eq. (5.45) with parameters $\vartheta = 1$ and $\tau_0 = 1$ ms.

5.3.2 Interval distribution and mean firing rate

In this section, we combine the escape rate model with the concepts of renewal theory and calculate the input-dependent interval distribution $P_I(t|\hat{t})$ for escape rate models.

We recall Eq. (5.9) and express the interval distribution in terms of the hazard ρ,

$$ P_I(t|\hat{t}) = \rho_I(t|\hat{t}) \exp \left[- \int_{\hat{t}}^{t} \rho_I(t'|\hat{t}) \, dt' \right]. \quad (5.53) $$

This expression can be compared to the interval distribution of the stationary Poisson process in Eq. (5.18). The main difference to the simple Poisson model is that the hazard $\rho_I(t|\hat{t})$ depends on both the last firing time \hat{t} and the (potentially time-dependent) input. We know that immediately after firing a neuron is refractory and therefore not very likely to fire. Thus refractoriness strongly shapes the interval distribution of neurons; cf., e.g., (Berry and Meister, 1998). Escape models allow us to show the relation between the hazard $\rho_I(t|\hat{t})$ and refractoriness.
Figure 5.9: A. Interval distribution $P_0(s)$ for a SRM$_0$ neuron with absolute refractory period $\Delta^{\text{abs}} = 4\text{ms}$ followed by an exponentially decreasing afterpotential as in Eq. (5.63) with $\tau_0 = 1$ and $\tau = 4\text{ms}$. The model neuron is stimulated by a constant current $I_0 = 0.7, 0.5, 0.3$ (from top to bottom). B. Output rate ν as a function of I_0 (gain function). The escape rate is given by Eq. (5.45) with $\vartheta = 1, \beta = 5, \text{ and } \tau_G = 1 \text{ ms}$.

To do so, we express ρ_I by the escape rate. In order to keep the notation simple, we suppose that the escape rate f is a function of u only. We insert Eq. (5.42) into Eq. (5.53) and obtain

$$P_0(t|\hat{\mathbf{t}}) = f[u(t|\hat{\mathbf{t}}) - \vartheta] \exp \left[- \int_{t}^{\hat{\mathbf{t}}} f[u(t'|\hat{\mathbf{t}}) - \vartheta] \, dt' \right]. \quad (5.54)$$

In order to make the role of refractoriness explicit, we consider the version SRM$_0$ of the Spike Response Model. The membrane potential is

$$u(t|\hat{\mathbf{t}}) = \tau_1(t - \hat{\mathbf{t}}) + h(t) \quad (5.55)$$

with $h(t) = \int_{0}^{\infty} \kappa(s) I(t - s) \, ds$; cf. Eq. (4.42). We insert Eq. (5.55) into (5.54) and find

$$P_0(t|\hat{\mathbf{t}}) = f[\tau_1(t - \hat{\mathbf{t}}) + h(t) - \vartheta] \exp \left[- \int_{t}^{\hat{\mathbf{t}}} f[\tau_1(t'|\hat{\mathbf{t}}) + h(t') - \vartheta] \, ds' \right]. \quad (5.56)$$

Fig. 5.9 shows the interval distribution (5.56) for constant input current I_0 as a function of $s = t - \hat{\mathbf{t}}$. With the normalization $\int_{0}^{\infty} \kappa(s) \, ds = 1$, we have $h_0 = I_0$. Due to the refractory term τ_1, extremely short intervals are impossible and the maximum of the interval distribution occurs at some finite value of s. If I_0 is increased, the maximum is shifted to the left. The interval distributions of Fig. 5.9A have qualitatively the same shape as those found for cortical neurons. The gain function $\nu = g(I_0)$ of a noisy SRM neuron is shown in Fig. 5.9B.

5.3.2.1 Example: SRM$_0$ with absolute refractoriness

We study the model SRM$_0$ defined in Eq. (5.55) for absolute refractoriness

$$\tau_1(s) = \begin{cases} -\infty & \text{for } s < \Delta^{\text{abs}} \\ 0 & \text{for } s > \Delta^{\text{abs}} \end{cases}. \quad (5.57)$$

The hazard is $\rho_I(t|\hat{\mathbf{t}}) = f[h(t) - \vartheta]$ for $t - \hat{\mathbf{t}} > \Delta^{\text{abs}}$ and $\rho_I(t|\hat{\mathbf{t}}) = 0$ for $t - \hat{\mathbf{t}} < \Delta^{\text{abs}}$ since $f \to 0$ for $u \to -\infty$. Hence, with $r(t) = f[h(t) - \vartheta]$
\[P_1(t|\hat{t}) = r(t) \exp \left[- \int_{t+\Delta_{\text{abs}}}^{t} r(t')dt' \right] \otimes (t - \hat{t} - \Delta_{\text{abs}}) \] (5.58)

For stationary input \(h(t) = h_0 \), we are led back to the Poisson process with absolute refractoriness; see Eq. (5.20). For \(\Delta_{\text{abs}} \to 0 \), Eq. (5.58) is the interval distribution of an inhomogeneous Poisson process with rate \(r(t) \).

5.3.2.2 Example: Linear escape rates

In this example we show that interval distributions are particularly simple if a linear escape rate is adopted. We start with the non-leaky integrate-and-fire model. In the limit of \(\tau_m \to \infty \), the membrane potential of an integrate-and-fire neuron is

\[u(t|\hat{t}) = u_r + \frac{1}{C} \int_{\hat{t}}^{t} I(t')dt' \] (5.59)

cf. Eq. (5.2). Let us set \(u_r = 0 \) and consider a linear escape rate,

\[\rho(t|\hat{t}) = \beta [u(t|\hat{t}) - \vartheta]_+ \] (5.60)

For constant input current \(I_0 \) and \(\vartheta = 0 \) the hazard is \(\rho(t|\hat{t}) = a_0 (t - \hat{t} - \Delta_{\text{abs}}) \) with \(a_0 = \beta I_0/C \) and \(\Delta_{\text{abs}} = \vartheta C I_0 \). The interval distribution for this hazard function has already been given in Eq. (5.14); see Fig. (5.2).

For a leaky integrate-and-fire neuron with constant input \(I_0 \), the membrane potential is

\[u(t|\hat{t}) = R I_0 \left[1 - e^{-\frac{t+\hat{t}}{\tau_m}} \right] \] (5.61)

where we have assumed \(u_r = 0 \). If we adopt Eq. (5.60) with \(\vartheta = 0 \), then the hazard is

\[\rho_0(t - \hat{t}) = \nu \left[1 - e^{-\lambda (t-\hat{t})} \right] \] (5.62)

with \(\nu = \beta R I_0 \) and \(\lambda = \tau_m^{-1} \). The interval distribution for this hazard function has been discussed in Section 5.2.3; cf. Eq. (5.17) and Fig. 5.2B. An absolute refractory time \(\Delta_{\text{abs}} \) as in the hazard Eq. (5.16) could be the result of a positive threshold \(\vartheta > 0 \).
5.3.2.3 Example: Periodic input

Figure 5.10: A. Input-dependent interval distribution \(P_I(t|0) \) for a SRM\(_0\) neuron as in Fig. 5.9 stimulated by a periodically modulated input field \(h(t) = h_0 + h_1 \cos(2\pi f t) \) with \(h_0 = 0.5, h_1 = 0.1 \) and frequency \(f = 500\text{Hz} \). B. The membrane potential \(u(t|0) = \eta(t) + h(t) \) during stimulation as in A.

We study the model SRM\(_0\) as defined in Eq. (5.55) with periodic input \(I(t) = I_0 + I_1 \cos(\Omega t) \). This leads to an input potential \(h(t) = h_0 + h_1 \cos(\Omega t + \varphi_1) \) with bias \(h_0 = I_0 \) and a periodic component with a certain amplitude \(h_1 \) and phase \(\varphi_1 \). We choose a refractory kernel with absolute and relative refractoriness defined as

\[
\eta(s) = \begin{cases}
-\infty & \text{for } s < \Delta_{\text{abs}} \\
-\eta_0 \exp \left(-\frac{s - \Delta_{\text{abs}}}{\tau} \right) & \text{for } s > \Delta_{\text{abs}}
\end{cases}
\] (5.63)

and adopt the exponential escape rate (5.45).

Suppose that a spike has occurred at \(\hat{t} = 0 \). The probability density that the next spike occurs at time \(t \) is given by \(P_I(t|\hat{t}) \) and can be calculated from Eq. (5.53). The result is shown in Fig. 5.10. We note that the periodic component of the input is well represented in the response of the neuron. This example illustrates how neurons in the auditory system can transmit stimuli of frequencies higher than the mean firing rate of the neuron; see Chapter 12.5. We emphasize that the threshold in Fig. 5.10 is at \(\vartheta = 1 \). Without noise there would be no output spike. On the other hand, at very high noise levels, the modulation of the interval distribution would be much weaker. Thus a certain amount of noise is beneficial for signal transmission. The existence of an optimal noise level is a phenomenon called stochastic resonance and will be discussed below in Section 5.8.
5.4 Slow noise in the parameters

In one of the previous examples (`Motivating sigmoidal escape rates' in Section 5.3.1), a new value of the threshold was chosen at each time step; cf. Eq. (5.49). If time steps are short enough, such an approach is closely related to escape rate models. A completely different class of noise models can be constructed if the value of a parameter is changed after each spike. Thus between two spikes the noise is `frozen' so that the value of the fluctuating parameter does not change. In other words, the noise is slow compared to the fast neuronal dynamics. In principle, any of the neuronal parameters such as threshold, membrane time constant, or length of the refractory period, can be subject to this type of noise (Gerstner, 2000b; Lansky and Smith, 1989; Gestri, 1978; Knight, 1972a). In this section we want to show how to analyze such slow variations and calculate the interval distribution. We emphasize that these `slow' noise models cannot be mapped onto an escape rate formalism.

Figure 5.11: Slow noise in the parameters. After each spike either the reset value (A) or the firing threshold (B) is set to a new randomly chosen value.

To keep the arguments simple, we will concentrate on noise in the formulation of reset and refractoriness. We assume an exponential refractory kernel,

$$\eta(s) = \eta_0 e^{-s/\tau},$$

(5.64)

with time constant τ. In order to introduce noise, we suppose that the amount η_0 of the reset depends on a stochastic variable r,

$$\eta_0(r) = \tilde{\eta}_0 e^{r/\tau},$$

(5.65)

where $\tilde{\eta}_0 < 0$ is a fixed parameter and r is a random variable with zero mean. In the language of the integrate-and-fire neuron, we can describe the effect of r as a stochastic component in the value of the reset potential.

In the `noisy reset' model, firing is given by the threshold condition

$$\vartheta = u(t|\hat{\tau}, r) = \eta_r(t - \hat{\tau}) + \int_0^\infty \eta(t - s) u(t - s) \, ds,$$

(5.66)

where $\eta_r(t - \hat{\tau}) = \eta_0(r) \exp[-(t - \hat{\tau})/\tau]$. Since u depends on the current value of r, we have written $u(t|\hat{\tau}, r)$ instead of $u(t|\hat{\tau})$. Let us write $T(\hat{\tau}, r)$ for the next interval of a neuron which has fired at $\hat{\tau}$ and was reset with a
stochastic value \(r \), i.e.,

\[
T(\hat{t}, r) = \min \left\{ t - \hat{t} \mid u(t|\hat{t}, r) = \varnothing \right\}.
\]

If \(r \) is drawn from a Gaussian distribution \(\mathcal{G}(\sigma(r)) \) with variance \(\sigma \ll \tau \), the interval distribution is

\[
P_\mathcal{I}(t|\hat{t}) = \int dr \, \delta[t - \hat{t} - T(\hat{t}, r)] \, \mathcal{G}(\sigma(r)).
\]

Let us now evaluate the interval distribution (5.68) for the variant SRM_0 of the Spike Response Model,

\[
u(t|\hat{t}, r) = \eta_r(t - \hat{t}) + h(t),
\]

with constant input potential \(h(t) = h_0 \). First we show that a stochastic reset according to (5.65) with \(r \neq 0 \) shifts the refractory kernel horizontally along the time axis. To see this, let us consider a neuron that has fired its last spike at \(\hat{t} \) and has been reset with a certain value \(r \). The refractory term is

\[
\eta_r(t - \hat{t}) = \hat{r}_0 \exp\left[-(t - \hat{t} - r)/\tau\right],
\]

which is identical to that of a noiseless neuron that has fired its last spike at \(t' = \hat{t} + r \). Given the constant input potential \(h_0 \), a noise-free SRM_0 neuron would fire regularly with period \(T_0 \). A noisy neuron that was reset with value \(r \) is delayed by a time \(r \) and fires therefore after an interval \(T(\hat{t}, r) = T_0 + r \). Integration of Eq. (5.68) yields the interval distribution

\[
P_\mathcal{I}(t - \hat{t}) = \mathcal{G}(\sigma(t - \hat{t} - T_0)).
\]

Thus, the Gaussian distribution \(\mathcal{G}(\sigma(r)) \) of the noise variable \(r \) maps directly to a Gaussian distribution of the intervals around the mean \(T_0 \). For a detailed discussion of the relation between the distribution of reset values and the interval distribution \(P_\mathcal{I}(t - \hat{t}) \) of leaky integrate-and-fire neurons, see Lansky and Smith (1989).

Even though stochastic reset is not a realistic noise model for individual neurons, noise in the parameter values can approximate inhomogeneous populations of neurons where parameters vary from one neuron to the next (Wilson and Cowan, 1972; Knight, 1972a). Similarly, a fluctuating background input that changes slowly compared to the typical interspike interval can be considered as a slow change in the value of the firing threshold. More generally, noise with a cut-off frequency smaller than the typical firing rate can be described as slow noise in the parameters.
5.5 Diffusive noise

The integrate-and-fire model is, in its simplest form, defined by a differential equation \(\tau_m \frac{du}{dt} = -u + RI(t) \) where \(\tau_m \) is the membrane time constant, \(R \) the input resistance, and \(I \) the input current. The standard procedure of implementing noise in such a differential equation is to add a `noise term', \(\xi(t) \), on the right-hand side. The noise term \(\xi \) is a stochastic process called `Gaussian white noise' characterized by its expectation value, \(\langle \xi(t) \rangle = 0 \), and the autocorrelation

\[
\langle \xi(t) \xi(t') \rangle = \sigma^2 \tau_m \delta(t - t') ,
\]

where \(\sigma \) is the amplitude of the noise and \(\tau_m \) the membrane time constant of the neuron. The result is a stochastic differential equation,

\[
\tau_m \frac{du}{dt} = -u(t) + R I(t) + \xi(t) ,
\]

i.e., an equation for a stochastic process (Ornstein-Uhlenbeck process); cf. van Kampen (1992).

The neuron is said to fire an action potential whenever the membrane potential \(u \) reaches the threshold \(\vartheta \); cf. Fig. 5.12. We will refer to Eq. (5.73) as the Langevin equation of the noisy integrate-and-fire model. The analysis of Eq. (5.73) in the presence of the threshold \(\vartheta \) is the topic of this section. Before
we start with the discussion of Eq. (5.73), we indicate how the noise term $\zeta(t)$ can be motivated by stochastic spike arrival.

![Figure 5.12: Noisy integration. A stochastic contribution in the input current of an integrate-and-fire neuron causes the membrane potential to drift away from the reference trajectory (thick solid line). The neuron fires if the noisy trajectory (thin line) hits the threshold ϑ (schematic figure).](image)

5.5.1 Stochastic spike arrival

A typical neuron, e.g., a pyramidal cell in the vertebrate cortex, receives input spikes from thousands of other neurons, which in turn receive input from their presynaptic neurons and so forth; see Fig. 5.13. It is obviously impossible to incorporate all neurons in the brain into one huge network model. Instead, it is reasonable to focus on a specific subset of neurons, e.g., a column in the visual cortex, and describe input from other parts of the brain as a stochastic background activity.

![Figure 5.13: Each neuron receives input spikes from a large number of presynaptic neurons. Only a small portion of the input comes from neurons within the model network; other input is described as stochastic spike arrival.](image)

Let us consider an integrate-and-fire neuron that is part of a large network. Its input consists of (i) an external input $I_{\text{ext}}(t)$; (ii) input spikes $t_{j}^{(f)}$ from other neurons j of the network; and (iii) stochastic spike arrival $t_{k}^{(f)}$ due to the background activity in other parts of the brain. The membrane potential u evolves according to

$$
\frac{d}{dt} u = -\frac{u}{\tau_m} + \frac{1}{C} I_{\text{ext}}(t) + \sum_j \sum_{t_{j}^{(f)} > t} w_j \delta(t - t_{j}^{(f)}) + \sum_k \sum_{t_{k}^{(f)} > t} w_k \delta(t - t_{k}^{(f)}),
$$

where δ is the Dirac δ function and w_j is the coupling to other presynaptic neurons j in the network. Input from background neurons is weighted by the factor w_k. Firing times $t_{k}^{(f)}$ of a background neuron
k are generated by a Poisson process with mean rate ν_k. Eq. (5.74) is called Stein's model (Stein, 1967b, 1965).

In Stein's model, each input spike generates a postsynaptic potential $\Delta u(t) = w_j \varepsilon(t - t_j^{(f)})$ with $\varepsilon(s) = e^{-s/\tau_m} \Theta(s)$, i.e., the potential jumps upon spike arrival by an amount w_j and decays exponentially thereafter. It is straightforward to generalize the model so as to include a synaptic time constant and work with arbitrary postsynaptic potentials $\varepsilon(s)$ that are generated by stochastic spike arrival; cf. Fig. 5.14A.

5.5.1.1 Example: Membrane potential fluctuations

We consider stochastic spike arrival at rate ν. Each input spike evokes a postsynaptic potential $w_0 \varepsilon(s)$. The input statistics is assumed to be Poisson, i.e., firing times are independent. Thus, the input spike train,

$$S(t) = \sum_{k=1}^{N} \sum_{t_k^{(f)}} \delta(t - t_k^{(f)}),$$

(5.75)

that arrives at neuron i is a random process with expectation

$$\langle S(t) \rangle = \nu_0$$

(5.76)

and autocorrelation

$$\langle S(t) S(t') \rangle - \nu_0^2 = N \nu_0 \delta(t - t');$$

(5.77)

cf. Eq. (5.36).

Figure 5.14: Input spikes arrive stochastically (lower panel) at a mean rate of 1 kHz. A. Each input spike evokes an EPSP $\varepsilon(s) \propto s \exp(-s/\tau)$ with $\tau = 4$ ms. The first EPSP (the one generated by the spike at $t = 0$) is plotted. The EPSPs of all spikes sum up and result in a fluctuating membrane potential $u(t)$. B. Continuation of the simulation shown in A. The horizontal lines indicate the mean (dotted line) and the standard deviation (dashed lines) of the membrane potential.

We suppose that the input is weak so that the neuron does not reach its firing threshold. Hence, we can...
savely neglect both threshold and reset. Using the definition of the random process S we find for the membrane potential

$$u(t) = w_0 \int_0^\infty \varepsilon_G(s) S(t-s) \, ds.$$ \hfill (5.78)

We are interested in the mean potential $u_0 = \langle u(t) \rangle$ and the variance $\langle \Delta u^2 \rangle = \langle [u(t) - u_0]^2 \rangle$. Using Eqs. (5.76) and (5.77) we find

$$u_0 = w_0 \nu_G \int_0^\infty \varepsilon_G(s) \, ds $$ \hfill (5.79)

and

$$\langle \Delta u^2 \rangle = w_0^2 \int_0^\infty \int_0^\infty \varepsilon_G(s) \varepsilon_G(s') \langle S(t) S(t') \rangle \, ds \, ds' - u_0^2$$

$$= w_0^2 \nu_G \int_0^\infty \varepsilon_G^2(s) \, ds.$$ \hfill (5.80)

In Fig. 5.14 we have simulated a neuron which receives input from $N = 100$ background neurons with rate $\nu_j = 10$ Hz. The total spike arrival rate is therefore $\nu_G = 1$ kHz. Each spike evokes an EPSP $w_0 \varepsilon(s) = 0.1 (s/\tau) \exp(-s/\tau)$ with $\tau = 4$ ms. The evaluation of Eqs. (5.79) and (5.80) yields $u_0 = 0.4$ and $\sqrt{\langle \Delta u^2 \rangle} = 0.1$.

Mean and fluctuations for Stein's model can be derived by evaluation of Eqs. (5.79) and (5.80) with $\varepsilon(s) = e^{-s/\tau_m}$. The result is

$$u_0 = w_0 \nu_G \tau_m $$ \hfill (5.81)

$$\langle \Delta u^2 \rangle = 0.5 w_0^2 \nu_G \tau_m.$$ \hfill (5.82)

Note that with excitation alone, as considered here, mean and variance cannot be changed independently. As we will see in the next example, a combination of excitation and inhibition allows us to increase the variance while keeping the mean of the potential fixed.

5.5.1.2 Example: Balanced excitation and inhibition

Let us suppose that an integrate-and-fire neuron defined by Eq. (5.74) with $\tau_m = 10$ ms receives input from 100 excitatory neurons ($w_k = +0.1$) and 100 inhibitory neurons ($w_k = -0.1$). Each background neuron k fires at a rate of $\nu_k = 10$ Hz. Thus, in each millisecond, the neuron receives on average one
excitatory and one inhibitory input spike. Each spike leads to a jump of the membrane potential of ±0.1. The trajectory of the membrane potential is therefore similar to that of a random walk; cf. Fig. 5.15A. If, in addition, a constant stimulus $I_{\text{ext}} = I_0 > 0$ is applied so that the mean membrane potential (in the absence of the background spikes) is just below threshold, then the presence of random background spikes may drive u towards the firing threshold. Whenever $u \geq \vartheta$, the membrane potential is reset to $u_r = 0$.

Figure 5.15: A. Voltage trajectory of an integrate-and-fire neuron ($\tau_m = 10 \text{ ms, } u_r = 0$) driven by stochastic excitatory and inhibitory spike input at $\nu_+ = \nu_- = 1 \text{ kHz}$. Each input spike causes a jump of the membrane potential by $w_\pm = \pm 0.1$. The neuron is biased by a constant current $I_0 = 0.8$ which drives the membrane potential to a value just below the threshold of $\vartheta = 1$ (horizontal line). Spikes are marked by vertical lines. B. Similar plot as in A except that the jumps are smaller ($w_\pm = \pm 0.025$) while rates are higher ($\nu_\pm = 16 \text{ kHz}$).

We note that the mean of the stochastic background input vanishes since $\sum_k w_k \nu_k = 0$. Using the same arguments as in the previous example, we can convince ourselves that the stochastic arrival of background spikes generates fluctuations of the voltage with variance

$$\langle \Delta u^2 \rangle = 0.5 \tau_m \sum_k w_k^2 \nu_k = 0.1; \quad (5.83)$$

cf. Section 5.5.2 for a different derivation. Let us now increase all rates by a factor of $a > 1$ and multiply at the same time the synaptic efficacies by a factor $1/\sqrt{a}$. Then both mean and variance of the stochastic background input are the same as before, but the size w_k of the jumps is decreased; cf. Fig. 5.15B. In the limit of $a \to \infty$ the jump process turns into a diffusion process and we arrive at the stochastic model of Eq. (5.73). A systematic discussion of the diffusion limit is the topic of the next subsection.

Since firing is driven by the fluctuations of the membrane potential, the interspike intervals vary considerably; cf. Fig. 5.15. Balanced excitatory and inhibitory spike input, could thus contribute to the large variability of interspike intervals in cortical neurons (Shadlen and Newsome, 1998; van Vreeswijk and Sompolinsky, 1996; Brunel and Hakim, 1999; Amit and Brunel, 1997a; Shadlen and Newsome, 1994; Tsodyks and Sejnowski, 1995); see Section 5.6.
5.5.2 Diffusion limit (*)

In this section we analyze the model of stochastic spike arrival defined in Eq. (5.74) and show how to map it to the diffusion model defined in Eq. (5.73) (Johannesma, 1968; Gluss, 1967; Capocelli and Ricciardi, 1971). Suppose that the neuron has fired its last spike at time \(\hat{t} \). Immediately after the firing the membrane potential was reset to \(u_r \). Because of the stochastic spike arrival, we cannot predict the membrane potential for \(t > \hat{t} \), but we can calculate its probability density, \(p(u, t) \).

For the sake of simplicity, we set for the time being \(I_{\text{ext}} = 0 \) in Eq. (5.74). The input spikes at synapse \(k \) are generated by a Poisson process and arrive stochastically with rate \(\nu_k(t) \). The probability that no spike arrives in a short time interval \(\Delta t \) is therefore

\[
\text{Prob} \left\{ \text{no spike in } [t, t + \Delta t] \right\} = 1 - \sum_k \nu_k(t) \Delta t. \tag{5.84}
\]

If no spike arrives in \([t, t + \Delta t]\), the membrane potential changes from \(u(t) = u' \) to \(u(t + \Delta t) = u' \exp(-\Delta t/\tau_m) \). On the other hand, if a spike arrives at synapse \(k \), the membrane potential changes from \(u' \) to \(u' \exp(-\Delta t/\tau_m) + w_k \). Given a value of \(u' \) at time \(t \), the probability density of finding a membrane potential \(u \) at time \(t + \Delta t \) is therefore given by

\[
P^{\text{trans}}(u, t + \Delta t | u', t) = \left[1 - \Delta t \sum_k \nu_k(t) \right] \delta \left(u - u' e^{-\Delta t/\tau_m} \right)
+ \Delta t \sum_k \nu_k(t) \delta \left(u - u' e^{-\Delta t/\tau_m} - w_k \right). \tag{5.85}
\]

We will refer to \(P^{\text{trans}} \) as the transition law. Since the membrane potential is given by the differential equation (5.74) with input spikes generated by a Poisson distribution, the evolution of the membrane potential is a Markov Process (i.e., a process without memory) and can be described by (van Kampen, 1992)

\[
p(u, t + \Delta t) = \int P^{\text{trans}}(u, t + \Delta t | u', t) p(u', t) \, du'. \tag{5.86}
\]

We put Eq. (5.85) in (5.86). To perform the integration, we have to recall the rules for \(\delta \) functions, viz., \(\delta (a u) = a^{-1} \delta (u) \). The result of the integration is

\[
p(u, t + \Delta t) = \left[1 - \Delta t \sum_k \nu_k(t) \right] e^{\Delta u \tau_m} p \left(e^{\Delta u \tau_m}, u, t \right).
\]
\[+ \Delta t \sum_k \nu_k(t) e^{\Delta u \tau_m} p \left(e^{\Delta u \tau_m} u - w_k, t \right). \] (5.87)

Since \(\Delta t \) is assumed to be small, we expand Eq. (5.87) about \(\Delta t = 0 \) and find to first order in \(\Delta t \)

\[\frac{p(u, t + \Delta t) - p(u, t)}{\Delta t} = \frac{1}{\tau_m} p(u, t) + \frac{1}{\tau_m} u \frac{\partial}{\partial u} p(u, t) \]

\[+ \sum_k \nu_k(t) \left[p(u - w_k, t) - p(u, t) \right]. \] (5.88)

For \(\Delta t \to 0 \), the left-hand side of Eq. (5.88) turns into a partial derivative \(\partial p(u, t)/\partial t \). Furthermore, if the jump amplitudes \(w_k \) are small, we can expand the right-hand side of Eq. (5.88) with respect to \(u \) about \(p(u, t) \):

\[\tau_m \frac{\partial}{\partial t} p(u, t) = - \frac{\partial}{\partial u} \left[-u + \tau_m \sum_k \nu_k(t) w_k \right] p(u, t) \]

\[+ \frac{1}{2} \left[\tau_m \sum_k \nu_k(t) w_k^2 \right] \frac{\partial^2}{\partial u^2} p(u, t) \] (5.89)

where we have neglected terms of order \(w_k^3 \) and higher. The expansion in \(w_k \) is called the Kramers-Moyal expansion. Eq. (5.89) is an example of a Fokker-Planck equation (van Kampen, 1992), i.e., a partial differential equation that describes the temporal evolution of a probability distribution. The right-hand side of Eq. (5.89) has a clear interpretation: The first term in rectangular brackets describes the systematic drift of the membrane potential due to leakage (\(\propto -u \)) and mean background input (\(\propto \sum_k \nu_k(t) w_k \)). The second term in rectangular brackets corresponds to a `diffusion constant' and accounts for the fluctuations of the membrane potential. The Fokker-Planck Eq. (5.89) is equivalent to the Langevin equation (5.73) with \(R I(t) = \tau_m \sum_k \nu_k(t) w_k \) and time-dependent noise amplitude

\[\sigma^2(t) = \tau_m \sum_k \nu_k(t) w_k^2. \] (5.90)

The specific process generated by the Langevin-equation (5.73) with constant noise amplitude \(\sigma \) is called the Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930).

For the transition from Eq. (5.88) to (5.89) we have suppressed higher-order terms in the expansion. The missing terms are

\[\sum_{n=3}^{\infty} \frac{(-1)^n}{n!} A_n(t) \frac{\partial^n}{\partial u^n} p(u, t) \] (5.91)
with $A_n = \sum_k V_k(t) w_k^n$. What are the conditions that these terms vanish? As in the example of Figs. 5.15A and B, we consider a sequence of models where the size of the weights w_k decreases so that $A_n \to 0$ for $n \geq 3$ while the mean $\sum_k V_k(t) w_k$ and the second moment $\sum_k V_k(t) w_k^2$ remain constant. It turns out, that, given both excitatory and inhibitory input, it is always possible to find an appropriate sequence of models (Lansky, 1997, 1984). For $w_k \to 0$, the diffusion limit is attained and Eq. (5.89) is exact. For excitatory input alone, however, such a sequence of models does not exist (Plesser, 1999).

The Fokker-Planck equation (5.89) and the Langevin equation (5.73) are equivalent descriptions of drift and diffusion of the membrane potential. Neither of these describe spike firing. To turn the Langevin equation (5.73) into a sensible neuron model, we have to incorporate a threshold condition. In the Fokker-Planck equation (5.89), the firing threshold is incorporated as a boundary condition

$$p(\mathcal{D}, t) \equiv 0 \quad \text{for all } t.$$

(5.92)

Before we continue the discussion of the diffusion model in the presence of a threshold, let us study the solution of Eq. (5.89) without threshold.

5.5.2.1 Example: Free distribution

In the absence of a threshold ($\mathcal{D} \to \infty$), both the Langevin equation (5.73) and the Fokker-Planck equation (5.89) can be solved. Let us consider Eq. (5.73) for constant σ. At $t = 0$ the membrane potential starts at a value $u = u_r = 0$. Since (5.73) is a linear equation, its solution is

$$u(t|\dot{\mathcal{D}}) = \frac{R}{\tau_m} \int_0^{t-\dot{\mathcal{D}}} e^{-s/\tau_m} I(t-s) \, ds + \frac{1}{\tau_m} \int_0^{t-\dot{\mathcal{D}}} e^{-s/\tau_m} \xi(t-s) \, ds$$

(5.93)

Since $\langle \xi(t) \rangle = 0$, the expected trajectory of the membrane potential is

$$u_0(t) = \langle u(t|\dot{\mathcal{D}}) \rangle = \frac{R}{\tau_m} \int_0^{t-\dot{\mathcal{D}}} e^{-s/\tau_m} I(t-s) \, ds .$$

(5.94)

In particular, for constant input current $I(t) \equiv I_0$ we have

$$u_0(t) = u_\infty \left[1 - e^{-(t-\dot{\mathcal{D}})/\tau_m} \right]$$

(5.95)

with $u_\infty = R I_0$. Note that the expected trajectory is that of the noiseless model.

The fluctuations of the membrane potential have variance $\langle \Delta u^2 \rangle = \langle [u(t|\dot{\mathcal{D}}) - u_0(t)]^2 \rangle$ with $u_0(t)$.
5.5 Diffusive noise

given by Eq. (5.94). The variance can be evaluated with the help of Eq. (5.93), i.e.,
\[
\langle \Delta u^2(t) \rangle = \frac{1}{\tau_m^2} \int_0^{t-t_{\hat{\xi}}} ds \int_0^{t-t_{\hat{\xi}}} ds' e^{-s/\tau_m} e^{-s'/\tau_m} \langle \xi(t-s) \xi(t-s') \rangle.
\] (5.96)

We use \(\langle \xi(t-s) \xi(t-s') \rangle = \sigma^2 \tau_m \delta(s-s') \) and perform the integration. The result is
\[
\langle \Delta u^2(t) \rangle = \frac{1}{2} \sigma^2 \left[1 - e^{-2(t-s)/\tau_m} \right].
\] (5.97)

Hence, noise causes the actual membrane trajectory to drift away from the noiseless reference trajectory \(u_0(t) \). The typical distance between the actual trajectory and the mean trajectory approaches with time constant \(\tau_m/2 \) a limiting value
\[
\sqrt{\langle \Delta u^2_{\infty} \rangle} = \frac{1}{\sqrt{2}} \sigma/\tau_m.
\] (5.98)

![Figure 5.16: In the absence of a threshold the membrane potential follows a Gaussian distribution around the noise-free reference trajectory \(u_0(t) \) (schematic figure).](http://diwww.epfl.ch/~gerstner/SPNM/node37.html)

The solution of the Fokker-Planck equation (5.89) with initial condition \(p(u, \hat{t}) = \delta(u - u_\hat{t}) \) is a Gaussian with mean \(u_0(t) \) and variance \(\langle \Delta u^2(t) \rangle \), i.e.,
\[
p(u, t) = \frac{1}{\sqrt{2\pi \langle \Delta u^2(t) \rangle}} \exp \left\{ - \frac{[u(t|\hat{t}) - u_\hat{t}(t)]^2}{2 \langle \Delta u^2(t) \rangle} \right\}
\] (5.99)

as can be verified by inserting Eq. (5.99) into (5.89); see Fig. 5.16. In particular, the stationary distribution that is approached in the limit of \(t \to \infty \) for constant input \(I_0 \) is
\[p(u, \infty) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} \exp \left\{ -\frac{(u - R I_0)^2}{\sigma^2} \right\}. \]

(5.100)

which describes a Gaussian distribution with mean \(u_\infty = R I_0 \) and variance \(\sigma / \sqrt{2} \).

5.5.3 Interval distribution

Let us consider a neuron that starts at time \(\hat{t} \) with a membrane potential \(u_r \) and is driven for \(t > \hat{t} \) by a known input \(I(t) \). Because of the diffusive noise generated by stochastic spike arrival, we cannot predict the exact value of the neuronal membrane potential \(u(t) \) at a later time \(t > \hat{t} \), but only the probability that the membrane potential is in a certain interval \([u_0, u_1] \). Specifically, we have

\[\text{Prob} \left\{ u_0 < u(t) < u_1 \mid u(\hat{t}) = u_r \right\} = \int_{u_0}^{u_1} p(u, t) \, du \]

(5.101)

where \(p(u, t) \) is the distribution of the membrane potential at time \(t \). In the diffusion limit, \(p(u, t) \) can be found by solution of the Fokker-Planck equation Eq. (5.89) with initial condition \(p(u, \hat{t}) = \delta(u - u_r) \) and boundary condition \(p(\vartheta, t) = 0 \). At any time \(t > \hat{t} \), the survivor function,

\[S(t|\hat{t}) = \int_{-\infty}^{\vartheta} p(u, t) \, du, \]

(5.102)

is the probability that the membrane potential has not reached the threshold. In view of Eq. (5.5), the input-dependent interval distribution is therefore

\[P_I(t|\hat{t}) = -\frac{d}{dt} \int_{-\infty}^{\vartheta} p(u, t) \, du. \]

(5.103)

We recall that \(P_I(t|\hat{t}) \Delta t \) for \(\Delta t \to 0 \) is the probability that a neuron fires its next spike between \(t \) and \(t + \Delta t \) given a spike at \(\hat{t} \) and input \(I \). In the context of noisy integrate-and-fire neurons \(P_I(t|\hat{t}) \) is called the distribution of ‘first passage times’. The name is motivated by the fact, that firing occurs when the membrane potential crosses \(\vartheta \) for the first time. Unfortunately, no general solution is known for the first passage time problem of the Ornstein-Uhlenbeck process. For constant input \(I(t) = I_0 \), however, it is at least possible to give a moment expansion of the first passage time distribution. In particular, the mean of the first passage time can be calculated in closed form.

5.5.3.1 Example: Mean interval for constant input

For constant input \(I_0 \) the mean interspike interval is \(\langle s \rangle = \int_0^{\infty} s P_I(0|0) ds = \int_0^{\infty} s P_0(s) ds \); cf. Eq. (5.21). For the diffusion model Eq. (5.73) with threshold \(\vartheta \) reset potential \(u_r \), and membrane time
constant \(\tau_m \), the mean interval is

\[
\langle s \rangle = \tau_m \sqrt{\frac{2}{\pi}} \int \frac{e^{-(u-h_0)/\sigma}}{\sigma} du \exp \left(\frac{u^2}{2} \right) \left[1 + \text{erf}(u) \right],
\]

(5.104)

where \(h_0 = R I_0 \) is the input potential caused by the constant current \(I_0 \) (Johannesma, 1968). This expression can be derived by several methods; for reviews see, e.g., (Tuckwell, 1988; van Kampen, 1992). We will return to Eq. (5.104) in Chapter 6.2.1 in the context of populations of spiking neurons.

5.5.3.2 Example: Numerical evaluation of \(P_I(t|\hat{t}) \)

![Figure 5.17: Without a threshold, several trajectories can reach at time \(t \) the same value \(u = \vartheta \) from above or below.](image)

We have seen that, in the absence of a threshold, the Fokker-Planck Equation (5.89) can be solved; cf. Eq. (5.99). The transition probability from an arbitrary starting value \(u' \) at time \(t' \) to a new value \(u \) at time \(t \) is

\[
P_{\text{trans}}(u, t | u', t') = \frac{1}{\sqrt{2\pi \langle \Delta u^2(t) \rangle}} \exp \left\{ -\frac{[u - u_0(t)]^2}{2 \langle \Delta u^2(t) \rangle} \right\}
\]

(5.105)

with

\[
u_0(t) = u' e^{-(t-t')/\tau_m} + \int_{0}^{t-t'} e^{-s'/\tau_m} I(t - s') ds,
\]

(5.106)

\[
\langle \Delta u^2(t) \rangle = \frac{\sigma^2}{2} \left[1 - e^{-2(t-s)/\tau_m} \right].
\]

(5.107)

A method due to Schrödinger uses the solution of the unbounded problem in order to calculate the input-dependent interval distribution \(P_I(t|\hat{t}) \) of the diffusion model with threshold (Schrödinger, 1915; Plesser and Tanaka, 1997; Burkitt and Clark, 1999). The idea of the solution method is illustrated in Fig. 5.17. Because of the Markov property, the probability density to cross the threshold (not necessarily for the first time) at a time \(t \), is equal to the probability to cross it for the first time at \(t' < t \) and to return back to \(\vartheta \) at time \(t \), that is,
\[P_{\text{trans}}(\varnothing, t | u_r, \dot{\varnothing}) = \int_{\dot{\varnothing}}^{t} P_1(t' | \dot{\varnothing}) P_{\text{trans}}(\varnothing, t | \varnothing, t') \, dt'. \] (5.108)

This integral equation can be solved numerically for the distribution \(P_1(t' | \dot{\varnothing}) \) for arbitrary input current \(I(t) \) (Plesser, 2000). An example is shown in Fig. 5.18.

Figure 5.18: A time-dependent input current \(I(t) \) generates a noise-free membrane potential \(u_0(t) \) shown in the lower part of the figure. In the presence of diffusive noise, spikes can be triggered although the reference trajectory stays below the threshold (dashed line). This gives rise to an input-dependent interval distribution \(P_1(t | 0) \) shown in the upper panel. Taken from (Plesser and Gerstner, 2000).
5.6 The subthreshold regime

One of the aims of noisy neuron models is to mimic the large variability of interspike intervals found, e.g., in vertebrate cortex. To arrive at broad interval distributions, it is not just sufficient to introduce noise into a neuron model. Apart from the noise level, other neuronal parameters such as the firing threshold or a bias current have to be tuned so as to make the neuron sensitive to noise. In this section we introduce a distinction between super- and subthreshold stimulation (Bugmann et al., 1997; König et al., 1996; Shadlen and Newsome, 1994; Troyer and Miller, 1997; Abeles, 1991). In Section 5.7 we will show that, in the subthreshold regime, there is a close relation between the two different noise models discussed above, viz., escape noise (cf. Section 5.3) and diffusive noise (cf. Section 5.5). Finally, in Section 5.8 we turn to the phenomenon of stochastic resonance and discuss signal transmission in the subthreshold regime.

5.6.1 Sub- and superthreshold stimulation

An arbitrary time-dependent stimulus $I(t)$ is called subthreshold, if it generates a membrane potential that stays - in the absence of noise - below the firing threshold. Due to noise, however, even subthreshold stimuli can induce action potentials. Stimuli that induce spikes even in a noise-free neuron are called superthreshold.

The distinction between sub- and superthreshold stimuli has important consequences for the firing behavior of neurons in the presence of noise. To see why, let us consider an integrate-and-fire neuron with constant input I_0 for $t > 0$. Starting from $u(t = 0) = u_r$, the trajectory of the membrane potential is

$$u_0(t) = u_\infty \left[1 - e^{-t/\tau_m} \right] + u_r e^{-t/\tau_m}.$$ \hspace{1cm} (5.109)

In the absence of a threshold, the membrane potential approaches the value $u_\infty = R I_0$ for $t \to \infty$. If we take the threshold ϑ into account, two cases may be distinguished. First, if $u_\infty < \vartheta$ (subthreshold stimulation), the neuron does not fire at all. Second, if $u_\infty > \vartheta$ (superthreshold stimulation), the neuron fires regularly. The interspike interval is s_0 derived from $u_0(s_0) = \vartheta$. Thus

$$s_0 = \tau \ln \frac{u_\infty - u_r}{u_\infty - \vartheta}.$$ \hspace{1cm} (5.110)
We now add diffusive noise. In the superthreshold regime, noise has little influence, except that it broadens the interspike interval distribution. Thus, in the superthreshold regime, the spike train in the presence of diffusive noise, is simply a noisy version of the regular spike train of the noise-free neuron.

On the other hand, in the subthreshold regime, the spike train changes qualitatively, if noise is switched on; see (König et al., 1996) for a review. Stochastic background input turns the quiescent neuron into a spiking one. In the subthreshold regime, spikes are generated by the fluctuations of the membrane potential, rather than by its mean (Bugmann et al., 1997; Feng, 2001; Shadlen and Newsome, 1994; Troyer and Miller, 1997; Abeles, 1991). The interspike interval distribution is therefore broad; see Fig. 5.20.

5.6.1.1 Example: Interval distribution in the superthreshold regime
Figure 5.20: Integrate-and-fire neuron (τ_m = 10 ms) with superthreshold (left column) and subthreshold (right column) stimulation. A. Without noise, a neuron with superthreshold stimulus I_a fires regularly. Spikes are marked by vertical lines. The threshold is indicated by a horizontal line. The dashed line shows the evolution of the membrane potential in the absence of the threshold. B. The same neuron with subthreshold stimulation I_b does not fire. C. If we add stochastic excitatory and inhibitory spike input (w_± = 0.05 at ν_± = 1.6 kHz) to the constant input I_a, the membrane potential drifts away from the noise-free reference trajectory, but firing remains fairly regular. D. The same sequence of input spikes added to the subthreshold current I_b generates irregular spiking. E and F. Histogram of interspike intervals in C and D, respectively, as an estimator of the interval distribution P_0(s) in the super- and subthreshold regime. The mean interval ⟨s⟩ is 12ms (E) and 50ms (F); the C_V values are 0.30 and 0.63, respectively.

For small noise amplitude 0 < σ ≪ u_∞ - \vartheta, the interval distribution is centered at s_0. Its width can be estimated from the width of the fluctuations ⟨Δ u^2_∞⟩ of the free membrane potential; cf. Eq. (5.99). Since the membrane potential crosses the threshold with slope u_0', there is a scaling factor u_0' = du_0(t)/dt evaluated at t = s_0; cf. Fig. 5.19. The interval distribution is therefore approximately given by a Gaussian with mean s_0 and width σ/\sqrt{2} u_0' (Tuckwell, 1988), i.e.,
\[P_0(t|0) = \frac{1}{\sqrt{\pi}} \frac{u'_0}{\sigma} \exp \left[- \frac{(u'_0)^2 (t - s_0)^2}{\sigma^2} \right]. \] (5.111)

5.6.2 Coefficient of variation \(C_V \)

Figures 5.20e and 5.20f show that interval distributions in the super- and subthreshold regime look quite differently. To quantify the width of the interval distribution, neuroscientists often evaluate the coefficient of variation, short \(C_V \), defined as the ratio of the variance and the mean squared,

\[C_V^2 = \frac{\langle \Delta s^2 \rangle}{\langle s \rangle^2}, \] (5.112)

where \(\langle s \rangle = \int_0^\infty P_0(s) \, ds \) and \(\langle \Delta s^2 \rangle = \int_0^\infty s^2 P_0(s) \, ds - \langle s \rangle^2 \). A Poisson distribution has a value of \(C_V = 1 \). A value of \(C_V > 1 \), implies that a given distribution is broader than a Poisson distribution with the same mean. If \(C_V < 1 \), then the spike train is more regular than that generated by a Poisson neuron of the same rate. A long refractory period and low noise level decrease the \(C_V \) value.

5.6.2.1 Example: Poisson neuron with absolute refractoriness

We study a Poisson neuron with absolute refractory period \(\Delta^{\text{abs}} \). For \(t - \hat{t} > \Delta^{\text{abs}} \), the neuron is supposed to fire stochastically with rate \(r \). The interval distribution is given in Eq. (5.20) with mean \(\langle s \rangle = \Delta^{\text{abs}} + 1/r \) and variance \(\langle \Delta s^2 \rangle = 1/r^2 \). The coefficient of variation is therefore

\[C_V = 1 - \frac{\Delta^{\text{abs}}}{\langle s \rangle}. \] (5.113)

Let us compare the \(C_V \) of Eq. (5.113) with that of a homogeneous Poisson process of the same mean rate \(\nu = \langle s \rangle^{-1} \). As we have seen, a Poisson process has \(C_V = 1 \). A refractory period \(\Delta^{\text{abs}} > 0 \) lowers the \(C_V \), because a neuron with absolute refractoriness fires more regularly than a Poisson neuron. If we increase \(\Delta^{\text{abs}} \), we must increase the instantaneous rate \(r \) in order to keep the same mean rate \(\nu \). In the limit of \(\Delta^{\text{abs}} \to \langle s \rangle \), the \(C_V \) approaches zero, since the only possible spike train is regular firing with period \(\langle s \rangle \).
In the subthreshold regime, the integrate-and-fire model with stochastic input (diffusive noise) can be mapped approximately onto an escape noise model with a certain escape rate f (Plesser and Gerstner, 2000). In this section, we motivate the mapping and the choice of f.

In the absence of a threshold, the membrane potential of an integrate-and-fire model has a Gaussian probability distribution, around the noise-free reference trajectory $u_0(t)$. If we take the threshold into account, the probability density at $u = \vartheta$ of the exact solution vanishes, since the threshold acts as an absorbing boundary; see Eq. (5.92). Nevertheless, in a phenomenological model, we can approximate the probability density near $u = \vartheta$ by the `free' distribution (i.e., without the threshold)

$$\text{Prob} \left\{ u \text{ reaches } \vartheta \text{ in } [t, t + \Delta t] \right\} \propto \Delta t \exp \left\{ - \frac{[u_0(t) - \vartheta]^2}{2 \langle \Delta u^2(t) \rangle} \right\}, \quad (5.114)$$

where $u_0(t)$ is the noise-free reference trajectory. The idea is illustrated in Fig. 5.21.

We have seen in Eq. (5.97) that the variance $\langle \Delta u^2(t) \rangle$ of the free distribution rapidly approaches a constant value $\sigma^2/2$. We therefore replace the time dependent variance $2 \langle \Delta u(t)^2 \rangle$ by its stationary value σ^2. The right-hand side of Eq. (5.114) is then a function of the noise-free reference trajectory only. In order to transform the left-hand side of Eq. (5.114) into an escape rate, we divide both sides by Δt. The firing intensity is thus
The factor in front of the exponential has been split into a constant parameter $c_1 > 0$ and the time constant τ_m of the neuron in order to show that the escape rate has units of one over time. Equation (5.115) is the well-known Arrhenius formula for escape across a barrier of height $(\vartheta - u_0)^2$ in the presence of thermal energy σ^2 (van Kampen, 1992).

Figure 5.21: The distribution of the membrane potential around the noise free reference trajectory $u_0(t)$ is given by $p(u, t)$. At $t = t_0$, where the reference trajectory has a discontinuity, the distribution of the membrane potential is shifted instantaneously across the threshold. The probability of firing at t_0 is given by the shaded surface under the distribution.

Let us now suppose that the neuron receives, at $t = t_0$, an input current pulse which causes a jump of the membrane trajectory by an amount $\Delta u > 0$; see Fig. (5.21). In this case the Gaussian distribution of membrane potentials is shifted \textit{instantaneously} across the threshold so that there is a nonzero probability that the neuron fires exactly at t_0. To say it differently, the firing intensity $\rho(t) = f[u_0(t) - \vartheta]$ has a δ peak at $t = t_0$. The escape rate of Eq. (5.115), however, cannot reproduce this δ peak. More generally, whenever the noise free reference trajectory increases with slope $\dot{u}_0 > 0$, we expect an increase of the instantaneous rate proportional to \dot{u}_0,

\[
f(u_0 - \vartheta) = \frac{c_1}{\tau_m} \exp\left\{ - \frac{(u_0(t) - \vartheta)^2}{\sigma^2} \right\}.
\]

(5.115)
because the tail of the Gaussian distribution drifts across the threshold; cf. Eq. (5.111). In order to take the drift into account, we generalize Eq. (5.115) and study

\[f(u_0, \dot{u}_0) = \left(\frac{c_1}{\tau_m} + \frac{c_2}{\sigma} \left[\dot{u}_0 \right]_+ \right) \exp \left\{ - \frac{[u_0(t) - \Theta]^2}{\sigma^2} \right\}, \]

(5.116)

where \(\dot{u}_0 = du_0/dt \) and \([x]_+ = x \) for \(x > 0 \) and zero otherwise. We call Eq. (5.116) the Arrhenius&Current model (Plesser and Gerstner, 2000).

We emphasize that the right-hand side of Eq. (5.116) depends only on the dimensionless variable

\[x(t) = \frac{u_0(t) - \Theta}{\sigma}, \]

(5.117)

and its derivative \(\dot{x} \). Thus the amplitude of the fluctuations \(\sigma \) define a `natural' voltage scale. The only relevant variable is the momentary distance of the noise-free trajectory from the threshold in units of the noise amplitude \(\sigma \). A value of \(x = -1 \) implies that the membrane potential is one \(\sigma \) below threshold. A distance of \(u - \Theta = -10 \) mV at high noise (e.g., \(\sigma = 10 \) mV) is as effective in firing a cell as a distance of 1 mV at low noise (\(\sigma = 1 \) mV).

5.7.0.1 Example: Comparison of diffusion model and Arrhenius&Current escape rate

To check the validity of the arguments that led to Eq. (5.116), let us compare the interval distribution generated by the diffusion model with that generated by the Arrhenius&Current escape model. We use the same input potential \(u_0(t) \) as in Fig. 5.18. We find that the interval distributions \(P_{I\text{diff}} \) for the diffusive noise model and \(P_{I\text{A&C}} \) for the Arrhenius&Current escape model are nearly identical; cf. Fig. (5.22). Thus the Arrhenius&Current escape model yields an excellent approximation to the diffusive noise model. We quantify the error of the approximation by the measure

\[E = \frac{\int_0^\infty \left[P_{I\text{diff}}(t|0) - P_{I\text{A&C}}(t|0) \right]^2 dt}{\int_0^\infty \left[P_{I\text{diff}}(t|0) \right]^2 dt}. \]

(5.118)
For the example shown in Fig. 5.22 we find $E = 0.026$. Over a large set of subthreshold stimuli, the difference between the diffusive noise and the Arrhenius&Current model is typically in the range of $E = 0.02$; the best choice of parameters is $c_1 \approx 0.72$ and $c_2 \approx \pi^{-1/2}$ (Plesser and Gerstner, 2000). The simple Arrhenius model of Eq. (5.115) or the sigmoidal model of Eq. (5.51) have errors which are larger by a factor of 3-5.

Even though the Arrhenius&Current model has been designed for sub-threshold stimuli, it also works remarkably well for super-threshold stimuli with typical errors around $E = 0.04$. An obvious shortcoming of the escape rate (5.116) is that the instantaneous rate decreases with u for $u > \dot{\theta}$. The superthreshold behavior can be corrected if we replace the Gaussian $\exp(-x^2)$ by $2 \exp(-x^2)/[1 + \text{erf}(-x)]$ (Herrmann and Gerstner, 2001a). The subthreshold behavior remains unchanged compared to Eq. (5.116) but the superthreshold behavior of the escape rate f becomes linear. With this new escape rate the typical error E in the super-threshold regime is as small as that in the subthreshold regime.

![Figure 5.22](image)

Figure 5.22: The interval distributions $P_I(t|0)$ for diffusive noise (solid line) and Arrhenius&Current escape noise (dashed line) are nearly identical. The input potential is the same as in Fig. 5.18.

Taken from (Plesser and Gerstner, 2000).

Next: 5.8 Stochastic resonance Up: 5. Noise in Spiking Previous: 5.6 The subthreshold regime

Spiking Neuron Models. Single Neurons, Populations, Plasticity

Gerstner and Kistler

Cambridge University Press, 2002
5.8 Stochastic resonance

Noise can - under certain circumstances - improve the signal transmission properties of neuronal systems. In most cases there is an optimum for the noise amplitude which has motivated the name \textit{stochastic resonance} for this rather counterintuitive phenomenon. In this section we discuss stochastic resonance in the context of noisy spiking neurons.

We study the relation between an input $I(t)$ to a neuron and the corresponding output spike train $S(t) = \sum_i \delta(t - t_i)$. In the absence of noise, a subthreshold stimulus $I(t)$ does not generate action potentials so that no information on the temporal structure of the stimulus can be transmitted. In the presence of noise, however, spikes do occur. As we have seen in Eq. (5.116), spike firing is most likely at moments when the normalized distance $|x| = |(u - \theta)/\sigma|$ between the membrane potential and the threshold is small. Since the escape rate in Eq. (5.116) depends exponentially on x^2, any variation in the membrane potential $u_0(t)$ that is generated by the temporal structure of the input is enhanced; cf. Fig. (5.10). On the other hand, for very large noise ($\sigma \to \infty$), we have $x^2 \to 0$, and spike firing occurs at a constant rate, irrespective of the temporal structure of the input. We conclude that there is some intermediate noise level where signal transmission is optimal.

The optimal noise level can be found by plotting the signal-to-noise ratio as a function of noise (McNamara and Wiesenfeld, 1989; Collins et al., 1996; Cordo et al., 1996; Longtin, 1993; Wiesenfeld and Jaramillo, 1998; Stemmler, 1996; Levin and Miller, 1996; Douglass et al., 1993); for a review see Gammaitoni et al. (1998). Even though stochastic resonance does not require periodicity (see, e.g., Collins et al. (1996)), it is typically studied with a periodic input signal such as

$$I(t) = I_0 + I_1 \cos(\Omega t).$$

(5.119)
For \(\hat{t} \gg \tau_m \), the membrane potential of the noise-free reference trajectory has the form
\[
u_0(t) = u_\infty + u_1 \cos(\Omega t + \varphi_1), \quad (5.120)
\]
where \(u_1 \) and \(\varphi_1 \) are amplitude and phase of its periodic component. To quantify the signal transmission properties, a long spike train is studied and the signal-to-noise ratio (SNR) is computed. The signal \(S \) is measured as the amplitude of the power spectral density of the spike train evaluated at frequency \(\Omega \), i.e., \(S = \mathcal{P}(\Omega) \). The noise level \(N \) is usually estimated from the noise power \(\mathcal{P}_{\text{Poisson}} \) of a Poisson process with the same number of spikes as the measured spike train, i.e., \(N = \mathcal{P}_{\text{Poisson}} \). Figure 5.23 shows the signal-to-noise ratio \(S/N \) of a periodically stimulated integrate-and-fire neuron as a function of the noise level \(\sigma \). Two models are shown, viz., diffusive noise (solid line) and escape noise with the Arrhenius&Current escape rate (dashed line). The two curves are rather similar and exhibit a peak at
\[
\sigma_{\text{opt}} \approx \frac{2}{3} (\vartheta - u_\infty). \quad (5.121)
\]
Since \(\sigma^2 = 2 \langle \Delta u^2 \rangle \), signal transmission is optimal if the stochastic fluctuations of the membrane potential have an amplitude
\[
2 \sqrt{\langle \Delta u^2 \rangle} \approx \vartheta - u_\infty. \quad (5.122)
\]
An optimality condition similar to (5.121) holds over a wide variety of stimulation parameters (Plesser, 1999). We will come back to the signal transmission properties of noisy spiking neurons in Chapter 7.3.
5.8.0.1 Example: Extracting oscillations

The optimality condition (5.121) can be fulfilled by adapting either the left-hand side or the right-hand side of the equation. Even though it cannot be excluded that a neuron changes its noise level so as to optimize the left-hand side of Eq. (5.121) this does not seem very likely. On the other hand, it is easy to imagine a mechanism that optimizes the right-hand side of Eq. (5.121). For example, an adaptation current could change the value of ϑ, or synaptic weights could be increased or decreased so that the mean potential u_∞ is in the appropriate regime.

We apply the idea of an optimal threshold to a problem of neural coding. More specifically, we study the question whether an integrate-and-fire or Spike Response Model neuron is only sensitive to the total number of spikes that arrive in some time window T, or also to the relative timing of the input spikes. In contrast to Chapter 4.5 where we have discussed this question in the deterministic case, we will explore it here in the context of stochastic spike arrival. We consider two different scenarios of stimulation. In the first scenario input spikes arrive with a periodically modulated rate,

$$\nu^{\text{in}}(t) = \nu_0 + \nu_1 \cos(\Omega t)$$

(5.123)

with $0 < \nu_1 < \nu_0$. Thus, even though input spikes arrive stochastically, they have some inherent temporal structure, since they are generated by an inhomogeneous Poisson process. In the second scenario input spikes are generated by a homogeneous (that is, stationary) Poisson process with constant rate ν_0. In a large interval $T \gg \Omega^{-1}$, however, we expect in both cases a total number of $\nu_0 T$ input spikes.

Stochastic spike arrival leads to a fluctuating membrane potential with variance $\Delta^2 = \langle \Delta u^2 \rangle$. If the membrane potential hits the threshold an output spike is emitted. If stimulus 1 is applied during the time T, the neuron emits emit a certain number of
action potentials, say \(n^{(1)}\). If stimulus 2 is applied it emits \(n^{(2)}\) spikes. It is found that the spike count numbers \(n^{(1)}\) and \(n^{(2)}\) are significantly different if the threshold is in the range

\[
 u_\infty + \sqrt{\langle \Delta u^2 \rangle} < \vartheta < u_\infty + 3 \sqrt{\langle \Delta u^2 \rangle}.
\]

(5.124)

We conclude that a neuron in the subthreshold regime is capable of transforming a temporal code (amplitude \(\nu_1\) of the variations in the input) into a spike count code. Such a transformation plays an important role in the auditory pathway; see Chapter 12.5.
5.9 Stochastic firing and rate models

All neuron models considered up to now emit spikes, either explicit action potentials that are generated by ionic processes as in Chapter 2, or formal spikes that are generated by a threshold process as in Chapter 4. On the other hand, if we take the point of view of rate coding, single spikes of individual neurons do not play an important role; cf. Chapter 1.4. The essential quantity to be transmitted from one group of neurons to the next is the firing rate, defined either as a temporal or as a population average. If this is true, models formulated on the level of firing rates would be sufficient.

As we have seen in Chapter 1.4, there are several ways to define the firing rate of a neuron. Consequently, rate-based models differ with respect to their notion of 'firing rate'. Here we focus on three different rate models, viz., analog neurons (averaging over time), stochastic rate models (averaging over a stochastic ensemble), and population rate models (averaging over a population of neurons).

5.9.1 Analog neurons

If rate coding is understood in the sense of a spike count, then the essential information is carried by the mean firing rate, defined by the number $n_{sp}(T)$ of spikes that occur in a given time interval T divided by T

$$\nu = \frac{n_{sp}(T)}{T}$$

(5.125)

In the limit of a large interval T, many spikes occur within T and we can approximate the empirical rate by a continuous variable ν.

We have seen in the previous chapters that a neuron that is driven by a constant intracellular current I_0, emits a regular spike train. The rate ν is then simply the inverse of the constant interspike interval s. If the drive current I_0 is increased, the mean firing rate increases as well until it saturates at a maximum rate ν^{max}. The relation g between the output rate and the input,

$$\nu = g(I_0),$$

(5.126)
is called the *gain function* of the neuron. Examples of gain functions of detailed neuron models have been given in Fig. 2.5B and Fig. 2.11A. Simplified gain functions used in formal neuron models are given in Fig. 5.24. In fact, for stationary input any regularly firing (i.e., non bursting) neuron is fully characterized by its gain function.

![Figure 5.24](http://diwww.epfl.ch/~gerstner/SPNM/node41.html#fig5_24)

Figure 5.24: Frequently used gain functions for rate models. The normalized output rate $x = \nu/\nu_{\text{max}}$ is plotted as a function of the total input I_0. **A.** Sigmoidal function; cf. Eq. (5.129) with $\beta = 2$ and $\vartheta = 1$. **B.** Step function. **C.** Piecewise linear function.

In a network of neurons in rate description, the input I_i to a neuron i is generated by the rates ν_j of other neurons j. Typically it is assumed that I_i is just a weighted sum,

$$I_i = \sum_{j \in \Gamma_i} w_{ij} \nu_j,$$

(5.127)

where the weighting factor w_{ij} is the synaptic efficacy. This implies that dendritic integration is a linear operation. A combination of Eq. (5.127) and (5.126) yields

$$\nu_i = g \left(\sum_j w_{ij} \nu_j \right),$$

(5.128)

which gives the output rate ν_i of neuron i as a function of its inputs ν_j. This equation plays a central role in the theory of neural networks (Haykin, 1994; Hertz et al., 1991).

We refer to the variable ν_i as the firing rate or activation of neuron i. The interpretation of the input I_i is somewhat ambiguous. Some modelers think of it as a current, consistent with our notation in Eq. (5.127). Other researchers take I_i as a voltage and call it the postsynaptic potential. In the case of constant input, the interpretation is irrelevant, since the Eq. (5.128) is only used as a phenomenological model of certain aspects of neural information processing. The neuron itself is essentially treated as a black box which transforms a set of input rates into an output rate.

5.9.1.1 Example: Gain functions of formal neurons

In formal models the transfer function is often described by a hyperbolic tangent,

$$g(I_0) = \frac{\nu_{\text{max}}}{2} \left\{ 1 + \tanh [\beta (I_0 - \vartheta)] \right\},$$

(5.129)
with parameters ν^{max}, β, and ϑ. The gain function has slope $\nu^{\text{max}} \beta/2$ at its inflection point $I_0 = \vartheta$ and saturates at ν^{max} as $I_0 \rightarrow \infty$; cf. Fig. 5.24A.

For $\beta \rightarrow \infty$, the gain function (5.129) approaches a step function

$$g(I_0) = \nu^{\text{max}} \Theta(I_0 - \vartheta) ;$$

(5.130)

cf. Fig. 5.24B. For the sake of simplicity, the sigmoidal transfer function (5.129) is often replaced by a piecewise linear transfer function

$$g(I_0) = \begin{cases} 0 & \text{for } I_0 \leq \vartheta \\ \nu^{\text{max}} (I_0 - \vartheta) & \text{for } \vartheta < I_0 \leq \vartheta + 1 \\ \nu^{\text{max}} & \text{for } \vartheta + 1 < I_0 \end{cases}$$

(5.131)

which is particularly convenient for a mathematical analysis; see, e.g., Sections 9.1.3 and 11.1.2.

5.9.2 Stochastic rate model

If we consider spike firing as a stochastic process we can think of the firing rate ν also as the probability density of finding a spike at a certain instance of time. In this picture, ν is the rate of the underlying Poisson process that generates the spikes; cf. Section 5.2.3. Stochastic rate models are therefore on the border line between analog rate models and noisy spiking neuron models. The main difference is that stochastic spiking neuron models such as the Spike Response Model with escape noise (cf. Section 5.3) allows us to include refractoriness whereas a Poisson model does not (Kistler and van Hemmen, 2000a).

5.9.2.1 Example: Inhomogeneous Poisson model

A stochastic rate model in continuous time is defined by an inhomogeneous Poisson process. Spikes are formal events characterized by their firing time $t_j^{(f)}$ where j is the index of the neuron and f counts the spikes. At each moment of time spikes are generated with rate $\nu_j(t)$ which depends on the input. It is no longer possible to calculate the input from a rate equation as in Eq. (5.127) since the input consists now of spikes which are point events in time. We set

$$\nu_j = g(h_i)$$

(5.132)

where $g(.)$ is the gain function of the neuron and

$$h_i(t) = \sum_j \sum_f w_{ij} \varepsilon_0 (t - t_j^{(f)}) .$$

(5.133)

is the total input potential caused by presynaptic spike arrival. As in the model SRM_0, each presynaptic spike generates a postsynaptic potential with time course ε_0. The synaptic efficacy w_{ij} scales the amplitude of the response function. The postsynaptic potentials of all presynaptic spikes are added linearly. In contrast to the SRM_0, the stochastic rate model does not take into account refractoriness.
5.9.2.2 Example: Stochastic model in discrete time

In order to illustrate the relation with the deterministic rate model of Eq. (5.128), we discretize time in steps of length $\Delta t = 1/\nu_{\text{max}}$ where ν_{max} is the maximum firing rate. In each time step the stochastic neuron is either active ($S_i = +1$) or quiescent ($S_i = 0$). The two states are taken stochastically with a probability which depends continuously upon the input h_i. The probability that a neuron is active at time $t + \Delta t$ given an input h_i at time t is

$$\text{Prob} \left\{ S_i(t + \Delta t) = +1 \mid h_i(t) \right\} = \Delta t g(h_i),$$

where $g(.)$ is the gain function. If we take $\epsilon(s) = 1/\Delta t$ for $0 \leq s \leq \Delta t$ and zero otherwise we find

$$h_i(t) = \sum_{i,j} w_{ij} S_j(t).$$

5.9.3 Population rate model

Closely related to the stochastic point of view is the notion of the rate as the average activity of a population of equivalent neurons. 'Equivalent' means that all neurons have identical connectivity and receive the same type of input. Noise, however, is considered to be independent for each pair of neurons so that their response to the input can be different. We have seen in Section 1.5 that we can define a 'rate', if we take a short time window Δt, count the number of spikes (summed over all neurons in the group) that occur in an interval $t...t + \Delta t$ and divide by the number of neurons and Δt. In the limit of $N \to \infty$ and $\Delta t \to 0$ (in this order), the activity A is an analog variable which varies in continuous time,

$$A(t) = \lim_{\Delta t \to 0} \lim_{N \to \infty} \frac{1}{\Delta t} \frac{n_{\text{act}}(t; t + \Delta t)}{N}.$$

Let us assume that we have several groups of neurons. Each group l contains a large number of neurons and can be described by its activity A_l. A simple phenomenological model for the interaction between different groups is

$$A_k = g \left(\sum_l J_{kl} A_l \right),$$

where A_k is the population activity of group k which receives input from other groups l. Equation (5.137) is formally equivalent to Eq. (5.128) but the parameters J_{kl} are no longer the weights of synapses between two neurons but an effective interaction strength between groups of neurons.

We will see later in Chapter 6, that Eq. (5.137) is indeed a correct description of the fixed point of interacting populations of neurons, that is, if all activity values A_k are, apart from fluctuations constant. As mentioned in Chapter 1.4, the interpretation of the rate as a population activity is not without problems. There are hardly ensembles which would be large enough to allow sensible averaging and, at the same time, consist of neurons which are strictly equivalent in the sense that the internal parameters and the input is identical for all the neurons belonging to the same ensemble. On the other hand, neurons in the cortex are often arranged in groups (columns) that are roughly dealing with the same type of signal and have similar response properties.
5.9.3.1 Example: Dynamic rate models

The population rate does not require temporal averaging and can, in principle, change on a rapid time scale. A time-dependent version of the population rate equation (5.137) is the so-called Wilson-Cowan equation (Wilson and Cowan, 1972)

\[
\tau \frac{dA_k(t)}{dt} = -A_k(t) + \sum_l J_{kl} \int_0^{\infty} \alpha(s) A_l(t-s) \, ds.
\] (5.138)

Here, \(A_k \) is the activity of a population \(k \) and the sum in the brackets runs over all other populations \(l \) which send signals to \(k \). The signals cause postsynaptic currents with time course \(\alpha(s) \) and are scaled by the coupling \(J_{kl} \).

In order to derive Eq. (5.138), Wilson and Cowan had to make a couple of strong assumptions and we may wonder whether (5.138) can be considered a realistic description of the population dynamics. More specifically, what determines the time constant \(\tau \) which limits the response time of the system? Is it given by the membrane time constant of a neuron? Is \(\tau \) really constant or does it depend on the input or the activity of the system? We will see in Chapter 6 that the population activity of a group of spiking neurons can, in some cases, react instantaneously to changes in the input. This suggests that the `time constant' \(\tau \) in (5.138) is, at least in some cases, extremely short. The theory of population dynamics developed in Chapter 6 does not make use of the differential equation (5.138), but uses a slightly different mathematical framework.
5.10 Summary

Variability of spike timing, quantified for example by the C_V values of interval distributions, is a common phenomenon in biological neurons. In models, noise is usually added ad hoc to account for this variability. There are at least two different ways of adding noise. First, a noisy threshold can be defined by an instantaneous escape rate which depends on the distance of the membrane potential from the threshold. Escape rate models can be solved for arbitrary input currents in the context of renewal theory. Second, stochastic arrival of excitatory and inhibitory input pulses leads to a diffusion of the membrane potential. The interval distribution of an integrate-and-fire model with diffusive noise is equivalent to the first passage time problem of the Ornstein-Uhlenbeck process and difficult to solve. Both noise models are (approximately) equivalent in the subthreshold regime. The critical variable for firing is $x(t) = [u_0(t) - \bar{\theta}]/\sigma$, that is the momentary distance between the noise-free membrane potential and the threshold in units of the membrane potential fluctuations, $\sigma = \sqrt{2\langle \Delta u^2 \rangle}$.

The subthreshold regime has several interesting properties. First, constant input current plus noise leads to a distribution of interspike intervals with a large coefficient of variation, similar to what is found in cortical neurons. Second, in the subthreshold regime the neuron is most sensitive to temporal variations in the input. Stochastic resonance is an example of this phenomenon.

In rate models, the neuron is fully characterized by its nonlinear transfer function. If inputs are constant and all neurons are in a stationary state, then the static rate model provides a useful description. Dynamic versions of rate models are possible, but problematic. Stochastic rate models, finally, form the borderline to stochastic spiking neuron models.

Literature

Analysis of spike trains in terms of stochastic point processes has a long tradition (Perkel et al., 1967a; Gerstein and Perkel, 1972) and often involves concepts from renewal theory (Cox and Lewis, 1966). In formal spiking neuron models,
stochasticity was introduced early on by adding a stochastic component to the membrane potential (Geisler and Goldberg, 1966; Weiss, 1966). If the correlation time of the noise is short, such an approach is closely related to an escape rate or hazard model (Weiss, 1966). Stochastic spike arrival as an important source of noise has been discussed by Stein in the context of integrate-and-fire models (Stein, 1967b, 1965). Some principles of spike-train analysis with an emphasis on modern results have been reviewed by Gabbiani and Koch (1998) and Rieke et al. (1996). For a discussion of the variability of interspike intervals see the debate of Shadlen and Newsome (1994), Softky (1995), and Bair and Koch (1996). In this context, the role of subthreshold versus superthreshold stimuli has been summarized in the review of König et al. (1996).

The intimate relation between stochastic spike arrival and diffusive noise has been known for a long time (Johannesma, 1968; Gluss, 1967). Mathematical results of diffusive noise in the integrate-and-fire neuron (i.e., the Ornstein-Uhlenbeck model) are reviewed in many texts (Tuckwell, 1988; van Kampen, 1992). The mathematical aspects of stochastic resonance have been reviewed by Gammaitoni et al. (1998); applications of stochastic resonance in biology have been summarized by Wiesenfeld and Jaramillo (1998).

Rate models are widely used in the formal theory of neural networks. Excellent introductions to the Theory of Neural Networks are the books of Hertz et al. (1991) and Haykin (1994). The history of neural networks is highlighted in the nice collection of original papers by Anderson and Rosenfeld (1988) which contains for example a reprint of the seminal article of McCulloch and Pitts (1943).
II. Population Models

Subsections

- 6. Population Equations
 - 6.1 Fully Connected Homogeneous Network
 - 6.2 Density Equations
 - 6.3 Integral Equations for the Population Activity
 - 6.4 Asynchronous firing
 - 6.5 Interacting Populations and Continuum Models
 - 6.6 Limitations
 - 6.7 Summary

- 7. Signal Transmission and Neuronal Coding
 - 7.1 Linearized Population Equation
 - 7.2 Transients
 - 7.3 Transfer Function
 - 7.4 The Significance of a Single Spike
 - 7.5 Summary

- 8. Oscillations and Synchrony
 - 8.1 Instability of the Asynchronous State
 - 8.2 Synchronized Oscillations and Locking
 - 8.3 Oscillations in reverberating loops
 - 8.4 Summary

- 9. Spatially Structured Networks
 - 9.1 Stationary patterns of neuronal activity
○ 9.2 Dynamic patterns of neuronal activity
○ 9.3 Patterns of spike activity
○ 9.4 Robust transmission of temporal information
○ 9.5 Summary

Gerstner and Kistler
Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
6. Population Equations

In many areas of the brain neurons are organized in populations of units with similar properties. Prominent examples are columns in the somatosensory and visual cortex (Hubel and Wiesel, 1962; Mountcastle, 1957) and pools of motor neurons (Kandel and Schwartz, 1991). Given the large number of neurons within such a column or pool it is sensible to describe the mean activity of the neuronal population rather than the spiking of individual neurons. The idea of a population activity has already been introduced in Chapter 1.4. In a population of \(N\) neurons, we calculate the proportion of active neurons by counting the number of spikes \(n_{\text{act}}(t; t + \Delta t)\) in a small time interval \(\Delta t\) and dividing by \(N\). Further division by \(\Delta t\) yields the population activity

\[
A(t) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \frac{n_{\text{act}}(t; t + \Delta t)}{N} = \frac{1}{N} \sum_{j=1}^{N} \sum_{f} \delta(t - t_{j}^{(f)})
\]

(6.1)

where \(\delta\) denotes the Dirac \(\delta\) function. The double sum runs over all firing times \(t_{j}^{(f)}\) of all neurons in the population. In other words the activity \(A\) is defined by a population average. Even though the activity has units of a rate, the population activity is quite different from a mean firing rate defined by temporal average; cf. Chapter 1.4.

Theories of population activity have a long tradition (Nykamp and Tranchina, 2000; Treves, 1993; Wilson and Cowan, 1972; Amari, 1974; Wilson and Cowan, 1973; Gerstner and van Hemmen, 1992; Brunel, 2000; Abbott and van Vreeswijk, 1999; Gerstner, 1995; Fusi and Mattia, 1999; Brunel and Hakim, 1999; Gerstner, 2000b; Amit and Brunel, 1997a,b; Eggert and van Hemmen, 2001; Knight, 1972a; Omurtag et al., 2000). In this chapter we study the properties of a large and homogeneous population of spiking neurons. Why do we restrict ourselves to large populations? If we repeatedly conduct the same experiment on a population of, say, one hundred potentially noisy neurons, the observed activity \(A(t)\) defined in Eq. (6.1) will vary from one trial to the next. Therefore we cannot expect a population theory to predict the activity measurements in a single trial. Rather all population activity equations
that we discuss in this chapter predict the expected activity. For a large and homogeneous network, the observable activity is very close to the expected activity. For the sake of notational simplicity, we do not distinguish the observed activity from its expectation value and denote in the following the expected activity by $A(t)$.

After clarifying the notion of a homogeneous network in Section 6.1, we derive in Section 6.2 population density equations, i.e., partial differential equations that describe the probability that an arbitrary neuron in the population has a specific internal state. In some special cases, these density equations can be integrated and presented in the form of an integral equation. In Section 6.3 a general integral equation for the temporal evolution of the activity $A(t)$ that is exact in the limit of a large number of neurons is derived. In particular, we discuss its relation to the Wilson-Cowan equation, one of the standard models of population activity. In Section 6.4 we solve the population equation for the fixed points of the population activity and show that the neuronal gain function plays an important role. Finally, in Section 6.5 the approach is extended to multiple populations and its relation to neuronal field equations is discussed.

Most of the discussion in part II of the present book will be based upon the population equations introduced in this chapter. The population activity equations will allow us to study signal transmission and coding (cf. Chapter 7), oscillations and synchronization (cf. Chapter 8), and the formation of activity patterns in populations with a spatial structure (cf. Chapter 9). The aim of the present chapter is two-fold. Firstly, we want to provide the reader with the mathematical formalism necessary for a systematic study of spatial and temporal phenomena in large populations of neurons. Secondly, we want to show that various formulations of population dynamics that may appear quite different at a first glance, are in fact closely related. Paragraphs that are more mathematically oriented are marked by an asterix and can be omitted at a first reading.

Subsections

- 6.1 Fully Connected Homogeneous Network
- 6.2 Density Equations
 - 6.2.1 Integrate-and-Fire Neurons with Stochastic Spike Arrival
 - 6.2.2 Spike Response Model Neurons with Escape Noise
 - 6.2.3 Relation between the Approaches
- 6.3 Integral Equations for the Population Activity
 - 6.3.1 Assumptions
 - 6.3.2 Integral equation for the dynamics
6.4 Asynchronous firing
 - 6.4.1 Stationary Activity and Mean Firing Rate
 - 6.4.2 Gain Function and Fixed Points of the Activity
 - 6.4.3 Low-Connectivity Networks

6.5 Interacting Populations and Continuum Models
 - 6.5.1 Several Populations
 - 6.5.2 Spatial Continuum Limit

6.6 Limitations

6.7 Summary
 - Literature
6.1 Fully Connected Homogeneous Network

We study a large and homogeneous population of neurons; cf. Fig. 6.1. By homogeneous we mean that all neurons \(1 \leq i \leq N\) are identical and receive the same external input \(I_i^{\text{ext}}(t) = I^{\text{ext}}(t)\). Moreover, in a homogeneous population, the interaction strength between the neurons is taken to be uniform,

\[w_{ij} = \frac{J_0}{N}, \]

(6.2)

where \(J_0\) is a parameter. For \(J_0 = 0\) all neurons are independent; a value \(J_0 > 0\) (\(J_0 < 0\)) implies excitatory (inhibitory) all-to-all coupling. The interaction strength scales with one over the number of neurons so that the total synaptic input to each neuron remains finite in the limit of \(N \to \infty\).

Model neurons are described by formal spiking neurons as introduced in Chapter 4. In the case of leaky integrate-and-fire neurons with

\[\tau_m \frac{d}{dt} u_i = - u_i + R I_i(t) \]

(6.3)
a homogeneous network implies that all neurons have the same input resistance \(R \),
the same membrane time constant \(\tau_m \), as well as identical threshold and reset
values. The input current \(I_i \) takes care of both the external drive and synaptic
coupling

\[
I_i = \sum_{j=1}^{N} \sum_{f} w_{ij} \alpha(t - t_j^{(f)}) + I_{\text{ext}}(t). \tag{6.4}
\]

Here we have assumed that each input spike generates a postsynaptic current with
some generic time course \(\alpha(t - t_j^{(f)}) \). The sum on the right-hand side of (6.4) runs
over all firing times of all neurons. Because of the homogeneous all-to-all coupling,
the total input current is identical for all neurons. To see this, we insert Eq. (6.2) and
use the definition of the population activity, Eq. (6.1). We find a total input current,

\[
I(t) = J_0 \int_{0}^{\infty} \alpha(s) A(t - s) \, ds + I_{\text{ext}}(t), \tag{6.5}
\]

which is independent of the neuronal index \(i \). As an aside we note that for
conductance-based synaptic input, the total input current would depend on the
neuronal membrane potential which is different from one neuron to the next.

Instead of the integrate-and-fire neuron, we may also use the Spike Response Model
(SRM) as the elementary unit of the population. The membrane potential of a SRM
neuron is of the form

\[
u_i(t) = \eta(t - \hat{t}_i) + h_{\text{PSP}}(t|\hat{t}_i), \tag{6.6}\]

where \(\hat{t}_i \) is the most recent firing time of neuron \(i \). The kernel \(\eta(\cdot) \) describes the
spike and the spike after-potential while

\[
h_{\text{PSP}}(t|\hat{t}_i) = \frac{1}{N} \sum_{j=1}^{N} \sum_{f} \left[J_0 \delta(t - \hat{t}_i, t - t_j^{(f)}) + \int_{0}^{\infty} \kappa(t - \hat{t}_i, s) I_{\text{ext}}(t - s) \, ds \right] \tag{6.7}\]

is the postsynaptic potential caused by firings \(t_j^{(f)} \) of presynaptic neurons \(j \) or by
external input $F^\text{ext}(t)$. The kernel ε models the response of the neuron to a single presynaptic input spike while κ is the response to a unit current pulse. In Eq. (6.7) we have already exploited Eq. (6.2) and replaced the synaptic efficacies w_{ij} by J_0/N. The population theory developed in this chapter is valid for arbitrary response kernels ε and κ and for a broad variety of refractory kernels η. By an appropriate choice of the kernels, we recover the integrate-and-fire model; cf. Chapter 4.2. If we suppress the $t - \hat{t}_i$ dependency of ε and κ, we recover the simple model SRM$_0$ from Chapter 4.2.3.

Similarly to the approach that we used for the total input current of an integrate-and-fire neuron, we can rewrite Eq. (6.7) in terms of the population activity A,

$$h_{\text{PSP}}(t|\hat{t}) = J_0 \int_0^\infty \varepsilon(t - \hat{t}, s) A(t - s) \, ds + \int_0^\infty \kappa(t - \hat{t}, s) F^\text{ext}(t - s) \, ds. \quad (6.8)$$

Thus, given the activity $A(t')$ and the external input F^ext for $t' < t$ we can determine the potential $h_{\text{PSP}}(t|\hat{t})$ of a neuron that has fired its last spike at \hat{t}. Note that we have suppressed the index i, since all neurons that have fired their last spike at \hat{t} have the same postsynaptic potential h_{PSP}. As above, this is an immediate consequence of the assumption of a homogeneous network and does not require a limit of $N \to \infty$.

In the absence of noise, the next firing time of a spiking neuron i is found from the threshold condition,

$$u_i(t) = \emptyset \quad \text{and} \quad \frac{d}{dt} u_i > 0. \quad (6.9)$$

In the presence of noise, the next firing time of a given neuron i cannot be predicted in a deterministic fashion. In the case of integrate-and-fire neurons with diffusive noise (stochastic spike arrival), a large noise level leads to a broad distribution of the membrane potential and indirectly to a large distribution of interspike intervals; cf. Chapter 5. In the case of spiking neurons with escape noise (noisy threshold), firing occurs probabilistically which results in a similar large distribution of interspike intervals. In the following sections, we formulate population equations for various types of spiking neuron and different types of noise. We start in the next section with a population of integrate-and-fire neurons with diffusive noise and turn then to Spike Response Model neurons.

Gerstner and Kistler

Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
Subsections

- 6.2.1 Integrate-and-Fire Neurons with Stochastic Spike Arrival
 - 6.2.1.1 Continuity equation
 - 6.2.1.2 Diffusion approximation
 - 6.2.1.3 Example: Stationary solution (*)

- 6.2.2 Spike Response Model Neurons with Escape Noise
 - 6.2.2.1 Integrating the partial differential equation (*)
 - 6.2.2.2 Numerical implementation (*)
 - 6.2.2.3 Example: Time-dependent input

- 6.2.3 Relation between the Approaches
 - 6.2.3.1 From membrane potential densities to phase densities (*)
 - 6.2.3.2 From membrane potential densities to refractory densities (*)

6.2 Density Equations

In a population of neurons, each neuron may be in a different internal state. In this section we derive partial differential equations that describe how the distribution of internal states evolves as a function of time. We start in Section 6.2.1 with a population of integrate-and-fire neurons. Since the state of an integrate-and-fire neuron is characterized by its membrane potential, we describe the dynamics of the population as the evolution of membrane potential densities. In Section 6.2.2 we turn to neurons described by the Spike Response Model. SRM neurons are characterized by their state of refractoriness so that we have to introduce refractory densities. We will see that the solution of the dynamics of refractory densities leads to a macroscopic population activity equation for escape noise models. In Section 6.2.3 we compare the two approaches (i.e. membrane potential densities and refractory densities) and show that they are equivalent in the low-noise limit. The formulation of the dynamics of a population of integrate-and-fire neurons on the level of membrane potential densities has been developed by Abbott and van Vreeswijk (1993), Brunel and Hakim (1999), Fusi and Mattia (1999), Nykamp and Tranchina (2000), and Omurtag et al. (2000). The closely related formulation in terms of refractory densities has been studied by Wilson and Cowan (1972), Gerstner and van Hemmen (1992), Bauer and Pawelzik (1993), and Gerstner and van Hemmen (1994). Generalized density equations have been discussed by Knight (2000).

6.2.1 Integrate-and-Fire Neurons with Stochastic Spike Arrival

We study a homogeneous population of integrate-and-fire neurons. The internal state of a neuron i is determined by its membrane potential which changes according to

$$\tau_m \frac{d}{dt} u_i = -u_i + R I_i(t).$$

(6.10)
Here R is the input resistance, $\tau_m = RC$ the membrane time constant, and $I(t)$ the total input (external driving current and synaptic input). At $u_i = \bar{\theta}$ the membrane potential is reset to $u_i = u_r < \bar{\theta}$.

In a population of N integrate-and-fire neurons, we may ask how many of the neurons have at time t a given membrane potential. For $N \to \infty$ the fraction of neurons i with membrane potential $u_0 < u_i(t) \leq u_0 + \Delta u$ is

$$\lim_{N \to \infty} \frac{\text{neurons with } u_0 < u_i(t) \leq u_0 + \Delta u}{N} = \int_{u_0}^{u_0 + \Delta u} p(u, t) \, du \quad (6.11)$$

where $p(u, t)$ is the membrane potential density; cf. Chapter 5.5. The aim of this section is to describe the evolution of the density $p(u, t)$ as a function of time. As we will see, the equation that describes the dynamics of $p(u, t)$ is nearly identical to that of a single integrate-and-fire neuron with diffusive noise; cf. Eqs. (5.88) and (5.89).

There are three subtle differences though. First, while $p(u, t)$ was introduced in Chapter 5.5 as probability density for the membrane potential of a single neuron, it is now interpreted as the density of membrane potentials in a large population of neurons.

Second, the normalization is different. In Chapter 5.5 the integrated density $\int_{-\infty}^{\bar{\theta}} p(u, t) \, du \leq 1$ was interpreted as the probability that the neuron under consideration has not yet fired since its last spike at $\bar{\theta}$. The value of the integral decreases therefore over time. On the other hand, if a neuron in the population fires, it remains part of the population. Apart from a reset of the membrane potential nothing changes. Thus the integral over the density remains constant over time, i.e.,

$$\int_{-\infty}^{\bar{\theta}} p(u, t) \, du = 1 \quad (6.12)$$

The normalization to unity expresses the fact that all neurons have a membrane potential below or equal to threshold.

Third, the fraction of neurons that `flow' across threshold per unit of time is the (expected value of) the population activity $A(t)$. If we denote the flux across threshold as $J(\bar{\theta}, t)$, we have

$$A(t) = J(\bar{\theta}, t) \quad (6.13)$$

Due to the reset, the neurons that `disappear' across threshold, `reenter' at the reset potential u_r. Hence, the membrane potential density at $u = u_r$, increases at a rate proportional to $A(t)$. More specifically, we have a `source' term $A(t) \delta(u - u_r)$ at the reset potential u_r that balances the loss that is due to the movement across the threshold. The value of $A(t)$ is given by Eq. (6.13).

We assume that all neurons in the population receive the same driving current I_{ext}. In addition each neuron receives stochastic background input. We allow for different types of synapse. An input spike at a synapse of type k causes a jump of the membrane potential by an amount w_k. The effective spike arrival rate (summed over all synapses of type k) is denoted as ν_k. While the mean spike arrival rates $\nu_k(t)$ are identical for all neurons, we assume that the actual input spike trains at different neurons and different synapses are independent. With these assumptions, the dynamics for $u \leq \bar{\theta}$ is in analogy to Eq. (5.88)
\[
\frac{\partial}{\partial t} p(u, t) = \frac{1}{\tau_m} p(u, t) - \frac{1}{\tau_m} \left[-u + R F_{\text{ext}}(t) \right] \frac{\partial}{\partial u} p(u, t)
+ \sum_k \nu_k(t) \left[p(u - w_k, t) - p(u, t) \right] + A(t) \delta(u - u_i) .
\]

(6.14)

The first two terms on the right-hand side describe the continuous drift, the third term the jumps caused by stochastic spike arrival, and the last term describes the reset. Because of the firing condition, we have \(p(u, t) = 0 \) for \(u > \bar{u} \).

In order to calculate the population activity \(A(t) \), we need to determine the flux across threshold. To keep the argument slightly more general, we will consider the flux \(J(u_0, t) \) across an arbitrary reference potential \(u_0 \),

\[
J(u_0, t) = J_{\text{drift}}(u_0, t) + J_{\text{jump}}(u_0, t) ,
\]

(6.15)

where \(J_{\text{drift}} \) accounts for the continuous drift of the membrane potential during the time when no input spike arrives. \(J_{\text{jump}} \) is due to excitatory and inhibitory spike arrival.

Figure 6.2: A. All trajectory that are less than \(w_k \) below \(u_0 \) cross \(u_0 \) upon spike arrival. B. The drift \(J_{\text{drift}}(u_0, t) \) depends on density of trajectories and on the slope with which the trajectories cross the boundary \(u_0 \).

To evaluate \(J_{\text{jump}} \), let us consider excitatory input \(w_k > 0 \) first. All neurons that have a membrane potential \(u_i \) with \(u_0 - w_k < u_i \leq u_0 \) will jump across the reference potential \(u_0 \) upon spike arrival at synapse \(k \); cf. Fig. 6.2A.

Since the rate of spike arrival at synapse \(k \) is \(\nu_k \), the total flux caused by input spikes at all synapses is

\[
J_{\text{jump}}(u_0, t) = \sum_k \nu_k \int_{u_0 - w_k}^{u_0} p(u, t) \, du .
\]

(6.16)

The drift \(J_{\text{drift}}(u_0, t) \) through the reference potential \(u_0 \) is given by the density \(p(u_0, t) \) at the potential \(u_0 \) times the momentary ‘velocity’ \(du/dt \); cf. Fig. 6.2B. With \(du/dt = [-u + R F_{\text{ext}}(t)]/\tau_m \) we have

\[
J_{\text{drift}}(u_0, t) = \frac{1}{\tau_m} \left[-u_0 + R F_{\text{ext}}(t) \right] p(u_0, t) .
\]

(6.17)

The total flux at the threshold \(u_0 = \bar{u} \) yields the population activity

\[
A(t) = \frac{1}{\tau_m} \left[-\bar{u} + R F_{\text{ext}}(t) \right] p(\bar{u}, t) + \sum_k \nu_k \int_{\bar{u} - w_k}^{\bar{u}} p(u, t) \, du .
\]

(6.18)

Since the probability density vanishes for \(u > \bar{u} \), the sum over the synapses \(k \) can be restricted to all excitatory
synapses. Eqs. (6.14) and (6.18) define the dynamics in a population of integrate-and-fire neurons with stochastic background input.

6.2.1.1 Continuity equation

In this subsection we aim at an interpretation of Eqs. (6.14) - (6.18). Let us consider the portion of neurons with a membrane potential between \(u_0 \) and \(u_1 \); cf. Fig. 6.3. The fraction of neurons with \(u_0 < u < u_1 \) increases if neurons enter from below through the boundary \(u_0 \) or from above through the boundary \(u_1 \). A positive flux \(J(u, t) > 0 \) is defined as a flux towards increasing values of \(u \). Since trajectories cannot simply end, we have the conservation law

\[
\frac{\partial}{\partial t} \int_{u_0}^{u_1} p(u', t) \, du' = J(u_0, t) - J(u_1, t) \tag{6.19}
\]

Taking the derivative with respect to the upper boundary \(u_1 \) and changing the name of the variable from \(u_1 \) to \(u \) yields the continuity equation,

\[
\frac{\partial}{\partial t} p(u, t) = -\frac{\partial}{\partial u} J(u, t) \quad \text{for} \quad u \neq u_r \quad \text{and} \quad u \neq \vartheta , \tag{6.20}
\]

which expresses the conservation of the number of trajectories. At \(u = u_r \) and \(u = \vartheta \) special care has to be taken because of the reset. For \(u > \vartheta \) the flux vanishes because neurons that pass the threshold are reset. Since neurons that have fired start a new trajectory at \(u_r \), we have a 'source of new trajectories' at \(u = u_r \), i.e., new trajectories appear in the interval \([u_r - \epsilon, u_r + \epsilon]\) that have not entered the interval through one of the borders.

Adding a term \(A(t) \, \delta(u - u_r) \) on the right-hand side of (6.20) accounts for this source of trajectories. If we insert the explicit form of the flux that we derived in Eqs. (6.16) and (6.17) into the continuity equation (6.20), we arrive once again at Eq. (6.14). For a numerical implementation of Eq. (6.20) we refer the reader to the literature (Nykamp and Tranchina, 2000; Omurtag et al., 2000).

![Figure 6.3: The number of trajectories in the interval \([u_0, u_1]\) changes if one of the trajectories crosses the boundary \(u_0 \) or \(u_1 \). For a large number of neurons this fact is described by the continuity equation; cf. Eq. (6.20). Schematic figure where only three trajectories are shown.](image)

6.2.1.2 Diffusion approximation

In the limit of small jump amplitudes \(w_k \), the density dynamics (6.14) can be approximated by a diffusion equation. To show this we expand the right-hand side of Eq. (6.14) into a Taylor series up to second order in \(w_k \). The result is the Fokker-Planck equation.
\[
\tau_m \frac{\partial}{\partial t} p(u, t) = -\frac{\partial}{\partial u} \left\{ \left[-u + R I_{\text{ext}}(t) + \tau_m \sum_k \nu_k(t) w_k \right] p(u, t) \right\} \\
+ \frac{1}{2} \left[\tau_m \sum_k \nu_k(t) w_k^2 \right] \frac{\partial^2}{\partial u^2} p(u, t) \\
+ \tau_m A(t) \delta(u - u_r) + \mathcal{O}\left(\omega_k^3\right).
\]

The term with the second derivative describes a `diffusion' in terms of the membrane potential. The firing threshold acts as an absorbing boundary so that the density at threshold vanishes,

\[
p(\theta, t) = 0.
\]

In order to calculate the flux through the threshold we expand Eq. (6.18) in \(w_k \) about \(u = \theta \) and obtain

\[
A(t) = -\frac{\sigma^2(t)}{2\tau_m} \left. \frac{\partial p(u, t)}{\partial u} \right|_{u=\theta},
\]

where we have defined

\[
\sigma^2(t) = \tau_m \sum_k \nu_k(t) w_k^2.
\]

Eqs. (6.21) - (6.23) together with the normalization (6.12) define the dynamics of a homogeneous population of integrate-and-fire units with 'diffusive' noise. For a more detailed discussion of the diffusion limit see Chapter 5.5, in particular Eqs. (5.89) and (5.91).

6.2.1.3 Example: Stationary solution (*)

In this example, we derive the stationary solution \(p(u, t) \equiv p(u) \) of the Fokker-Planck equation (6.21). The stationary distribution \(p(u) \) of the membrane potential is of particular interest, since it is experimentally accessible (Calvin and Stevens, 1968; Destexhe and Pare, 1999; Ho and Destexhe, 2000).

We assume that the total input \(h_0 = R I_{\text{ext}} + \tau_m \sum_k \nu_k w_k \) is constant. In the stationary state, the temporal derivative on the left-hand-side of Eq. (6.21) vanishes. The terms on the right-hand side can be transformed so that the stationary Fokker-Planck equation reads

\[
0 = -J(u) + A_0 \delta(u - u_r),
\]

where \(A_0 \) is the population activity (or mean firing rate) in the stationary state and

\[
J(u) = \frac{-u + h_0}{\tau_m} p(u) - \frac{1}{2} \frac{\sigma^2}{\tau_m} \frac{\partial}{\partial u} p(u).
\]

Eqs. (6.21) - (6.23) together with the normalization (6.12) define the dynamics of a homogeneous population of integrate-and-fire units with 'diffusive' noise. For a more detailed discussion of the diffusion limit see Chapter 5.5, in particular Eqs. (5.89) and (5.91).
is the total flux; cf. Eq. (6.20). The meaning of Eq. (6.25) is that the flux is constant except at \(u = u_r \) where it jumps by an amount \(A_0 \). Similarly, the boundary condition \(p(\vartheta, t) = 0 \) implies a second discontinuity of the flux at \(u = \vartheta \).

With the results from Chapter 5.5 in mind, we expect that the stationary solution approaches a Gaussian distribution for \(u \to -\infty \). In fact, we can check easily that for any constant \(c_1 \)

\[
p(u) = \frac{c_1}{\sigma} \exp \left[-\frac{(u - h_0)^2}{\sigma^2} \right] \quad \text{for } u \leq u_r
\]

(6.27)

is a solution of Eq. (6.25) with flux \(J(u) = 0 \). However, for \(u > u_r \) a simple Gaussian distribution cannot be a solution since it does not respect the boundary condition \(p(\vartheta) = 0 \). Nevertheless, we can make an educated guess and try a modified Gaussian, (Giorno et al., 1992; Brunel and Hakim, 1999; Tanabe et al., 1998)

\[
p(u) = \frac{c_2}{\sigma^2} \exp \left[-\frac{(u - h_0)^2}{\sigma^2} \right] \cdot \int_u^\vartheta \exp \left[\frac{(x - h_0)^2}{\sigma^2} \right] dx \quad \text{for } u_r < u \leq \vartheta .
\]

(6.28)

with some constant \(c_2 \). We have written the above expression as a product of two terms. The first factor on the right-hand side is a standard Gaussian while the second factor guarantees that \(p(u) \to 0 \) for \(u \to \vartheta \). If we insert Eq. (6.28) in (6.25) we can check that it is indeed a solution. The constant \(c_2 \) is proportional to the flux,

\[c_2 = 2 \tau_m J(u) \quad \text{for } u_r < u \leq \vartheta . \]

(6.29)

The solution defined by Eqs. (6.27) and (6.28) must be continuous at \(u = u_r \). Hence

\[
c_1 = \frac{c_2}{\sigma} \int_{u_r}^\vartheta \exp \left[\frac{(x - h_0)^2}{\sigma^2} \right] dx .
\]

(6.30)

Finally, the constant \(c_2 \) is determined by the normalization condition (6.12). We use Eqs. (6.27), (6.28), and (6.30) in (6.12) and find

\[
\frac{1}{c_2} = \int_{-\infty}^{u_r} \int_{u_r}^\vartheta f(x, u) dx \, du + \int_{u_r}^{\vartheta} \int_{u_r}^\vartheta f(x, u) dx \, du = \int_{u_r}^\vartheta \int_{-\infty}^x f(x, u) du \, dx ,
\]

(6.31)

with

\[
f(x, u) = \frac{1}{\sigma^2} \exp \left[-\frac{(u - h_0)^2}{\sigma^2} \right] \exp \left[\frac{(x - h_0)^2}{\sigma^2} \right] .
\]

(6.32)

Figure 6.4B shows the stationary density \(p(u) \) for different amplitudes of the noise.

The activity \(A_0 \) is identical to the flux \(J(u) \) between \(u_r \) and \(\vartheta \) and therefore proportional to the constant \(c_2 \); cf. Eq. (6.29). If we express the integral over \(u \) in Eq. (6.31) in terms of the error function, \(\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-u^2) du \), we obtain
\[A_{0}^{-1} = \tau_{m} \sqrt{\pi} \int_{\frac{\mu - h_{0}}{\sigma}}^{\frac{\mu + h_{0}}{\sigma}} \exp \left(\frac{x^2}{2} \right) \left[1 + \text{erf}(x) \right] \, dx, \]

(6.33)

which is identical to expression (5.104) obtained in Chapter 5.5.

Figure 6.4: A. Membrane potential trajectories of 5 neurons \((R = 1 \text{ and } \tau_{m} = 10 \text{ ms})\) driven by a constant background current \(I_{0} = 0.8\) and stochastic background input with \(\nu_{+} = \nu_{-} = 0.8 \text{ kHz}\) and \(w_{\pm} = \pm 0.05\). These parameters correspond to \(h_{0} = 0.8\) and \(\sigma = 0.2\) in the diffusive noise model. B. Stationary membrane potential distribution in the diffusion limit for \(\sigma = 0.2\) (solid line), \(\sigma = 0.1\) (short-dashed line), and \(\sigma = 0.5\) (long-dashed line). (Threshold \(\vartheta = 1\)). C. Mean activity of a population of integrate-and-fire neurons with diffusive noise as a function of \(h_{0}\) for four different noise levels, viz. (from top to bottom) \(\sigma = 1.0, \sigma = 0.5, \sigma = 0.2\) (solid line), \(\sigma = 0.1, \sigma = 0.0\).

6.2.2 Spike Response Model Neurons with Escape Noise

In this section we develop a density formalism for spike response neurons, similar to the membrane potential density approach for integrate-and-fire neurons that we have discussed in the preceding section. The main difference is that we replace the membrane potential density \(p(u, t)\) by a refractory density \(q(r, t)\), to be introduced below.

We study a homogeneous population of SRM neurons with escape noise. The membrane potential of the neurons,

\[u(t) = \eta(t - \dot{t}) + h_{\text{PSP}}(|\dot{t}|) , \]

(6.34)

depends on their refractory state,

\[r = t - \dot{t} \geq 0 , \]

(6.35)

i.e., on the time that has passed since the last spike. If we know \(r\) and the total input current in the past, we can calculate the membrane potential,

\[u(t) = \eta(r) + h_{\text{PSP}}(|t - r|) . \]

(6.36)

Given the importance of the refractory variable \(r\), we may wonder how many neurons in the population have a
refractory state between \(r_0 \) and \(r_0 + \Delta r \). For a large population (\(N \to \infty \)) the fraction of neurons with a momentary value of \(r \) in the interval \([r_0, r_0 + \Delta r] \) is given by

\[
\lim_{N \to \infty} \left\{ \frac{\text{neurons with } r_0 < r(t) \leq r_0 + \Delta r}{N} \right\} = \int_{r_0}^{r_0+\Delta r} q(r, t) \, dr. \tag{6.37}
\]

where \(q(r, t) \) is the \textit{refractory density}. The aim of this section is to describe the dynamics of a population of SRM neurons by the evolution of \(q(r, t) \).

We start from the continuity equation,

\[
\frac{\partial}{\partial t} q(r, t) = - \frac{\partial}{\partial r} J_{\text{refr}}(r, t), \tag{6.38}
\]

where we have introduce the flux \(J_{\text{refr}} \) along the axis of the refractory variable \(r \). As long as the neuron does not fire, the variable \(r = t - \dot{t} \) increases at a speed of \(dr/dt = 1 \). The flux is the density \(q \) times the velocity, hence

\[
J_{\text{refr}}(r, t) = q(r, t) \frac{dr}{dt} = q(r, t). \tag{6.39}
\]

The continuity equation (6.38) expresses the fact that, as long as a neuron does not fire, its trajectories \(r(t) \) can neither start nor end. On the other hand, if a neuron fires, the trajectory stops at the current value of \(r \) and ‘reappears’ at \(r = 0 \). In the escape rate formalism, the instantaneous firing rate of a neuron with refractory variable \(r \) is given by the hazard

\[
\rho(\dot{t} | t - r) = f(\eta(r) + h_{\text{PSP}}(\dot{t} | t - r)) \] . \tag{6.40}

If we multiply the hazard (6.40) with the density \(q(r, t) \), we get the loss per unit of time,

\[
J_{\text{loss}} = - \rho(\dot{t} | t - r) q(r, t). \tag{6.41}
\]

The total number of trajectories that disappear at time \(t \) due to firing is equal to the population activity, i.e.,

\[
A(t) = \int_0^\infty \rho(\dot{t} | t - r) q(r, t) \, dr. \tag{6.42}
\]

The loss (6.41) has to be added as a ‘sink’ term on the right-hand side of the continuity equation, while the activity \(A(t) \) acts as a source at \(r = 0 \). The full dynamics is

\[
\frac{\partial}{\partial t} q(r, t) = - \left[\frac{\partial}{\partial r} q(r, t) \right] - \rho(\dot{t} | t - r) q(r, t) + \delta(r) A(t). \tag{6.43}
\]

This partial differential equation is the analog of the Fokker-Planck equation (6.21) for the membrane potential density of integrate-and-fire neurons. The relation between the two equations will be discussed in Section 6.2.3.

Equation (6.43) can be rewritten in form of an integral equation for the population activity. The mathematical details of the integration will be presented below. The final result is
\[A(t) = \int_{-\infty}^{t} P_{I}(\hat{t}) A(\hat{t}) \, d\hat{t}. \]
(6.44)

where
\[P_{I}(t) = \rho(t) \exp \left[- \int_{t}^{t} \rho(r) \, dr' \right] \]
(6.45)

is the interval distribution of neurons with escape noise; cf. Eq. (5.9). Thus, neurons that have fired their last spike at time \(\hat{t} \) contribute with weight \(P_{I}(t) \) to the activity at time \(t \). Integral equations of the form (6.44) are the starting point for a formal theory of population activity; cf. Section 6.3. For a numerical implementation of population dynamics, it is more convenient to work directly on the level of the density equations (6.43). A simple discretization scheme for numerical implementations is discussed below.

6.2.2.1 Integrating the partial differential equation (*)

All neurons that have fired together at time \(\hat{t} \) form a group that moves along the \(r \)-axis at constant speed. To solve Eq. (6.43) we turn to a frame of reference that moves along with the group. We replace the variable \(r \) by \(t - r \) and define a new density
\[Q(\hat{t}, t) = q(t - \hat{t}, t), \]
(6.46)

with \(\hat{t} \leq t \). The total derivative of \(Q \) with respect to \(t \) is
\[\frac{d}{dt} Q(\hat{t}, t) = \frac{\partial}{\partial r} q(r, t) \bigg|_{r=t-\hat{t}} \frac{dr}{dt} + \frac{\partial}{\partial t} q(r, t) \bigg|_{r=t-\hat{t}} \]
(6.47)

with \(dr/dt = 1 \). We insert Eq. (6.43) on the right-hand side of (6.47) and obtain
\[\frac{d}{dt} Q(\hat{t}, t) = - \rho(\hat{t}) Q(\hat{t}, t). \]
(6.48)

The partial differential equation (6.43) has thus been transformed into an ordinary differential equation that is solved by
\[Q(\hat{t}, t) = Q(\hat{t}, t_0) \exp \left[- \int_{t_0}^{t} \rho(r) \, dr' \right], \]
(6.49)

where \(Q(\hat{t}, t_0) \) is the initial condition, which is still to be fixed.

From the definition of the refractory density \(q(r, t) \) we conclude that \(q(0, t) \) is the proportion of neurons at time \(t \) that have just fired, i.e., \(q(0, t) = A(t) \) or, in terms of the new refractory density, \(Q(t, t) = A(t) \). We can thus fix the initial condition in Eq. (6.49) at \(t_0 = \hat{t} \) and find
\[Q(\hat{t}, t) = A(\hat{t}) \exp \left[- \int_{\hat{t}}^{t} \rho(t' | \hat{t}) \, dt' \right]. \tag{6.50} \]

On the other hand, from (6.42) we have
\[A(t) = \int_{-\infty}^{t} \rho(t' | \hat{t}) \, Q(\hat{t}, t') \, d\hat{t}. \tag{6.51} \]

If we insert (6.50) into (6.51), we find
\[A(t) = \int_{-\infty}^{t} \rho(t' | \hat{t}) \, \exp \left[- \int_{t}^{t'} \rho(t' | \hat{t}) \, dt' \right] A(\hat{t}) \, d\hat{t}. \tag{6.52} \]

which is the population equation (6.44) mentioned above (Gerstner and van Hemmen, 1992). See also the papers by Wilson and Cowan (1972) and Knight (1972a) for related approaches. If we insert Eq. (6.50) into the normalization condition \(1 = \int_{-\infty}^{t} Q(\hat{t}, t) \, d\hat{t} \) we arrive at
\[1 = \int_{-\infty}^{t} \exp \left[- \int_{t}^{t'} \rho(t' | \hat{t}) \, dt' \right] A(\hat{t}) \, d\hat{t}. \tag{6.53} \]

Both the population equation (6.52) and the normalization condition (6.53) will play an important role below in Section 6.3.

6.2.2.2 Numerical implementation (*)

For a numerical implementation of Eq. (6.43) we discretize the refractory variable \(r \) in steps of \(\Delta t \) and define
\[n_k(t) = \int_{t}^{t+\Delta t} q(k, \Delta t + s, t) \, ds. \]

The normalization is \(\sum_k n_k(t) = 1 \) for all \(t \). The probability that a neuron with refractory state \(r = k \Delta t \) fires in a time step \(\Delta t \) is
\[P_F(k) = 1 - \exp \left\{ - f_\eta(k, \Delta t) + h_{PSP}(t' - k \Delta t) \right\} \Delta t. \tag{6.54} \]

Discretization of Eq. (6.43) yields
\[n_k(t + \Delta t) = n_{k-1}(t) [1 - P_F(k - 1)] + \delta_{k,0} \sum_{k'=1}^{\infty} P_F(k') n_k(t). \tag{6.55} \]

If refractory effects are negligible for \(r \geq \Delta_{refr} \), then we can truncate the summation at \(k_{max} \geq \Delta_{refr} / \Delta t \). All neurons with \(k \geq k_{max} \) have the same firing probability \(P_F(k) \equiv P_{free} \). If we introduce the normalization
\[\sum_{k > k_{max}} n_k = 1 - \sum_{k=1}^{k_{max}} n_k \] we arrive at the update rule
\[n_0(t + \Delta t) = P_{\text{free}} + \sum_{k=1}^{k_{\text{max}}} \left[P_{\text{free}} - P_F(k) \right] n_k(t) \]
(6.56)

and for \(1 \leq k \leq k_{\text{max}} \)

\[n_k(t + \Delta t) = \left[1 - P_F(k - 1) \right] n_{k-1}. \]
(6.57)

Note that \(n_0 \) is the number of neurons that fire in the interval \([t, t + \Delta t]\). Hence we set \(A(t + \Delta t) = n_0(t + \Delta t)/\Delta t \). The above algorithm allows for a rapid integration of the population density equation (6.43).

6.2.2.3 Example: Time-dependent input

We simulate a population of integrate-and-fire neurons with escape rate given by Eq. (5.116). At \(t = 100\) ms a time-dependent input is switched on. The population activity \(A(t) \) calculated numerically by iterating Eqs. (6.56) and (6.57) responds to the input in a non-linear fashion; cf. Fig. 6.5. The population activity of the model with escape noise can be compared to that of a model with diffusive noise. The results are strikingly similar. We note that even the rapid components of the input current are, at least partially, visible in the population activity.

6.2.3 Relation between the Approaches

Density methods have proven to be a useful tool for the simulation and analysis of the behavior of large populations of neurons. The two approaches that we have discussed in this section, viz., membrane potential densities and refractory densities, are closely related. For noise-free neurons driven by a constant super-threshold stimulus, the two mathematical formulations are, in fact, equivalent and related by a simple change of variables. But even for noisy neurons with sub-threshold stimulation the two approaches are comparable; cf. Fig. 6.5. Both methods are linear in the densities and amenable to efficient numerical implementations. The formal mathematical relation between the two approaches is shown at the end of this section.

![Figure 6.5](#)

Figure 6.5:
A. Activity of a population of integrate-and-fire neurons with diffusive noise (solid line) or escape noise (dashed line). At \(t = 150\) ms a time-dependent current is switched on.
B. Time course of the input current. The current contains 5 randomly chosen frequencies components between 5 and 500Hz. Parameters: \(\vartheta = 1, R = 1, \tau_m = 10\) ms and \(u_r = 0 \); diffusive noise model with \(\sigma = 0.2 \); escape rate given by Eq. (5.116) with \(\sigma = 0.2 \); the diffusive noise model has been simulated using membrane potential densities while the escape noise model has been simulated using refractory densities.

What are the main differences between the two approaches? Both are *single-variable* density methods. In the
refractory density method the relevant variable is the refractory variable \(r \). The refractory method is therefore not compatible with diffusive noise since diffusive noise generates a distribution of membrane potentials so that we would need a description by two-dimensional densities. Diffusive noise can, to a certain degree, be replaced by a suitably chosen escape function \(f \) in a noisy threshold model. But while escape rate models can mimic the consequence of stochastic spike arrival for the population activity, escape rates cannot serve as a model for membrane potential fluctuations that are commonly seen in intracellular recordings.

On the other hand, refractory density methods combined with escape noise are well suited to describe neuronal refractoriness. It is, for example, straightforward to implement a spiking neuron model with two or more time scales, a slow one for the spike after-potential \(\tau \) and a fast one for the postsynaptic potential \(\epsilon \) -- as it is typical for Hodgkin-Huxley type neurons; cf. Chapters 2.2 and 4.3. A finite rise time of the postsynaptic potential can be included in the analysis without any additional effort. While it is difficult to include reversal potentials and adaptation in the analysis of refractory density models, both effects can be incorporated phenomenologically in numerical implementations by a few additional macroscopic variables. An advantage of refractory densities combined with escape noise is that the density equations can be integrated formally. While the integral representation is not useful for numerical solutions, it is useful for an interpretation of the dynamics in terms of interspike interval distributions.

Membrane potential density methods work best for integrate-and-fire neurons. Since the membrane potential of an integrate-and-fire neuron is described by a single differential equation, the derivation of the density equation is straightforward. A numerical integration of the density equations causes no major problems if the threshold and reset mechanism as well as the ‘drift’ and ‘jump’ terms are carefully implemented (Nykamp and Tranchina, 2000). Reversal potential can be included at no extra cost -- both in simulations and in the analysis (Abbott and van Vreeswijk, 1993; Nykamp and Tranchina, 2000; Omurtag et al., 2000). Stochastic spike arrival can be described explicitly and both the amplitude and the frequency spectrum of the fluctuations of the membrane potential can be predicted. While the formal approach can be extended to detailed neuron models, the implementation of high-dimensional density equations requires efficient numerical implementations (Knight, 2000). Most implementations, so far, have been restricted to integrate-and-fire neurons with or without reversal potentials.

6.2.3.1 From membrane potential densities to phase densities (*)

For constant input current \(I_0 \) it is possible to transform membrane potential densities into phase densities. A description by phase variables is interesting in itself; at the same time this section will introduce the methods that we will use below for the transformation from membrane potential densities to refractory densities.

We consider a population of noise-free integrate-and-fire neurons stimulated by a constant super-threshold current. To keep the arguments general, we consider a non-linear integrate-and-fire neuron (cf. Chapter 4.1) defined by

\[
\frac{d}{dt} u = F(u) = \frac{u - h}{\tau(u)} + \frac{R(u)}{\tau(u)} I_0 .
\] (6.58)

The voltage dependence of \(\tau \) and \(r \) can account for voltage dependent conductances and reversal potentials. For \(\tau(u) = \tau_m \) and \(R(u) = R \) we have the standard equation of an integrate-and-fire neuron.

For \(I_0 \) sufficiently large, the neuron will reach the firing threshold \(\vartheta = 1 \). After firing, the membrane potential is reset to \(u_r = 0 \). Integration of the differential equation (6.58) yields the membrane trajectory,

\[
u(t) = \vartheta(t - \hat{\tau}) ,
\] (6.59)

with \(d \vartheta/dt = F(\vartheta(t - \hat{\tau})) \). Here \(\hat{\tau} \) denotes the last firing time of the neuron; cf. Fig. 6.6. For constant
super-threshold input, the process of integration and reset repeats with a period T, i.e., $u(t + T) = u(t)$. We may therefore introduce a phase variable ϕ that increases from zero to T and is after each firing reset to zero, i.e., $\phi = t \mod T$. This allows us to rewrite the membrane potential trajectory as $u(t) = \psi(\phi)$.

Figure 6.6: A. With constant input, a noise-free (non-linear) integrate-and-fire neuron fires regularly with period T. We define a phase variable by $\phi = t \mod T$ and write the trajectory as $u = \psi(\phi)$. B. The membrane potential density $p(u, t)$ is related to the phase density $q(\phi, t)$ multiplied by $d\psi/d\phi$. The number of neurons with refractory variable between ϕ_0 and ϕ_1 (shaded region) is equal to the number of neurons with membrane potential between $u_0 = \psi(\phi_0)$ and $u_1 = \psi(\phi_1)$.

We can introduce a phase density $q(\phi, t)$ so that $\int_{\phi_0}^{\phi_1} q(\phi, t) \, d\phi$ is the fraction of neurons with phase variable in the interval $[\phi_0, \phi_1]$. The phase density q is related to the membrane potential density p by $q(\phi, t) \, d\phi = p(u, t) \, du$ (see Fig. 6.6B) so that

$$q(\phi, t) = p(u, t) \left|_{u=\psi(\phi)}^{\frac{du}{dt} = \psi'(\psi)} \right| = p[\psi(\phi), t] F[\psi(\phi)]$$

where we have used $d\phi/dt = 1$. The normalization is therefore

$$\int_0^T q(\phi, t) \, d\phi = \int_0^T p(\psi(\phi), t) F[\psi(t)] \, d\phi = \int_0^1 p(u, t) \, du = 1$$

as expected.

We now want to derive the continuity equation for the phase variable $q(\phi, t)$. We start from the continuity equation (6.20) of the membrane potential densities which reduces in the absence of noise to

$$\frac{\partial}{\partial t} p(u, t) = - \frac{\partial}{\partial u} \left[p(u, t) F(u) \right], \quad \text{for } 0 < u < 1.$$
\[
F(u) \frac{\partial}{\partial t} p(u, t) = -F^2(u) \frac{\partial}{\partial u} p(u, t) - F(u) p(u, t) \frac{\partial}{\partial u} F(u), \quad \text{for } 0 < u < 1. \quad (6.63)
\]

The left-hand side is identical to \(\frac{\partial}{\partial t} q(\phi, t) \); cf. Eq. (6.60). Taking the partial derivative of Eq. (6.60) with respect to \(\phi \) yields the right-hand side of (6.63). Thus Eq. (6.63) can be rewritten as

\[
\frac{\partial}{\partial t} q(\phi, t) = -\frac{\partial}{\partial \phi} q(\phi, t) \quad \text{for } 0 < \phi < T; \quad (6.64)
\]

cf. (Abbott and van Vreeswijk, 1993). The phase variable \(\phi \) plays a role similar to the refractory variable \(r \). In fact, Eq. (6.64) is identical to the noise-free refractory density equation (6.43). We emphasize, however, that phase variables are restricted to periodic behavior and require therefore constant super-threshold input - in contrast to refractory densities.

6.2.3.2 From membrane potential densities to refractory densities (*)

In this paragraph we want to show the formal relation between the dynamics of \(p(u, t) \) and the evolution of the refractory densities \(q(r, t) \). We focus on a population of standard integrate-and-fire neurons with escape noise. The equation of the membrane potential

\[
u(t|\hat{t}) = \eta_0 \exp\left(-\frac{t - \hat{t}}{\tau_m}\right) + \int_{\hat{t}}^{t} \exp\left(-\frac{t' - \hat{t}}{\tau_m}\right) I(t') dt'. \quad (6.65)
\]

can be used to define a transformation from voltage to refractory variables: \(u \rightarrow r = t - \hat{t} \). It turns out that the final equations are even simpler if we take \(\hat{t} \) instead of \(r \) as our new variable. We therefore consider the transformation \(u \rightarrow \hat{t} \).

Before we start, we calculate the derivatives of Eq. (6.65). The derivative with respect to \(t \) yields \(\partial u/\partial t = [-u + R I(t)]/\tau_m \) as expected for integrate-and-fire neurons. The derivative with respect to \(\hat{t} \) is

\[
\frac{\partial u}{\partial \hat{t}} = \frac{\eta_0 - R I(\hat{t})}{\tau_m} \exp\left(-\frac{t - \hat{t}}{\tau_m}\right) = F(t, \hat{t}), \quad (6.66)
\]

where the function \(F \) is defined by Eq. (6.66).

The densities in the variable \(\hat{t} \) are denoted as \(Q(\hat{t}, t) \). From \(Q(\hat{t}, t) d\hat{t} = p(u, t) du \) we have

\[
Q(\hat{t}, t) = p[u(\hat{t}, \hat{t})], t) F(t, \hat{t}). \quad (6.67)
\]

We now want to show that the differential equation for the density \(Q(\hat{t}, t) \) that we derived in (6.48),

\[
\frac{\partial}{\partial t} Q(\hat{t}, t) = -\rho(u(\hat{t})) Q(\hat{t}, t), \quad \text{for } \hat{t} < t, \quad (6.68)
\]
is equivalent to the partial differential equation for the membrane potential densities. If we insert Eq. (6.67) into Eq. (6.68) we find

\[\frac{\partial p}{\partial t} - \rho \frac{\partial F}{\partial t} + \frac{\partial F}{\partial t} = -\rho p F. \] (6.69)

For the linear integrate-and-fire neuron we have \(\frac{\partial F}{\partial t} = -F/\tau_m \). Furthermore for \(R I(t) > \eta_0 \) we have \(F \neq 0 \).

Thus we can divide (6.69) by \(F \) and rewrite Eq. (6.69) in the form

\[\frac{\partial p(u,t)}{\partial t} = - \frac{\partial}{\partial u} \left[-u + R I(t) \right] \frac{F}{\tau_m} - f(u - \vartheta) p(u,t), \quad \text{for } u_r < u < \vartheta. \] (6.70)

where we have used the definition of the hazard via the escape function \(\rho(t|\vartheta) = f(u(t|\vartheta) - \vartheta) \) and the definition of the reset potential \(u_r = \eta_0 \). If we compare Eq. (6.70) with the Fokker-Planck equation (6.21), we see that the main difference is the treatment of the noise. For noise-free integrate-and-fire neurons (i.e., \(\rho(t|\vartheta) = 0 \) for \(u \neq \vartheta \)) the equation (6.21) for the membrane potential densities is therefore equivalent to the density equation \(\partial Q(\vartheta, t)/\partial t = 0 \); cf. Eq. (6.68).
6.3 Integral Equations for the Population Activity

In this section, we derive, starting from a small set of assumptions, an integral equation for the population activity. The essential idea of the mathematical formulation is that we work as much as possible on the macroscopic level without reference to a specific model of neuronal dynamics. We will see that the interval distribution $P_I(t | \tau)$ that has already been introduced in Chapter 5 plays a central role in the formulation of the population equation. Both the activity variable A and the interval distribution $P_I(t | \tau)$ are 'macroscopic' spike-based quantities that could, in principle, be measured by extracellular electrodes. If we have access to the interval distribution $P_I(t | \tau)$ for arbitrary input $I(t)$, then this knowledge is enough to formulate the population equations. In particular, there is no need to know anything about the internal state of the neuron, e.g., the current values of the membrane potential of the neurons.

Integral formulations of the population dynamics have been developed by (Gerstner, 1995, 2000b; Wilson and Cowan, 1972; Gerstner and van Hemmen, 1992; Knight, 1972a). The integral equation (6.44) that we have derived in Section 6.2 via integration of the density equations turns out to be a specific instance of the general framework presented in this section.

6.3.1 Assumptions

We consider a homogeneous and fully connected network of spiking neurons in the limit of $N \to \infty$. We aim for a dynamic equation that describes the evolution of the population activity $A(t)$ over time.

We have seen in Eq. (6.8) that, given the population activity $A(t')$ and the external input $I_{ext}(t')$ in the past, we can calculate the current input potential $h_{PSP}(t | \hat{t})$ of a neuron that has fired its last spike at \hat{t}, but we have no means yet to transform the potential h_{PSP} back into a population activity. What we need is therefore another equation which allows us to determine the present activity $A(t)$ given the past. The equation for the activity dynamics will be derived from three observations:

(i)
The total number of neurons in the population remains constant. We exploit this fact to derive a conservation law.

(ii) The model neurons are supposed to show no adaptation. According to Eq. (6.6), the state of neuron \(i \) depends explicitly only on the most recent firing time \(\hat{t}_i \) (and of course on the input \(h_{PSP} \)), but not on the firing times of earlier spikes of neuron \(i \). This allows us to work in the framework of an input-dependent renewal theory; cf. Chapter 5. In particular, the probability density that neuron \(i \) fires again at time \(t \) given that its last spike was at time \(\hat{t} \) and its input for \(t' \leq t \) was \(I(t') \) is given by the input-dependent interval distribution \(P_I(t | \hat{t}) \).

(iii) On a time scale \(\Delta t \) that is shorter than the axonal transmission delay, all \(N \) neurons in the population can be considered as independent. The number of spikes \(n_{act}(t; t + \Delta t) \) that the network emits in a short time window \(\Delta t \) is therefore the sum of independent random variables that, according to the law of large numbers, converges (in probability) to its expectation value. For a large network it is thus sufficient to calculate expectation values.

6.3.2 Integral equation for the dynamics

Because of observation (ii) we know that the input-dependent interval distribution \(P_I(t | \hat{t}) \) contains all relevant information. We recall that \(P_I(t | \hat{t}) \) gives the probability density that a neuron fires at time \(t \) given its last spike at \(\hat{t} \) and an input \(I(t') \) for \(t' < t \). Integration of the probability density over time \(\int_{t}^{\hat{t}} P_I(s | \hat{t}) \, ds \) gives the probability that a neuron which has fired at \(\hat{t} \) fires its next spike at some arbitrary time between \(\hat{t} \) and \(t \). Just as in Chapter 5, we can define a survival probability,

\[
S_I(t | \hat{t}) = 1 - \int_{\hat{t}}^{t} P_I(s | \hat{t}) \, ds , \tag{6.71}
\]

i.e., the probability that a neuron which has fired its last spike at \(\hat{t} \) `survives' without firing up to time \(t \).

We now return to the homogeneous population of neurons in the limit of \(N \to \infty \) and use observation (iii). We consider the network state at time \(t \) and label all neurons by their last firing time \(\hat{t} \). The proportion of neurons at time \(t \) which have fired their last spike between \(t_0 \) and \(t_1 < t \) (and have not fired since) is expected to be

\[
\left< \frac{\text{number of neurons at } t \text{ with last spike in } [t_0, t_1]}{\text{total number of neurons}} \right> = \int_{t_0}^{t_1} S_I(t | \hat{t}) A(\hat{t}) \, d\hat{t} . \tag{6.72}
\]
For an interpretation of the integral on the right-hand side of Eq. (6.72), we recall that \(A(\hat{t}) \Delta \hat{t} \) is the fraction of neurons that have fired in the interval \([\hat{t}, \hat{t} + \Delta \hat{t}]\). Of these a fraction \(S_I(t|\hat{t}) \) are expected to survive from \(\hat{t} \) to \(t \) without firing. Thus among the neurons that we observe at time \(t \) the proportion of neurons that have fired their last spike between \(t_0 \) and \(t_1 \) is expected to be \(\int_{t_0}^{t_1} S_I(t|\hat{t}) A(\hat{t}) \ d\hat{t} \); cf. Fig. 6.7.

Figure 6.7: Derivation of the population equation in discretized time. Of the \(N A(\hat{t}) \Delta \hat{t} \) neurons that have fired between \(\hat{t} \) and \(\hat{t} + \Delta \hat{t} \), a fraction \(S_I(t|\hat{t}) \) is expected to `survive' up to time \(t \) without firing another spike. Thus, (with \(t_1 = \hat{t}_0 + t_{\text{max}} \Delta \hat{t} \)) the Riemann sum

\[
\sum_{k=0}^{k_{\text{max}}} S_I(t|\hat{t}_0 + k \Delta \hat{t}) A(\hat{t}_0 + k \Delta \hat{t}) \Delta \hat{t} \approx \\
\int_{t_0}^{t_1} S_I(t|\hat{t}) A(\hat{t}) \ d\hat{t}
\]

gives the expected fraction of neurons at time \(t \) that have fired their last spike between \(t_0 \) and \(t_1 \).

Finally, we make use of observation (i). All neurons have fired at some point in the past. Thus, if we extend the lower bound \(t_0 \) of the integral on the right-hand side of Eq. (6.72) to \(- \infty\) and the upper bound to \(t \), the left-hand side becomes equal to one,

\[
1 = \int_{-\infty}^{t} S_I(t|\hat{t}) A(\hat{t}) \ d\hat{t} , \quad (6.73)
\]

because all \(N \) neurons have fired their last spike in the interval \([- \infty, t] \). Since the number of neurons remains constant, the normalization (6.73) must hold at arbitrary times \(t \). Eq. (6.73) is an implicit equation for the population activity \(A \). It is the starting point for the discussions in this and the following chapters.

Since Eq. (6.73) is rather abstract, we try to put it into a form that is easier to grasp intuitively. To do so, we take the derivative of Eq. (6.73) with respect to \(t \). We find

\[
0 = S_I(t|t) A(t) + \int_{-\infty}^{t} \frac{dS(t|\hat{t})}{d\hat{t}} A(\hat{t}) \ d\hat{t} . \quad (6.74)
\]
We now use $P_1(t | \hat{t}) = -\frac{d}{dt} S_1(t | \hat{t})$ and $S_1(t | t) = 1$ which is a direct consequence of Eq. (6.71). This yields the activity dynamics

$$A(t) = \int_{-\infty}^{t} P_1(t | \hat{t}) A(\hat{t}) d\hat{t}$$ (6.75)

A different derivation of Eq. (6.75) has been given in Section 6.2; cf. Eq. (6.44).

Eq. (6.75) is easy to understand. The kernel $P_1(t | \hat{t})$ is the probability density that the next spike of a neuron which is under the influence of an input I occurs at time t given that its last spike was at \hat{t}. The number of neurons which have fired at \hat{t} is proportional to $A(\hat{t})$ and the integral runs over all times in the past. The interval distribution $P_1(t | \hat{t})$ depends upon the total input (both external input and synaptic input from other neurons in the population) and hence upon the postsynaptic potential (6.8). Eqs. (6.8) and (6.75) together with an appropriate noise model yield a closed system of equations for the population dynamics. Eq. (6.75) is exact in the limit of $N \rightarrow \infty$. Corrections for finite N, have been discussed by Meyer and van Vreeswijk (2001) and Spiridon and Gerstner (1999).

An important remark concerns the proper normalization of the activity. Since Eq. (6.75) is defined as the derivative of Eq. (6.73), the integration constant on the left-hand side of (6.73) is lost. This is most easily seen for constant activity $A(t) \equiv A_0$. In this case the variable A_0 can be eliminated on both sides of Eq. (6.75) so that Eq. (6.75) yields the trivial statement that the interval distribution is normalized to unity. Equation (6.75) is therefore invariant under a rescaling of the activity $A_0 \rightarrow c A_0$, with any constant c. To get the correct normalization of the activity A_0 we have to go back to Eq. (6.73).

We conclude this section with a final remark on the form of Eq. (6.75). Even though (6.75) looks linear, it is in fact a highly non-linear equation because the kernel $P_1(t | \hat{t})$ depends non-linearly on h_{PSP}, and h_{PSP} in turn depends on the activity via Eq. (6.8).

6.3.2.1 Absolute Refractoriness and the Wilson-Cowan integral equation

Let us consider a population of Poisson neurons with an absolute refractory period Δ^{abs}. A neuron that is not refractory, fires stochastically with a rate $f[h(t)]$ where $h(t)$ is the total input potential, viz., the sum of the postsynaptic potentials caused by presynaptic spike arrival. After firing, a neuron is inactive during the time Δ^{abs}. The population activity of a homogeneous group of Poisson neurons with absolute refractoriness is (Wilson and Cowan, 1972)

$$A(t) = f[h(t)] \left\{ 1 - \int_{t-\Delta^{\text{abs}}}^{t} A(t') dt' \right\}$$ (6.76)
We will show below that Eq. (6.76) is a special case of the population activity equation (6.75).

The Wilson-Cowan integral equation (6.76) has a simple interpretation. Neurons stimulated by a total postsynaptic potential \(h(t) \) fire with an instantaneous rate \(f[h(t)] \). If there were no refractoriness, we would expect a population activity \(A(t) = f[h(t)] \). Not all neurons may, however, fire since some of the neurons are in the absolute refractory period. The fraction of neurons that participate in firing is \(1 - \int_{t-\Delta^{\text{abs}}} t A(t') \, dt' \) which explains the factor in curly brackets.

For constant input potential, \(h(t) = h_0 \), the population activity has a stationary solution,

\[
A_0 = \frac{f(h_0)}{1 - \Delta^{\text{abs}} f(h_0)} = g(h_0) .
\]

(6.77)

For the last equality sign we have used the definition of the gain function of Poisson neurons with absolute refractoriness in Eq. (5.40). Equation (6.77) tells us that in a homogeneous population of neurons the population activity in a stationary state is equal to the firing rate of individual neurons. This is a rather important result since it allows us to calculate the stationary population activity from single-neuron properties. A generalization of Eq. (6.77) to neurons with relative refractoriness will be derived in Section 6.4.

![Figure 6.8: Wilson-Cowan model. A. Gain function of neurons with absolute refractoriness of \(\Delta^{\text{abs}} = 4\text{ms} \). B. The response of the population activity to an abrupt change of the input current shows an oscillatory behavior (solid line) in the approach to the new stationary state.](http://diwww.epfl.ch/~gerstner/SPNM/node47.html)

The oscillations are neglected in the coarse-grained solution (dotted line). The input potential vanishes for \(t_0 < 100\text{ms} \) and is \(h(t) = 1 - \exp[-(t - t_0)/\tau_m] \) for \(t > t_0 \) with \(\tau_m = 4\text{ms} \). Exponential escape rate \(f(h) = \tau_0^{-1} \exp[\beta (h - \vartheta)] \) with \(\vartheta = 1, \tau_G = 1\text{ms}, \vartheta = 1, \) and \(\beta = 2 \). No lateral coupling (\(J_0 = 0 \)).

The function \(f \) in Eq. (6.76) was motivated by an instantaneous `escape rate' due to a noisy threshold in a heterogeneous population. In this interpretation, Eq. (6.76) is the exact equation for the population activity of neurons with absolute refractoriness. In their original paper, Wilson and Cowan motivated the function \(f \) by a distribution of threshold values \(\vartheta \) in an inhomogeneous population. In this case, the population equation (6.76) is an approximation, since correlations are neglected (Wilson and Cowan, 1972).
6.3.2.2 Derivation of the Wilson-Cowan integral equation (*)

We apply the population equation (6.75) to SRM₀ neurons with escape noise; cf. Chapter 5. The escape rate \(f(u - \mathcal{V}) \) is a function of the distance between the membrane potential and the threshold. For the sake of notational convenience, we set \(\mathcal{V} = 0 \). The neuron model is specified by a refractory function \(\eta \) as follows. During an absolute refractory period \(0 < s \leq \Delta \text{abs} \), we set \(\eta(s) = -\infty \). For \(s = \Delta \text{abs} \), we set \(\eta(s) = 0 \). Thus the neuron exhibits absolute refractoriness only; cf. Eq. (5.57). The total membrane potential is \(u(t) = \eta(t - \hat{t}) + h(t) \) with

\[
h(t) = \int_0^\infty \varepsilon_G(s) A(t - s) \, ds + \int_0^\infty k_G(s) I_{\text{ext}}(t - s) \, ds \tag{6.78}
\]

Given \(\eta \) it seems natural to split the integral in the activity equation (6.75) into two parts

\[
A(t) = \int_{-\infty}^{t - \Delta \text{abs}} P_I(t \mid \hat{t}) A(\hat{t}) \, d\hat{t} + \int_{t - \Delta \text{abs}}^{t} P_I(t \mid \hat{t}) A(\hat{t}) \, d\hat{t} . \tag{6.79}
\]

The interval distribution \(P_I(t \mid \hat{t}) \) for the noisy threshold model has been derived in Chapter 5 and is repeated here for convenience

\[
P_I(t \mid \hat{t}) = f[h(t) + \eta(t - \hat{t})] \exp \left\{ - \int_{\hat{t}}^{t} f[h(t') + \eta(t' - \hat{t})] \, dt' \right\} . \tag{6.80}
\]

Let us evaluate the two terms on the right-hand side of Eq. (6.79). Since spiking is impossible during the absolute refractory time, i.e., \(f[\infty] = 0 \), the second term in Eq. (6.79) vanishes. In the first term we can move a factor \(f[h(t) + \eta(t - \hat{t})] \) in front of the integral since \(\eta \) vanishes for \(t - \hat{t} > \Delta \text{abs} \). The exponential factor is the survivor function of neurons with escape noise as defined in Eq. (5.7); cf. Chapter 5. Therefore Eq. (6.79) reduces to

\[
A(t) = f[h(t)] \int_{-\infty}^{t - \Delta \text{abs}} S_I(t \mid \hat{t}) A(\hat{t}) \, d\hat{t} \tag{6.81}
\]

Let us now recall the normalization of the population activity defined in Eq. (6.73), i.e.,
\[\int_{-\infty}^{t} S_{I}(t | \hat{t}) A(\hat{t}) \, d\hat{t} = 1 . \]

(6.82)

The integral in (6.81) can therefore be rewritten as

\[A(t) = f[h(t)] \left[1 - \int_{t-\Delta_{a}}^{t} S_{I}(t | \hat{t}) A(\hat{t}) \, d\hat{t} \right] . \]

(6.83)

During the absolute refractory period we have a survival probability \(S_{I}(t | \hat{t}) = 1 \) since the neurons can not fire. This yields

\[A(t) = f[h(t)] \left\{ 1 - \int_{t-\Delta_{a}}^{t} A(t') \, dt' \right\} , \]

(6.84)

which is the Wilson-Cowan integral equation (6.76) for neurons with absolute refractoriness (Wilson and Cowan, 1972).

6.3.2.3 Quasi-stationary dynamics (*)

Integral equations are often difficult to handle. Wilson and Cowan aimed therefore at a transformation of their equation into a differential equation (Wilson and Cowan, 1972). To do so, they had to assume that the population activity changes slowly during the time \(\Delta_{a} \) and adopted a procedure of time coarse-graining. Here we present a slightly modified version of their argument (Pinto et al., 1996; Gerstner, 1995).

We start with the observation that the total postsynaptic potential,

\[h(t) = J_{0} \int_{-\infty}^{\infty} \varepsilon_{G}(s) A(t - s) \, ds + \int_{-\infty}^{\infty} \kappa_{G}(s) I_{ext}(t - s) \, ds , \]

(6.85)

contains the `low-pass filters' \(\varepsilon_{G} \) and \(\kappa_{G} \). If the postsynaptic potential \(\varepsilon_{G} \) is broad, \(h \) changes only slowly. In particular the dynamics of \(h \) is limited by the membrane time constant \(\tau_{m} \). The activity \(A(t) \), however, could still change rapidly. As a first, and essential, step in the procedure of `time coarse-graining', we simply assume that \(A \) changes only slowly over the time \(\Delta_{a} \). In this case the integral \(\int_{t-\Delta_{a}}^{t} A(t') \, dt' \) on the right-hand side of Eq. (6.76) can be approximated by \(A(t) \Delta_{a} \).

With this approximation, we can solve (6.76) for \(A \) and find
In other words, time coarse-graining implies that we replace the instantaneous activity \(A(t) \) by its stationary value \((6.77)\). As an aside we note that the activity \(A \) is given as a function of the input potential \(h \) rather than the input current.

As a second step, we transform Eq. \((6.85)\) into a differential equation. If the response kernels are exponentials, i.e., \(\epsilon_c(s) = \kappa_c(s) = \tau_m^{-1} \exp(-s/\tau_m) \), the derivative of Eq. \((6.85)\) is

\[
\tau_m \frac{dh}{dt} = -h(t) + J_0 A(t) + I_{\text{ext}}(t).
\]

The evolution of the activity \(A \) is given by Eq. \((6.86)\) and follows the evolution of \(h \) as defined by Eq. \((6.87)\). In particular, the coarse-grained activity \(A(t) \) cannot be faster than the membrane potential \(h \) and is therefore limited by the membrane time constant \(\tau_m \). If the membrane time constant \(\tau_m \) is much larger than the refractory time \(\Delta_{\text{abs}} \), the approximation \((6.86)\) is good. For \(\tau_m \leq \Delta_{\text{abs}} \), the initial transient of the population activity after a change in the input \(I_{\text{ext}} \) can be faster than \(\tau_m \). The difference between the numerical solution of the Wilson-Cowan integral equation \((6.76)\) and that of the coarse-grained equation \((6.86)\) is shown in Fig. 6.8B for a step current input. Whereas the approximative solution approaches the new stationary solution asymptotically from below, the solution of the integral equation exhibits an oscillatory component. In particular, the initial response during the first 2ms is faster than that of the approximative solution. In Chapter 7 we will study transient responses in more detail and show that in the limit of low noise, the population activity can respond much faster than the membrane potential.

Equation \((6.87)\) is a differential equation for the membrane potential. Alternatively, the integral equation \((6.76)\) can also be approximated by a differential equation for the activity \(A \). We start from the observation that in a stationary state the activity \(A \) can be written as a function of the input current, i.e., \(A_0 = g(I_0) \) where \(I_0 = I_{\text{ext}} + J_0 A_0 \) is the sum of the external driving current and the postsynaptic current caused by lateral connections within the population. What happens if the input current changes? The population activity of neurons with a large amount of escape noise will not react to rapid changes in the input instantaneously, but follow slowly with a certain delay similar to the characteristics of a low-pass filter. An equation that qualitatively reproduces the low-pass behavior is

\[
\tau \frac{dA(t)}{dt} = -A(t) + g \left[I_{\text{ext}} + J_0 A(t) \right].
\]

This is the Wilson-Cowan differential equation. Note that, in contrast to Eq. \((6.87)\) the sum \(I_{\text{ext}} + J_0 A(t) \) appears inside the argument of the gain function \(g \). If synaptic dynamics is slow, the term
$J_0 A(t)$ should be replaced by $J_0 \int_0^\infty \alpha(s) A(t-s) \, ds$ where $\alpha(s)$ is the time course of the postsynaptic current; cf. Eq. (5.138). The time constant τ is arbitrary but is often identified with the membrane time constant τ_m.

6.3.2.4 Example: Finite refractoriness and escape noise (*)

The Wilson-Cowan integral equation that has been discussed above is valid for neurons with absolute refractoriness only. We now generalize some of the arguments to a Spike Response Model with relative refractoriness. We suppose that refractoriness is over after a time Δ^{refr} so that $\eta(s) = 0$ for $s \geq \Delta^{\text{refr}}$. For $0 < s < \Delta^{\text{refr}}$, the refractory kernel may have any arbitrary shape. Furthermore we assume that for $t > \Delta^{\text{refr}}$ the kernels $\varepsilon(t - \hat{t}, s)$ and $\kappa(t - \hat{t}, s)$ do not depend on $t - \hat{t}$. For $0 < t - \hat{t} < \Delta^{\text{refr}}$ we allow for an arbitrary time-dependence. Thus, the postsynaptic potential is

\[
\varepsilon(t - \hat{t}, s) = \begin{cases}
\varepsilon(t - \hat{t}, s) & \text{for } 0 < t - \hat{t} \leq \Delta^{\text{refr}}, \\
\varepsilon_0(s) & \text{for } \Delta^{\text{refr}} < t - \hat{t}
\end{cases},
\]

(6.89)

and similarly for κ. As a consequence, the input potential $h_{\text{PSP}}(t | \hat{t})$ defined in Eq. (6.8) depends on \hat{t} for $t - \hat{t} \leq \Delta^{\text{refr}}$, but is independent of \hat{t} for $t - \hat{t} > \Delta^{\text{refr}}$.

We start from the population equation (6.75) and split the integral into two parts

\[
A(t) = \int_{t - \Delta^{\text{refr}}}^{t} P_I(t | \hat{t}) A(\hat{t}) \, d\hat{t} + \int_{-\infty}^{t - \Delta^{\text{refr}}} P_I(t | \hat{t}) A(\hat{t}) \, d\hat{t}
\]

(6.90)

(6.91)

Since $\eta(s)$ vanishes for $s \geq \Delta^{\text{refr}}$, refractoriness plays no role in the second term on the right-hand side of (6.90). We assume escape noise with an escape rate f and use the same arguments as with Eqs. (6.81) - (6.83). The result is

\[
A(t) = \int_{t - \Delta^{\text{refr}}}^{t} P_I(t | \hat{t}) A(\hat{t}) \, d\hat{t} + f[h(t)] \left[1 - \int_{t - \Delta^{\text{refr}}}^{t} S_I(t | \hat{t}) A(\hat{t}) \, d\hat{t} \right].
\]

(6.91)

cf. Wilson and Cowan (1972), Gerstner (2000b). Here we have used $h_{\text{PSP}}(t | \hat{t}) = h(t)$ for $t - \hat{t} > \Delta^{\text{refr}}$. The term in square brackets is the fraction of neurons that are not refractory. These neurons form a homogeneous group and fire with instantaneous rate $f[h(t)]$. For $\Delta^{\text{refr}} \to \infty$ the term in
square brackets vanishes and we retrieve the standard population equation (6.75).

The integrals on the right-hand side of (6.91) have finite support which makes Eq. (6.91) more convenient for numerical implementation than the standard formulation (6.75). For a rapid implementation scheme, it is convenient to introduce discretized refractory densities as discussed in Section 6.2; cf. Eq. (6.57).
6.4 Asynchronous firing

We define asynchronous firing of a neuronal population as a macroscopic firing state with constant activity \(A(t) = A_0 \). In this section we use the population activity equations (6.73) and (6.75) to study the existence of asynchronous firing states in a homogeneous population of spiking neurons. We will see that the neuronal gain function plays an important role. More specifically, we will show that the knowledge of the single-neuron gain function \(g(I_0) \) and the coupling parameter \(J_0 \) is sufficient to determine the activity \(A_0 \) during asynchronous firing.

Figure 6.9: Asynchronous firing. For a sufficient amount of noise, the population activity in a network of independent spiking neurons with constant external input approaches a stationary value \(A_0 \). A. The population activity of 1000 neurons has been filtered with a time window of 1ms duration. B. Same parameters as before, but the size of the population has been increased to \(N = 4000 \). Fluctuations decrease with \(N \) and approach the value of \(A_0 = 50 \)Hz predicted by theory.

6.4.1 Stationary Activity and Mean Firing Rate

In this section we will show that during asynchronous firing the population activity \(A_0 \) is equal to the mean firing rate of a single neuron in the population. To do so, we search for a stationary solution \(A(t) = A_0 \) of the population equation (6.73). Given constant activity \(A_0 \) and constant external input \(I_{ext}^0 \), the total input \(I_0 \) to each neuron is constant. In this case, the state of each neuron depends only on \(t - \hat{t} \), i.e., the time since its last output spike. We are thus in the situation of stationary renewal theory.

In the stationary state, the survivor function and the interval distribution can not depend explicitly upon the absolute time, but only on the time difference \(s = t - \hat{t} \). Hence we set
The value of the stationary activity A_0 follows now directly from the normalization condition (6.73),

$$1 = A_0 \int_0^\infty S_0(s) \, ds .$$

(6.94)

We use $dS_0(s)/ds = -P_0(s)$ and integrate by parts,

$$1 = A_0 \int_0^\infty 1 \cdot S_0(s) \, ds = A_0 \int_0^\infty s \cdot P_0(s) \, ds ,$$

(6.95)

where we have exploited the fact that $s \cdot S_0(s)$ vanishes for $s = 0$ and for $s \to \infty$. We recall from Chapter 5 that

$$\int_0^\infty s \cdot P_0(s) \, ds = \langle T \rangle$$

(6.96)

is the mean interspike interval. Hence

$$A_0 = \frac{1}{\langle T \rangle} .$$

(6.97)

This equation has an intuitive interpretation: If everything is constant, then averaging over time (for a single neuron) is the same as averaging over a population of identical neurons.

6.4.1.1 Example: Comparison with simulations

Figure 6.10: Spike trains (black dots) of selected neurons as a function of time. **A.** Eight neurons out of the 1000 neurons in the simulation of Fig. 6.9A have been randomly chosen. If we sum vertically over the spikes of all 1000 neurons within time bins of 1ms, we retrieve the plot of Fig. 6.9A. Note that intervals vary considerably, since the noise level is high. The mean interval is $\langle T \rangle = 20$ms. **B** Noise-free model network with the same mean firing rate.

All neurons fire regularly with 50Hz, but firing times of different neurons are shifted with respect to each other. Neuron numbers have been ordered in order to make the temporal
How can we compare the population activity A_0 calculated in Eq. (6.97) with simulation results? In a simulation of a population containing a finite number N of spiking neurons, the observed activity fluctuates. Formally, the (observable) activity $A(t)$ has been defined in Eq. (6.1) as a sum over δ functions. The activity A_0 predicted by the theory is the expectation value of the observed activity. Mathematically speaking, the observed activity A converges for $N \to \infty$ in the weak topology to its expectation value. More practically this implies that we should convolve the observed activity with a continuous test function $\gamma(s)$ before comparing with A_0. We take a function γ with the normalization $\int_0^{s_{\text{max}}} \gamma(s) \, ds = 1$. For the sake of simplicity we assume furthermore that γ has finite support so that $\gamma(s) = 0$ for $s < 0$ or $s > s_{\text{max}}$. We define

$$\bar{A}(t) = \int_0^{s_{\text{max}}} \gamma(s) A(t-s) \, ds.$$ \hspace{1cm} \text{(6.98)}$$

The firing is asynchronous if the averaged fluctuations $\langle \bar{A}(t) - A_0 \rangle^2$ decrease with increasing N; cf. Fig. 6.9.

For the purpose of illustration, we have plotted in Fig. 6.10A the spikes of eight neurons of the network simulation shown in Fig. 6.9. The mean interspike-interval for a single neuron is $T = 20\text{ms}$ which corresponds to a population activity of $A_0 = 50\text{Hz}$.

6.4.2 Gain Function and Fixed Points of the Activity

The gain function of a neuron is the firing rate $\langle T \rangle^{-1}$ as a function of its input current I. In the previous subsection, we have seen that the firing rate is equivalent to the population activity A_0 in the state of asynchronous firing. We thus have

$$A_0 = g(I).$$ \hspace{1cm} \text{(6.99)}$$

Recall that the total input I to a neuron consists of the external input $I_{\text{ext}}(t)$ and a component that is due to the interaction of the neurons within the population. In case of the simple Spike Response Model (SRM$_0$) the input is constant for stationary activity $A(t) = A_0$ and constant external input $I_{\text{ext}}(t) = I_{\text{ext}}^0$.

$$h(t) = J_0 A_0 \int_0^{\infty} \epsilon_0(s) \, ds + I_{\text{ext}}^0 \int_0^{\infty} \kappa_0(s) \, ds \equiv h_0.$$ \hspace{1cm} \text{(6.100)}$$

The constant factor $\int_0^{\infty} \epsilon_0(s) \, ds$ can be absorbed in the definition of J_0 and will be dropped in the following.

The coupling to the external current is given by the input resistance $\int_0^{\infty} \kappa(s) \, ds = R$, so that

$$h_0 = J_0 A_0 + R I_{\text{ext}}^0.$$ \hspace{1cm} \text{(6.101)}$$

This, however, is rather an input potential than an input current. In order to be compatible with the definition of the gain function, we should divide the above expression by R so as to obtain the total input current, but for the sake of simplicity we set $R = 1$ in the following. Together with Eq. (6.99) we thus find the following equation for
the population activity A_0,

$$A_0 = g \left(J_0 A_0 + I_0^{\text{ext}} + \right).$$ (6.102)

This is the central result of this section, which is not only valid for SRM_0 neurons, but also holds for other spiking neuron models.

Figure 6.11 shows a graphical solution of Eq. (6.102) in terms of the mean interval $\langle T \rangle$ as a function of the input I_0 (i.e., the gain function) and the total input I_0 as a function of the activity A_0. The intersections of the two functions yield fixed points of the activity A_0.

![Graphical solution for the fixed point A_0 of the activity in a population of SRM_0 neurons. The intersection of the gain function $A_0 = g(I_0)$ (solid line) with the straight line $A_0 = \left[I_0 - I_0^{\text{ext}} \right] / J_0$ (dotted) gives the value of the activity A_0. Depending on the parameters, several solutions may coexist (dashed line).](image)

As an aside we note that the graphical construction is identical to that of the Curie-Weiss theory of ferromagnetism which can be found in any physics textbook. More generally, the structure of the equations corresponds to the mean-field solution of a system with feedback. As shown in Fig. 6.11, several solutions may coexist. We cannot conclude from the figure, whether one or several solutions are stable. In fact, it is possible that all solutions are unstable. In the latter case, the network leaves the state of asynchronous firing and evolves towards an oscillatory or quiescent state. The stability analysis of the asynchronous state is deferred to Chapter 8.

6.4.2.1 Example: SRM_0 neurons with escape noise

Consider a population of (noisy) SRM_0 neurons with escape rate f, e.g. $f(u - \vartheta) = \exp[\beta (u - \vartheta)]$;

cf. Chapter 5.3. The stationary activity A_0 in the presence of a constant input potential $h_0 = R I_0$ is given by

$$A_0 = \left[\int_0^\infty s P_0(s) ds \right]^{-1}$$

$$= \left[\int_0^\infty s f[u(s) - \vartheta] \exp \left\{ - \int_0^a f[u(s') - \vartheta] ds' \right\} ds \right]^{-1}$$ (6.103)

where $u(s) = \tau u(s) + h_0$. Figure 6.12A shows the activity as a function of the total input current I_0. Note that the
shape of the gain function depends on the noise level β. The stationary activity A_0 in a population with lateral coupling $J_0 \neq 0$ is given by the intersections of the gain function $g(I_0)$ with the straight line that gives the total input I_0 as a function of the activity A_0; cf. Fig. 6.12A.

6.4.2.2 Example: Integrate-and-fire model with diffusive noise

In the limit of diffusive noise the stationary activity is

$$A_0 = \frac{\tau_m}{\sqrt{\pi}} \left\{ \int_{-\infty}^{\infty} \frac{e^{-\frac{u}{2}}}{\sigma} \, du \exp \left(\frac{u^2}{2} \right) \left(1 + \text{erf}(u) \right) \right\}^{-1},$$

(6.104)

where σ^2 is the variance of the noise; cf. Eq. (6.33). In a asynchronously firing population of N integrate-and-fire neurons coupled by synapses with efficacy $w_{ij} = J_0/N$ and normalized postsynaptic currents ($\int_0^\infty \alpha(s) = 1$), the total input current is

$$I_0 = I_{\text{ext}} + J_0 A_0;$$

(6.105)

cf. Eq. (6.5). The fixed points for the population activity are once more determined by the intersections of these two functions; cf. Fig. 6.12B.

![Figure 6.12](http://diwww.epfl.ch/~gerstner/SPNM/node48.html)

Figure 6.12: A. Determination of the population activity A_0 for noisy SRM$_0$ neurons with exponential escape rate $f(u) = \exp\left[\beta (u - \bar{\theta}) \right]$. Depending on the noise level, there are one or several intersections between the gain functions (solid lines) and the dashed line. Noise parameters are $\beta = 2, 5,$ and 10. B. Similar construction for integrate-and-fire neurons with diffusive noise. The solid lines show the single-neuron firing rate as a function of the constant input current I_0 for four different noise levels, viz. $\sigma = 1.0, 0.5, 0.1, 0.0$ (from top to bottom). The intersection with the dashed line with slope $1/J_0$ gives potential solutions for the stationary activity A_0 in a population with excitatory coupling J_0. Other parameters: $\bar{\theta} = 1, R = 1, \tau = 10\text{ms}.$

6.4.3 Low-Connectivity Networks

In the preceding subsections we have studied the stationary state of a population of neurons for a given noise
Asynchronous firing

of integrate-and-fire neurons is closely related to earlier theories for random nets of formal analog or binary neurons (Nützel, 1991; Kree and Zippelius, 1991; Amari, 1977b, 1972, 1974; Crisanti and Sompolinsky, 1988; Cessac et al., 1994). The network structure plays a central role in the arguments. While we assume that all neurons in the population are of the same type, the connectivity between the neurons in the population is not homogeneous. Rather it is random, but fixed. Each neuron in the population of \(N \) neurons receives input from \(C \) randomly selected neurons in the population. Sparse connectivity means that the ratio \(\delta = \frac{C}{N} \ll 1 \) (6.106)

is a small number. Is this realistic? A typical pyramidal neuron in the cortex receives several thousand synapses from presynaptic neurons while the total number of neurons in the cortex is much higher. Thus globally the cortical connectivity \(C/N \) is low. On the other hand, we may concentrate on a single column in visual cortex and define, e.g., all excitatory neurons in that column as one population. We estimate that the number \(N \) of neurons in one column is below ten thousand. Each neuron receives a large number of synapses from neurons within the same column. In order to have a connectivity ratio of 0.1, each neuron should have connections to about a thousand other neurons in the same column.

As a consequence of the sparse random network connectivity two neurons \(i \) and \(j \) share only a small number of common inputs. In the limit of \(C/N \to 0 \) the probability that neurons \(i \) and \(j \) have a common presynaptic neuron vanishes. Thus, if the presynaptic neurons fire stochastically, then the input spike trains that arrive at neuron \(i \) and \(j \) are independent (Kree and Zippelius, 1991; Derrida et al., 1987). In that case, the input of neuron \(i \) and \(j \) can be described as stochastic spike arrival which, as we have seen, can be described by a diffusive noise model.

The above reasoning, however, is based on the assumption that the presynaptic neurons (that are part of the population) fire stochastically. To make the argument self-consistent, we have to show that the firing of the postsynaptic neuron is, to a good approximation, also stochastic. The self-consistent argument will be outlined in the following.

We have seen in Chapter 5 that integrate-and-fire neurons with diffusive noise generate spike trains with a broad distribution of interspike intervals when they are driven in the sub-threshold regime. We will use this observation to construct a self-consistent solution for the stationary states of asynchronous firing.

We consider two populations, an excitatory population with \(N_E \) neurons and an inhibitory population with \(N_I \) neurons. We assume that excitatory and inhibitory neurons have the same parameters \(\vartheta, \tau_m, R, \) and \(u_r \). In addition all neurons are driven a common external current \(I_{\text{ext}} \). Each neuron in the population receives \(C_E \) synapses from excitatory neurons with weight \(w_{E} > 0 \) and \(C_I \) synapses from inhibitory neurons with weight \(w_{I} < 0 \). If an input spike arrives at the synapses of neuron \(i \) from a presynaptic neuron \(j \), its membrane potential changes by an amount \(\Delta u_i = w_j \) where \(w_j = w_{E} \) if \(j \) is excitatory and \(w_j = w_{I} \) if \(j \) is inhibitory. We set
\[\gamma = \frac{C_I}{C_E} \quad \text{and} \quad g = \frac{w_I}{w_E}. \quad (6.107) \]

Since excitatory and inhibitory neurons receive the same number of inputs in our model, we assume that they fire with a common firing rate \(\nu \). The total input potential generated by the external current and by the lateral couplings is

\[h_0 = R I_{\text{ext}} + \tau_m \sum_j \nu_j w_j \]

\[= h_{\text{ext}} + \tau_m \nu w_E C_E [1 - \gamma g]. \quad (6.108) \]

The variance of the input is given by Eq. (6.24), i.e.,

\[\sigma^2 = \tau_m \sum_j \nu_j w_j^2 \]

\[= \tau_m \nu w_E^2 C_E [1 + \gamma g^2]. \quad (6.109) \]

The stationary firing rate \(A_0 \) of the population with mean \(h_0 \) and variance \(\sigma \) is given by Eq. (6.33) which is repeated here for convenience

\[A_0 = \frac{1}{\tau_m} \left\{ \sqrt{\frac{\sigma - h_0}{\sigma}} \int \frac{\exp \left(\frac{x^2}{2} \right) \left[1 + \text{erf}(x) \right]}{\sigma - h_0} \, dx \right\}^{-1}. \quad (6.110) \]

In a stationary state we must have \(A_0 = \nu \). To get the value of \(A_0 \) we must therefore solve Eqs. (6.108) - (6.110) simultaneously for \(\nu \) and \(\sigma \). Since the gain function, i.e., the firing rate as a function of the input potential \(h_0 \) depends on the noise level \(\sigma \), a simple graphical solution as in Section 6.4, is no longer possible. In the following paragraphs we give some examples of how to construct self-consistent solutions. Numerical solutions of Eqs. (6.108) - (6.110) have been obtained by Amit and Brunel (1997a, b). For a mixed graphical-numerical approach see Mascaro and Amit (1999).

The arguments that have been developed above for low-connectivity networks can be generalized to fully connected networks with asymmetric random connectivity (Sompolinsky et al., 1988; van Vreeswijk and Sompolinsky, 1996; Ben Arous and Guionnet, 1995; Amari, 1972; Cessac et al., 1994).

6.4.3.1 Example: Balanced excitation and inhibition

In the preceding sections, we have often considered neurons driven by a mean input potential \(h_0 = 0.8 \) and a variance \(\sigma = 0.2 \). Let us find connectivity parameters of our network so that \(\sigma = 0.2 \) is the result of stochastic spike arrivals from presynaptic neurons within the network. As always we set \(R = \Theta = 1 \) and \(\tau_m = 10 \text{ms} \).

Figure 6.13A shows that \(h_0 = 0.8 \) and \(\sigma = 0.2 \) correspond to a firing rate of \(A_0 = \nu \approx 16 \text{ Hz} \). We set \(w_E = 0.025 \), i.e., 40 simultaneous spikes are necessary to make a neuron fire. Inhibition has the same strength \(w_I = -w_E \) so that \(g = 1 \). We constrain our search to solutions with \(C_E = C_I \) so that \(\gamma = 1 \). Thus, on the average, excitation and inhibition balance each other. To get an average input potential of \(h_0 = 0.8 \) we need therefore a constant driving current \(I_{\text{ext}} = 0.8 \).
To arrive at $\sigma = 0.2$ we solve Eq. (6.109) for C_E and find $C_E = C_I = 200$. Thus for this choice of the parameters the network generates enough noise to allow a stationary solution of asynchronous firing at 16Hz.

\[\text{Figure 6.13: A. Mean activity of a population of integrate-and-fire neurons with diffusive noise of } \sigma = 0.2 \text{ as a function of } h_0 = R I_0. \text{ For } h_0 = 0.8 \text{ the population rate is } \nu \approx 16\text{Hz (dotted line). B. Mean activity of a population of integrate-and-fire neurons with diffusive noise of } \sigma = 0.54 \text{ as a function of } h_0 = R I_0. \text{ For } h_0 = 0.2 \text{ the population rate is } \nu = 8\text{Hz (dotted line). The long-dashed line shows } A_0 = [h_0 - h_0^{\text{ext}}] / J_{\text{eff}} \text{ with an effective coupling } J_{\text{eff}} < 0.\]

Note that, for the same parameter, the inactive state where all neurons are silent is also a solution. Using the methods discussed in this section we cannot say anything about the stability of these states. For the stability analysis see (Brunel, 2000) and Chapter 7.

6.4.3.2 Example: Spontaneous cortical activity

About eighty percent of the neurons in the cerebral cortex are excitatory and twenty percent inhibitory. Let us suppose that we have $N_E = 8000$ excitatory and $N_I = 2000$ inhibitory neurons in a cortical column. We assume random connectivity and take $C_E = 800$, $C_I = 200$ so that $\gamma = 1/4$. As before, excitatory synapses have a weight $w_E = 0.025$, i.e., an action potential can be triggered by the simultaneous arrival of 40 presynaptic spikes. If neurons are driven in the regime close to threshold, inhibition is rather strong and we take $w_I = -0.125$ so that $g = 5$. Even though we have less inhibitory than excitatory neurons, the mean feedback is then dominated by inhibition since $\gamma g > 1$. We search for a consistent solution of Eqs. (6.108) - (6.110) with a spontaneous activity of $\nu = 8\text{Hz}$.

Given the above parameters, the variance is $\sigma \approx 0.54$; cf. Eq. (6.109). The gain function of integrate-and-fire neurons gives us for $\nu = 8\text{Hz}$ a corresponding total potential of $h_0 \approx 0.2$; cf. Fig. 6.13B. To attain h_0 we have to apply an external stimulus $h_0^{\text{ext}} = R I^{\text{ext}}$ which is slightly larger than h_0 since the net effect of the lateral coupling is inhibitory. Let us introduce the effective coupling $J_{\text{eff}} = \tau E E \nu w_E (1 - \gamma g)$. Using the above parameters we find from Eq. (6.108) $h_0^{\text{ext}} = h_0 - J_{\text{eff}} A_0 \approx 0.6$.

The external input could, of course, be provided by (stochastic) spike arrival from other columns in the same or other areas of the brain. In this case Eq. (6.108) is to be replaced by

$$h_0 = \tau_m \nu w_E C_E [1 - \gamma g] + \tau_m \nu^{\text{ext}} w^{\text{ext}} C^{\text{ext}}, \quad (6.111)$$

with C^{ext} the number of connections that a neuron receives from neurons outside the population, w^{ext} their typical coupling strength, and ν^{ext} their spike arrival rate (Amit and Brunel, 1997a,b). Due to the extra stochasticity in the input, the variance σ is larger and the total variance is
\[
\sigma^2 = \tau_m \nu w_E^2 C_E [1 + \gamma g^2] + \tau_m \nu_{\text{ext}} w_{\text{ext}}^2 C_{\text{ext}} \quad (6.112)
\]

The equations (6.110), (6.111) and (6.112) can be solved numerically (Amit and Brunel, 1997a,b). The analysis of the stability of the solution is slightly more involved but can be done (Brunel, 2000; Brunel and Hakim, 1999).
In this section we extend the population equations from a single homogeneous population to several populations. We start in Section 6.5.1 with interacting groups of neurons and turn then in Section 6.5.2 to a continuum description.

6.5.1 Several Populations

Let us consider a network consisting of several populations; cf. Fig. 6.14. It is convenient to visualize the neurons as being arranged in spatially separate pools, but this is not necessary. All neurons could, for example, be physically localized in the same column of the visual cortex. Within the column we could define two pools, one for excitatory and one for inhibitory neurons, for example.
Figure 6.14: Several interacting populations of neurons.

We assume that neurons are homogeneous within each pool. The activity of neurons in pool n is

$$A_n(t) = \frac{1}{N_n} \sum_{j \in \Gamma_n} \sum_f \delta(t - t_j^{(f)})$$ \hspace{1cm} (6.113)

where N_n is the number of neurons in pool n and Γ_n denotes the set of neurons that belong to pool n. We assume that each neuron i in pool n receives input from all neurons j in pool m with strength $w_{ij} = J_{nm}/N_m$; cf. Fig. 6.15. The input potential to a neuron i in group Γ_n is generated by the spikes of all neurons in the network,

$$h_i(t|\hat{t}_i) = \sum_j \sum_f w_{ij} \varepsilon(t - \hat{t}_i, t - t_j^{(f)})$$

$$= \sum_m J_{nm} \int_0^\infty \varepsilon(t - \hat{t}_i, s) \sum_j \sum_f \delta(t - t_j^{(f)} - s) \frac{1}{N_m} .$$ \hspace{1cm} (6.114)

We use Eq. (6.113) to replace the sum on the right-hand side of Eq. (6.114) and obtain

$$h_n(t|\hat{t}) = \sum_m J_{nm} \int_0^\infty \varepsilon(t - \hat{t}, s) A_m(t - s) \, ds .$$ \hspace{1cm} (6.115)

We have dropped the index i since the input potential is the same for all neurons in
pool n that have fired their last spike at \hat{t}. Note that Eq. (6.115) is a straightforward generalization of Eq. (6.8) and could have been ‘guessed’ immediately; external input I^{ext} could be added as in Eq. (6.8).

In case of several populations, the dynamic equation (6.75) for the population activity is to be applied to each pool activity separately, e.g., for pool n

$$A_n(t) = \int_{-\infty}^{t} P_n(t | \hat{t}) A_n(\hat{t}) \, d\hat{t}.$$

(6.116)

Equation (6.116) looks simple and we may wonder where the interactions between different pools come into play. In fact, pool n is coupled to other populations via the potential h_n which determines the kernel $P_n(t | \hat{t})$. For example, with the escape noise model, we have

$$P_n(t | \hat{t}) = f[u_n(t | \hat{t}) - \vartheta] \exp \left\{ \int_{\hat{t}}^{t} f[u_n(t' | \hat{t}) - \vartheta] \, dt' \right\} $$

(6.117)

with $u_n(t | \hat{t}) = \eta (t - \hat{t}) + h_n(t | \hat{t})$, with $h_n(t | \hat{t})$ given by (6.115). Eqs. (6.115) - (6.117) determine the dynamics of interacting pools of Spike Response Model neurons with escape noise.

Figure 6.15: All neurons in group Γ_n are coupled with synaptic efficacy $w_{ij} = J_{nn} / N_n$. Each pair of neurons i, j with the presynaptic j in groups Γ_m and the postsynaptic neuron i in Γ_n is coupled via

$$w_{ij} = J_{nm} / N_m.$$
6.5.1.1 Example: Stationary states

The fixed points of the activity in a network consisting of several populations can be found as in Section 6.4. First we determine for each pool the activity as a function of the total input I_m

$$A_m = g_m(I_m) \quad (6.118)$$

where g_m is the gain function of neurons in pool m. Then we calculate the total input current to neurons in pool m,

$$I_m = \sum_{n} J_{mn} A_n \quad (6.119)$$

Inserting Eq. (6.119) in (6.118) yields the standard formula of artificial neural networks,

$$A_m = g_m \left(\sum_{n} J_{mn} A_n \right) \quad (6.120)$$

derived here for interacting populations of neurons.

6.5.2 Spatial Continuum Limit

The physical location of a neuron in a population often reflects the task of a neuron. In the auditory system, for example, neurons are organized along an axis that reflects the neurons' preferred frequency. A neuron at one end of the axis will respond maximally to low-frequency tones; a neuron at the other end to high frequencies. As we move along the axis the preferred frequency changes gradually. For neurons organized along a one-dimensional axis or, more generally in a spatially extended multidimensional network, a description by discrete pools does not seem appropriate. We will indicate in this section that a transition from discrete pools to a continuous population is possible. Here we give a short heuristic motivation of the equations. A thorough derivation along a slightly different line of arguments will be performed in Chapter 9.

To keep the notation simple, we consider a population of neurons that extends along a one-dimensional axis; cf. Fig. 6.16. We assume that the interaction between a pair of neurons i, j depends only on their location x or y on the line. If the location of the
presynaptic neuron is \(y \) and that of the postsynaptic neuron is \(x \), then \(w_{ij} = w(x, y) \). In order to use Eq. (6.115), we discretize space in segments of size \(d \). The number of neurons in the interval \([nd, (n + 1)d]\) is \(N_n = \rho \ d \) where \(\rho \) is the spatial density.

Neurons in that interval form the group \(\Gamma_n \).

![Figure 6.16: In a spatially continuous ensemble of neurons, the number of neurons in a segment \(d \) is \(N = \rho \ d \). The efficacy \(w_{ij} \) between two neurons depends on their location. The coupling strength between a presynaptic neuron \(j \) at position \(x_j \approx md \) and a postsynaptic neuron \(i \) at location \(x_i \approx nd \) is \(w_{ij} \approx w(nd, md) \).](image)

We change our notation with respect to Eq. (6.115) and replace the subscript \(n \) in \(h_n \) and \(A_n \) by the spatial position

\[
\begin{align*}
\text{We change our notation with respect to Eq. (6.115) and replace the subscript } n \text{ in } h_n \text{ and } A_n \text{ by the spatial position:} \\

h_n(t|\hat{t}) &\quad \mapsto \quad h(n \ d, t|\hat{t}) = h(x, t|\hat{t}) \quad (6.121) \\
A_n(t) &\quad \mapsto \quad A(n \ d, t) = A(x, t) \quad (6.122)
\end{align*}
\]

Since the efficacy of a pair of neurons with \(i \in \Gamma_n \) and \(j \in \Gamma_m \) is by definition \(w_{ij} = J_{nm}/N_m \) with \(N_m = \rho \ d \), we have \(J_{nm} = \rho \ d \ w(nd, md) \). We use this in Eq. (6.115) and find

\[
\begin{align*}
h(n \ d, t|\hat{t}) = \rho \sum_m d \\ w(nd, md) \int_{\mathbb{R}} \mathcal{E}(t - \hat{t}, s) A(m \ d, t - s) \ ds.
\end{align*} \quad (6.123)
\]

For \(d \to 0 \), the summation on the right-hand side can be replaced by an integral and
we arrive at
\[
h(x, t | \hat{t}) = \rho \int w(x, y) \int_0^{\infty} \epsilon(t - \hat{t}, s) A(y, t - s) \, ds \, dy ,
\]
(6.124)

which is the final result. The population activity has the dynamics
\[
A(x, t) = \int_{-\infty}^{t} P_x(t | \hat{t}) A(x, \hat{t}) \, d\hat{t} ,
\]
(6.125)

where \(P_x\) is the interval distribution for neurons with input potential \(h(x, t | \hat{t})\).

If we are interested in stationary states of asynchronous firing, the activity \(A(y, t) \equiv A_0(y)\) can be calculated as before with the help of the neuronal gain function \(g\). The result is in analogy to Eqs. (6.118) and (6.120)
\[
A_0(x) = g \left(\rho \int w(x, y) A_0(y) \, dy \right) .
\]
(6.126)

6.5.2.1 Example: Field Equations for SRM\textsubscript{0} neurons

In the case of SRM\textsubscript{0} neurons, the input potential \(h\) does not depend on the last firing time \(\hat{t}\) so that Eq. (6.124) reduces to
\[
h(x, t) = \rho \int w(x, y) \int_0^{\infty} \epsilon_0(s) A(y, t - s) \, ds \, dy .
\]
(6.127)

We assume that the postsynaptic potential can be approximated by an exponential function with time constant \(\tau_m\), i.e., \(\epsilon_0(s) = \tau_m^{-1} \exp(-s/\tau_m)\). Just as we did before in Eq. (6.87), we can now transform Eq. (6.127) into a differential equation,
\[
\tau_m \frac{dh(x, t)}{dt} = -h(x, t) + \rho \int w(x, y) A(y, t) \, dy .
\]
(6.128)

If we make the additional assumption that the activity \(A\) changes only slowly over
time, we may replace A by its stationary solution, i.e., $A(y, t) = g[h(y, t)]$. Here $g[h(y, t)]$ is the single neuron firing rate as a function of the total input potential. For constant input current I_0 and normalized input resistance $R = 1$ we have $h_0 = I_0$. In this case, we may identify $g(h_0)$ with the gain function $g(I_0)$ of the neuron - and knowing this we have chosen the same symbol g for both functions.

If we insert $A(y, t) = g[h(y, t)]$ in Eq. (6.128), we arrive at an integro-differential equations for the ‘field’ $h(x, t)$

$$
\tau_m \frac{dh(x, t)}{dt} = -h(x, t) + \rho \int w(x, y) g[h(y, t)] \, dy.
$$

(6.129)

We refer to Eq. (6.129) as the neuronal field equation (Amari, 1977a; Feldman and Cowan, 1975; Wilson and Cowan, 1973; Ellias and Grossberg, 1975). It will be studied in detail in Chapter 9.
6.6 Limitations

In this chapter we have studied an integral equation for the population dynamics and discussed its relation to density methods. The validity of the population equations relies on three assumptions: (i) a homogeneous population of (ii) an infinite number of neurons which show (iii) no adaptation.

It is clear that there are no large and completely homogeneous populations in biology. The population equations may nevertheless be a useful starting point for a theory of heterogeneous populations (Brunel and Hakim, 1999; Chow, 1998; Senn et al., 1996; Tsodyks et al., 1993; Pham et al., 1998). We may distinguish between heterogeneity in the coupling weights w_{ij} and heterogeneity in the local parameters of the neurons, e.g., the threshold or reset value. The case of randomly chosen weights has been discussed in Section 6.4.3. In the stationary case, the population activity equations can be discussed by solving simultaneously for the mean activity A_0 and the noise amplitude σ_Z. The form of the population activity is similar to that of a homogeneous network. In order to treat heterogeneity in local neuronal parameters, the variability of a parameter between one neuron and the next is often replaced by slow noise in the parameters. For example, a population of integrate-and-fire neurons where the reset value u_r is different for each neuron is replaced by a population where the reset values are randomly chosen after each firing (and not only once at the beginning). Such a noise model has been termed `noisy reset' in Chapter 5.4 and discussed as an example of slow noise in parameters. The replacement of heterogeneity by slow noise neglects, however, correlations that would be present in a truly heterogeneous model. To replace a heterogeneous model by a noisy version of a homogeneous model is somewhat ad hoc, but common practice in the literature.

The second condition is the limit of a large network. For $N \to \infty$ the population activity shows no fluctuations and this fact has been used for the derivation of the population equation. For systems of finite size fluctuations are important since they limit the amount of information that can be transmitted by the population activity. For a population without internal coupling ($J_0 = 0$), fluctuations can be calculated directly from the interval distribution $P_I(t | \hat{t})$; cf. Chapter 5. For networks with internal coupling, an exact treatment of finite size effects is difficult. For escape noise first attempts towards a description of the fluctuations have been made (Spiridon et al., 1998; Meyer and van Vreeswijk, 2001). For diffusive noise, finite size effects in the low-connectivity limit have been treated by Brunel and Hakim.
The limit of no adaptation seems to be valid for fast-spiking neurons (Connors and Gutnick, 1990). Most cortical neurons, however, show adaptation. From the modeling point of view, all integrate-and-fire neurons that have been discussed in Chapter 4 are in the class of non-adaptive neurons, since the membrane potential is reset (and the past forgotten) after each output spike. The condition of short memory (= no adaptation) leads to the class of renewal models (Perkel et al., 1967a; Cox, 1962; Stein, 1967b) and this is where the population equation applies; cf. (Gerstner, 1995, 2000b). A generalization of the population equation to neuron models with adaptation is not straightforward since the formalism assumes that only the last spike suffices. On the other hand, adaptation could be included phenomenologically by introducing a slow variable that integrates over the population activity in the past. A full treatment of adaptation would involve a density description in the high-dimensional space of the microscopic neuronal variables (Knight, 2000).
6.7 Summary

The dynamics of large populations of homogeneous neurons can efficiently be described by population equations. In the stationary state the population equations can be reduced to standard network equations with sigmoidal gain functions. In the limit of high noise or slowly changing stimulation, the description by the Wilson-Cowan differential equation or field equations is appropriate.

The formulation of the population dynamics on a microscopic level leads to partial differential equations for densities in the internal variables, e.g., refractory or membrane potential density. A description of the dynamics on the macroscopic level leads to an integral equation that is based on the input-dependent interval distributions. The relation between the macroscopic activity equations and the microscopic density equations can be most easily demonstrated for a population of Spike Response Model neurons with escape noise. Finally, we have seen that in a sparsely connected network of excitatory and inhibitory neurons noise-like fluctuations may arise even with deterministic dynamics.

Literature

The original paper of Wilson and Cowan (1972) can be recommended as the classical reference for population equations. It is worth while to also consult the papers of Knight (1972a) and Amari (1972) of the same year that each take a somewhat different approach towards a derivation of population activity equations. Some standard references for field equations are Wilson and Cowan (1973), Ellias and Grossberg (1975), and Amari (1977a).

The study of randomly connected networks has a long tradition in the mathematical sciences. Random networks of formal neurons have been studied by numerous researchers, e.g., (Sompolinsky et al., 1988; van Vreeswijk and Sompolinsky, 1996; Amari, 1977b; van Vreeswijk and Sompolinsky, 1998; Amari, 1972,1974; Cessac et al., 1994). The theory for integrate-and-fire neurons (Brunel, 2000; Brunel and Hakim, 1999; Amit and Brunel, 1997a) builds upon this earlier work. Finally, as an introduction to the density equation formalism for neurons, we recommend, apart from Abbott and van Vreeswijk (1993) and Brunel and Hakim (1999), the recent
7. Signal Transmission and Neuronal Coding

In the preceding chapters, a theoretical description of neurons and neuronal populations has been developed. We are now ready to apply the theoretical framework to one of the fundamental problems of Neuroscience - the problem of neuronal coding and signal transmission. We will address the problem as three different questions, viz.,

(i) How does a population of neurons react to a fast change in the input? This question, which is particularly interesting in the context of reaction time experiments, is the topic of Section 7.2.

(ii) What is the response of an asynchronously firing population to an arbitrary time-dependent input current? This question points to the signal transfer properties as a function of stimulation frequency and noise. In Section 7.3 we calculate the signal transfer function for a large population as well as the signal-to-noise ratio in a finite population of, say, a few hundred neurons.

(iii) What is the `meaning' of a single spike? If a neuronal population receives one extra input spike, how does this affect the population activity? On the other hand, if a neuron emits a spike, what do we learn about the input? These questions, which are intimately related to the problem of neural coding, are discussed in Section 7.4.

The population integral equation of Chapter 6.3 allows us to discuss these questions from a unified point of view. We focus in this chapter on a system of identical and independent neurons, i.e., a homogeneous network without lateral coupling. In this case, the behavior of the population as a whole is identical to the averaged behavior of a single neuron. Thus the signal transfer function discussed in Section 7.3 or the coding characteristics discussed in Section 7.4 can also be interpreted as single-neuron properties. Before we dive into the main arguments we derive in Section 7.1 the linearized population equation that will be used throughout this chapter.
Subsections

- **7.1 Linearized Population Equation**
 - 7.1.1 Noise-free Population Dynamics (*)
 - 7.1.2 Escape noise (*)
 - 7.1.3 Noisy reset (*)

- **7.2 Transients**
 - 7.2.1 Transients in a Noise-Free Network
 - 7.2.2 Transients with Noise

- **7.3 Transfer Function**
 - 7.3.1 Signal Term
 - 7.3.2 Signal-to-Noise Ratio

- **7.4 The Significance of a Single Spike**
 - 7.4.1 The Effect of an Input Spike
 - 7.4.2 Reverse Correlation - the Significance of an Output Spike

- **7.5 Summary**
 - Literature

Gerstner and Kistler

Spiking Neuron Models. Single Neurons, Populations, Plasticity

Cambridge University Press, 2002
7.1 Linearized Population Equation

We consider a homogeneous population of independent neurons. All neurons receive the same current $I(t)$ fluctuating about the mean I_0. More specifically we set

$$I(t) = I_0 + \Delta I(t)$$ \hspace{1cm} (7.1)

For small fluctuations, $|\Delta I| \ll I_0$, we expect that the population activity stays close to the value A_0 that it would have for a constant current I_0, i.e.,

$$A(t) = A_0 + \Delta A(t)$$ \hspace{1cm} (7.2)

with $|\Delta A| \ll A_0$. In that case, we may expand the right-hand side of the population equation $A(t) = \int_{-\infty}^{t} P_0(t - \hat{\tau}) \Delta A(\hat{\tau}) d\hat{\tau}$ into a Taylor series about A_0 to linear order in ΔA. In this section, we want to show that for spiking neuron models (either integrate-and-fire or SRM$_0$ neurons) the linearized population equation can be written in the form

$$\Delta A(t) = \int_{-\infty}^{t} P_0(t - \hat{\tau}) \Delta A(\hat{\tau}) d\hat{\tau} + A_0 \frac{d}{dt} \int_{0}^{\infty} L(x) \Delta h(t - x) dx$$ \hspace{1cm} (7.3)

where $P_0(t - \hat{\tau})$ is the interval distribution for constant input I_0, $L(x)$ is a real-valued function that plays the role of an integral kernel, and

$$\Delta h(t) = \int_{0}^{\infty} \kappa(s) \Delta I(t - s) ds$$ \hspace{1cm} (7.4)
is the input potential generated by the time-dependent part of the input current. The first term of the right-hand side of Eq. (7.3) takes into account that previous perturbations $\Delta A(\hat{t})$ with $\hat{t} < t$ have an after-effect one inter-spike interval later. The second term describes the immediate response to a change in the input potential. If we want to understand the response of the population to an input current $\Delta I(t)$, we need to know the characteristics of the kernel $\mathcal{L}(x)$. The main task of this section is therefore the calculation of $\mathcal{L}(x)$.

Here we give an overview of the main results that we will obtain in the present chapter; explicit expressions for the kernel $\mathcal{L}(x)$ are presented in Tab. 7.1.

(i) In the low-noise limit, the kernel $\mathcal{L}(x)$ is a Dirac δ function. The dynamics of the population activity ΔA has therefore a term proportional to the derivative of the input potential; cf. Eq. (7.3). We will see that this result implies a fast response ΔA to any change in the input.

(ii) For high noise, the kernel $\mathcal{L}(x)$ depends critically on the noise model. For noise that is slow compared to the intrinsic neuronal dynamics (e.g., noise in the reset or stochastic spike arrival in combination with a slow synaptic time constant) the kernel $\mathcal{L}(x)$ is similar to that in the noise-free case. Thus the dynamics of ΔA is proportional to the derivative of the input potential and therefore fast.

(iii) For a large amount of `fast' noise (e.g., escape noise), the kernel $\mathcal{L}(x)$ is broad so that the dynamics of the population activity is rather proportional to the input potential than to its derivative; cf. Eq. (7.3). As we will see, this implies that the response to a change in the input is slow.

Results for escape noise and reset noise have been derived by Gerstner (2000b) while results for diffusive noise have been presented by Brunel et al. (2001) based on a linearization of the membrane potential density equation (Brunel and Hakim, 1999). The effect of slow noise in parameters has already been discussed in Knight (1972a). Apart from the approach discussed in this section, a fast response of a population of integrate-and-fire neurons with diffusive noise can also be induced if the variance of the diffusive noise is changed (Bethge et al., 2001; Lindner and Schimansky-Geier, 2001).

Before we turn to the general case, we will focus in Section 7.1.1 on a noise-free population. We will see why the dynamics of $\Delta A(t)$ has a contribution proportional to the derivative of the input potential. In Section 7.1.2 we derive the general expression for the kernel $\mathcal{L}(x)$ and apply it to different situations.

Readers not interested in the mathematical details may skip the remainder of this section and move directly to Section 7.2.

Table 7.1: The kernel $\mathcal{L}(x)$ for integrate-and-fire and SRM0 neurons (upper index IF and SRM, respectively) in the general case (`Definition'), without noise, as well as for escape and reset noise. $S_0(s)$ is the survivor function in the asynchronous state and \mathcal{G}_σ a normalized Gaussian with width σ. Primes denote derivatives with respect to the argument.
7.1.1 Noise-free Population Dynamics (*)

We start with a reduction of the population integral equation (6.75) to the noise-free case. In the limit of no noise, the input-dependent interval distribution $P_I(t | \hat{\ell})$ reduces to a Dirac function, i.e.,

\[P_I(t | \hat{\ell}) = \delta(t - T(\hat{\ell})). \] (7.5)

where $T(\hat{\ell})$ is the inter-spike interval of a neuron that has fired its last spike at time $\hat{\ell}$. If we insert Eq. (7.5) in the integral equation of the population activity, $A(t) = \int P_I(t | \hat{\ell}) A(\hat{\ell}) d\hat{\ell}$, we find

\[A(t) = \int_{-\infty}^{t} \delta(t - \hat{\ell} - T(\hat{\ell})) A(\hat{\ell}) d\hat{\ell}. \] (7.6)

The interval $T(\hat{\ell})$ of a noise-free neuron is given implicitly by the threshold condition

\[T(\hat{\ell}) = \min\{ (t - \hat{\ell}) | u(t) = \theta ; \hat{u} > 0, t > \hat{\ell} \}. \] (7.7)

Note that $T(\hat{\ell})$ is the interval starting at $\hat{\ell}$ and looking forward towards the next spike; cf. Fig. 7.1. The integration over the δ-function in Eq. (7.6) can be done, but since T in the argument of the δ-function depends upon $\hat{\ell}$, the evaluation of the integral needs some care.
Figure 7.1: A neuron that has fired at time \(\hat{t} \) fires its next spike at \(\hat{t} + T(\hat{t}) \) where \(T \) is the `forward' interval. Looking backwards we find that a neuron that fires now at time \(t \) has fired its last spike at \(t - T_b(t) \) where \(T_b \) is the backward interval.

We recall from the rules for \(\delta \) functions that

\[
\int_a^b \delta[f(x)] g(x) \, dx = \frac{g(x_0)}{|f'(x_0)|}
\]

(7.8)

if \(f \) has a single zero-crossing \(f(x_0) = 0 \) in the interval \(a < x_0 < b \) with \(f(x_0) \neq 0 \). The prime denotes the derivative. If there is no solution \(f(x_0) = 0 \) in the interval \([a, b]\), the integral vanishes. In our case, \(x \) plays the role of the variable \(\hat{t} \) with \(f(\hat{t}) = t - \hat{t} - T(\hat{t}) \). Hence \(f'(\hat{t}) = -1 - T'(\hat{t}) \) and

\[
A(t) = \frac{1}{1 + T'(\hat{t})} A(\hat{t}),
\]

(7.9)

whenever a solution of \(\hat{t} = t - T_b(t) \) exists. Here \(T_b(t) \) is the backward interval of neurons that reach the threshold at time \(t \). Eq. (7.9) allows an intuitive interpretation. The activity at time \(t \) is proportional to the number of neurons that have fired one period earlier. The proportionality constant is called compression factor. If the inter-spike intervals decrease \((T' < 0) \), then neuronal firing times are `compressed' and the population activity increases. If inter-spike intervals become larger \((T' > 0) \), the population activity decreases; cf. Fig. 7.2.

To evaluate \(T'(\hat{t}) \) we use the threshold condition (7.7). From \(\partial = \eta \eta'[T(\hat{t})] + h[\hat{t} + T(\hat{t})] \) \(\hat{t} \)

we find by taking the derivative with respect to \(\hat{t} \)

\[
0 = \eta'[T(\hat{t})] T'(\hat{t}) + \partial_t h[\hat{t} + T(\hat{t})] \hat{t} [1 + T'(\hat{t})] + \partial h[\hat{t} + T(\hat{t})] \hat{t} .
\]

(7.10)

The prime denotes the derivative with respect to the argument. We have introduced a short-hand notation for the partial derivatives, viz., \(\partial_t h[\hat{t}] = \partial h[\hat{t}] / \partial t \) and \(\partial h[\hat{t}] = \partial h[\hat{t}] / \partial \hat{t} \). We solve for \(T' \) and find

\[
T' = - \frac{\partial_t h + \partial h}{\eta' + \partial h},
\]

(7.11)
where we have suppressed the arguments for brevity. A simple algebraic transformation yields
\[\frac{1}{1 + T'} = 1 + \frac{\partial t h + \partial t h}{\eta' - \partial t h}, \]
(7.12)
which we insert into Eq. (7.9). The result is
\[A(t) = \left[1 + \frac{\partial t h(t|\hat{t}) + \partial t h(t|\hat{t})}{\eta'(t - \hat{t}) - \partial t h(t|\hat{t})} \right] A(\hat{t}), \text{ with } \hat{t} = t - T_b(t), \]
(7.13)
where \(T_b(t) \) is the backward interval given a spike at time \(t \). A solution \(T_b(t) \) exists only if some neurons reach the threshold at time \(t \). If this is not the case, the activity \(A(t) \) vanishes. The partial derivatives in Eq. (7.13) are to be evaluated at \(\hat{t} = t - T_b(t) \); the derivative \(\eta' = d\eta(s)/ds \) is to be evaluated at \(s = T_b(t) \). We may summarize Eq. (7.13) by saying that the activity at time \(t \) depends on the activity one period earlier modulated by the factor in square brackets. Note that Eq. (7.13) is still exact.

7.1.1.1 Linearization

Let us consider a fluctuating input current that generates small perturbations in the population activity \(\Delta A(t) \) and the input potential \(\Delta h(t) \) as outlined at the beginning of this section. If we substitute \(A(t) = A_0 + \Delta A(T) \) and \(h(t|\hat{t}) = h_0 + \delta h(t|\hat{t}) \) into Eq. (7.13) and linearize in \(\Delta A \) and \(\Delta h \) we obtain an expression of the form
\[\Delta A(t) = \Delta A(t - T) + A_0 C(t), \]
(7.14)
where \(T = 1/A_0 \) is the interval for constant input \(I_0 \) and \(C \) a time-dependent factor, called compression factor. The activity at time \(t \) depends thus on the activity one inter-spike interval earlier and on the instantaneous value of the compression factor.

For SRM_0 neurons we have \(h(t|\hat{t}) = h(t) \) so that the partial derivative with respect to \(\hat{t} \) vanishes. The factor in square brackets in Eq. (7.13) reduces therefore to \([1 + (h'/\eta')]/\). If we linearize Eq. (7.13) we find the compression factor
\[C^{SRM}(t) = h'(t)/\eta'(T). \]
(7.15)
For integrate-and-fire neurons we have a similar result. To evaluate the partial derivatives that we need in Eq. (7.13) we write \(u(t) = \eta(t - \hat{t}) + h(t|\hat{t}) \) with
\[\eta(t - \hat{t}) = u_r e^{-\frac{t - \hat{t}}{\tau_m}}, \]
\[h(t|\hat{t}) = h(t) - h(\hat{t}) e^{-\frac{t - \hat{t}}{\tau_m}}; \]
(7.16)
cf. Eqs. (4.34) and (4.60). Here \(u_r \) is the reset potential of the integrate-and-fire neurons and \(h(t) = \int_0^\infty \exp(-\)
\[s/\tau_{\eta} \int (t - s) \, ds \] is the input potential generated by the input current \(I \).

Taking the derivative of \(\eta \) and the partial derivatives of \(h \) yields

\[
\frac{\partial_t \eta + \partial_t h}{\eta' - \partial_t h} = \frac{h'(t) - h'(t - T_b)}{h'(t - T_b) e^{-T_b/\tau_m} - \tau_m^{-1} [u_r + h(t - T_b)] e^{-T_b/\tau_m}} \cdot (7.17)
\]

which we now insert in Eq. (7.13). Since we are interested in the linearized activity equation, we replace \(T_b(t) \) by the interval \(T = 1/\lambda_0 \) for constant input and drop the term \(h' \) in the denominator. This yields Eq. (7.14) with a compression factor \(C_{IF} \) given by

\[
C_{IF}(t) = \frac{[h'(t) - h'(t - T) \exp(-T/\tau_{\eta})]/u'}{u'} \cdot (7.18)
\]

Here \(u' \) is the derivative of the membrane potential for constant input current \(I_0 \), i.e., \(u' = -\tau_m^{-1} [u_r + h(t - T_b)] e^{-T_b/\tau_m} \). The label IF is short for integrate-and-fire neurons.

7.1.1.2 Example: Compression of firing times for SRM\(_0\) neurons

In order to motivate the name 'compression factor' and to give an interpretation of Eq. (7.14) we consider SRM\(_0\) neurons with an exponential refractory kernel \(\eta(s) = -\eta_0 \exp(-s/\tau) \). We want to show graphically that the population activity \(\Delta A \) has a contribution that is proportional to the derivative of the input potential.

![Figure 7.2: A change in the input potential \(h \) with positive slope \(h' > 0 \) (dashed line, bottom) shifts neuronal firing times closer together (middle). As a result, the activity \(A(t) \) (solid line, top) is higher at \(t = t + T \) than it was at \(t \) (schematic diagram); taken from (Gerstner, 2000b).](http://diwww.epfl.ch/~gerstner/SPNM/node53.html)
and $t + \delta t$. This is due to the fact that the network is homogeneous and the mapping $\hat{t} \rightarrow t = \hat{t} + T(\hat{t})$ is monotuous. If firing time differences are compressed, the population activity increases.

In order to establish the relation between Fig. 7.2 and Eq. (7.15), we note that the compression faction is equal to h' / γ'. For a SRM$_0$ neuron with exponential refractory kernel, $\gamma'(s) > 0$ holds for all $s > 0$. An input with $h' > 0$ implies then, because of Eq. (7.14), an increase of the activity:

$$h' > 0 \implies A(t) > A(t - T). \quad (7.19)$$

7.1.2 Escape noise (*)

In this section we focus on a population of neurons with escape noise. The aim of this section is two-fold. First, we want to show how to derive the linearized population equation (7.3) that has already been stated at the beginning of Section 7.1. Second, we will show that in the case of high noise the population activity follows the input potential $h(t)$, whereas for low noise the activity follows the derivative $h'(t)$. These results will be used in the following three sections for a discussion of signal transmission and coding properties.

In order to derive the linearized response ΔA of the population activity to a change in the input we start from the conservation law,

$$1 = \int_{-\infty}^{\hat{t}} S_{\tau}(t | \hat{t}) A(\hat{t}) \, d\hat{t}, \quad (7.20)$$

cf. (6.73). As we have seen in Chapter 6.3 the population equation (6.75) can be obtained by taking the derivative of Eq. (7.20) with respect to t, i.e.,

$$0 = \frac{d}{dt} \int_{-\infty}^{t} S_{\tau}(t | \hat{t}) A(\hat{t}) \, d\hat{t}. \quad (7.21)$$

For constant input I_0, the population activity has a constant value A_0. We consider a small perturbation of the stationary state, $A(t) = A_0 + \Delta A(t)$, that is caused by a small change in the input current, $\Delta I(t)$. The time-dependent input generates a total postsynaptic potential,

$$h(t | \hat{t}) = h_0(t | \hat{t}) + \Delta h(t | \hat{t}), \quad (7.22)$$

where $h_0(t | \hat{t})$ is the postsynaptic potential for constant input I_0 and

$$\Delta h(t | \hat{t}) = \int_{0}^{\infty} r(t - \hat{t}, s) \Delta I(t - s) \, ds \quad (7.23)$$

is the change of the postsynaptic potential generated by ΔI. We expand Eq. (7.21) to linear order in ΔA and Δh and find
0 = \frac{d}{dt} \int_{-\infty}^{t} S_0(t - \hat{t}) \Delta A(\hat{t}) \, d\hat{t} \\
+ A_0 \frac{d}{dt} \left\{ \int_{-\infty}^{t} ds \int_{-\infty}^{t} d\hat{t} \Delta h(s|\hat{t}) \frac{\partial S_I(\hat{t} | \hat{t})}{\partial \Delta h(s|\hat{t})} \bigg|_{\Delta h=0} \right\} \quad \text{(7.1)}

We have used the notation $S_0(t - \hat{t}) = S_0(t | \hat{t})$ for the survivor function of the asynchronous firing state. To take the derivative of the first term in Eq. (7.24) we use $dS_0(s)/ds = -P_0(s)$ and $S_0(0) = 1$. This yields

$$
\Delta A(t) = \int_{-\infty}^{t} P_0(t - \hat{t}) \Delta A(\hat{t}) \, d\hat{t} \\
- A_0 \frac{d}{dt} \left\{ \int_{-\infty}^{t} ds \int_{-\infty}^{t} d\hat{t} \Delta h(s|\hat{t}) \frac{\partial S_I(\hat{t} | \hat{t})}{\partial \Delta h(s|\hat{t})} \bigg|_{\Delta h=0} \right\} . \quad \text{(7.2)}
$$

We note that the first term on the right-hand side of Eq. (7.25) has the same form as the population integral equation (6.75), except that P_0 is the interval distribution in the stationary state of asynchronous firing.

To make some progress in the treatment of the second term on the right-hand side of Eq. (7.25), we restrict the choice of neuron model and focus on SRM$_0$ or integrate-and-fire neurons. For SRM$_0$ neurons, we may drop the \hat{t} dependence of the potential and set $\Delta h(\hat{t} | \hat{t}) = \Delta h(t)$ where Δh is the input potential caused by the time-dependent current ΔI; compare Eqs. (7.4) and (7.23). This allows us to pull the variable $\Delta h(s)$ in front of the integral over \hat{t} and write Eq. (7.25) in the form

$$
\Delta A(t) = \int_{-\infty}^{t} P_0(t - \hat{t}) \Delta A(\hat{t}) \, d\hat{t} + A_0 \frac{d}{dt} \left\{ \int_{0}^{\infty} L(x) \Delta h(t - x) \, dx \right\} . \quad \text{(7.24)}
$$

with a kernel

$$
L(x) = - \int_{x}^{\infty} d\xi \frac{\partial S(\xi | 0)}{\partial \Delta h(\xi - x)} \equiv L^{\text{SRM}(x)} ; \quad \text{(7.25)}
$$

cf. Tab. 7.1.

For integrate-and-fire neurons we set $\Delta h(\hat{t} | \hat{t}) = \Delta h(t) - \Delta h(\hat{t}) \exp[-(t - \hat{t})/\tau]$; cf. Eq. (7.16). After some rearrangements of the terms, Eq. (7.25) becomes identical to Eq. (7.26) with a kernel

$$
L(x) = - \int_{x}^{\infty} d\xi \frac{\partial S(\xi | 0)}{\partial \Delta h(\xi - x)} + \int_{0}^{x} d\xi \, e^{-\xi'/\tau} \frac{\partial S(\xi' | 0)}{\partial \Delta h(\xi')} \equiv L^{\text{IF}(x)} ; \quad \text{(7.26)}
$$

cf. Tab. 7.1.

Let us discuss Eq. (7.26). The first term on the right-hand side of Eq. (7.26) is of the same form as the dynamic equation (6.75) and describes how perturbations $\Delta A(\hat{t})$ in the past influence the present activity $\Delta A(t)$. The second term gives an additional contribution which is proportional to the derivative of a filtered version of the potential Δh.

We see from Fig. 7.3 that the width of the kernel \(\mathcal{L} \) depends on the noise level. For low noise, it is significantly sharper than for high noise. For a further discussion of Eq. (7.26) we approximate the kernel by an exponential low-pass filter

\[
\mathcal{L}^{\text{SRM}}(x) = a \, \rho \, e^{-\rho \, x} \, \mathcal{H}(x),
\]

(7.27)

where \(a \) is a constant and \(\rho \) is a measure of the noise. It is shown in the examples below that Eq. (7.29) is exact for neurons with step-function escape noise and for neurons with absolute refractoriness.

The noise-free threshold process can be retrieved from Eq. (7.29) for \(\rho \to \infty \). In this limit \(\mathcal{L}^{\text{SRM}}(x) = a \, \delta(x) \) and the initial transient is proportional to \(h' \) as discussed above. For small \(\rho \), however, the behavior is different. We use Eq. (7.29) and rewrite the last term in Eq. (7.26) in the form

\[
\frac{\partial}{\partial t} \int_0^\infty \mathcal{L}^{\text{SRM}}(x) \, \Delta h(t - x) \, dx = a \, \rho \, [\Delta h(t) - \overline{\Delta h}(t)]
\]

(7.28)

where \(\overline{\Delta h}(t) = \int_0^\infty \rho \, \exp(-\rho \, x) \, \Delta h(t - x) \, dx \) is a running average. Thus the activity responds to the temporal contrast \(\Delta h(t) - \overline{\Delta h}(t) \). At high noise levels \(\rho \) is small so that \(\overline{\Delta h} \) is an average over a long time window; cf. Eq. (7.29). If the fluctuations \(\Delta I \) have vanishing mean (\(\langle \Delta I \rangle = 0 \)), we may set \(\overline{\Delta h}(t) = 0 \). Thus, we find for escape noise in the large noise limit \(\Delta A(t) \propto h(t) \). This is exactly the result that would be expected for a simple rate model.

7.1.2.1 The kernel \(\mathcal{L}(x) \) for escape noise (*)

Figure 7.3: Interval distribution (A) and the kernel \(\mathcal{L}^{\text{SRM}}(x) \) (B) for SRM\(_\text{0} \) neurons with escape noise. The escape rate has been taken as piecewise linear \(\rho = \rho_0 \, [u - \vartheta] \, \mathcal{H}(u - \vartheta) \).

For low noise (solid lines in A and B) the interval distribution is sharply peaked and the kernel \(\mathcal{L}^{\text{SRM}} \) has a small width. For high noise (dashed line) both the interval distribution and the kernel \(\mathcal{L}^{\text{SRM}} \) are broad. The value of the bias current \(I_0 \) has been adjusted so that the mean interval is always 40ms. The kernel has been normalized to \(\int_0^\infty \mathcal{L}(x) \, dx = 1 \).

In the escape noise model, the survivor function is given by
\[
S(t | \hat{t}) = \exp \left\{ - \int_{\hat{t}}^{t} f(\eta(t' - \hat{t}) + h(t' | \hat{t})) \, dt' \right\}
\]

(7.29)

where \(f[u] \) is the instantaneous escape rate across the noisy threshold; cf. Chapter 5. We write \(h(t | \hat{t}) = h_0(t - \hat{t}) + \Delta h(t | \hat{t}) \). Taking the derivative with respect to \(\Delta h \) yields

\[
\frac{\partial S(t | \hat{t})}{\partial \Delta h(s | \hat{t})} \bigg|_{\Delta h = 0} = - \mathcal{H}(s - \hat{t}) \mathcal{H}(t - s) f(\eta(s - \hat{t}) + h_0(s - \hat{t})) S_0(t - \hat{t})
\]

(7.30)

where \(S_0(t - \hat{t}) = S_{h0}(t | \hat{t}) \) and \(f' = df(u)/du \). For SRM_0-neurons, we have \(h_0(t - \hat{t}) \equiv h_0 \) and \(\Delta h(t | \hat{t}) = \Delta h(t) \), independent of \(\hat{t} \). The kernel \(\mathcal{L} \) is therefore

\[
\mathcal{L}^{SRM}(t - s) = \mathcal{H}(t - s) \int_{-\infty}^{s} d\hat{t} f(\eta(s - \hat{t}) + h_0) S_0(t - \hat{t})
\]

(7.31)

as noted in Tab. 7.1.

7.1.2.2 Example: Step-function escape rate (*)

Figure 7.4: Interval distribution (A) and the kernel \(\mathcal{L}^{IF}(x) \) (B) for integrate-and-fire neurons with escape noise. The escape rate has been taken as piecewise linear \(\rho = \rho_0 [u - \vartheta] \mathcal{H}(u - \vartheta) \). The value of the bias current \(i_0 \) has been adjusted so that the mean interval is always 8ms. The dip in the kernel around \(x = 8 \)ms is typical for integrate-and-fire neurons. Low noise: sharply peaked interval distribution and kernel. High noise: broad interval distribution and kernel.

We take \(f(u) = \rho \mathcal{H}(u - \vartheta) \), i.e., a step-function escape rate. For \(\rho \rightarrow \infty \) neurons fire immediately as soon as \(u(t) > \vartheta \) and we are back to the noise-free sharp threshold. For finite \(\rho \), neurons respond stochastically with time constant \(\rho^{-1} \). We will show that the kernel \(\mathcal{L}(x) \) for neurons with step-function escape rate is an exponential function; cf. Eq. (7.29).

Let us denote by \(T_0 \) the time between the last firing time \(\hat{t} \) and the formal threshold crossing, \(T_0 = \min \{ s \mid \eta(s) + h_0 = \vartheta \} \). The derivative of \(f \) is a \(\delta \)-function,
\[
\begin{align*}
 f'(\eta(s) + h_0) = \rho \ \delta [\eta(s) + h_0 - \vartheta] = \frac{\rho}{\eta'} \delta (s - T_0) \\
\end{align*}
\]

(7.32)

where \(\eta' = \frac{d\eta(s)}{ds} \big|_{s=T_0} \). The survivor function \(S_0(s) \) is unity for \(s < T_0 \) and \(S_0(s) = \exp[-\rho \ (s - T_0)] \) for \(s > T_0 \).

Integration of Eq. (7.33) yields

\[
\mathcal{L}(s) = \frac{1}{\eta'} \mathcal{H}(s) \ \rho \ \exp[-\rho \ (s)]
\]

as claimed above.

7.1.2.3 Example: Absolute refractoriness (*)

We take an arbitrary escape rate \(f(u) \geq 0 \) with \(\lim_{u \to -\infty} f(u) = 0 = \lim_{u \to -\infty} f'(u) \). Absolute refractoriness is defined by a refractory kernel \(\eta(s) = -\infty \) for \(0 < s < \delta^\text{abs} \) and zero otherwise. This yields \(f(\eta(t - \hat{t}) + h_0) = f(h_0) \ \mathcal{H}(t - \hat{t} - \delta^\text{abs}) \) and hence

\[
f'(\eta(t - \hat{t}) + h_0) = f'(h_0) \ \mathcal{H}(t - \hat{t} - \delta^\text{abs})
\]

(7.34)

The survivor function \(S_0(s) \) is unity for \(s < \delta^\text{abs} \) and decays as \(\exp[-f(h_0) (s - \delta^\text{abs})] \) for \(s > \delta^\text{abs} \).

Integration of Eq. (7.33) yields

\[
\mathcal{L}(t - t_1) = \mathcal{H}(t - t_1) \frac{f'(h_0)}{f(h_0)} \exp[-f(h_0) (t - t_1)].
\]

(7.35)

Note that for neurons with absolute refractoriness the transition to the noiseless case is not meaningful. We have seen in Chapter 6 that absolute refractoriness leads to the Wilson-Cowan integral equation (6.76). Thus \(\mathcal{L} \) defined in (7.37) is the kernel relating to Eq. (6.76); it could have been derived directly from the linearization of the Wilson-Cowan integral equation. We note that it is a low-pass filter with cut-off frequency \(f(h_0) \) which depends on the input potential \(h_0 \).

7.1.3 Noisy reset (*)

We consider SRM\(_\theta\)-neurons with noisy reset as introduced in Chapter 5.4. After each spike the membrane potential is reset to a randomly chosen value parameterized by the reset variable \(r \). This is an example of a \('\text{slow}' \) noise model, since a new value of the stochastic variable \(r \) is chosen only once per inter-spike interval. The interval distribution of the noisy reset model is

\[
P_1(t|\hat{t}) = \int_{-\infty}^{\infty} dr \ \delta [t - \hat{t} - T(\hat{t}, r)] \ \mathcal{G} \sigma (r),
\]

(7.36)

where \(\mathcal{G} \sigma \) is a normalized Gaussian with width \(\sigma \); cf. Eq. (5.68). The population equation (6.75) is thus
\[A(t) = \int_{-\infty}^{t} \int_{-\infty}^{\infty} d\hat{\xi} \delta \left[t - \hat{\xi} - T(\hat{\xi}, r) \right] \mathcal{G}(r) A(\hat{\xi}) \ . \] (7.37)

A neuron that has been reset at time \(\hat{\xi} \) with value \(r \) behaves identical to a noise-free neuron that has fired its last spike at \(\hat{\xi} + r \). In particular we have the relation \(T(\hat{\xi}, r) = r + T_0(\hat{\xi} + r) \) where \(T_0(r) \) is the forward interval of a noiseless neuron that has fired its last spike at \(r \). The integration over \(\hat{\xi} \) in Eq. (7.39) can therefore be done and yields

\[A(t) = \left[1 + \frac{h'}{\eta'} \right] \int_{-\infty}^{\infty} dr \mathcal{G}(r) A[t - T_b(t) - r] \] (7.38)

where \(T_b \) is the backward interval. The factor \([1 + (h'/\eta')] \) arises due to the integration over the \(\delta \)-function just as in the noiseless case; cf. Eqs. (7.13) and (7.15).

To simplify the expression, we write \(A(t) = A_0 + \Delta A(t) \) and expand Eq. (7.40) to first order in \(\Delta A \). The result is

\[\Delta A(t) = \int_{-\infty}^{\infty} \mathcal{G}(r) \Delta A(t - T_0 - r) dr + \frac{h'(t)}{\eta'(T_0)} A_0 \] (7.39)

A comparison of Eqs. (7.41) and (7.3) yields the kernel \(\mathcal{L}(x) = \delta(x)/\eta' \) for the noisy-reset model. Note that it is identical to that of a population of noise-free neurons; cf. Tab. 7.1. The reason is that the effect of noise is limited to the moment of the reset. The approach of the membrane potential towards the threshold is noise-free.
7.2 Transients

How quickly can a population of neurons respond to a rapid change in the input? We know from reaction time experiments that the response of humans and animals to new stimuli can be very fast (Thorpe et al., 1996). We therefore expect that the elementary processing units, i.e., neurons or neuronal populations should also show a rapid response. In this section we concentrate on one element of the problem of rapid reaction time and study the response of the population activity to a rapid change in the input. To keep the arguments as simple as possible, we consider an input which has a constant value \(I_0 \) for \(t < t_0 \) and changes then abruptly to a new value \(I_0 + \Delta I \). Thus

\[
I_{\text{ext}}(t) = \begin{cases}
I_0 & \text{for } t \leq t_0 \\
I_0 + \Delta I & \text{for } t > t_0
\end{cases}
\]

For the sake of simplicity, we consider a population of independent integrate-and-fire or SRM\(_0\) neurons without lateral coupling. Given the current \(I_{\text{ext}}(t) \), the input potential can be determined from \(h(t) = \int_0^\infty \kappa_\omega(s) I_{\text{ext}}(t - s) \, ds \). For \(t \leq t_0 \), the input potential has then a value \(h_0 = R I_0 \) where we have used \(\int \kappa_\omega(s) \, ds = R \). For \(t > t_0 \), the input potential \(h \) changes due to the additional current \(\Delta I \) so that
Given the input potential \(h(t) \) and the last firing time \(\hat{t} \) we can calculate for any given neuron its momentary membrane potential \(u(t) \) - but what is the time course of the population activity?

Let us suppose that for \(t < t_0 \) the network is in a state of asynchronous firing so that the population activity is constant, \(A(t) = A_0 \) for \(t \leq t_0 \); cf. Chapter 6.4. As soon as the input is switched on at time \(t = t_0 \), the population activity will change

\[
A(t) = A_0 + \Delta A(t) \quad \text{for} \quad t > t_0.
\]

In this section we will use the linear population equation,

\[
\Delta A(t) = \int_{-\infty}^{t} P_0(t - \hat{t}) \Delta A(\hat{t}) \, d\hat{t} + A_0 \frac{d}{dt} \int_{0}^{\infty} \mathcal{L}(x) \, \Delta h(t - x) \, dx,
\]

in order to calculate the linear response \(\Delta A(t) \) to the change in the input; cf. Eq. (7.3). Here \(P_0(t - \hat{t}) \) is the inter-spike interval distribution in the stationary state and \(\mathcal{L}(x) \) is the real-valued kernel given in Tab. 7.1. We are mainly interested in the initial phase of the transient, i.e. \(0 < t - t_0 \ll T \) where \(T = 1/A_0 \) is the mean inter-spike interval. During the initial phase of the transient, the first term on the right-hand side of Eq. (7.45) does not contribute, since \(\Delta A(\hat{t}) = 0 \) for \(\hat{t} < t_0 \). Therefore, Eq. (7.45) reduces to

\[
\Delta A(t) = A_0 \frac{d}{dt} \int_{0}^{\infty} \mathcal{L}(s) \, \Delta h(t - s) \, ds, \quad \text{for} \quad t - t_0 \ll T.
\]

7.2.1 Transients in a Noise-Free Network
Figure 7.5: Top: Response of the population activity to a step current for very low noise. Solid line: simulation of a population of 1000 neurons. Dashed line: numerical integration of the population equation (6.75). A. integrate-and-fire-neurons; B. SRM₀ neurons.

Bottom: step current input \mathcal{I} (solid line) and input potential $h(t)$ (dashed line).

Note that the population responds instantaneously to the input switch at $t_0 = 100$ ms even though the membrane potential responds only slowly; taken from Gerstner (2000b)

In the noiseless case, neurons which receive a constant input I_0 fire regularly with some period T_0. For $t < t_0$, the mean activity is simply $A_0 = 1/T_0$. The reason is that, for a constant activity, averaging over time and averaging over the population are equivalent; cf. Chapter 6.4.

Let us consider a neuron which has fired exactly at t_0. Its next spike occurs at $t_0 + T$ where T is given by the threshold condition $u_i(t_0 + T) = \Theta$. We focus on the initial phase of the transient and apply the noise-free kernel $\mathcal{L}(x) \propto \delta(x)$; cf. Tab. 7.1. If we insert the δ function into Eq. (7.46) we find

$$\Delta A(t) \propto \frac{d}{dt} h(t) \quad \text{for} \quad t_0 < t < t_0 + T.$$ \hfill (7.43)

For both SRM₀ and integrate-and-fire neurons, the transient response is proportional to the derivative of the input potential h. Taking the derivative of Eq. (7.43) yields

$$\Delta A(t) = a \kappa_0 (t - t_0) A_0 \quad \text{for} \quad t_0 < t < t_0 + T,$$ \hfill (7.44)

with a constant $a = R \Delta I/\eta'$ for SRM₀ neurons and $a = R \Delta I/u'$ for integrate-and-fire neurons. Thus, the time course of the initial transient reflects the time course of the response kernel κ_0. The initial transient of the neuronal response can therefore be extremely fast (Maraálek et al., 1997).
7.2.1.1 Example: Initial transient of integrate-and-fire neurons

In this example we apply Eq. (7.48) to integrate-and-fire neurons. The response kernel is

\[\kappa_G(s) = \frac{1}{\tau_m} \exp \left(-\frac{s}{\tau_m} \right) \mathcal{H}(s) . \quad (7.45) \]

The response of the input potential to the step current (7.42) is

\[h(t) = h_0 + R \Delta I \left[1 - \exp \left(-\frac{t - t_0}{\tau_m} \right) \right] \text{ for } t > t_0 , \quad (7.46) \]

which has the characteristics of a low-pass filter with time constant \(\tau_m \). The population activity, however, reacts instantaneously to the step current. We put the exponential kernel (7.49) in Eq. (7.48) and find

\[\Delta A(t) = \frac{\alpha A_0}{\tau_m} \exp \left(-\frac{t - t_0}{\tau_m} \right) \mathcal{H}(t - t_0) \text{ for } t_0 < t < t_0 + T \quad (7.47) \]

where \(\mathcal{H}(\cdot) \) is the Heaviside step function. Thus, there is an immediate response at \(t = t_0 \). The simulation in Fig. 7.5 clearly exhibits the rapid initial response of the population. It is also confirmed by a numerical integration of the noise-free population equation; cf. Eq. (7.13).

A similar result holds for a population of SRM\(_0\) neurons. The initial transient of SRM\(_0\) is identical to that of integrate-and-fire neurons; cf. Fig. 7.5. A subtle difference, however, occurs during the late phase of the transient. For integrate-and-fire neurons the transient is over as soon as each neuron has fired once. After the next reset, all neurons fire periodically with a new period \(T \) that corresponds to the constant input \(I_0 + \Delta I \). A population of SRM\(_0\) neurons, however, reaches a periodic state only asymptotically. The reason is that the interspike interval \(T \) of SRM\(_0\) neurons [which is given by the threshold condition \(h(t) = \vartheta - \eta_G(T) \)] depends on the momentary value of the input potential \(h(t) \).

7.2.2 Transients with Noise
Figure 7.6: A. Reset noise. Transients for SRM₀ neurons with noisy reset in response to the same step current as in Fig. 7.5. The results of a simulation of 1000 SRM₀-neurons (solid line) are compared with a numerical integration (dashed line) of the population integral equation; cf. Eq. (6.75). The instantaneous response is typical for 'slow' noise models. B. Transients in a standard rate model. The new stationary state is approached exponentially with the membrane time constant $τ_m$. The response to the input switch at $t_0 = 100\text{ms}$ is therefore comparatively slow.

So far, we have considered noiseless neurons. We have seen that after an initial sharp transient the population activity approaches a new periodic state where the activity oscillates with period T. In the presence of noise, we expect that the network approaches - after a transient - a new asynchronous state with stationary activity $A_0 = g(I_0 + ΔI)$; cf. Chapter 6.4.

In Fig. 7.6A illustrates the response of a population of noisy neurons to a step current input. The population activity responds instantaneously as soon as the additional input is switched on. Can we understand the sharply peaked transient? Before the abrupt change the input was stationary and the population in a state of asynchronous firing. Asynchronous firing was defined as a state with constant activity so that at any point in time some of the neurons fire, others are in the refractory period, again others approach the threshold. There is always a group of neuron whose potential is just below threshold. An increase in the input causes those neurons to fire immediately - and this accounts for the strong population response during the initial phase of the transient.

As we will see in the example below, the above consideration is strictly valid only for neurons with slow noise in the parameters, e.g., noisy reset as introduced in Chapter 5.4. In models based on the Wilson-Cowan differential equation the transient does not exhibit such a sharp initial peak; cf. Fig. 7.6B.

For diffusive noise models the picture is more complicated. A rapid response occurs if the current step is sufficiently large and the noise level not too high. On the other hand, for high noise and small current steps the response is slow. The question of whether neuronal populations react rapidly or slowly depends therefore on many aspects, in particular on the type of noise and the type of stimulation. It can be shown that for diffusive noise that is low-pass filtered by a slow synaptic time constant (i.e., cut-off frequency of the noise lower than the neuronal firing rate) the response is sharp, independent of the noise amplitude. On the other hand, for white noise the response depends on the noise amplitude and the membrane time constant (Brunel et al., 2001).

For a mathematical discussion of the transient behavior, it is sufficient to consider the
equation that describes the initial phase of the linear response to a sudden onset of the input potential; cf. Eq. (7.46). Table 7.1 summarizes the kernel \(\mathcal{L}(x) \) that is at the heart of Eq. (7.46) for several noise models. In the limit of low noise, the choice of noise model is irrelevant - the transient response is proportional to the derivative of the potential, \(\Delta A \propto h' \). If the level of noise is increased, a population of neurons with slow noise (e.g., with noisy reset) retains its sharp transients since the kernel \(\mathcal{L} \) is proportional to \(h' \).

Neurons with escape noise turn in the high-noise limit to a different regime where the transients follow \(h \) rather than \(h' \). To see why, we recall that the kernel \(\mathcal{L} \) essentially describes a low-pass filter; cf. Fig. 7.3. The time constant of the filter increases with the noise level and hence the response switches from a behavior proportional to \(h' \) to a behavior proportional to \(h \).

7.2.2.1 Example: Response of neurons with escape noise

The width of the kernel \(\mathcal{L}(x) \) in Eq. (7.46) depends on the noise level. For low noise, the kernel is sharply peaked at \(x = 0 \) and can be approximated by a Dirac \(\delta \) function. The response \(\Delta A \) of the population activity is sharp since it is proportional to the derivative of the input potential.

For high noise, the kernel is broad and the response becomes proportional to the input potential; cf. Fig. 7.7.

![Figure 7.7: Escape noise](http://diwww.epfl.ch/~gerstner/SPNM/node54.html)

Figure 7.7: Escape noise. Response of a network of 1000 SRM\(_0\) neurons with exponential escape noise to step current input. The input is switched at \(t = 100 \) ms. Simulations (fluctuating solid line) are compared to the numerical integration of the population equation (thick dashed line). **A.** For low noise the transition is comparatively sharp. **B.** For high noise the response to the change in the input is rather smooth.

7.2.2.2 Example: Slow response of standard rate model

In Chapter 6.3, we have introduced the Wilson-Cowan differential equations which are summarized here for a population of independent neurons,

\[
A(t) = g[h(t)] ,
\]

\[
\tau_m \frac{dh}{dt} = -h(t) + R I^{\text{ext}}(t) ;
\]

(7.48)
cf. Eq. (6.87). A step current input, causes a potential

\[h(t) = h_0 + R \Delta I \left[1 - \exp \left(-\frac{t - t_0}{\tau_m} \right) \right] \mathcal{H}(t - t_0). \]

(7.49)

The response of the population activity is therefore

\[\Delta A(t) = g' R \Delta I \left[1 - \exp \left(-\frac{t - t_0}{\tau_m} \right) \right] \mathcal{H}(t - t_0). \]

(7.50)

where \(g' = \frac{dg}{dh} \) evaluated at \(h_0 \). Equation (7.54) describes a slow exponential response with time constant \(\tau_m \); cf. Fig. 7.6B. The Wilson-Cowan differential equation is a reasonable approximation for neurons with a large level of escape noise; compare Figs. 7.6B and 7.7B.

7.2.2.3 Example: Rapid response of neurons with `slow' noise

For neurons with noisy reset, the kernel \(\mathcal{L} \) is a Dirac \(\delta \) function; cf. Tab. 7.1. As in the noiseless case, the initial transient is therefore proportional to the derivative of \(h \). After this initial phase the reset noise leads to a smoothing of subsequent oscillations so that the population activity approaches rapidly a new asynchronous state; cf. Fig. 7.6A. The initial transient, however, is sharp.

7.2.2.4 Example: Diffusive noise

In this example, we present qualitative arguments to show that, in the limit of low noise, a population of spiking neurons with diffusive noise will exhibit an immediate response to a strong step current input. We have seen in the noise-free case, that the rapid response is due the derivative \(h' \) in the compression factor. In order to understand, why the derivative of \(h \) comes into play, let us consider, for the moment, a finite step in the input potential \(h(t) = h_0 + h(t - t_0) \). All neurons \(i \) which are hovering below threshold so that their potential \(u_i(t_0) \) is between \(-h \) and \(h \) will be put above threshold and fire synchronously at \(t_0 \). Thus, a step in the potential causes a \(\delta \)-pulse in the activity \(\Delta A(t) \propto \delta(t - t_0) \propto h'(t_0) \).

In Fig. 7.8a we have used a current step (7.42) [the same step current as in Fig. 7.5]. The response at low noise (top) has roughly the form \(\Delta A(t) \propto h'(t) \propto \kappa(t - t_0) \) as expected.

The rapid transient is slightly less pronounced than for noisy reset, but nevertheless clearly visible; compare Figs. 7.6A and 7.8A. As the amplitude of the noise grows, the transient becomes less sharp. Thus there is a transition from a regime where the transient is proportional to \(h' \) (Fig. 7.8A) to another regime where the transient is proportional to \(h \) (Fig. 7.8B). What are the reasons for the change of behavior?
The simple argument from above based on a potential step $\Delta h > 0$ only holds for a finite step size which is at least of the order of the noise amplitude σ. With diffusive noise, the threshold acts as an absorbing boundary. Therefore the density of neurons with potential u_i vanishes for $u_i \to \hat{u}$; cf. Chapter 6.2. Thence, for $\Delta h \to 0$ the proportion of neurons which are instantaneously put across threshold is 0. In a stationary state, the 'boundary layer' with low density is of the order σ; e.g., cf. Eq. (6.28). A potential step $\Delta h > \sigma$ puts a significant proportion of neurons above threshold and leads to a δ-pulse in the activity. Thus the result that the response is proportional to the derivative of the potential is essentially valid in the low-noise regime.

![Figure 7.8: Diffusive Noise.](image)

On the other hand, we may also consider diffusive noise with large noise amplitude in the sub-threshold regime. In the limit of high noise, a step in the potential raises the instantaneous rate of the neurons, but does not force them to fire immediately. The response to a current step is therefore smooth and follows the potential $h(t)$; cf. Fig. 7.8B. A comparison of Figs. 7.8 and 7.7 shows that the escape noise model exhibits a similar transition form sharp to smooth responses with increasing noise level. In fact, we have seen in Chapter 5 that diffusive noise can be well approximated by escape noise (Plesser and Gerstner, 2000). For the analysis of response properties with diffusive noise see Brunel et al. (2001).
7.3 Transfer Function

Our considerations regarding step current input can be generalized to an arbitrary input current \(I(t) \) that is fluctuating around a mean value of \(I_0 \). We study a population of independent integrate-and-fire or SRM\(_0\) neurons. The input current \(I(t) = I_0 + \Delta I(t) \) generates an input potential

\[
h(t) = \int_0^\infty \kappa_0(s) \left[I_0 + \Delta I(t - s) \right] ds = h_0 + \Delta h(t)
\]

(7.51)

where \(h_0 = RI_0 \) with \(R = \int_0^\infty \kappa_0(s) ds \) is the mean input potential. In particular we want to know how well a periodic input current

\[
I(t) = I_0 + I_1 \cos(\omega t)
\]

(7.52)

can be transmitted by a population of neurons. The signal transfer function calculated in Section 7.3.1 characterizes the signal transmission properties as a function of the frequency \(\omega \). The signal-to-noise ratio is the topic of Section 7.3.2.

7.3.1 Signal Term

We assume that the population is close to a state of asynchronous firing, viz., \(A(t) = A_0 + \Delta A(t) \). The linear response of the population to the change in the input potential \(h \) is given by Eq. (7.3) which can be solved for \(\Delta A \) by taking the Fourier transform. For \(\omega \neq 0 \) we find
\[
\hat{A}(\omega) = i \omega \frac{A_0 \hat{\mathcal{L}}(\omega) \hat{\kappa}(\omega)}{1 - \hat{P}(\omega)} \hat{I}(\omega) = \hat{G}(\omega) \hat{I}(\omega). \tag{7.53}
\]

Hats denote transformed quantities, i.e., \(\hat{\kappa}(\omega) = \int \kappa_0(s) \exp(-i\omega s) \, ds \) is the Fourier transform of the response kernel; \(\hat{P}(\omega) \) is the Fourier transform of the interval distribution; and \(\hat{\mathcal{L}}(\omega) \) is the transform of the kernel \(\mathcal{L} \). Note that for \(\omega \neq 0 \) we have \(A(\omega) = \Delta A(\omega) \) and \(I(\omega) = \Delta I(\omega) \) since \(A_0 \) and \(I_0 \) are constant.

The function \(\hat{G}(\omega) \), defined by Eq. (7.57), describes the (linear) response \(\hat{A}(\omega) \) of a population of spiking neurons to a periodic signal \(\hat{I}(\omega) \). It is also called the (frequency-dependent) gain of the system. Inverse Fourier transform of Eq. (7.57) yields

\[
A(t) = A_0 + \int_0^\infty G(s) \Delta I(t-s) \, ds \tag{7.54}
\]

with

\[
G(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{G}(\omega) e^{i\omega s} \, d\omega. \tag{7.55}
\]

\(A_0 \) is the mean rate for constant drive \(I_0 \). Equation (7.58) allows us to calculate the linear response of the population to an arbitrary input current.

We can compare the amplitude of an input current at frequency \(\omega \) with the amplitude of the response. The ratio

\[
\dot{G}(\omega) = \frac{\hat{A}(\omega)}{\hat{I}(\omega)} \tag{7.56}
\]

as a function of \(\omega \) characterizes the signal transmission properties of the system. If \(|\dot{G}| \) decays for \(\omega > \omega_0 \) to zero, we say that \(\dot{G} \) has a cut-off frequency \(\omega_0 \). In this case, signal transmission at frequencies \(\omega \gg \omega_0 \) is difficult. On the other hand, if \(|\dot{G}| \) approaches a positive value for \(\omega \to \infty \), signal transmission is possible even at very high frequencies.

In the following examples signal we will study transmission properties of a population of neurons with different noise models. In particular, we will see that for slow noise in the parameters (e.g. noise in the reset) signal transmission is possible at very high frequencies (that...
is, there is no cut-off frequency) (Gerstner, 2000b; Knight, 1972a). On the other hand, for escape noise models the cut-off frequency depends on the noise level. For a large amount of escape noise, the cut-off frequency is given by the inverse of the membrane time constant (Gerstner, 2000b). Finally, diffusive noise models have a cut-off frequency if the noise input is white (standard diffusion model), but do not have a cut-off frequency if the noise has a long correlation time (Brunel et al., 2001).

Even if there is no cut-off frequency for the transmission of fast input currents, we may not conclude that real neurons are infinitely fast. In fact, a finite time constant of synaptic channels leads to a frequency cut-off for the input current which may enter the cell. In this sense, it is the time constant of the synaptic current which determines the cut-off frequency of the population. The membrane time constant is of minor influence (Gerstner, 2000b; Treves, 1993; Knight, 1972a).

Figure 7.9: Signal gain for integrate-and-fire neurons with noisy reset (A) and escape noise (B). For low noise (short-dashed line) the variance of the interval distribution is \(\sigma = 0.75 \) ms; for high noise (long-dashed line) the variance is \(\sigma = 4 \) ms. Solid line: variance \(\sigma = 2 \) ms. Note that for noisy reset (slow noise) the signal transfer function has no cut-off frequency, whatever the noise level. The value of the bias current has been adjusted so that the mean interval is always 8 ms. The escape rate in b is piecewise linear \(\rho = \rho_0 \left[u - \vartheta \right] \mathcal{H}(u - \vartheta); \) taken from Gerstner (2000b).

7.3.1.1 Example: Slow noise in the parameters

In this example, we consider integrate-and-fire neurons with noisy reset; cf. Chapter 5.4. For noisy reset the interval distribution in the stationary state is a Gaussian \(P_0(s) = \mathcal{G} \sigma(s - T_0) \)

with mean \(T_0 \) and width \(\sigma \); cf. Eq. (7.38). Fourier transform of the interval distribution yields

\[
\hat{P}(\omega) = \exp \left\{ -\frac{1}{2} \sigma^2 \omega^2 - i \omega T_0 \right\}.
\] (7.57)

The kernel \(\mathcal{L} \) may be read off from Eq. (7.41) or Tab. 7.1. Its Fourier transform is

\[
\hat{\mathcal{L}}(\omega) = \frac{1}{u'} \left\{ 1 - \exp \left[-\frac{1}{2} \sigma^2 \omega^2 - i \omega \frac{T_0 - T_0}{\tau} \right] \right\}
\] (7.58)
where u' is the slope of the noise-free membrane potential at the moment of threshold crossing.

We adjust the bias current I_0 so that the mean interspike interval of the neurons is $T_0 = 8$ms. In Fig. 7.9A we have plotted the gain $|\hat{G}(\omega)| = |\hat{A}(\omega)/\hat{I}(\omega)|$ as a function of the stimulation frequency $f = \omega/(2\pi)$. For a medium noise level of $\sigma = 2$ms, the signal gain has a single resonance at $f = 1/T_0 = 125$Hz. For lower noise, further resonances at multiples of 125 Hz appear. For a variant of the noisy reset model, a result closely related to Eq. (7.57) has been derived by Knight (1972a).

Independently of the noise level, we obtain for integrate-and-fire neurons for $\omega \to 0$ the result $|\hat{G}(0)| = J_{ext}A_0[1 - \exp(- T_0/\tau)]/(u'T_0)$. Most interesting is the behavior in the high-frequency limit. For $\omega \to \infty$ we find $|\hat{G}(\omega)| \to RA_0/(u' \tau)$, hence

$$\left| \frac{\hat{G}(\infty)}{\hat{G}(0)} \right| = \frac{T_0}{\tau} \left[1 - e^{-T_0/\tau} \right]^{-1}.$$ (7.59)

We emphasize that the high-frequency components of the current are not attenuated by the population activity - despite the integration on the level of the individual neurons. The reason is that the threshold process acts like a differentiator and reverses the low-pass filtering of the integration. In fact, Eq. (7.63) shows that high frequencies can be transmitted more effectively than low frequencies. The good transmission characteristics of spiking neurons at high frequencies have been studied by Knight (1972a), Gerstner (2000b), and Brunel et al. (2001). They were also confirmed experimentally by Knight (1972b) and F. Chance (private communication).

So far we have discussed results of the linearized theory; viz., Eqs. (7.41) and (7.57). The behavior of the full non-linear system is shown in Fig. 7.10. A population of unconnected SRM0 neurons is stimulated by a time-dependent input current which was generated as a superposition of 4 sinusoidal components with frequencies at 9, 47, 111 and 1000Hz which have been chosen arbitrarily. The activity equation

$$A(t) = \int_{-\infty}^{t} P_i(t'|\dot{t}) A(\dot{t}) \, d\dot{t}$$

were integrated with time steps of 0.05ms and the results are compared with those of a simulation of a population of 4000 neurons. The 1kHz component of the signal $I(t)$ is clearly reflected in the population $A(t)$. Theory and simulation are in excellent agreement.
7.3.1.2 Example: Escape Noise

We have seen in the preceding section, that noisy reset is rather exceptional in the sense that the transient remains sharp even in the limit of high noise. To study the relevance of the noise model, we return to Eq. (7.57). The signal gain $\hat{G}(\omega) = |A(\omega)/H(\omega)|$ is proportional to $\hat{L}(\omega)$. If the kernel $L(x)$ is broad, its Fourier transform $\hat{L}(\omega)$ will fall off to zero at high frequencies and so does the signal gain $\hat{G}(\omega)$. In Fig. 7.9B we have plotted the signal gain $\hat{G}(\omega)$ for integrate-and-fire neurons with escape noise at different noise levels. At low noise, the result for escape noise is similar to that of reset noise (compare Figs. 7.9A and B) except for a drop of the gain at high frequencies. Increasing the noise level, however, lowers the signal gain of the system. For high noise (long-dashed line in Fig. 7.9B the signal gain at 1000 Hz is ten times lower than the gain at zero frequency. The cut-off frequency depends on the noise level. Note that for escape noise, the gain at zero frequency also changes with the level of noise.

7.3.1.3 Example: Diffusive noise (*)

It is possible to calculate the signal transmission properties of integrate-and-fire neurons with diffusive noise by a linearization of the population density equation (6.21) about the stationary membrane potential distribution $p_0(u)$. The resulting formula (Brunel et al., 2001) is rather complicated but can be evaluated numerically. It is found that in the standard diffusion model
the gain $|\hat{G}(\omega)|$ decays as $1/\sqrt{\omega}$ for large ω. Thus the gain exhibits a cut-off frequency similar to that found in the escape noise model.

Standard diffusive noise corresponds to a drive by stochastic δ current pulses, which is usually motivated as a description of stochastic spike arrival; cf. Chapter 5. In a more realistic model of stochastic spike arrival, input spikes evoke a current pulse of finite width. The duration of the current pulse is characterized by the synaptic time constant τ_s. In that case, the effective noisy input current has correlations on the time scale of τ_s. If $\tau_s > 1/A_0$, the noise is `slow' compared to the intrinsic firing rate of the neuron. It is found that with such a slow noise, the $\hat{G}(\omega)$ has no cut-off frequency (Brunel et al., 2001). In this limit, the gain factor is therefore similar to that of the stochastic reset model. In other words, we have the generic result that for `fast' noise the gain factor has a cut-off frequency whereas for `slow' noise it has not.

7.3.2 Signal-to-Noise Ratio

So far we have considered the signal transmission properties of a large population in the limit $N \to \infty$. In this case the population activity can be considered as a continuous signal, even though individual neurons emit short pulse-like action potentials. For a finite number N of neurons, however, the population activity $A(t)$ will fluctuate around a time-dependent mean. In this section we want to estimate the amplitude of the fluctuations.

For independent neurons that are stimulated by a constant current I_0, we can calculate the noise spectrum of the population activity using the methods discussed in Chapter 5. In fact, the noise spectrum C_{AA} of the population activity is proportional to the Fourier transform of the autocorrelation function of a single-neuron:

$$C_{AA}(\omega) = \frac{1}{N} C_{ii}(\omega)$$ \hfill (7.60)

The proportionality factor takes care of the fact that the amplitude of the fluctuations of $A(t)$ is inversely proportional to the number of neurons in the population. For constant input, we can calculate the single-neuron autocorrelation in the framework of stationary renewal theory. Its Fourier transform is given by Eq. (5.35) and is repeated here for convenience:

$$\hat{C}_{ii}(\omega) = \nu_i \left[\frac{1 + \hat{P}_0(\omega)}{1 - \hat{P}_0(\omega)} \right] + 2\pi \nu_i^2 \delta(\omega)$$ \hfill (7.61)

Here $\hat{P}_0(\omega)$ is the Fourier transform of the inter-spike interval distribution in the stationary state.
If the amplitude of the periodic stimulation is small, the noise term of the population activity can be estimated from the stationary autocorrelation function. The signal-to-noise ratio at frequency ω is

$$\text{SNR} = \frac{|\hat{G}(\omega)|^2}{\hat{C}_{AA}(\omega)} = N \frac{|\hat{G}(\omega)|^2}{\hat{C}_{ii}(\omega)}$$

(7.62)

where N is the number of neurons. The signal-to-noise ratio increases with N as expected.
7.4 The Significance of a Single Spike

The above results derived for a population of spiking neurons have an intimate relation to experimental measurements of the input-output transforms of a single neuron as typically measured by a peri-stimulus time histogram (PSTH) or by reverse correlations. This relation allows to give an interpretation of population results in the language of neural coding; see Chapter 1.4. In particular, we would like to understand the `meaning' of a spike. In Section 7.4.1 we focus on the typical effect of a single presynaptic spike on the firing probability of a postsynaptic neuron. In Section 7.4.2 we study how much we can learn from a single postsynaptic spike about the presynaptic input.

7.4.1 The Effect of an Input Spike

What is the typical response of a neuron to a single presynaptic spike? An experimental approach to answer this question is to study the temporal response of a single neuron to current pulses (Fetz and Gustafsson, 1983; Poliakov et al., 1997). More precisely a neuron is driven by a constant background current \(I_0 \) plus a noise current \(I_{\text{noise}} \). At time \(t = 0 \) an additional short current pulse is injected into the neuron that mimics the time course of an excitatory or inhibitory postsynaptic current. In order to test whether this extra input pulse can cause a postsynaptic action potential the experiment is repeated several times and a peri-stimulus time histogram (PSTH) is compiled. The PSTH can be interpreted as the probability density of firing as a function of time \(t \) since the stimulus, here denoted \(f_{\text{PSTH}}(t) \). Experiments show that the
shape of the PSTH response to an input pulse is determined by the amount of synaptic noise and the time course of the postsynaptic potential (PSP) caused by the current pulse (Kirkwood and Sears, 1978; Moore et al., 1970; Knox, 1974; Fetz and Gustafsson, 1983; Poliakov et al., 1997).

Figure 7.11: A. A neuron which is driven by a noisy background input receives at time $t_0 = 0$ one extra input spike. Does this extra input trigger an output spike? B. Two hypothetic scenarios: Top: With noisy input an output spike is the more likely the closer the mean membrane potential (thick solid line) is to the threshold (dashed line). The firing probability increases during the postsynaptic potential that is caused by the input pulse at $t_0 = 0$ (arrow). Bottom: Without noise, the membrane potential can reach the threshold only during the rising phase of the postsynaptic potential.

How can we understand the relation between postsynaptic potential and PSTH? There are two different intuitive pictures; cf. Fig. 7.11. First, consider a neuron driven by stochastic background input. If the input is not too strong, its membrane potential u hovers somewhere below threshold. The shorter the distance $\theta - u_0$ between the mean membrane potential u_0 and the threshold θ, the higher the probability that the fluctuations drive the neuron to firing. Let us suppose that at $t = 0$ an additional excitatory input spike arrives. It causes an excitatory postsynaptic potential with time course $\epsilon_0(t)$ which drives the mean potential closer to threshold. We therefore expect (Moore et al., 1970) that the probability density of firing (and hence the PSTH) shows a time course similar to the time course of the postsynaptic potential, i.e., $f_{PSTH}(t) \propto \epsilon_0(t)$; cf. Fig. 7.11B (top).

On the other hand, consider a neuron driven by a constant super-threshold current I_0 without any noise. If an input spike arrives during the phase where the membrane potential $u_0(t)$ is just below threshold, it may trigger a spike. Since the threshold crossing can only occur during the rising phase of the postsynaptic potential, we may expect (Kirkwood and Sears, 1978) that the PSTH is proportional to the derivative of the postsynaptic potential, i.e., $f_{PSTH}(t) \propto \frac{d}{dt} \epsilon_0(t)$; cf. Fig. 7.11B (bottom).
Figure 7.12: Effect of noise on the PSTH. A. An integrate-and-fire neuron is stimulated by a current transient which consists of a deterministic pulse $I(t) = I_0 + \Delta I(t)$ plus a noise current I_{noise}. B. Same as in A, but reduced noise amplitude. C. The response of the neuron to repeated presentations of the stimulus is measured by the PSTH. For high noise the PSTH is similar to the postsynaptic potential. D. For low noise, the PSTH resembles the derivative of the postsynaptic potential. E. Time course of the postsynaptic potential and F of its derivative; taken from Herrmann and Gerstner (2001a).

Both regimes can be observed in simulations of integrate-and-fire neurons; cf. Fig. 7.12. An input pulse at $t = 0$ causes a PSTH. The shape of the PSTH depends on the noise level and is either similar to the postsynaptic potential or to its derivative. Closely related effects have been reported in the experimental literature cited above. In this section we show that the theory of signal transmission by a population of spiking neurons allows us to analyze these results from a systematic point of view.

In order to understand how the theory of population activity can be applied to single-neuron PSTHs, let us consider a homogeneous population of N unconnected, noisy neurons initialized with random initial conditions, all receiving the same input. Since the neurons are independent, the activity of the population as a whole in response to a given stimulus is equivalent to the PSTH compiled from the response of a single noisy neuron to N repeated presentations of the same stimulus. Hence, we can apply theoretical results for the activity of homogeneous populations to the PSTH of an individual neuron.

Since a presynaptic spike causes typically an input pulse of small amplitude, we may calculate the PSTH from the linearized population activity equation; cf. Eq. (7.3). During the initial phase of the response, the integral over $P_0(s) \Delta A(t - s)$ in Eq. (7.3) vanishes and the dominant term is

$$f_{\text{PSTH}}(t) = \frac{d}{dt} \int_0^\infty \tilde{L}(x) \varepsilon_0(t - x) \, dx, \quad \text{for } 0 < t \ll [A_0]^{-1}$$

(7.63)
where \(\epsilon(t) \) is the postsynaptic potential generated by the input pulse at \(t = 0 \). We have seen that for low noise the kernel \(\ell(x) \) approaches a \(\delta \) function. Hence, in the low-noise limit, the PSTH is proportional to the derivative of the postsynaptic potential. On the other hand, for high noise the kernel \(\ell(x) \) is rather broad. In this case, the derivative and the integration that are to be performed on the right-hand side of Eq. (7.67) cancel each other so that the PSTH is proportional to the postsynaptic potential. Equation (7.67) can also be applied in the case of intermediate noise level where the intuitive pictures outlined above are not sufficient.

7.4.1.1 Example: The input-output crosscorrelation of integrate-and-fire neurons

In this example we study integrate-and-fire neurons with escape noise. A bias current is applied so that we have a constant baseline firing rate of about 30Hz. At \(t = 0 \) an excitatory (or inhibitory) current pulse is applied which increases (or decreases) the firing density as measured with the PSTH; cf. Fig. 7.13. At low noise the initial response is followed by a decaying oscillation with a period equal to the single-neuron firing rate. At high noise the response is proportional to the excitatory (or inhibitory) postsynaptic potential. Note the asymmetry between excitation and inhibition, i.e., an the response to an inhibitory current pulse is smaller than that to an excitatory one. The linear theory can not reproduce this asymmetry. It is, however, possible to integrate the full nonlinear population equation (6.75) using the methods discussed in Chapter 6. The numerical integration reproduces nicely the non-linearities found in the simulated PSTH; cf. Fig. 7.13A.

![Figure 7.13](http://diwww.epfl.ch/~gerstner/SPNM/node56.html)

Figure 7.13: Integrate-and-fire neurons with escape noise. Population activities in response to positive and negative current-pulses at two different noise levels. Simulations (thin stepped lines) are compared to theoretical responses: The thick solid line shows the result of the integration of the full nonlinear population equation (6.75) whereas the dashed line gives the approximation by the linear theory; cf. Eq. (7.3). A. High noise. B. Low noise. The bias current \(I_0 \) was adjusted to compensate for the change in mean activity resulting from the difference in noise levels so that in both cases \(A_0 = 30 \) Hz. The current pulse \(\propto t \exp(-t/\tau_s) \) with \(\tau_s = 2 \) ms is indicated above the main figure. Input pulse amplitudes were chosen to produce peaks of comparable size, \(\Delta A \approx 6 \) Hz; taken from Herrmann and Gerstner (2001a).
7.4.1.2 Example: Input-output measurements in motoneurons

Figure 7.14: Effect of noise on the PSTH response of a rat hypoglossal motoneuron. A Poisson train of excitatory alpha-shaped current pulses of amplitude 0.2 nA was injected into the soma of a rat hypoglossal motoneuron, superimposed on a long 1 nA current step inducing repetitive firing. In the 'high' noise condition, this input was combined with an additional noise waveform.

A. PSTH in the regime of 'high' noise (noise power level 30 nA^2 μs). B. PSTH for 'low' noise. C. Motoneuron model in the high-noise and D in the low-noise condition. Simulations (thin stepped line) are compared to the integration of the full nonlinear population equation (thick solid line) and to the prediction of the linear theory (thick dashed line). Experimental data from Poliakov et al. (1996), courtesy of M. Binder; model from Herrmann and Gerstner (2001b).

In this example we compare theoretical results with experimental input-output measurements in motoneurons (Fetz and Gustafsson, 1983; Poliakov et al., 1996, 1997). In the study of Poliakov et al. (1997), PSTH responses to Poisson-distributed trains of current pulses were recorded. The pulses were injected into the soma of rat hypoglossal motoneurons during repetitive discharge. The time course of the pulses was chosen to mimic postsynaptic currents generated by presynaptic spike arrival. PSTHs of motoneuron discharge occurrences were compiled when the pulse trains were delivered either with or without additional current noise which simulated noisy background input. Fig. 7.14 shows examples of responses from a rat motoneuron taken from the work of Poliakov which is a continuation of earlier work (Moore et al., 1970; Kirkwood and Sears, 1978; Knox, 1974; Fetz and Gustafsson, 1983). The effect of adding noise can be seen clearly: the low-noise peak is followed by a marked trough, whereas the high-noise PSTH has a reduced amplitude and a much smaller trough. Thus, in the low-noise regime (where the type of noise model is irrelevant)
the response to a synaptic input current pulse is similar to the derivative of the postsynaptic potential (Fetz and Gustafsson, 1983), as predicted by earlier theories (Knox, 1974), while for high noise it is similar to the postsynaptic potential itself.

Fig. 7.14C and D shows PSTHs produced by a Spike Response Model of a motoneuron; cf. Chapter 4.2. The model neuron is stimulated by exactly the same type of stimulus that was used in the above experiments on motoneurons. The simulations of the motoneuron model are compared with the PSTH response predicted from the theory. The linear response reproduces the general characteristics that we see in the simulations. The full nonlinear theory derived from the numerical solution of the population equation fits nicely with the simulation. The results are also in qualitative agreement with the experimental data.

7.4.2 Reverse Correlation - the Significance of an Output Spike

In a standard experimental protocol to characterize the coding properties of a single neuron, the neuron is driven by a time-dependent stimulus \(I(t) = I_0 + \Delta I(t) \) that fluctuates around a mean value \(I_0 \). Each time the neuron emits a spike, the time-course of the input just before the spike is recorded. Averaging over many spikes yields the typical input that drives the neuron towards firing. This spike-triggered average is called the 'reverse correlation' function; cf. Chapter 1.4. Formally, if neuronal firing times are denoted by \(t^{(i)} \) and the stimulus before the spike by \(I(t^{(i)} - s) \), we define the reverse correlation function as

\[
C_{\text{rev}}(s) = \langle \Delta I(t^{(i)} - s) \rangle \nonumber
\]

where the average is to be taken over all firing times \(t^{(i)} \). In our definition the reverse correlation evaluated at a positive time \(s > 0 \) looks backward in time, i.e., describes the mean input that precedes a spike. If the type of allowed stimuli is appropriately constrained, it can be shown that amongst all possible stimuli, a stimulus \(\Delta I(t) \propto C_{\text{rev}}(- t) \) is in fact the optimal stimulus to trigger a spike; cf. the example at the end of this section.

In this section, we want to relate the reverse correlation function \(C_{\text{rev}}(s) \) to the signal transfer properties of a single neuron (Bryant and Segundo, 1976). In Section 7.3, we have seen that, in the linear regime, signal transmission properties of a population of neuron are described by

\[
\hat{A}(\omega) = \hat{G}(\omega) I(\omega) .
\]

with a frequency-dependent gain \(\hat{G}(\omega) \); see Eq. (7.57). We will use that, for independent neurons, the transfer characteristics of a population are identical to that of a single neuron. We therefore interpret \(\hat{G}(\omega) \) as the single-neuron transfer function. Inverse Fourier transform of Eq. (7.69) yields
\[A(t) = A_0 + \int_0^\infty G(s) \Delta I(t - s) \, ds \]

(7.66)

with a kernel defined in Eq. (7.59). \(A_0\) is the mean rate for constant drive \(I_0\). We want to show that the reverse correlation function \(C^{rev}(s)\) is proportional to the kernel \(G(s)\).

Eq. (7.70) describes the relation between a known (deterministic) input \(\Delta I(t)\) and the population activity. We now adopt a statistical point of view and assume that the input \(\Delta I(t)\) is drawn from a statistical ensemble of stimuli with mean \(\langle \Delta I(t) \rangle = 0\). Angular brackets denote averaging over the input ensemble or, equivalently, over an infinite input sequence. We are interested in the correlation

\[C_{AI}(s) = \lim_{T \to \infty} \frac{1}{T} \int_0^T A(t + s) \Delta I(t) \, dt = \langle A(t + s) \Delta I(t) \rangle \]

(7.67)

between input \(\Delta I\) and activity \(\Delta A\). If the input amplitude is small so that the linearized population equation (7.70) is applicable, we find

\[C_{AI}(s) = \int_0^\infty G(s) \langle \Delta I(t + s - s') \Delta I(t) \rangle \, ds'. \]

(7.68)

where we have used \(A_0 \langle \Delta I(t) \rangle = 0\). The correlation function \(C_{AI}\) depends on the kernel \(G(s)\) as well as on the autocorrelation \(\langle \Delta I(t') \Delta I(t) \rangle\) of the input ensemble.

For the sake of simplicity, we assume that the input consists of white noise, i.e., the input has an autocorrelation

\[\langle \Delta I(t') \Delta I(t) \rangle = \sigma^2 \delta(t' - t). \]

(7.69)

In this case Eq. (7.72) reduces to
\[C_{AI}(s) = \sigma^2 G(s) . \] (7.70)

Thus the correlation function \(C_{AI} \) is proportional to \(G(s) \).

In order to relate the correlation function \(C_{AI} \) to the reverse correlation \(C^{rev} \), we recall the definition of the population activity

\[A(t) = \frac{1}{N} \sum_{i=1}^{N} \sum_f \delta(t - t_{i(f)}). \] (7.71)

The correlation function (7.71) is therefore

\[C_{AI}(s) = \lim_{T \to \infty} \frac{1}{T} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_f \Delta I_{t_i^{(f)} - s} \right]. \] (7.72)

Thus the value of the correlation function \(C_{AI} \) at, e.g., \(s = 5 \) ms, can be measured by observing the mean input 5ms before each spike. The sum in the square brackets runs over all spikes of all neurons. With the neuronal firing rate \(\nu = A_0 \), the expected number of spikes of \(N \) identical and independent neurons is \(\nu T N \) where \(T \) is the measurement time window. We now use the definition (7.68) of the reverse correlation function on the right-hand side of Eq. (7.76) and find

\[C_{AI}(s) = \nu C^{rev}(s) . \] (7.73)

Since we have focused on a population of independent neurons, the reverse correlation of the population is identical to that of a single neuron. The combination of Eqs. (7.74) and (7.77) yields

\[C^{rev}(s) = \frac{\sigma^2}{\nu} G(s) . \] (7.74)

This is an important result. For spiking neurons the transfer function \(G(s) \) can be calculated from neuronal parameters while the reverse correlation function \(C^{rev} \) is
easily measurable in single-neuron experiments. This allows an interpretation of reverse correlation results in terms of neuronal parameters such as membrane time constant, refractoriness, and noise.

7.4.2.1 Example: Reverse correlation function for SRM$_0$ neurons

Figure 7.15: Reverse correlations. A SRM$_0$ neuron is stimulated by a constant bias current plus a stochastic input current. Each time an output spike is triggered, the time course of the input current is recorded.

A. Average input $\langle I(t - t(f)) \rangle_{t(f)}$ as a function of $s = t - t(f)$ averaged over 1000 output spikes $f = 1, ..., 1000$. **B.** The same, but averaged over 25000 spikes. The simulation result is compared with the time-reversed impulse response $G(-s)$ predicted from the theory (smooth line).

We consider a SRM$_0$ neuron $u(t) = \tau_0 (t - \hat{t}) + \int_0^\infty \kappa_0(s) I(t - s) \, ds$ with piecewise linear escape noise. The response kernels are exponential with a time constant of $\tau = 4$ ms for the kernel κ and $\tau_{\text{ref}} = 20$ ms for the refractory kernel τ_0. The neuron is driven by a current $I(t) = I_0 + \Delta I(t)$. The bias current I_0 was adjusted so that the neuron fires at a mean rate of 50 Hz. The noise current was generated by the following procedure. Every time step of 0.1 ms we apply with a probability of 0.5 an input pulse. The amplitude of the pulse is ± 1 with equal probability. To estimate the reverse correlation function, we build up a histogram of the average input $\langle I(t - t(f)) \rangle_{t(f)}$ preceding a spike $t(f)$. We see from Fig. 7.15A that the main characteristics of the reverse correlation function are already visible after 1000 spikes. After an average over 25000 spikes, the time course is much cleaner and reproduces to a high degree of accuracy the time course of the time-reversed impulse response $G(-s)$ predicted by the theory; cf. Fig. 7.15B. The oscillation with a period of about 20 ms reflects the intrinsic firing period of the neuron.
7.4.2.2 Example: Reverse correlation as the optimal stimulus (*)

In this example we want to show that the reverse correlation function \(C_{\text{rev}}(s) \) can be interpreted as the optimal stimulus to trigger a spike. To do so, we assume that the amplitude of the stimulus is small and use the linearized population equation

\[
A(t) = A_0 + \int_0^\infty G(s) \Delta I(t - s) \, ds. \tag{7.75}
\]

Suppose that we want to have a large response \(\Delta A = A(0) - A_0 \) at time \(t = 0 \). More precise we ask the following question. Amongst all possible stimuli \(I(t) \) for \(t < 0 \) with the same power

\[
\int_{-\infty}^0 \Delta I^2(t) \, dt = \text{const}_p, \tag{7.76}
\]

which one will give the maximal response \(\Delta A \)? We claim that the optimal stimulus has the same time course as the linear kernel \(G \) apart from a reversal in time, i.e,

\[
\Delta I_{\text{opt}}(t) \propto G(-t). \tag{7.77}
\]

To prove the assertion, we need to maximize \(\Delta A = \int_0^\infty G(s) \Delta I(-s) \, ds \) under the constraint (7.80). We insert the constraint by a Lagrange-multiplier \(\lambda \) and arrive at the condition

\[
0 = \frac{\partial}{\partial I(t)} \left\{ \int_0^\infty G(s) \Delta I(-s) \, ds + \lambda \left[\text{const}_p - \int_0^\infty \Delta I^2(-s) \, ds \right] \right\} \tag{7.78}
\]

which must hold at any arbitrary time \(t \). Taking the derivative of the braced term with respect to \(I(t) \) yields

\[
G(t) = 2 \lambda \Delta I_{\text{opt}}(-t). \tag{7.79}
\]
which proves the assertion (7.81). The exact value of λ could be determined from Eq. (7.80) but is not important for our arguments. Finally, from Eq. (7.78) we have $G(s) \propto C^{\text{rev}}(s)$. Thus the result of reverse correlation measurements with white noise input can be interpreted as the optimal stimulus, as claimed in the text after Eq. (7.68).
7.5 Summary

In this chapter we have focused on the signal transmission properties of a population of identical and independent spiking neurons that are firing asynchronously. The state of asynchronous firing may be particularly interesting for information transmission, since the system can respond rapidly to changes in the input current. For slow noise such as noisy reset or correlated diffusive noise, the signal gain defined as the amplitude of the population activity divided by that of the input current shows no cut-off at high frequencies (Brunel et al., 2001; Gerstner, 2000b; Knight, 1972a). The effective cut-off frequency of the system is therefore given by the input current. For real neurons, changes in the input current are of course limited by the opening and closing times of synaptic channels. The conclusion is that the response time of the system is determined by the time-course of the synaptic currents (Treves, 1993) and not by the membrane time constant.

These insights may have important implications for modeling as well as for interpretations of experiments. It is often thought, that the response time of neurons is directly related to the membrane time constant \(\tau_m \). In neural network modeling, a description of the population activity by a differential equation of the form

\[
\tau_m \frac{dA}{dt} = -A + g[h(t)]
\]

(7.80)

is common practice. The results presented in this chapter suggest that, in some cases, the population activity \(A \) can respond more rapidly than the input potential \(h \). In particular, the response is faster than the time course of the membrane if either (i) noise is slow or (ii) the amplitude of the signal is larger than the noise amplitude.

We have used escape noise models to illustrate the differences between high and low levels of noise. For neurons with high noise, the kernel \(\mathcal{L} \) describes a low-pass filter and the activity follows during a transient the input potential \(h \), i.e.,

\[
A(t) = g[h(t)].
\]

(7.81)
The transient is therefore slow. On the other hand, if the noise level is low so that the interval distribution has a narrow peak, then the activity follows the derivative h' and the transient is fast.

If neurons with either `low' noise or `slow' noise are in a state of asynchronous firing, the population activity responds immediately to an abrupt change in the input without integration delay. The reason is that there are always some neurons close to threshold. This property suggests that a population of neurons may transmit information fast and reliably. Fast information processing is a characteristic feature of biological nervous systems as shown by reaction time experiments.

The theoretical results on signal transmission properties of neuronal populations can be related to single-neuron experiments. Instead of observing a population of identical and independent neurons in a single trial, the spiking activity of a single neuron is measured in repeated trials. The experimental PSTH response to an input current pulse exhibits qualitatively the same type of noise-dependence as predicted by the population theory. Furthermore, reverse correlation experiments can be related to the linear signal transmission function $\hat{G}(\omega)$ that can be calculated from population theories.

Literature

8. Oscillations and Synchrony

Oscillations are a prevalent phenomenon in biological neural networks and manifest themselves experimentally in electroencephalograms (EEG), recordings of local field potentials (LFP), and multi-unit recordings. Oscillations of the spike activity are particularly interesting from a functional point of view. Synchronization of different populations of neurons has, for example, been proposed as a potential solution to the binding problem (Eckhorn et al., 1988; Singer, 1994; Gray et al., 1989; Wang et al., 1990; König and Schillen, 1991; Eckhorn and Brosch, 1993). Oscillations play an important role in the coding of sensory information. In the olfactory system an ongoing oscillation of the population activity provides a temporal frame of reference for neurons coding information about the odorant (Laurent, 1996; Desmaison et al., 1999). Similarly, place cells in the hippocampus exhibit phase-dependent firing activity relative to a background oscillation (O'Keefe, 1993). Finally, rhythmic spike patterns in the inferior olive may be involved in various timing tasks and motor coordination (Welsh et al., 1995; Llinás, 1991; Kistler et al., 2000).

In this chapter we do not discuss all the interesting computational applications, but restrict ourselves to the analysis of mechanisms underlying oscillatory activity and synchronization. We start in Section 8.1 with a stability analysis of the state of asynchronous firing encountered in Chapter 6.4. In recurrent networks of spiking neurons we find that a state of asynchronous activity is unstable in the absence of noise. As a consequence, neurons tend to form clusters of cells that fire synchronously. In Section 8.2 we investigate network modes where neurons fire "in lockstep" and derive a stability criterion for synchronized activity. Finally, in Section 8.3 we explore the possibility that sparse recurrent networks exhibit an oscillatory population activity while generating irregular spike trains. Sparse networks producing irregular spike trains form a promising starting point for an understanding of the neuronal activity observed in various parts of the brain.

Subsections

- 8.1 Instability of the Asynchronous State
- 8.2 Synchronized Oscillations and Locking
 - 8.2.1 Locking in Noise-Free Populations
8. Oscillations and Synchrony

- 8.2.2 Locking in SRM$_0$ Neurons with Noisy Reset (*)
- 8.2.3 Cluster States

- 8.3 Oscillations in reverberating loops
 - 8.3.1 From oscillations with spiking neurons to binary neurons
 - 8.3.2 Mean field dynamics
 - 8.3.3 Microscopic dynamics

- 8.4 Summary
 - Literature

Next: 8.1 Instability of the Up: II. Population Models Previous: 7.5 Summary

Gerstner and Kistler
Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
8.1 Instability of the Asynchronous State

In Section 6.4 and throughout Chapter 7, we have assumed that the network is in a state of asynchronous firing. In this section, we study whether asynchronous firing can indeed be a stable state of a fully connected population of spiking neurons - or whether the connectivity drives the network towards oscillations. For the sake of simplicity, we restrict the analysis to SRM0 neurons; the same methods can, however, be applied to integrate-and-fire neurons or general SRM neurons.

For SRM0 neurons, the membrane potential is given by

\[u_i(t) = \tau(t - \hat{t}_i) + h(t) \]

(8.1)

where \(\tau(t - \hat{t}_i) \) is the effect of the last firing of neuron \(i \) (i.e., the spike itself and its afterpotential) and \(h(t) \) is the total postsynaptic potential caused by presynaptic firing. If all presynaptic spikes are generated within the homogeneous population under consideration, we have

\[h(t) = \sum_j w_{ij} \sum_f \epsilon_Q(t - t_j^{(f)}) = J_0 \int_0^\infty \epsilon_Q(s) A(t - s) \, ds . \]

(8.2)

Here \(\epsilon_Q(t - t_j^{(f)}) \) is the time course of the postsynaptic potential generated by a spike of neuron \(j \) at time \(t_j^{(f)} \) and \(w_{ij} = J_0/N \) is the strength of lateral coupling within the population. The second equality sign follows from the definition of the population
activity, i.e., \(A(t) = N^{-1} \sum_j \sum_f \delta (t - t_j) \); cf. Chapter 6.1. For the sake of simplicity, we have assumed in Eq. (8.2) that there is no external input.

The state of asynchronous firing corresponds to a fixed point \(A(t) = A_0 \) of the population activity. We have already seen in Chapter 6.4 how the fixed point \(A_0 \) can be determined either numerically or graphically. To analyze its stability we assume that for \(t > 0 \) the activity is subject to a small perturbation,

\[
A(t) = A_0 + A_1 e^{i \omega t + \lambda t}
\]

(8.3)

with \(A_1 \ll A_0 \). The perturbation in the activity induces a perturbation in the input potential,

\[
h(t) = h_0 + h_1 e^{i \omega t + \lambda t},
\]

(8.4)

with \(h_0 = J_0 \hat{\epsilon}(0) A_0 \) and \(h_1 = J_0 \hat{\epsilon}(\omega - i \lambda) A_1 \), where

\[
\hat{\epsilon}(\omega - i \lambda) = |\hat{\epsilon}(\omega - i \lambda)| e^{-i \psi(\omega - i \lambda)} = \int_0^\infty \epsilon_\alpha(s) e^{-i(\omega - i \lambda)s} \, ds
\]

(8.5)

is the Fourier transform of \(\epsilon_\alpha \) and \(\psi(\cdot) \) denotes the phase shift between \(h \) and \(A \).

The perturbation of the potential causes some neurons to fire earlier (when the change in \(h \) is positive) others to fire later (whenever the change is negative). The perturbation may therefore build up (\(\lambda > 0 \), the asynchronous state is unstable) or decay back to zero (\(\lambda < 0 \), the asynchronous state is stable). At the transition between the region of stability and instability the amplitude of the perturbation remains constant (\(\lambda = 0 \), marginal stability of the asynchronous state). These transition points, defined by \(\lambda = 0 \), are determined now.

We start from the population integral equation \(A(t) = \int_{-\infty}^t P_t(t|\hat{\epsilon}) A(\hat{\epsilon}) \, d\hat{\epsilon} \) that has been introduced in Chapter 6.3. Here \(P_t(t|\hat{\epsilon}) \) is the input-dependent interval distribution, i.e., the probability density of emitting a spike at time \(t \) given that the last spike occurred at time \(\hat{\epsilon} \). We have seen in Chapter 7 that the linearized population activity equation can be written in the form
\[\Delta A(t) = \int_{-\infty}^{t} P_0(t - \hat{\tau}) \Delta A(\hat{\tau}) \, d\hat{\tau} + A_0 \frac{d}{dt} \int_{0}^{\infty} L(x) \, \Delta h(t - x) \, dx \, ; \quad (8.6) \]

cf. Eq. (7.3). Here \(P_0(t - \hat{\tau}) \) is the interval distribution during asynchronous firing and \(L \) is the kernel from Table 7.1. We use \(\Delta A(t) = A_1 e^{i \omega t + \lambda t} \) and \(\Delta h(t) = h_1 e^{i \omega t + \lambda t} \) in Eq. (8.6). After cancellation of a common factor \(A_1 \exp(i \omega t) \) the result can be written in the form

\[1 = i \omega \frac{J_0 \, A_0 \, \hat{e}(\omega) \, \hat{L}(\omega)}{1 - \hat{P}(\omega)} = S_f(\omega) \exp[i \, \Phi(\omega)] \, . \quad (8.7) \]

\(\hat{P}(\omega) \) and \(\hat{L}(\omega) \) is the Fourier transform of the interval distribution \(P_0(t - \hat{\tau}) \) and the kernel \(L \), respectively. The second equality sign defines the real-valued functions \(S_f(\omega) \) and \(\Phi(\omega) \). Equation (8.7) is thus equivalent to

\[S_f(\omega) = 1 \quad \text{and} \quad \Phi(\omega) \mod 2\pi = 0 \, . \quad (8.8) \]

Solutions of Eq. (8.8) yield bifurcation points where the asynchronous firing state looses its stability towards an oscillation with frequency \(\omega \).

We have written Eq. (8.8) as a combination of two requirements, i.e., an *amplitude* condition \(S_f(\omega) = 1 \) and a *phase* condition \(\Phi(\omega) \mod 2\pi = 0 \). Let us discuss the general structure of the two conditions. First, if \(S_f(\omega) \leq 1 \) for all frequencies \(\omega \), an oscillatory perturbation cannot build up. All oscillations decay and the state of asynchronous firing is stable. We conclude from Eq. (8.7) that by increasing the absolute value \(|J_0|\) of the coupling constant, it is always possible to increase \(S_f(\omega) \). The amplitude condition can thus be met if the excitatory or inhibitory feedback from other neurons in the population is sufficiently strong. Second, for a bifurcation to occur we need in addition that the phase condition is met. Loosely speaking, the phase condition implies that the feedback from other neurons in the network must arrive just in time to keep the oscillation going. Thus the axonal signal transmission time and the rise time of the postsynaptic potential play a critical role during oscillatory activity ([Mattia and Del Giudice, 2001; Treves, 1993; Abbott and van Vreeswijk, 1993; Brunel, 2000; Neltner et al., 2000; Gerstner, 1995; Vreeswijk, 2000; Gerstner, 2000b; Brunel and Hakim, 1999; Ernst et al., 1995; Gerstner and...])
van Hemmen, 1993; Tsodyks et al., 1993).

8.1.0.1 Example: Phase diagram of instabilities

Let us apply the above results to SRM$_0$ neurons with noise in the reset. We assume that neurons are in a state of asynchronous firing with activity A_0. As we have seen in Chapter 5, the interval distribution for noisy reset is a Gaussian centered at $T_0 = 1/A_0$. The filter function \mathcal{L} is a δ-function, $\mathcal{L}(x) = \delta(x)/\eta'$; cf. Table 7.1. Hence Eq. (8.7) is of the form

$$1 = \frac{i\omega}{\eta'} \frac{J_0 A_0 \hat{\varepsilon}(\omega)}{1 - \hat{G}_\sigma(\omega) e^{-i\omega T_0}} = S_f(\omega) \exp[i \Phi(\omega)],$$

(8.9)

where $\hat{G}_\sigma(\omega) = \exp\{-\sigma^2 \omega^2/2\}$ is the Fourier transform of a Gaussian with width σ.

In order to analyze Eq. (8.9) numerically we have to specify the response kernel. For the sake of simplicity we choose a delayed alpha function,

$$\varepsilon_0(s) = \frac{s - \Delta^{\text{ax}}}{\tau^2} \exp\left(-\frac{s - \Delta^{\text{ax}}}{\tau}\right) \mathcal{H}(s - \Delta^{\text{ax}}).$$

(8.10)

The Fourier transform of ε as defined in Eq. (8.5) has an amplitude $|\hat{\varepsilon}(\omega)| = (1 + \omega^2 \tau^2)^{-1}$ and a phase $\psi(\omega) = \omega \Delta^{\text{ax}} + 2 \arctan(\omega \tau)$. Note that a change in the delay Δ^{ax} affects only the phase of the Fourier transform and not the amplitude.

Figure 8.1 shows S_f as a function of ωT_0. Since $S_f = 1$ is a necessary condition for a bifurcation, it is apparent that bifurcations can occur only for frequencies $\omega \approx \omega_n = n 2 \pi/T_0$ with integer n where $T_0 = 1/A_0$ is the typical inter-spike interval. We also see that higher harmonics are only relevant for low levels of noise. For $\sigma \rightarrow 0$ the absolute value of the denominator of (8.9) is $2|\sin(\omega T_0/2)|$ and bifurcations can occur for all higher harmonics. At a high noise level, however, the asynchronous state is stable even with respect to perturbations at $\omega \approx \omega_1$.

Figure 8.1: Amplitude condition for instabilities in the asynchronous state. The amplitude S_f is plotted as a function of the normalized frequency ωT_0 for two different values of the noise: $\sigma = 1$ms (solid line) and $\sigma = 0.1$ms (dashed line). Instabilities of the asynchronous firing state are possible at frequencies where $S_f > 1$. For low noise S_f crosses unity (dotted horizontal line) at frequencies $\omega \approx \omega_n = n 2 \pi / T_0$.

For $\sigma = 1$ms there is a single instability region for $\omega T_0 \approx 1$. For the plot we have set $T_0 = 2 \tau$.

A bifurcation at $\omega \approx \omega_1$ implies that the period of the perturbation is identical to the firing period of individual neurons. Higher harmonics correspond to instabilities of the asynchronous state towards cluster states (Kistler and van Hemmen, 1999; Ernst et al., 1995; Gerstner and van Hemmen, 1993; Golomb et al., 1992; Golomb and Rinzel, 1994): each neuron fires with a mean period of T_0, but the population of neurons splits up in several groups that fire alternatingly so that the overall activity oscillates several times faster; cf. Section 8.2.3.

Figure 8.1 illustrates the amplitude condition for the solution of Eq. (8.9). The numerical solutions of the full equation (8.9) for different values of the delay Δ^{ax} and different levels of the noise σ are shown in the bifurcation diagram of Fig. 8.2. The insets show simulations that illustrate the behavior of the network at certain combinations of transmission delay and noise level.

Let us consider for example a network with transmission delay $\Delta^{ax} = 2$ ms, corresponding to a x-value of $\Delta^{ax}/T_0 = 0.25$ in Fig. 8.2. The phase diagram predicts that, at a noise level of $\sigma = 0.5$ ms, the network is in a state of asynchronous firing. The simulation shown in the inset in the upper right-hand corner confirms that the activity fluctuates around a constant value of $A_0 = 1/T_0 = 0.125$ kHz.

If the noise level of the network is significantly reduced, the system crosses the
short-dashed line. This line is the boundary at which the constant activity state becomes unstable with respect to an oscillation with \(\omega \approx 3 \left(\frac{2\pi}{T_0} \right) \). Accordingly, a network simulation with a noise level of \(\sigma = 0.1 \) exhibits an oscillation of the population activity with period \(T_{osc} \approx T_0/3 \approx 2.6 \text{ ms} \).

Keeping the noise level constant but reducing the transmission delay corresponds to a horizontal move across the phase diagram in Fig. 8.2. At some point, the system crosses the solid line that marks the transition to an instability with frequency \(\omega_1 = \frac{2\pi}{T_0} \). Again, this is confirmed by a simulation shown in the inset in the upper left corner. If we now decrease the noise level, the oscillation becomes even more pronounced (bottom right).

Figure 8.2: Stability diagram (center) for the state of asynchronous firing in a SRM_0 network as a function of noise \(\sigma \) (y-axis) and delay \(\Delta^{ax} \) (x-axis). Parameters are \(J_0 = 1 \) and \(\tau = 4 \text{ ms} \). The threshold \(\hat{\theta} \) was adjusted so that the mean inter-spike interval is \(T_0 = 2\tau \). The diagram shows the borders of the stability region with respect to \(\omega_1 , \ldots, \omega_4 \). For high values of the noise, the
asynchronous firing state is always stable. If the noise is reduced, the asynchronous state becomes unstable with respect to an oscillation either with frequency ω_1 (solid border lines), or ω_2 (long-dashed border lines), ω_3 (short-dashed border lines), or ω_4 (long-short dashed border lines). Four insets show typical patterns of the activity as a function of time taken from a simulation with $N = 1000$ neurons. Parameters are $\sigma = 0.5$ ms and $\Delta^{ax} = 0.2$ ms (top left); $\sigma = 0.5$ ms and $\Delta^{ax} = 2.0$ ms (top right); $\sigma = 0.1$ ms and $\Delta^{ax} = 0.2$ ms (bottom left); $\sigma = 0.1$ ms and $\Delta^{ax} = 2.0$ ms (bottom right). Taken from (Gerstner, 2000b).

In the limit of low noise, the asynchronous network state is unstable for virtually all values of the delay. The region of the phase diagram in Fig. 8.2 around $\Delta^{ax}/T_0 \approx 0.1$ which looks stable hides instabilities with respect to the higher harmonics ω_5 and ω_5 which are not shown. We emphasize that the specific location of the stability borders depends on the form of the postsynaptic response function ε. The qualitative features of the phase diagram in Fig. 8.2 are generic and hold for all kinds of response kernels.

The numerical results apply to the response kernel $\varepsilon_\varnothing(s)$ defined in (8.10) which corresponds to a synaptic current $\varnothing(s)$ with zero rise time; cf. (4.2) and (4.34). What happens if \varnothing is a double exponential with rise time τ_{rise} and decay time τ_{syn}? In this case, the right-hand side of (8.9) has an additional factor $[1 + i \omega \tau_{\text{rise}}^{-1}]^{-1}$ which leads to two changes. First, due to the reduced amplitude of the feedback, instabilities with frequencies $\omega > \tau_{\text{rise}}^{-1}$ are suppressed. The tongues for the higher harmonics are therefore smaller. Second, the phase of the feedback changes. Thus all tongues of frequency ω_n are moved horizontally along the x-axis by an amount $\Delta/T_0 = - \arctan(\omega_n \tau_{\text{rise}})/(n \pi)$.

What happens if the excitatory interaction is replaced by inhibitory coupling? A change in the sign of the interaction corresponds to a phase shift of π. For each harmonic, the region along the delay axis where the asynchronous state is unstable for excitatory coupling (cf. Fig. 8.2) becomes stable for inhibition and vice versa. In
other words, we simply have to shift the instability tongues for each frequency \(\omega_n \) horizontally by an amount \(\Delta / T_0 = 1/(2n) \). Apart from that the pattern remains the same.

8.1.0.2 Example: Oscillations in random networks

![Figure 8.3: Oscillations with irregular spike trains. The activity \(A(t) \) (bottom left) of a population of 5000 integrate-and-fire neurons exhibits oscillations which are not evident in the spike trains of 50 individual neurons (top left), but which are confirmed by a significant oscillatory component in the autocorrelation function (bottom right). The spike trains have a broad distribution of interspike intervals (top right); taken from Brunel and Hakim (1999).](image)

Our discussion of random-connectivity networks in Chapter 6.4.3 has been focused on the stationary state of asynchronous firing. The stability analysis of the asynchronous state in such randomly connected networks is completely analogous to the approach sketched in Eqs. (8.3) - (8.6) except that the linearization is performed on the level of the density equations (Brunel, 2000; Brunel and Hakim, 1999). Close to the asynchronous state, the activity can be written as \(A(t) = A_0 + A_1(t) \) and the membrane potential distribution as \(p(u, t) = p_0(u) + p_1(u, t) \). Here \(p_0(u) \) is the stationary distribution of membrane potential in the state of asynchronous firing [cf. Eqs. (6.27) and (6.28)] and \(p_1(u, t) \) is a small time-dependent perturbation. The stability analysis requires a linearization of the Fokker-Planck equation (6.21) with respect to \(p_1 \) and \(A_1 \).

For short transmission delays, the asynchronous state \(A(t) \equiv A_0 \) can lose its stability towards an oscillation with a frequency that is much faster than the single-neuron firing rate. Brunel (2000) distinguishes two different variants of such fast oscillations. First, as in the previous example there are cluster states where the
neuronal population splits into a few subgroups. Each neuron fires nearly regularly and within a cluster neurons are almost fully synchronized; cf. Section 8.2.3. Second, there are synchronous irregular states where the global activity oscillates while individual neurons have a broad distribution of interspike intervals; cf. Fig. 8.3. We will come back to synchronous irregular states in Section 8.3.
8.2 Synchronized Oscillations and Locking

We have seen in the previous section that the state of asynchronous firing can lose stability towards certain oscillatory modes that are solutions of the linearized population equations. We are now going to investigate oscillatory modes in more detail and check whether a large-amplitude oscillation where all neurons are firing in "lockstep" can be a stable solution of the population equations.

8.2.1 Locking in Noise-Free Populations

We consider a homogeneous population of SRM$_0$ or integrate-and-fire neurons which is nearly perfectly synchronized and fires almost regularly with period T. In order to analyze the existence and stability of a fully locked synchronous oscillation we approximate the population activity by a sequence of square pulses k, $k \in \{0, \pm 1, \pm 2, \ldots \}$, centered around $t = kT$. Each pulse k has a certain half-width δ_k and amplitude $(2\delta_k)^{-1}$ - since all neurons are supposed to fire once in each pulse. In order to check whether the fully synchronized state is a stable solution of the population equation (6.75), we assume that the population has already fired a couple of narrow pulses for $t < 0$ with widths $\delta_k \ll T$, $k \leq 0$, and calculate the amplitude and width of subsequent pulses. If we find that the amplitude of subsequent pulses increases while their width decreases (i.e., $\lim_{k \to -\infty} \delta_k = 0$), then we conclude that the fully locked state is stable.

To make the above outline more explicit, we use

$$A(t) = \sum_{k=-\infty}^{\infty} \frac{1}{2\delta_k} \mathcal{H}[t - (kT + \delta_k)] \mathcal{H}[(kT + \delta_k) - t]$$

(8.11) as a parameterization of the population activity; cf. Fig. 8.4. Here, $\mathcal{H}(\cdot)$ denotes the Heaviside step function with $\mathcal{H}(s) = 1$ for $s > 0$ and $\mathcal{H}(s) = 0$ for $s \leq 0$. For stability, we need to show that the amplitude $A(0), A(T),$
A(2T) of the rectangular pulses increases while the width \(\delta_k \) of subsequent pulses decreases.

![Figure 8.4: Sequence of rectangular activity pulses. If the fully synchronized state is stable, the width \(\delta \) of the pulses decreases while the amplitude increases.

As we will see below, the condition for stable locking of all neurons in the population can be stated as a condition on the slope of the input potential \(h \) at the moment of firing. More precisely, if the last population pulse occurred at about \(t = 0 \) with amplitude \(A(0) \) the amplitude of the population pulse at \(t = T \) increases, if \(h'(T) > 0 \):

\[
h'(T) > 0 \iff A(T) > A(0).\tag{8.12}
\]

If the amplitude of subsequent pulses increases, their width decreases. In other words, we have the following **Locking Theorem**. In a spatially homogeneous network of SRM\(_0\) or integrate-and-fire neurons, a necessary and, in the limit of a large number of presynaptic neurons \((N \to \infty) \), also sufficient condition for a coherent oscillation to be asymptotically stable is that firing occurs when the postsynaptic potential arising from all previous spikes is increasing in time (Gerstner et al., 1996b).

The Locking Theorem is applicable for large populations that are already close to the fully synchronized state. A related but **global** locking argument has been presented by (Mirollo and Strogatz, 1990). The locking argument can be generalized to heterogeneous networks (Chow, 1998; Gerstner et al., 1993a) and to electrical coupling (Chow and Kopell, 2000). Synchronization in small networks has been discussed in, e.g., (Bose et al., 2000; Hansel et al., 1995; Chow, 1998; Ernst et al., 1995; van Vreeswijk, 1996; van Vreeswijk et al., 1994). For weak coupling, synchronization and locking can be systematically analyzed in the framework of phase models (Ermentrout and Kopell, 1984; Kopell, 1986; Kuramoto, 1975) or canonical neuron models (Izhikevich, 1999; Hansel et al., 1995; Ermentrout, 1996; Ermentrout et al., 2001; Hoppensteadt and Izhikevich, 1997).

Before we derive the locking condition for spiking neuron models, we illustrate the main idea by two examples.

8.2.1.1 Example: Perfect synchrony in noiseless \(\text{SRM}_0 \) neurons

In this example we will show that locking in a population of spiking neurons can be understood by simple geometrical arguments; there is no need to use the abstract mathematical framework of the population equations. It will turn out that the results are - of course - consistent with those derived from the population equation.

We study a homogeneous network of \(N \) identical neurons which are mutually coupled with strength \(w_{ij} = J_0/N \) where \(J_0 > 0 \) is a positive constant. In other words, the (excitatory) interaction is scaled with one over \(N \) so that the total input to a neuron \(i \) is of order one even if the number of neurons is large \((N \to \infty) \). Since we are interested in synchrony we suppose that all neurons have fired simultaneously at \(\hat{t} = 0 \). When will the neurons fire again?

Since all neurons are identical we expect that the next firing time will also be synchronous. Let us calculate the period \(T \) between one synchronous pulse and the next. We start from the firing condition of SRM\(_0\) neurons

\[
\mathcal{D} = u_i(t) = \tau_j(t - \hat{t}) + \sum_j w_{ij} \sum_f \varepsilon(t - t_j(f)),
\]

where \(\varepsilon(t) \) is the postsynaptic potential. The axonal transmission delay \(\Delta^{ax} \) is included in the definition of \(\varepsilon \).
i.e., $\varepsilon(t) = 0$ for $t < \Delta^{ax}$. Since all neurons have fired synchronously at $t = 0$, we set $\dot{t} = t_j^{(0)} = 0$. The result is a condition of the form

$$\vartheta - \eta(t) = J_0 \varepsilon(t),$$

(8.14)

since $w_{ij} = J_0/N$ for $j = 1, \ldots, N$. Note that we have neglected the postsynaptic potentials that may have been caused by earlier spikes $t_j^{(i)} < 0$ back in the past. The graphical solution of Eq. (8.14) is presented in Fig. 8.5. The first crossing point of the $\vartheta - \eta(t)$ and $J_0 \varepsilon(t)$ defines the time T of the next synchronous pulse.

Figure 8.5: A. Perfect Synchrony. All neurons have fired at $\dot{t} = 0$. The next spike occurs when the summed postsynaptic potential $J_0 \varepsilon(t)$ reaches the dynamic threshold $\vartheta - \eta(t)$. B. Stability of perfect synchrony. The last neuron is out of tune. The firing time difference at $t = 0$ is δ_0. One period later the firing time difference is reduced ($\delta_1 < \delta_0$), since the threshold is reached at a point where $J_0 \varepsilon(t)$ is rising. Adapted from Gerstner et al. (1996b).

What happens if synchrony at $t = 0$ was not perfect? Let us assume that one of the neurons is slightly late compared to the others; Fig. 8.5B. It will receive the input $J_0 \varepsilon(t)$ from the others, thus the right-hand side of (8.14) is the same. The left-hand side, however, is different since the last firing was at δ_0 instead of zero. The next firing time is at $t = T + \delta_1$ where δ_1 is found from

$$\vartheta - \eta(T + \delta_1 - \delta_0) = J_0 \varepsilon(T + \delta_1).$$

(8.15)

Linearization with respect to δ_0 and δ_1 yields:

$$\delta_1 < \delta_0 \iff \varepsilon'(T) > 0.$$

(8.16)

Thus the neuron which has been late is ‘pulled back’ into the synchronized pulse of the others, if the postsynaptic potential ε is rising at the moment of firing at T. Equation (8.16) is a special case of the Locking Theorem.

We see from Fig. 8.5B that, in the case of excitatory coupling, stable locking works nicely if the transmission
delay Δ^{ax} is in the range of the firing period, but slightly shorter so that firing occurs during the rise time of the EPSP.

8.2.1.2 Example: SRM$_0$ neurons with inhibitory coupling

Locking can also occur in networks with purely inhibitory couplings (van Vreeswijk et al., 1994). In order to get a response at all in such a system, we need a constant stimulus I_0 or, equivalently, a negative firing threshold $\theta < 0$. The stability criterion, however, is equivalent to that of the previous example.

Figure 8.6 summarizes the stability arguments analogously to Fig. 8.5. In Fig. 8.6A all neurons have fired synchronously at $t = 0$ and do so again at $t = T$ when the inhibitory postsynaptic potential has decayed so that the threshold condition,

$$\theta - \eta(T) = J_0 \sum_k \varepsilon(t - kT),$$

(8.17)

is fulfilled. This state is stable if the synaptic contribution to the potential, $\sum_k \varepsilon(t - kT)$, has positive slope at $t = T$. Figure 8.6 demonstrates that a single neuron firing at $t = \delta_0$ instead of $t = 0$ is triggered again at $t = T + \delta_1$ with $|\delta_1| < |\delta_0|$ for simple geometrical reasons.

8.2.1.3 Derivation of the locking theorem (*)

We consider a homogeneous populations of SRM neurons that are close to a periodic state of synchronized activity. We assume that the population activity in the past consists of a sequence of rectangular pulses as specified in Eq. (8.11). We determine the period T and the sequence of half-widths δ_k of the rectangular pulses

--

Figure 8.6: Similar plot as in Fig. 8.5 but for purely inhibitory coupling. A. All neurons have fired synchronously at $\hat{t} = 0$. The next spike occurs when the summed inhibitory postsynaptic potential $J_0 \varepsilon(t)$ has decayed back to the dynamic threshold $\theta - \eta(t)$. B. Stability of perfect synchrony. The last neuron is out of tune. The firing time difference at $t = 0$ is δ_0. One period later the firing time difference is reduced ($\delta_1 < \delta_0$), since the threshold is reached at a point where $J_0 \varepsilon(t)$ is rising.

*This content is from the website diwww.epfl.ch/~gerstner/SPNM/node60.html (4 of 10) [25.9.2002 7:37:22]
in a self-consistent manner. In order to prove stability, we need to show that the amplitude \(A(kT) \) increases while the halfwidth \(\delta_k \) decreases as a function of \(k \). To do so we start from the noise-free population equation (7.13) that we recall here for convenience

\[
A(t) = \left[1 + \frac{\partial_t h + \delta_t h}{\eta' - \partial_t h} \right] A(t - T_b(t)) \quad (8.18)
\]

where \(\partial_t h \) and \(\delta_t h \) are the partial derivatives of the total postsynaptic potential \(h_{\text{PSP}} \) and \(T_b(t) \) is the backward interval; cf. Fig. 7.1.

As a first step, we calculate the potential \(h_{\text{PSP}}(t) \). Given \(h_{\text{PSP}} \) we can find the period \(T \) from the threshold condition and also the derivatives \(\partial_t h \) and \(\delta_t h \) required for Eq. (7.13). In order to obtain \(h_{\text{PSP}} \), we substitute Eq. (8.11) in (6.8), assume \(T \), and integrate. To first order in \(T \) we obtain

\[
h_{\text{PSP}}(t^\prime) = J_0 \int_0^{\delta_k} \varepsilon(t - t^\prime, t + kT) + \mathcal{O}[(\delta_k)^2], \quad (8.19)
\]

where \(-\delta_0 \leq t^\prime \leq \delta_0 \) is the last firing time of the neuron under consideration. The sum runs over all pulses back in the past. Since \(\varepsilon(t - t^\prime, s) \) as a function of \(s \) is rapidly decaying for \(s \gg T \), it is usually sufficient to keep only a finite number of terms, e.g., \(k_{\text{max}} = 1 \) or 2.

In the second step we determine the period \(T \). To do so, we consider a neuron in the center of the square pulse which has fired its last spike at \(t = 0 \). Since we consider noiseless neurons the relative order of firing of the neurons cannot change. Consistency of the ansatz (8.11) thus requires that the next spike of this neuron must occur at \(t = T \), viz. in the center of the next square pulse. We use \(t^\prime = 0 \) in the threshold condition for spike firing which yields

\[
T = \min \left\{ t \mid \varepsilon(t) + J_0 \sum_{k=0}^{k_{\text{max}}} \varepsilon(t + kT) = \vartheta \right\}. \quad (8.20)
\]

If a synchronized solution exists, (8.20) defines its period.

In the population equation (8.18) we need the derivative of \(h_{\text{PSP}} \).

\[
\partial_t h + \delta_t h = J_0 \sum_{k=0}^{k_{\text{max}}} \frac{d}{ds} \varepsilon(x, s) \bigg|_{x=T, s=kT}. \quad (8.21)
\]

According to Eq. (8.18), the new value of the activity at time \(t = T \) is the old value multiplied by the factor in the square brackets. A necessary condition for an increase of the activity from one cycle to the next is that the derivative defined by the right-hand-side of (8.21) is positive - which is the essence of the Locking Theorem.

We now apply Eq. (8.21) to a population of \(\text{SRM}_0 \) neurons. For \(\text{SRM}_0 \) neurons we have \(\varepsilon(x, s) = \varepsilon_0(s) \), hence
\[\partial_t h = 0 \quad \text{and} \quad h_{\text{PSP}}(t) \dot{\xi} = h(t) = J_0 \sum_{k} \epsilon_0(t + k T). \]

For a standard \(\theta \) kernel (e.g. an exponentially decaying function), we have \(\theta'(T) > 0 \) whatever \(T \) and thus

\[
\sum_{k=1}^{k_{\text{max}} + 1} \epsilon_0'(k T) > 0 \quad \iff \quad A(T) > A(0). \tag{8.22}
\]

which is identical to Eq. (8.12). For integrate-and-fire neurons we could go through an analogous argument to show that Eq. (8.12) holds. The amplitude of the synchronous pulse thus grows only if \(h'(T) > 0 \).

Figure 8.7: A sequence of activity pulses (top) contracts to \(\delta \)-pulses, if firing occurs during the rising phase of the input potential \(h \) (dashed line, bottom). Numerical integration of the population equation (6.75) for SRM0-neurons with inhibitory interaction \(J = -0.1 \) and kernel (8.10) with delay \(\Delta_{\text{ax}} = 2\text{ms} \). There is no noise (\(\sigma = 0 \)). The activity was initialized with a square pulse \(A(t) = 1\text{kHz} \) for \(-1\text{ms} < t < 0\) and integrated with a step size of 0.05ms.

The growth of amplitude corresponds to a compression of the width of the pulse. It can be shown that the `corner neurons' which have fired at time \(\pm \delta_0 \) fire their next spike at \(T \pm \delta_1 \) where \(\delta_1 = \delta_0 A(0)/A(T) \). Thus the square pulse remains normalized as it should be. By iteration of the argument for \(t = k T \) with \(k = 2, 3, 4,... \) we see that the sequence \(\delta_n \) converges to zero and the square pulses approach a Dirac \(\delta \)-pulse under the condition that \(h'(T) = \sum_k \epsilon_0'(k T) > 0 \). In other words, the \(T \)-periodic synchronized solution with \(T \) given by Eq. (8.20) is stable, if the input potential \(h \) at the moment of firing is rising (Gerstner et al., 1996b).

In order for the sequence of square pulses to be an exact solution of the population equation, we must require that the factor in the square brackets of Eq. (8.18) remains constant over the width of a pulse. The derivatives of Eq. (8.19), however, do depend on \(t \). As a consequence, the form of the pulse changes over time as is visible in Fig. 8.7. The activity as a function of time was obtained by a numerical integration of the population equation with a square pulse as initial condition for a network of SRM0 neurons coupled via (8.10) with weak inhibitory coupling \(J = -0.1 \) and delay \(\Delta_{\text{ax}} = 2\text{ms} \). For this set of parameters \(h' > 0 \) and locking is possible.
8.2.2 Locking in SRM$_0$ Neurons with Noisy Reset (*)

The framework of the population equation allows us also to extend the locking argument to noisy SRM$_0$ neurons. At each cycle, the pulse of synchronous activity is compressed due to locking if $h'(T) > 0$. At the same time it is smeared out because of noise. To illustrate this idea we consider SRM$_0$ neurons with Gaussian noise in the reset.

In the case of noisy reset, the interval distribution can be written as $P_I(t|\hat{t}) = \int_{-\infty}^{\infty} dr \delta[t - \hat{t} - T(\hat{t}, r)] G(r)$; cf. Eq. (5.68). We insert the interval distribution into the population equation $A(t) = \int_{-\infty}^{t} P_I(t|\hat{t}) A(\hat{t}) d\hat{t}$ and find

$$A(t) = \int_{-\infty}^{t} d\hat{t} \int_{-\infty}^{\infty} dr \delta[t - \hat{t} - T(\hat{t}, r)] G(r) A(\hat{t}).$$

The interspike interval of a neuron with reset parameter r is $T(\hat{t}, r) = r + T_0(\hat{t} + r)$ where $T_0(t')$ is the forward interval of a noiseless neuron that has fired its last spike at t'. The integration over \hat{t} in Eq. (8.23) can be done and yields

$$A(t) = \left[1 + \frac{h'}{\eta'}\right] \int_{-\infty}^{\infty} dr G(r) A[t - T_0(t) - r],$$

where T_0 is the backward interval. The factor $[1 + (h'/\eta')]$ arises due to the integration over the δ function just as in the noiseless case; cf. Eqs. (7.13) and (7.15). The integral over r leads to a broadening, the factor $[1 + (h'/\eta')]$ to a compression of the pulse.

We now search for periodic solutions. As shown below, a limit cycle solution of Eq. (8.24) consisting of a sequence of Gaussian pulses exists if the noise amplitude σ is small and $(h'/\eta') > 0$. The width d of the activity pulses in the limit cycle is proportional to the noise level σ. A simulation of locking in the presence of noise is shown in Fig. 8.8. The network of SRM$_0$ neurons has inhibitory connections ($J_0 = -1$) and is coupled via the response kernel (8.10) with a transmission delay of $\Delta_{\text{acc}} = 2$ ms. Doubling the noise level σ leads to activity pulses with twice the width.

![Figure 8.8](http://diwww.epfl.ch/~gerstner/SPNM/node60.html)
inhibitory coupling ($J = -1$, $\Delta^{ax} = 2\text{ms}$) and noisy reset. A. Low noise level ($\sigma = 0.25$). B. For a high noise level ($\sigma = 0.5$), the periodic pulses become broader.

8.2.2.1 Pulse width in the presence of noise (*)

In order to calculate the width of the activity pulses in a locked state, we look for periodic pulse-type solutions of Eq. (8.24). We assume that the pulses are Gaussians with width d and repeat with period T, viz., $A(t) = \sum_k \mathcal{G}_d(t - kT)$. The pulse width d will be determined self-consistently from Eq. (8.24). The integral over r in Eq. (8.24) can be performed and yields a Gaussian with width $\tilde{\sigma} = [d^2 + \sigma^2]^{1/2}$. Equation (8.24) becomes

$$
\sum_k \mathcal{G}_d(t - kT) = \left[1 + \frac{h'(t)}{\eta'(T)}\right] \sum_k \mathcal{G}_d t - T_b(t) - kT,
$$

(8.25)

where $T_b(t) = \tau \ln \frac{\eta_d}{h(t) - \tilde{\sigma}}$ is the inter-spike interval looking backwards in time.

Let us work out the self-consistency condition and focus on the pulse around $t \approx 0$. It corresponds to the $k = 0$ term on the left-hand side which must equal the $k = -1$ term on the right-hand side of Eq. (8.25). We assume that the pulse width is small $d \ll T$ and expand $T_b(t)$ to linear order around $T_b(0) = T$. This yields

$$
t - T_b(t) = t \left[1 + \frac{h'(0)}{\eta'(T)}\right] - T.
$$

(8.26)

The expansion is valid if $h'(t)$ varies slowly over the width d of the pulse. We use Eq. (8.26) in the argument of the Gaussian on the right-hand side of Eq. (8.25). Since we have assumed that h' varies slowly, the factor $h'(t)$ in Eq. (8.25) may be replaced by $h'(0)$. In the following we suppress the arguments and write simply h' and η'. The result is

$$
\mathcal{G}_d(t) = \left[1 + \frac{h'}{\eta'}\right] \mathcal{G}_d t \left[1 + \frac{h'}{\eta'}\right],
$$

(8.27)

The Gaussian on the left-hand side of (8.27) must have the same width as the Gaussian on the right-hand side. The condition is $d = \tilde{\sigma} / [1 + h' \eta']$ with $\tilde{\sigma} = [d^2 + \sigma^2]^{1/2}$. A simple algebraic transformation yields an explicit expression for the pulse width,

$$
d = \sigma \left[2 (h' \eta') + (h' \eta')^2\right]^{-1/2},
$$

(8.28)

where d is the width of the pulse and σ is the strength of the noise.

8.2.3 Cluster States

We have seen that, on the one hand, the state of asynchronous firing is typically unstable for low levels of noise. On the other hand, the fully locked state may be unstable as well if transmission delay and length of the
refractory period do not allow spikes to be triggered during the rising phase of the input potential. The natural question is thus: What does the network activity look like if both the asynchronous and the fully locked state are unstable?

Figure 8.9: Stability of cluster states. A. In an excitatory network with vanishing transmission delay the fully locked solution may be unstable. In this schematic drawing the next set of spikes at $t = T$ is triggered while the synaptic contribution to the potential is decaying. B. However, a cluster state where neurons split up into two groups that fire alternatingly, can be stable. Here, the first group of neurons that have fired at $t = 0$ is triggered again at $t = T$ by the second group of neurons that fire with a phase shift of $T/2$ relative to the first group. This state is stable because spikes are triggered during the rising phase of the input potential.

Figure 8.9A shows an example of an excitatory network with vanishing transmission delay and a rather long refractory period as compared to the rising phase of the postsynaptic potential. As a consequence, the threshold condition is met when the postsynaptic potential has already passed its maximum. The fully locked state is thus unstable. This, however, does not mean that the network will switch into the asynchronous mode. Instead, the neurons may split into several subgroups ("cluster") that fire alternatingly. Neurons within each group stay synchronized. An example of such a cluster state with two subgroups is illustrated in Fig. 8.9B. Action potentials produced by neurons from group 1 trigger group 2 neurons and vice versa. The population activity thus oscillates with twice the frequency of an individual neuron.

In general, there is an infinite number of different cluster states that can be indexed by the number of subgroups. The length T of the inter-spike interval for a single neuron and the number of subgroups n in a cluster state are related by the threshold condition for spike triggering (Kistler and van Hemmen, 1999; Chow, 1998),

$$
\vartheta - \eta(T) = \frac{J_0}{n} \sum_{k=0}^{\infty} \varepsilon(k T/n) .
$$

Stability is clarified by the Locking Theorem: A cluster state with n subgroups is stable if spikes are triggered during the rising flank of the input potential, i.e., if

$$
\frac{d}{dt} \left. \frac{J_0}{n} \sum_{k=0}^{\infty} \varepsilon(t + k T/n) \right|_{t=0} > 0 .
$$

In Section 8.1 we have seen that the state of asynchronous firing in a SRM network is always unstable in the absence of noise. We now see that even if the fully locked state is unstable the network is not firing asynchronously but usually gets stuck in one of many possible cluster states. Asynchronous firing can only be reached asymptotically by increasing the number of subgroups so as to "distribute" the spike activity more evenly in time. Individual neurons, however, will always fire in a periodical manner. Nevertheless, increasing the number of subgroups will also reduce the amplitude of the oscillations in the input potential and the firing time of the neurons becomes more and more sensitive to noise. The above statement that asynchrony can only be reached

8.2 Synchronized Oscillations and Locking
Asymptotically is therefore only valid in strictly noiseless networks.

A final remark on the stability of the clusters is in order. Depending on the form of the postsynaptic potential, the stability of the locked state may be asymmetric in the sense that neurons that fire too late are pulled back into their cluster, neurons that have fired too early, however, are attracted by the cluster that has just fired before. If the noise level is not too low, there are always some neurons that drop out of their cluster and drift slowly towards an adjacent cluster (Ernst et al., 1995; van Vreeswijk, 1996).

8.2.3.1 Example: Cluster states and harmonics

To illustrate the relation between the instability of the state of asynchronous firing and cluster states, we return to the network of SRM_0 neurons with noisy reset that we have studied in Section 8.1. For low noise (σ = 0.04), the asynchronous firing state is unstable whatever the axonal transmission delay; cf. Fig. 8.2. With an axonal delay of 2 ms, asynchronous firing is unstable with respect to an oscillation with ω_3. The population splits into 3 different groups of neurons that fire with a period of about 8 ms. The population activity, however, oscillates with a period of 2.7 ms; cf. Fig. 8.10A. With a delay of 1.2 ms, the asynchronous firing state has an instability with respect to ω_5 so that the population activity oscillates with a period of about 1.6 ms. The population splits into 5 different groups of neurons that fire with a period of about 8 ms; cf. Fig. 8.10B.

Figure 8.10: Cluster states for SRM_0 neurons with stochastic reset. Population activity (top) and spike trains of 20 neurons (bottom). A. For an axonal delay of Δ_α = 2 ms, the population splits into three clusters. B. Same as in A, but with an axonal delay of Δ_α = 1.2 ms. The population splits into five clusters, because the asynchronous firing is unstable with respect to an oscillation with frequency ω_5; cf. Fig. 8.2. Very low noise (σ = 0.04 ms); all parameters as in Fig. 8.2.
8.3 Oscillations in reverberating loops

In many areas of the brain synaptic projections form so-called *reverberating loops*. Neurons from one cortical area innervate an anatomically distinct nucleus that in turn projects back to the cortex in a topographically organized fashion. A prominent example is the olivo-cerebellar system. The inferior olive (IO) is a nucleus in the brain stem that is part of a reverberating loop formed by the cerebellar cortex and the deep cerebellar nuclei. A single round-trip from the IO to the cerebellar cortex, the deep cerebellar nuclei, and back to the olive takes about 100 ms - a rather long delay that is the result of slow synaptic processes, in particular of post-inhibitory rebound firing; cf. Chapter 2.3.3. It is known that IO neurons tend to fire synchronously at about 10 Hz which is due to sub-threshold oscillations of the membrane potential (Bell and Kawasaki, 1972; Sotelo et al., 1974; Llinás and Yarom, 1986; De Zeeuw et al., 1998) and an exceptionally high density of gap junctions. The delayed feedback can thus give rise to oscillations of the population activity in the olive. Analogously organized projections together with 10 Hz oscillations (the so-called theta rhythm) can also be observed in other areas of the brain including the olfactory system, hippocampus, and cortico-thalamic loops.

In the previous sections of this chapter we have dealt with networks that exhibit regular oscillations of the neuronal activity. On the other hand, experiments show that though oscillations are a common phenomenon, spike trains of individual neurons are often highly irregular. Here we investigate the question whether these observations can be reconciled: Is it possible to have a periodic large-amplitude oscillation of the population activity and at the same time irregular spike trains? The answer is positive, provided that individual neurons fire with an average frequency that is significantly lower than the frequency of the population activity. Similarly to the cluster states discussed above, each neuron fires on average only in, say, one out of ten cycles of the population activity - the composition of the clusters of synchronously firing neurons, however, changes from cycle to cycle resulting in a broad distribution of inter-spike intervals; cf. Section 8.1. This is exactly what has been observed in the inferior olive. Individual neurons have a low firing rate of one spike per second; the population activity, however, oscillates at about 10 Hz; cf. Fig. 8.11.

![Figure 8.11: Synchronous oscillation with irregular spike trains.](http://diwww.epfl.ch/~gerstner/SPNM/node61.html)
Neurons tend to fire synchronously but with an average rate that is significantly lower than the oscillation frequency of the population activity (bottom). Each neuron is thus firing only in one out of, say, ten cycles, giving rise to highly irregular spike trains. Short vertical lines indicate the spikes of a set of 6 neurons (schematic figure).

We are particularly interested in the effect of feedback projections on the generated spike patterns. In keeping with experimental findings we assume that the feedback projections are sparse, i.e., that spikes from a given neuron in one cycle affect only a small portion of the whole population during the next cycle. Hence, we drop the assumption of an all-to-all connectivity and use randomly connected networks instead. It turns out that irregular spike trains can indeed be generated by the “frozen noise” of the network connectivity; cf. Chapter 6.4.3. Since the connectivity is random but fixed the spike patterns of noiseless neurons are fully deterministic though they look irregular. Strong oscillations with irregular spike trains have interesting implications for short-term memory and timing tasks (Billock, 1997; Kistler and De Zeeuw, 2002; Nützel et al., 1994).

This chapter is dedicated to an investigation of the dynamical properties of neuronal networks that are part of a reverberating loop. We assume that the feedback is in resonance with a T-periodic oscillation of the population activity and that the neurons stay synchronized, i.e., fire only during narrow time windows every T milliseconds. We furthermore assume that the set of neurons that is active in each cycle depends only on the synaptic input that is due to the reverberating loop and thus depends only on the activity of the previous cycle. With these assumptions it is natural to employ a time-discrete description based on McCulloch-Pitts neurons. Each time step corresponds to one cycle of length T. The wiring of the reverberating loop is represented by a random coupling matrix. The statistical properties of the coupling matrix reflect the level of divergence and convergence within the reverberating network.

8.3.1 From oscillations with spiking neurons to binary neurons

We have seen that - depending on the noise level - a network can reach a state where all neurons are firing in lockstep. Such a large-amplitude oscillation implies that neurons do only fire only during short time windows around \(t \approx nT \). Whether or not a neuron fires within the ‘allowed’ time window depends on the input it receives from other neurons in the population.

The membrane potential for SRM_0 neurons is given by

\[
u_i(t) = \eta(t - \hat{t_i}) + \sum_j w_{ij} \sum_f \epsilon(t - t_j^{(f)} - \Delta),
\]

where \(\eta(t - \hat{t_i}) \) is the refractory effect of the last output spike of neuron \(i \) and \(\epsilon(t - t_j^{(f)} - \Delta) \) is the postsynaptic potential caused by the firing of other neurons \(j \) with transmission delay \(\Delta \). A spike is triggered as soon as the threshold is reached. Here we assume that the network is in an oscillatory state so that spikes are fired only if \(t \approx nT \). Due to refactoriness each neuron can fire at most one spike per cycle. Furthermore, we assume that the transmission delay \(\Delta \) (and hence the period \(T \)) is long as compared to the characteristic time scales of \(\epsilon \) and \(\eta \).

Therefore, \(\epsilon(s) \) and \(\eta(s) \) are negligible for \(s \geq T \). Finally, we adjust the voltage scale so that \(\epsilon(T - \Delta) = 1 \).

With these assumptions, the dynamics of the spiking neuron model (8.31) reduces to a binary model in discrete time (McCulloch and Pitts, 1943). Let us set \(t_n = nT \) and introduce binary variables \(S_i \in \{0, 1\} \) for each neuron indicating whether neuron \(i \) is firing a spike at \(t_i^{(f)} \approx t_n \) or not. Equation (8.31) can thus be rewritten as
\[u_i(t_{n+1}) = \sum_j w_{ij} S_j(t_n) . \] (8.32)

The threshold condition \(u_i(t_{n+1}) = \varphi \) determines the state of the neuron in the next time step,
\[S_i(t_{n+1}) = \Theta [u_i(t_{n+1}) - \varphi] , \] (8.33)

where \(\Theta \) is the Heaviside step function with \(\Theta (x) = 1 \) if \(x \geq 0 \) and \(\Theta (x) = 0 \) for \(x < 0 \). The simple recursion defined by Eqs. (8.32) and (8.33) fully determines the sequence of spike patterns that is generated by the network given its coupling matrix \(w_{ij} \) and the initial firing pattern \(S_i(0) \).

8.3.2 Mean field dynamics

The reduction of the spiking neuron model to discrete time and binary neurons allows us to study oscillations with irregular spike trains in a transparent manner. In a first step we derive mean field equations and discuss their macroscopic behavior. In a second step we look more closely into the microscopic dynamics. It will turn out that subtle changes in the density of excitatory and inhibitory projections can have dramatic effects on the microscopic dynamics that do not show up in a mean field description. Binary discrete-time models with irregular spike trains have been studied in various contexts by (Kirkpatrick and Sherrington, 1978), Derrida et al. (1987), Crisanti and Sompolinsky (1988), Nützel (1991), Kree and Zippelius (1991), van Vreeswijk and Sompolinsky (1996) to mention only a few. As we have seen above, strong oscillations of the population activity provide a neuronal clocking mechanism and hence a justification of time-discretization.

8.3.2.1 Purely excitatory projections

We consider a population of \(N \) McCulloch-Pitts neurons (McCulloch and Pitts, 1943) that is described by a state vector \(\vec{S} \in \{0, 1\}^N \). In each time step \(t_n \) any given neuron \(i \) is either active \([S_i(t_n) = 1] \) or inactive \([S_i(t_n) = 0] \).

Due to the reverberating loop, neurons receive (excitatory) synaptic input \(h \) that depends on the wiring of the loop - described by a coupling matrix \(w_{ij} \) - and on the activity during the previous cycle, i.e.,
\[u_i(t_n) = \sum_{j=1}^{N} w_{ij} S_j(t_{n-1}) . \] (8.34)

Since the wiring of the reverberating loop at the neuronal level is unknown we adopt a random coupling matrix with binary entries. More precisely, we take all entries \(w_{ij} \) to be identically and independently distributed (i.i.d.) with
\[\text{prob} \{w_{ij} = 1\} = \lambda / N . \]

We thus neglect possible differences in the synaptic coupling strength and content ourself with a description that accounts only for the presence or absence of a projection. In that sense, \(\lambda \) is the convergence and divergence ratio of the network, i.e., the averaged number of synapses that each neuron receives from and connects to other neurons, respectively.

The neurons are modeled as deterministic threshold elements. The dynamics is given by
\[S_i(t_n) = \Theta \left[u_i(t_n) - \varphi \right] , \] (8.35)
with ϑ being the firing threshold and Θ the Heaviside step function with $\Theta(x) = 1$ if $x \geq 1$ and $\Theta(x) = 0$ for $x < 0$.

Starting with a random initial firing pattern,

$$S_i(t_0) \in \{0, 1\} \text{ i.i.d. with prob}\{S_i(t_0) = 1\} = a_0,$$

we can easily calculate the expectation value of the activity $a_1 = N^{-1} \sum_{i=1}^{N} S_i(t_1)$ in the next time step.

According to Eq. (8.36) a neuron is active if it receives input from at least ϑ neurons that have been active during the last cycle. The initial firing pattern $\mathcal{S}(t_0)$ and the coupling matrix w_{ij} are independent, so that the synaptic input h in Eq. (8.34) follows a binomial distribution. The probability a_1 of any given neuron to be active in the next cycle is thus

$$a_1 = \sum_{k=0}^{N} \binom{N}{k} (a_0 N^{-1})^k (1 - a_0 N^{-1})^{N-k}.$$

(8.36)

This equation gives the network activity a_1 as a function of the activity a_0 in the previous cycle. It is tempting to generalize this expression so as to relate the activity a_n in cycle n recursively to the activity in cycle $n - 1$,

$$a_{n+1} = 1 - \sum_{k=0}^{\vartheta-1} \binom{N}{k} (a_n N^{-1})^k (1 - a_n N^{-1})^{N-k}.$$

(8.37)

Unfortunately, this is in general not possible because the activity pattern \mathcal{S} in cycle $n \geq 1$ and the coupling matrix w_{ij} are no longer independent and correlations in the firing patterns may occur. For sparse networks with $\lambda \ll N$, however, these correlations can be neglected and Eq. (8.39) can be used as an approximation [see Kree and Zippelius (1991) for a precise definition of " $\lambda \ll N$"]. Fortunately, the case with $\lambda \ll N$ is the more interesting one, because otherwise, a_1 is a steep sigmoidal function of a_0 and the network activity either saturates ($a_1 \approx 1$) or dies out ($a_1 \approx 0$) after only one iteration. Furthermore, $\lambda \ll N$ may be a realistic assumption for certain biological reverberating loops such as the olivo-cerebellar system. In the following we thus assume that $\lambda \ll N$ so that the network activity is given by Eq. (8.39), or - if we approximate the binomial distribution by the corresponding Poisson distribution - by the recursion

$$a_{n+1} = 1 - e^{-a_n \lambda}.$$

(8.38)

The dynamics of the population activity is completely characterized by the mean field equation (8.40). For instance, it can easily be shown that $a_n = 0$ is a stable fixed point except if $\vartheta = 1$ and $\lambda > 1$. Furthermore, a_n is a monotonously growing function of a_{n-1}. Therefore, no macroscopic oscillations can be expected. In summary, three different constellations can be discerned; cf. Fig. 8.12. First, for $\vartheta = 1$ and $\lambda > 1$ there is a stable fixed...
point at high levels of a_n; the fixed point at $a_n = 0$ is unstable. Second, if the firing threshold ϑ is large as compared to the convergence λ only $a_n = 0$ is stable. Finally, if $\vartheta > 1$ and λ sufficiently large, bistability of $a_n = 0$ and $a_n > 0$ can be observed.

Figure 8.12: Dynamics of a reverberating loop with purely excitatory projections. The upper row shows the mean field approximation of the population activity a_{n+1} as a function of the activity in the previous cycle a_n; cf. Eq. (8.40). The raster diagrams in the lower row give examples of the underlying microscopic dynamics in a simulation of $N = 100$ neurons. A horizontal bar indicates that the neuron is active. A. $\lambda = 2$, $\vartheta = 1$: Stable fixed point at $a \approx 0.8$. B. $\lambda = 3$, $\vartheta = 2$: Only $a_n = 0$ is stable. Note the long transient until the fixed point is reached. C. $\lambda = 8$, $\vartheta = 4$: Bistability of $a_n = 0$ and $a_n \approx 0.95$.

8.3.2.2 Balanced excitation and inhibition

In a network with purely excitatory interactions the non-trivial fixed point corresponds to a microscopic state where some neurons are active and others inactive. Since the active neurons fire at practically every cycle of the oscillation, we do not find the desired broad distribution of interspike intervals; cf. Fig. 8.12A. As we have already seen in Chapter 6.4.3, a random network with balanced excitation and inhibition is a good candidate for generating broad interval distributions. Reverberating projections are, in fact, not necessarily excitatory. Instead, they are often paralleled by an inhibitory pathway that may either involve another brain region or just inhibitory interneurons. Our previous model can easily be extended so as to account both for excitatory and inhibitory projections. The wiring of the excitatory loop is characterized, as before, by a random matrix $w_{ij}^{\text{exc}} \in \{0, 1\}$ with

$$\text{prob}\{w_{ij}^{\text{exc}} = 1\} = \lambda_{\text{exc}}^i / N \quad \text{i.i.d.}$$

Similarly, the wiring of the inhibitory loop is given by a random matrix $w_{ij}^{\text{inh}} \in \{0, 1\}$ with

$$\text{prob}\{w_{ij}^{\text{inh}} = 1\} = \lambda_{\text{inh}}^i / N \quad \text{i.i.d.}$$
The parameters λ_{exc} and λ_{inh} describe the divergence or convergence of excitatory and inhibitory projections, respectively.

Let us assume that a neuron is activated if the difference between excitatory and inhibitory input exceeds its firing threshold ϑ. The dynamics is thus given by

$$S_i(t_n) = \Theta\left[\sum_{j=1}^{N} w_{ij}^{\text{exc}} S_j(t_{n-1}) - \sum_{j=1}^{N} w_{ij}^{\text{inh}} S_j(t_{n-1}) - \vartheta\right].$$

(8.39)

As in the previous section we can calculate the mean-field activity in cycle $n+1$ as a function of the activity in the previous cycle. We obtain

$$a_{n+1} = \sum_{k=0}^{N} \sum_{l=0}^{k-\vartheta} \frac{a_n^k \lambda_{\text{exc}}}{k!l!} \lambda_{\text{inh}} e^{-a_n} (\lambda_{\text{exc}} + \lambda_{\text{inh}}).$$

(8.40)

The mean-field approximation is valid for sparse networks, i.e., if $\lambda_{\text{exc}} \ll N$ and $\lambda_{\text{inh}} \ll N$.

As compared to the situation with purely excitatory feedback Eq. (8.44) does not produce new modes of behavior. The only difference is that a_{n+1} is no longer a monotonous function of a_n; cf. Fig. 8.13.

Figure 8.13: Dynamics of a reverberating loop with excitatory and inhibitory projections (similar plots as in Fig. 8.12). A, $\lambda_{\text{exc}} = 6$, $\lambda_{\text{inh}} = 4$, $\vartheta = 1$: Stable fixed point at $a_n \approx 0.6$. B, $\lambda_{\text{exc}} = 4$, $\lambda_{\text{inh}} = 10$, $\vartheta = 1$: Stable fixed point at $a_n \approx 0.15$. C, $\lambda_{\text{exc}} = 10$, $\lambda_{\text{inh}} = 4$, $\vartheta = 3$: Bistability between $a_n = 0$ and $a_n \approx 0.73$.

Note the high level of irregularity in the raster diagrams. Although the mean field dynamics is characterized by a simple fixed point the corresponding limit cycle of the microscopic dynamics can have an extremely long period.
8.3.3 Microscopic dynamics

As it is already apparent from the examples shown in Figs. 8.12 and 8.13 the irregularity of the spike trains produced by different reverberating loops can be quite different. Numerical experiments show that in the case of purely excitatory projections fixed points of the mean field dynamics almost always correspond to a fixed point of the microscopic dynamics, or at least to a limit cycle with short period. As soon as inhibitory projections are introduced this situation changes dramatically. Fixed points in the mean field dynamics still correspond to limit cycles in the microscopic dynamics; the length of the periods, however, is substantially larger and grows rapidly with the network size; cf. Fig. 8.14 (Nützel, 1991; Kirkpatrick and Sherrington, 1978). The long limit cycles induce irregular spike trains which are reminiscent of those found in the asynchronous firing state of randomly connected integrate-and-fire network; cf. Chapter 6.4.3.

Figure 8.14: Attractor length as a function of the inhibitory projection density λ_{inh} and the network size $N = 10, 20, 50, 100$. A, length of the attractor averaged over 100 realizations of the coupling matrices and the initial pattern. The density of excitatory projections is kept constant at $\lambda_{\text{exc}} = 3$; the firing threshold is $\Theta = 1$. The dynamics is given by Eq. (8.43). B, maximal length of the attractor of 100 randomly chosen realizations of coupling matrices and initial patterns. Comparison of A and B shows that there is a large variability in the actual attractor length.

With respect to potential applications it is particularly interesting to see how information about the initial firing pattern is preserved in the sequence of patterns generated by the reverberating network. Figure 8.15A shows numerical results for the amount of information that is left after n iterations. At $t = 0$ firing is triggered in a subset of neurons. After n iterations, the patterns of active neurons may be completely different. The measure I_n/I_0 is the normalized transinformation between the initial pattern and the pattern after n iterations. $I_n/I_0 = 1$ means that the initial pattern can be completely reconstructed from the activity pattern at iteration n; $I_n/I_0 = 0$ means that all the information is lost.

Once the state of the network has reached a limit cycle it will stay there forever due to the purely deterministic dynamics given by Eq. (8.36), or (8.43). In reality, however, the presence of noise leads to mixing in the phase space so that the information about the initial state will finally be lost. There are several sources of noise in a biological network - the most prominent are uncorrelated "noisy" synaptic input from other neurons and synaptic noise caused by synaptic transmission failures.

Figure 8.15B shows the amount of information about the initial pattern that is left after n iterations in the presence of synaptic noise in a small network with $N = 16$ neurons. As expected, unreliable synapses lead to a faster decay of the initial information. A failure probability of 5 percent already leads to a significantly reduced capacity. Nevertheless, a failure rate of 5 percent leaves after 5 iterations more than 10 percent of the information about the initial pattern; cf. Fig. 8.15B. This means that 10 neurons are enough to discern two different events half a second - given a 10 Hz oscillation - after they actually occurred. Note that this is a form of "dynamic short-term memory" that does not require any form of synaptic plasticity. Information about the past is implicitly stored in the neuronal activity pattern. Superordinated neurons can use this information to react with
a certain temporal relation to external events (Billock, 1997; Kistler and De Zeeuw, 2002; Kistler et al., 2000).

Figure 8.15: A. Preservation of information about the initial firing pattern in a reverberating loop with \(N = 16 \).

The transinformation \(I(\vec{S}_0, \vec{S}_n) \) between the initial pattern and the pattern after \(n \) iterations is normalized by the maximum \(I(\vec{S}_0, \vec{S}_0) \). Error bars give the standard deviation of 10 different realizations of the coupling matrices (\(\lambda_{\text{exc}} = 5, \lambda_{\text{inh}} = 5, \vartheta = 1; \) cf. Eq. (8.43)). B. Similar plots as in A but with synaptic noise. The solid line is the noise-free reference (\(N = 16, p_{\text{fail}} = 0 \)), the dashed lines correspond to \(p_{\text{fail}} = 0.001, p_{\text{fail}} = 0.01, \) and \(p_{\text{fail}} = 0.05 \) (from top to bottom).

8.3.3.1 Quantifying the information content (*)

Information theory (Cover and Thomas, 1991; Shannon, 1948; Ash, 1990) provides us with valuable tools to quantify the amount of `uncertainty' contained in a random variable and the amount of `information' that can be gained by measuring such a variable. Consider a random variable \(X \) that takes values \(x_i \) with probability \(p(x_i) \).

The entropy \(H(X) \),

\[
H(X) = - \sum_i p(x_i) \log_2 p(x_i) ,
\]

(8.41)

is a measure for the `uncertainty' of the outcome of the corresponding random experiment. If \(X \) takes only a single value \(x_1 \) with \(p(x_1) = 1 \) then the `uncertainty' \(H(X) \) is zero since \(\log_2 1 = 0 \). On the other hand, if \(X \) takes two different values \(x_1 \) and \(x_2 \) with equal probability \(p(x_1, 2) = 0.5 \) (e.g. tossing a coin) then the entropy \(H(X) \) yields unity (`one bit').

If we have two random variables \(X \) and \(Y \) with joint probability \(p(x_i, y_j) \) then we can define the conditioned entropy \(H(Y|X) \) that gives the (remaining) uncertainty for \(Y \) given \(X \),

\[
H(Y|X) = - \sum_i \sum_j p(x_i, y_j) \log_2 \frac{p(x_i, y_j)}{p(x_i)} .
\]

(8.42)

For example, if \(Y \) gives the number of eyes obtained by throwing a dice while \(X \) is 0 if this number is odd and 1 if it is even, then the conditioned entropy yields \(H(Y|X) \approx 1.58 \) which is just 1 (bit) less than the full uncertainty of the dice experiment, \(H(Y) \approx 2.58 \). The difference between the full uncertainty and the conditioned uncertainty is the amount of information that we have `gained' through the observation of one of the variables. It is thus natural to define the transinformation \(I(X, Y) \) between the random variables \(X \) and \(Y \) as

\[
I(X, Y) = H(X) - H(X|Y) .
\]

(8.43)
Note that $I(X, Y)$ is symmetric, i.e., $I(X, Y) = I(Y, X)$.

In order to produce Fig. 8.15 we have generated random initial patterns \vec{S}_0 together with the result of the iteration, \vec{S}_n, and incremented the corresponding counters in a large $(2^{16} \times 2^{16})$ table so as to estimate the joint probability distribution of \vec{S}_0 and \vec{S}_n. Application of Eq. (8.45)-Eq. (8.46) yields Fig. 8.15.
8.4 Summary

A linear stability analysis based on the population equations reveals that the asynchronous state in a homogeneous network of spiking neurons is unstable for low levels of noise. The asynchronous state is particularly vulnerable to oscillatory perturbations at the averaged firing frequency of the neurons or at harmonics thereof, which is a consequence of the tendency of the neurons to synchronize spontaneously. The axonal transmission delay plays an important role for the build-up of oscillations. However, asynchronous firing can be stabilized by a suitable choice of time constants and transmission delay if the noise level is sufficiently high.

The stability of perfectly synchronized oscillation is clarified by the locking theorem: A synchronous oscillation is stable if the spikes are triggered during the rising phase of the input potential which is the summed contribution of all presynaptic neurons. Stable synchronous oscillations can occur for a wide range of parameters and both for excitatory and inhibitory couplings.

Especially for short transmission delays in an excitatory network with pronounced refractory behavior, the fully synchronized state where all neurons are firing in `lock-step' is unstable. This, however, does not mean that the network switches into the asynchronous state, which may be unstable as well. Instead, the population of neurons splits up in several subgroups (`cluster') of neurons that fire alternatingly in a regular manner. Neurons within the same cluster stay synchronized over long times.

A replacement of the all-to-all connectivity by sparse random couplings can result in a network that generates highly irregular spike trains even without any additional source of noise. Neurons do not fire at every oscillation cycle, but if spike firing occurs it does so in phase with the global oscillation. The irregularity in the spike trains is due to the `frozen noise' of the connectivity and therefore purely deterministic. Restarting the population with the same initial condition thus leads to the very same sequence of spike patterns. Information on the initial condition is preserved in the spike patterns over several cycles even in the presence of synaptic transmission failures which suggests interesting applications for short-term memory and timing tasks.
Literature

Synchronization phenomena in pulse-coupled units have previously been studied in a non-neuronal context, such as the synchronous flashing of tropical fireflies (Buck and Buck, 1976), which triggered a whole series of theoretical papers on synchronization of pulse-coupled oscillators. The most important one is probably the famous work of Mirollo and Strogatz (1990). Oscillations in the visual system and the role of synchrony for feature binding has been reviewed by Singer (1994) and Singer and Gray (1995). Oscillations in sensory systems have been reviewed by Ritz and Sejnowski (1997) and, specifically in the context of the olfactory system, by Laurent (1996), and the hippocampus by O'Keefe (1993).
9. Spatially Structured Networks

So far the discussion of network behavior in Chapters 6 - 8 was restricted to homogeneous populations of neurons. In this chapter we turn to networks that have a spatial structure. In doing so we emphasize two characteristic features of the cerebral cortex, namely the high density of neurons and its virtually two-dimensional architecture.

Each cubic millimeter of cortical tissue contains about 10^5 neurons. This impressive number suggests that a description of neuronal dynamics in terms of an averaged population activity is more appropriate than a description on the single-neuron level. Furthermore, the cerebral cortex is huge. More precisely, the unfolded cerebral cortex of humans covers a surface of 2200-2400 cm2, but its thickness amounts on average to only 2.5-3.0 mm2. If we do not look too closely, the cerebral cortex can hence be treated as a continuous two-dimensional sheet of neurons. Neurons will no longer be labeled by discrete indices but by continuous variables that give their spatial position on the sheet. The coupling of two neurons i and j is replaced by the average coupling strength between neurons at position x and those at position y, or, even more radically simplified, by the average coupling strength of two neurons being separated by the distance $|x - y|$. Similarly to the notion of an average coupling strength we will also introduce the average activity of neurons located at position x and describe the dynamics of the network in terms of these averaged quantities only. The details of how these average quantities are defined, are fairly involved and often disputable. In Sect. 9.1 we will - without a formal justification - introduce field equations for the spatial activity $A(x, t)$ in a spatially extended, but otherwise homogeneous population of neurons. These field equations are particularly interesting because they have solutions in the form of complex stationary patterns of activity, traveling waves, and rotating spirals - a phenomenology that is closely related to pattern formation in certain nonlinear systems that are collectively termed excitable media. Some examples of these solutions are discussed in Sect. 9.1. In Sect. 9.2 we generalize the formalism so as to account for several distinct neuronal populations, such as those formed by excitatory and inhibitory neurons. The rest of this chapter is dedicated to models that describe neuronal activity in terms of individual action potentials. The propagation of spikes through a locally connected network of SRM neurons is considered in Section 9.3. The last section, finally, deals with the transmission of a sharp pulse packet of action potentials in a layered feed-forward structure. It turns out that there is a stable wave form of the packet so that temporal information can be faithfully transmitted.
through several brain areas despite the presence of noise.

Subsections

- **9.1 Stationary patterns of neuronal activity**
 - 9.1.1 Homogeneous solutions
 - 9.1.2 Stability of homogeneous states
 - 9.1.3 `Blobs' of activity: inhomogeneous states

- **9.2 Dynamic patterns of neuronal activity**
 - 9.2.1 Oscillations
 - 9.2.2 Traveling waves

- **9.3 Patterns of spike activity**
 - 9.3.1 Traveling fronts and waves (*)
 - 9.3.2 Stability (*)

- **9.4 Robust transmission of temporal information**

- **9.5 Summary**
 - Literature

Next: 9.1 Stationary patterns of
Up: II. Population Models
Previous: 8.4 Summary

Gerstner and Kistler

Spiking Neuron Models. Single Neurons, Populations, Plasticity

Cambridge University Press, 2002
9.1 Stationary patterns of neuronal activity

We start with a generic example of pattern formation in a neural network with 'Mexican-hat' shaped lateral coupling, i.e., local excitation and long-range inhibition. In order to keep the notation as simple as possible, we will use the field equation derived in Chapter 6; cf. Eq. (6.129). As we have seen in Fig. 6.8, this equation neglects rapid transients and oscillations that could be captured by the full integral equations. On the other hand, in the limit of high noise and short refractoriness the approximation of population dynamics by differential equations is good; cf. Chapter 7. Exact solutions in the low-noise limit will be discussed in Section 9.3.

Consider a single sheet of densely packed neurons. We assume that all neurons are alike and that the connectivity is homogeneous and isotropic, i.e., that the coupling strength of two neurons is a function of their distance only. We loosely define a quantity $u(x, t)$ as the average membrane potential of the group of neurons located at position x at time t. We have seen in Chapter 6 that in the stationary state the 'activity' of a population of neurons is strictly given by the single-neuron gain function $A_0(x) = g(u_0(x))$; cf. Fig. 9.1. If we assume that changes of the input potential are slow enough so that the population always remains in a state of incoherent firing, then we can set

$$A(x, t) = g[u(x, t)] ,$$

(9.1)

even for time-dependent situations. According to Eq. (9.1), the activity $A(x, t)$ of the population around location x is a function of the potential at that location.

The synaptic input current to a given neuron depends on the level of activity of its presynaptic neurons and on the strength of the synaptic couplings. We assume that the amplitude of the input current is simply the presynaptic activity scaled by the average coupling strength of these neurons. The total input current $I_{\text{syn}}(x, t)$ to a neuron at position x is therefore

$$I_{\text{syn}}(x, t) = \int dy \, w \left(\| x - y \| \right) A(y, t) .$$

(9.2)

Here, w is the average coupling strength of two neurons as a function of their distance. We consider a connectivity pattern, that is excitatory for proximal neurons and predominantly inhibitory for distal neurons.

Figure B shows the typical 'Mexican-hat shape' of the corresponding coupling function. Eq. (9.2) assumes that synaptic interaction is instantaneous. In a more detailed model we could include the axonal transmission delay and synaptic time constants. In that case, $A(y, t)$ on the right-hand side of Eq. (9.2) should be replaced by

$$\int \alpha(s) A(y, t-s) \, ds$$

where $\alpha(s)$ is the temporal interaction kernel.
In order to complete the definition of the model, we need to specify a relation between the input current and the resulting membrane potential. In order to keep things simple we treat each neuron as a leaky integrator. The input potential is thus given by a differential equation of the form
\[\tau \frac{\partial u}{\partial t} = -u + I^{\text{syn}} + I^{\text{ext}}, \]
with \(\tau \) being the time constant of the integrator and \(I^{\text{ext}} \) an additional external input. If we put things together we obtain the field equation
\[\tau \frac{\partial u(x, t)}{\partial t} = -u(x, t) + \int \text{d}y \ w\left(\left| x - y \right| \right) g[u(y, t)] + F^{\text{ext}}(x, t); \]

(cf. Amari (1977b); Feldman and Cowan (1975); Wilson and Cowan (1973); Kishimoto and Amari (1979). This is a nonlinear integro-differential equation for the average membrane potential \(u(x, t) \).

9.1.1 Homogeneous solutions

Although we have kept the above model as simple as possible, the field equation (9.4) is complicated enough to prevent comprehensive analytical treatment. We therefore start our investigation by looking for a special type of solution, i.e., a solution that is uniform over space, but not necessarily constant over time. We call this the homogenous solution and write \(u(x, t) \equiv u(t) \). We expect that a homogenous solution exists if the external input is homogeneous as well, i.e., if \(I^{\text{ext}}(x, t) \equiv I^{\text{ext}}(t) \).

Substitution of the ansatz \(u(x, t) \equiv u(t) \) into Eq. (9.4) yields
\[\tau \frac{\text{d}u(t)}{\text{d}t} = -u(t) + \bar{w} \ g[u(t)] + F^{\text{ext}}(t); \]

with \(\bar{w} = \int \text{d}y \ w\left(\left| y \right| \right) \). This is a nonlinear ordinary differential equation for the average membrane potential \(u(t) \). We note that the equation for the homogeneous solution is identical to that of a single population without spatial structure; cf. Eq. (6.87) in Chapter 6.3.

The fixed points of the above equation with \(F^{\text{ext}} = 0 \) are of particular interest because they correspond to a resting state of the network. More generally, we search for stationary solutions for a given constant external input \(F^{\text{ext}}(x, t) \).
The fixed points of Eq. (9.5) are solutions of

$$g(u) = \frac{u - I^{\text{ext}}}{\bar{w}},$$

which is represented graphically in Fig. 9.2. Depending on the strength of the external input three qualitatively different situations can be observed. For low external stimulation there is a single fixed point at a very low level of neuronal activity. This corresponds to a quiescent state where the activity of the whole network has ceased. Large stimulation results in a fixed point at an almost saturated level of activity which corresponds to a state where all neurons are firing at their maximum rate. Intermediate values of external stimulation, however, may result in a situation with more than one fixed point. Depending on the shape of the output function and the mean synaptic coupling strength \bar{w} three fixed points may appear. Two of them correspond to the quiescent and the highly activated state, respectively, which are separated by the third fixed point at an intermediate level of activity.

![Graphical representation of the fixed-point equation (9.6).](image)

Figure 9.2: Graphical representation of the fixed-point equation (9.6). The solid line corresponds to the neuronal gain function $g(u)$ and the dashed lines to $(u - I^{\text{ext}})/\bar{w}$ for different amounts of external stimulation I^{ext}. Depending on the amount of I^{ext} there is either a stable fixed point at low activity (leftmost black dot), a stable fixed point at high activity (rightmost black dot), or a bistable situation with stable fixed points (black dots on center line) separated by an unstable fixed point at intermediate level of activity (small circle).

Any potential physical relevance of fixed points clearly depends on their stability. Stability under the dynamics defined by the ordinary differential equation Eq. (9.5) is readily checked using standard analysis. Stability requires that at the intersection

$$g'(u) < \bar{w}^{-1}.$$

(9.7)

Thus all fixed points corresponding to quiescent or highly activated states are stable whereas the middle fixed point in case of multiple solutions is unstable; cf. Fig. 9.2. This, however, is only half of the truth because Eq. (9.5) only describes homogeneous solutions. Therefore, it may well be that the solutions are stable with respect to Eq. (9.5), but unstable with respect to inhomogeneous perturbations, i.e., to perturbations that do not have the same amplitude everywhere in the net.
9.1.2 Stability of homogeneous states

In the following we will perform a linear stability analysis of the homogeneous solutions found in the previous section. To this end we study the field equation (9.4) and consider small perturbations about the homogeneous solution. A linearization of the field equation will lead to a linear differential equation for the amplitude of the perturbation. The homogeneous solution is said to be stable if the amplitude of every small perturbation is decreasing whatever its shape.

Suppose \(u(x, t) \equiv u_0 \) is a homogeneous solution of Eq. (9.4), i.e.,

\[
0 = -u_0 + \int dy \, w(\|x - y\|) g[u_0] + F^\text{ext}.
\]

Consider a small perturbation \(\delta u(x, t) \) with initial amplitude \(\| \delta u(0, x) \| \ll 1 \). We substitute \(u(x, t) = u_0 + \delta u(x, t) \) in Eq. (9.4) and linearize with respect to \(\delta u \),

\[
\tau \frac{\partial}{\partial t} \delta u(x, t) = -u_0 - \delta u(x, t)
+ \int dy \, w(\|x - y\|) \left[g(u_0) + g'(u_0) \delta u(y, t) \right] + F^\text{ext}(x, t) + O(\delta u^2).
\]

Here, a prime denotes the derivative with respect to the argument. Zero-order terms cancel each other because of Eq. (9.8). If we collect all terms linear in \(\delta u \) we find

\[
\tau \frac{\partial}{\partial t} \delta u(x, t) = - \delta u(x, t) + g'(u_0) \int dy \, w(\|x - y\|) \delta u(y, t);
\]

(9.9)

We make two important observations. First, Eq. (9.10) is linear in the perturbations \(\delta u \) - simply because we have neglected terms of order \((\delta u)^n \) with \(n \geq 2 \). Second, the coupling between neurons at locations \(x \) and \(y \) is mediated by the coupling kernel \(w(\|x - y\|) \) that depends only on the distance \(|x - y| \). If we apply a Fourier transform over the spatial coordinates, the convolution integral turns into a simple multiplication. It suffices therefore to discuss a single (spatial) Fourier component of \(\delta u(x, t) \). Any specific initial form of \(\delta u(0, x) \) can be created from its Fourier components by virtue of the superposition principle. We can therefore proceed without loss of generality by considering a single Fourier component, viz., \(\delta u(x, t) = c(t) e^{i k x} \). If we substitute this ansatz in Eq. (9.10) we obtain

\[
\tau \cdot c'(t) = -c(t) \left[1 - g'(u_0) \int dy \, w(\|x - y\|) e^{i k (y-x)} \right]
- c(t) \left[1 - g'(u_0) \int dz \, w(\|z\|) e^{i k z} \right],
\]

(9.10)

which is a linear differential equation for the amplitude \(c \) of a perturbation with wave number \(k \). This equation is solved by

\[
c(t) = c(0) e^{-\kappa(k)t},
\]

(9.11)
with

\[\kappa(k) = 1 - g'(u_0) \int dz \, w(|z|) e^{i k z}. \] \hspace{1cm} \text{(9.12)}

Stability of the solution \(u_0\) with respect to a perturbation with wave number \(k\) depends on the sign of the real part of \(\kappa(k)\). Note that - quite intuitively - only two quantities enter this expression, namely the slope of the activation function evaluated at \(u_0\) and the Fourier transform of the coupling function \(w\) evaluated at \(k\). If the real part of the Fourier transform of \(w\) stays below \(1/g'(u_0)\), then \(u_0\) is stable. Note that Eqs. (9.12) and (9.13) are valid for an arbitrary coupling function \(w(|x - y|)\). In the following two examples we illustrate the typical behavior for two specific choices of the lateral coupling.

9.1.2.1 Example: Purely excitatory coupling

We now apply Eq. (9.13) to a network with purely excitatory couplings. For the sake of simplicity we take a one-dimensional sheet of neurons and assume that the coupling function is bell-shaped, i.e.,

\[w(x) = \frac{\bar{w}}{\sqrt{2\pi} \sigma^2} e^{-x^2/(2\sigma^2)}, \] \hspace{1cm} \text{(9.13)}

with the mean strength \(\int dx \, w(x) = \bar{w}\) and characteristic length scale \(\sigma\). The Fourier transform of \(w\) is

\[\int dx \, w(x) e^{i k x} = \bar{w} \, e^{-k^2/2}, \] \hspace{1cm} \text{(9.14)}

with maximum \(\bar{w}\) at \(k = 0\). According to Eq. (9.13) a homogeneous solution \(u_0\) is stable if \(1 - \bar{w} \, g'(u_0) > 0\). This is precisely the result obtained by the simple stability analysis based on the homogeneous field equation; cf. Eq. (9.7). This result indicates that no particularly interesting phenomena will arise in networks with purely excitatory coupling.

9.1.2.2 Example: `Mexican-hat' coupling with zero mean

A more interesting example is provided by a combination of excitatory and inhibitory coupling described by the difference of two bell-shaped functions with different width. For the sake of simplicity we will again consider a one-dimensional sheet of neurons. For the lateral coupling we take

\[w(x) = \frac{\sigma_2 e^{-x^2/(2\sigma_1^2)} - \sigma_1 e^{-x^2/(2\sigma_2^2)}}{\sigma_2 - \sigma_1}, \] \hspace{1cm} \text{(9.15)}

with \(\sigma_1 < \sigma_2\). The normalization of the coupling function has been chosen so that \(w(0) = 1\) and \(\int dx \, w(x) = \bar{w} = 0\); cf Fig. 9.3A.
As a first step we search for a homogeneous solution. If we substitute \(u(x,t) = u(t) \) in Eq. (9.4) we find
\[
\tau \frac{du(t)}{dt} = -u(t) + I_{\text{ext}}. \tag{9.16}
\]

The term containing the integral drops out because of \(\tilde{w} = 0 \). This differential equation has a single stable fixed point at \(u_0 = I_{\text{ext}} \). This situation corresponds to the graphical solution of Fig. 9.2 with the dashed lines replaced by vertical lines (‘infinite slope’).

We still have to check the stability of the homogeneous solution \(u(x,t) = u_0 \) with respect to inhomogeneous perturbations. In the present case, the Fourier transform of \(w \),
\[
\int dx \, w(x) \, e^{i k x} = \frac{\sqrt{2 \pi} \sigma_1 \sigma_2}{\sigma_2 - \sigma_1} \left(e^{-k^2 \sigma_1^2/2} - e^{-k^2 \sigma_2^2/2} \right), \tag{9.17}
\]
vanishes at \(k = 0 \) and has its maxima at
\[
k_m = \pm \sqrt{\frac{2 \ln \left(\frac{\sigma_2^2}{\sigma_1^2} \right)}{\sigma_2^2 - \sigma_1^2}} \tag{9.18}
\]

At the maximum, the amplitude of the Fourier transform has a value of

Figure 9.3: A. Synaptic coupling function with zero mean as in Eq. (9.16) with \(\sigma_1 = 1 \) and \(\sigma_2 = 10 \). B. Fourier transform of the coupling function shown in A; cf. Eq. (9.18). C. Gain function \(g(u) = \{1 + \exp[\beta(x - \theta)]\}^{-1} \) with \(\beta = 5 \) and \(\theta = 1 \). The dashing indicates that part of the graph where the slope exceeds the critical slope \(s^* \). D. Derivative of the gain function shown in C (solid line) and critical slope \(s^* \) (dashed line).
\[\hat{u}_m = \max_k \int dx \, w(x) \, e^{ikx} = \sqrt{2\pi \sigma_1 \sigma_2} \left[\left(\frac{\sigma_1^2}{\sigma_2^2} \right)^{\frac{\sigma_1^2}{\sigma_2^2 - \sigma_1^2}} - \left(\frac{\sigma_1^2}{\sigma_2^2} \right)^{\frac{\sigma_1^2}{\sigma_2^2 - \sigma_1^2}} \right] \] (9.19)

cf. Fig. 9.3B. We use this result in Eqs. (9.12) and (9.13) and conclude that stable homogeneous solutions can only be found for those parts of the graph of the output function \(f(u) \) where the slope \(s = g'(u) \) does not exceed the critical value \(s^* = 1/\hat{u}_m \).

\[s^* = \frac{\sigma_2 - \sigma_1}{\sqrt{2\pi \sigma_1 \sigma_2}} \left[\left(\frac{\sigma_1^2}{\sigma_2^2} \right)^{\frac{\sigma_1^2}{\sigma_2^2 - \sigma_1^2}} - \left(\frac{\sigma_1^2}{\sigma_2^2} \right)^{\frac{\sigma_1^2}{\sigma_2^2 - \sigma_1^2}} \right]^{-1} \] (9.20)

Figure 9.3 shows that depending on the choice of coupling \(w \) and gain functions \(g \) a certain interval for the external input exists without a corresponding stable homogeneous solution. In this parameter domain a phenomenon called pattern formation can be observed: Small fluctuations around the homogeneous state grow exponentially until a characteristic pattern of regions with low and high activity has developed; cf. Fig. 9.4.

A (\(I_{\text{ext}} = 0.4 \))

B (\(I_{\text{ext}} = 0.6 \))

C (\(I_{\text{ext}} = 1.4 \))

D (\(I_{\text{ext}} = 1.5 \))

Figure 9.4: Spontaneous pattern formation in a one-dimensional sheet of neurons with 'mexican-hat' type of interaction and homogeneous external stimulation. The parameters for the coupling function and the output
9.1.3 `Blobs' of activity: inhomogeneous states

From a computational point of view bistable systems are of particular interest because they can be used as `memory units'. For example a homogeneous population of neurons with all-to-all connections can exhibit a bistable behavior where either all neurons are quiescent or all neurons are firing at their maximum rate. By switching between the inactive and the active state, the neuronal population would be able to represent, store, or retrieve one bit of information. The exciting question that arises now is whether a neuronal net with distance-dependent coupling \(w(|x - y|) \) can store more than just a single bit of information, but spatial patterns of activity. Sensory input, e.g., visual stimulation, could switch part of the network to its excited state whereas the unstimulated part would remain in its resting state. Due to bistability this pattern of activity could be preserved even if the stimulation is turned off again and thus provide a neuronal correlate of working memory.

Let us suppose we prepare the network in a state where neurons in one spatial domain are active and all remaining neurons are quiescent. Will the network stay in that configuration? In other words, we are looking for an `interesting' stationary solution \(u(x) \) of the field equation (9.4). The borderline where quiescent and active domains of the network meet is obviously most critical to the function of the network as a memory device. To start with the simplest case with a single borderline, we consider a one-dimensional spatial pattern where the activity changes at \(x = 0 \) from the low-activity to the high-activity state. This pattern could be the result of inhomogeneous stimulation in the past, but since we are interested in a memory state we now assume that the external input is simply constant, i.e., \(I^{\text{ext}}(x, t) = I^{\text{ext}} \). Substitution of the ansatz \(u(x, t) = u(x) \) into the field equation yields

\[
 u(x) = I^{\text{ext}} + \int dy \ w(|x - y|) \ g[u(y)] .
\]

This is a nonlinear integral equation for the unknown function \(u(x) \).

We can find a particular solution of Eq. (9.22) if we replace the output function by a simple step function, e.g.,

\[
 g(u) = \begin{cases}
 0, & u < \vartheta \\
 1, & u \geq \vartheta .
 \end{cases}
\]

(9.22)

In this case \(g[u(x)] \) is either zero or one and we can exploit translation invariance to define \(g[u(x)] = 1 \) for \(x > 0 \) and \(g[u(x)] = 0 \) for \(x < 0 \) without loss of generality. The right-hand side of Eq. (9.22) does now no longer depend on \(u \) and we find

\[
 u(x) = I^{\text{ext}} + \int_{-\infty}^{\infty} dz \ w(|z|) ,
\]

(9.23)

and in particular

\[
 u(0) = I^{\text{ext}} + \frac{1}{2} \ \bar{w} .
\]

(9.24)
with \(\overline{w} = \int dy \, w(|y|) \). We have calculated this solution under the assumption that \(g[u(x)] = 1 \) for \(x > 0 \) and \(g[u(x)] = 0 \) for \(x < 0 \). This assumption imposes a self-consistency condition on the solution, namely that the membrane potential reaches the threshold \(\vartheta \) at \(x = 0 \). A solution in form of a stationary border between quiescent and active neurons can therefore only be found, if

\[
I_{\text{ext}} = \vartheta - \frac{1}{2} \overline{w} .
\]

(9.25)

If the external stimulation is either smaller or greater than this critical value, then the border will propagate to the right or to the left.

Following the same line of reasoning, we can also look for a localized ‘blob’ of activity. Assuming that \(g[u(x)] = 1 \) for \(x \in [x_1, x_2] \) and \(g[u(x)] = 0 \) outside this interval leads to a self-consistency condition of the form

\[
I_{\text{ext}} = \vartheta - \int_0^\Delta dx \, w(x) ,
\]

(9.26)

with \(\Delta = x_2 - x_1 \). The mathematical arguments are qualitatively the same, if we replace the step function by a more realistic smooth gain function.

Figure 9.5 shows that solutions in the form of sharply localized excitations exist for a broad range of external stimulations. A simple argument also shows that the width \(\Delta \) of the blob is stable if \(w(\Delta) < 0 \) (Amari, 1977b). In this case blobs of activity can be induced without the need of fine tuning the parameters in order to fulfill the self-consistency condition, because the width of the blob will adjust itself until stationarity is reached and Eq. (9.27) holds; cf. Fig. 9.5A.

Figure 9.5: Localized ‘blobs’ of activity. A. A small initial perturbation develops into a stable blob of activity. B. Stationary profile of a localized excitation for various amounts of external stimulation (\(I_{\text{ext}} = 0, 0.5, \ldots, 0.3 \) in order of increasing width). Note that for strong stimuli neurons in the center of the activity blob are less active than those close to the edge of the blob.

9.1.3.1 Example: An application to orientation selectivity in V1

Stable localized blobs of activity may not only be related to memory states but also to the processing of sensory information. A nice example is the model of Ben-Yishai et al. (1995) [see also Hansel and Sompolinsky (1998)] that aims at a description of orientation selectivity in the visual cortex.
It is found experimentally that cells from the primary visual cortex (V1) respond preferentially to lines or bars that have a certain orientation within the visual field. There are neurons that ‘prefer’ vertical bars, others respond maximally to bars with a different orientation (Hubel, 1995). Up to now it is still a matter of debate where this orientation selectivity does come from. It may be the result of the wiring of the input to the visual cortex, i.e., the wiring of the projections from the LGN to V1, or it may result from intra-cortical connections, i.e., from the wiring of the neurons within V1, or both. Here we will investigate the extent to which intra-cortical projections can contribute to orientation selectivity.

We consider a network of neurons forming a so-called hypercolumn. These are neurons with receptive fields which correspond to roughly the same zone in the visual field but with different preferred orientations. The orientation of a bar at a given position within the visual field can thus be coded faithfully by the population activity of the neurons from the corresponding hypercolumn.

Instead of using spatial coordinates to identify a neuron in the cortex, we label the neurons in this section by their preferred orientation θ which may vary from $-\pi/2$ to $+\pi/2$. In doing so we assume that the preferred orientation is indeed a good “name tag” for each neuron so that the synaptic coupling strength can be given in terms of the preferred orientations of pre- and postsynaptic neuron. Following the formalism developed in the previous sections, we assume that the synaptic coupling strength w of neurons with preferred orientation θ and θ' is a symmetric function of the difference $\theta - \theta'$, i.e., $w = w(|\theta - \theta'|)$. Since we are dealing with angles from $[-\pi/2, +\pi/2]$ it is natural to assume that all functions are π-periodic so that we can use Fourier series to characterize them. Non-trivial results are obtained even if we retain only the first two Fourier components of the coupling function,

$$w(\theta - \theta') = w_0 + w_2 \cos[2(\theta - \theta')]$$

Similarly to the intra-cortical projections we take the (stationary) external input from the LGN as a function of the difference of the preferred orientation θ and the orientation of the stimulus θ_0,

$$I_{ext}(\theta) = c_0 + c_2 \cos[2(\theta - \theta_0)]$$

Here, c_0 is the mean of the input and c_2 describes the modulation of the input that arises from anisotropies in the projections from the LGN to V1.

In analogy to Eq. (9.4) the field equation for the present setup has thus the form

$$\tau \frac{\partial u(\theta, t)}{\partial t} = -u(\theta, t) + \int_{-\pi/2}^{+\pi/2} \frac{d\theta'}{\pi} w(|\theta - \theta'|) g[u(\theta', t)] + I_{ext}(\theta)$$

We are interested in the distribution of the neuronal activity within the hypercolumn as it arises from a stationary external stimulus with orientation θ_0. This will allow us to study the role of intra-cortical projections in sharpening orientation selectivity.

In order to obtain conclusive results we have to specify the form of the gain function g. A particularly simple case is the step-linear function,

$$g(u) = [u]_+ = \begin{cases} u, & u \geq 0 \\ 0, & u < 0 \end{cases}$$

The idea behind this ansatz is that neuronal firing usually increases monotonously once the input exceeds a certain threshold. Within certain boundaries this increase in the firing rate is approximatively linear. If we assume that the average membrane potential u stays within these boundaries and that, in addition, $u(\theta, t)$ is
always above threshold, then we can replace the gain function \(g \) in Eq. (9.30) by the identity function. We are thus left with the following linear equation for the stationary distribution of the average membrane potential,

\[
 u(\theta) = \int_{-\pi/2}^{+\pi/2} \frac{d\theta'}{\pi} w(|\theta - \theta'|) u(\theta') + I^{\text{ext}}(\theta) .
\]

(9.31)

This equation is solved by

\[
 u(\theta) = u_0 + u_2 \cos[2(\theta - \theta_0)] ,
\]

(9.32)

with

\[
 u_0 = \frac{c_0}{1 - w_0} \quad \text{and} \quad u_2 = \frac{2 c_2}{2 - w_2} .\]

(9.33)

As a result of the intra-cortical projections, the modulation \(u_2 \) of the response of the neurons from the hypercolumn is thus amplified by a factor \(2/(2 - w_2) \) as compared to the modulation of the input \(c_2 \).

![Figure 9.6: Activity profiles (solid line) that result from stationary external stimulation (dashed line) in a model of orientation selectivity. A. Weak modulation \((c_0 = 0.8, c_2 = 0.2)\) of the external input results in a broad activity profile; cf. eqstat theta. B. Strong modulation \((c_0 = 0.6, c_2 = 0.4)\) produces a narrow profile; cf. Eq. (9.35). Other parameters are \(\omega_0 = 0, \omega_2 = 1, \theta_0 = 0 \).

In deriving Eq. (9.32) we have assumed that \(u \) stays always above threshold so that we have an additional condition, viz., \(u_0 - |u_2| > 0 \), in order to obtain a self-consistent solution. This condition may be violated depending on the stimulus. In that case the above solution is no longer valid and we have to take the nonlinearity of the gain function into account, i.e., we have to replace Eq. (9.32) by

\[
 u(\theta) = \int_{\theta_0}^{\theta_0 + \theta_0} \frac{d\theta'}{\pi} w(|\theta - \theta'|) u(\theta') + I^{\text{ext}}(\theta) .
\]

(9.34)

Here, \(\theta_0 \pm \theta_0 \) are the cutoff angles that define the interval where \(u(\theta) \) is positive. If we use the ansatz (9.33) in the above equation, we obtain together with \(u(\theta_0 \pm \theta_0) = 0 \) a set of equations that can be solved for \(u_0, u_2, \) and \(\theta_0 \).

Figure 9.6 shows two examples of the resulting activity profiles \(g[|u(\theta)|] \) for different modulation depths of the input.

Throughout this section we have described neuronal populations in terms of an averaged membrane potential.
and the corresponding firing rate. At least for stationary input and a high level of noise this is indeed a good approximation of the dynamics of spiking neurons. Figure 9.7 shows two examples of a simulation based on SRM$_0$ neurons with escape noise and a network architecture that is equivalent to what we have used above. The stationary activity profiles shown in Fig. 9.7 are qualitatively identical to those of Fig. 9.6, small deviations in the shape are due to a slightly different model [see Spiridon and Gerstner (2001) for more details]. For low levels of noise, however, the description in terms of a firing rate is no longer valid, because the state of asynchronous firing becomes unstable (cf. Section 8.1) and neurons tend to synchronize. The arising temporal structure in the firing times leads to a destabilization of the stationary spatial structure (Laing and Chow, 2001). In the low-noise limit localized ``blobs“ of activity are replaced by traveling waves of spike activity, as we will see in Section 9.3.

Figure 9.7: Activity profiles in a model of orientation selectivity obtained by simulations based on SRM$_0$ neurons (dots) compared to the theoretical prediction (solid line). **A.** No modulation of the recurrent projections [$\omega_2 = 0$; cf. Eq. (9.28)] leads only to a weak modulation of the neuronal response. **B.** Excitatory coupling between iso-oriented cells ($\omega_2 = 10$) produces a sharp profile. [Taken from Spiridon and Gerstner (2001)].
9.2 Dynamic patterns of neuronal activity

Up to now we have treated only a single sheet of neurons that were all of the same type. Excitatory and inhibitory couplings were lumped together in a single function w that gave the `average' coupling strength of two neurons as a function of their distance. 'Real' neurons, however, are either excitatory or inhibitory, because they can use only one type of neurotransmitter (Dale's law). A coupling function that yields both positive and negative values for the synaptic couplings is therefore not realistic.

We can easily extend the previous model so as to account for different types of neuron or for several separate layers of neuronal tissue. To this end we embellish the variable u for the average membrane potential with an additional index k, $k = 1,..., n$, that denotes the type of the neuron or its layer. Furthermore, we introduce coupling functions $w_{kl}(x, x')$ that describe the coupling strength of a neuron from layer l at position x' to a neuron located in layer k and position x. In analogy to Eq. (9.4) the field equations will be defined as

$$
\tau_k \frac{\partial u_k(x, t)}{\partial t} = -u_k(x, t) + \sum_{l=1}^{n} \int dy \, w_{kl}(|x - y|) g[u_l(y, t)] + I_{ext, k}(x, t), \quad (9.35)
$$

with $k = 1,..., n$. We will be particularly interested in systems made up of two different layers ($n = 2$) where layer 1 comprises all excitatory neurons and layer 2 all inhibitory neurons. Accordingly, the signs of the coupling functions are as follows

$$w_{11} \geq 0, \quad w_{21} \geq 0, \quad w_{12} \leq 0, \quad \text{and} w_{22} \leq 0. \quad (9.36)$$

For the sake of simplicity we assume that all coupling functions are bell-shaped, e.g.,

$$w_{kl}(x) = \frac{\bar{w}_{kl}}{\sqrt{2\pi}\sigma_{kl}^2} \exp\left[-x^2/(2\sigma_{kl}^2)\right], \quad (9.37)$$

with mean coupling strength \bar{w}_{kl} and spatial extension σ_{kl}.

9.2.1 Oscillations

As before we start our analysis of the field equations by looking for homogeneous solutions. Substitution of $u_k(x, t) = u_k(t)$ into Eq. (9.36) yields

$$
\tau_k \frac{d u_k(t)}{d t} = -u_k(t) + \sum_{l=1}^{n} \bar{w}_{kl} g[u_l(t)] + I_{ext, k}, \quad (9.38)
$$
with $\bar{w}_{kl} = \int dx w_{kl}(x)$, as before.

We can gain an intuitive understanding of the underlying mechanism by means of phase-plane analysis - a tool which we have already encountered in Chapter 3. Figure 9.8 shows the flow-field and null-clines of Eq. (9.39) with $\tau_1 = 1$, $\tau_2 = 5$, $\bar{w}_{11} = \bar{w}_{21} = 2$, $\bar{w}_{12} = -1$, and $\bar{w}_{22} = 0$. The gain function has a standard form, i.e.,

$$g(u) = \{1 + \exp[\beta(u - \theta)]\}^{-1} \text{ with } \beta = 5 \text{ and } \theta = 1.$$

For zero external input Eq. (9.39) has only a single stable fixed point close to $(u_1, u_2) = (0, 0)$. This fixed point is attractive so that the system will return immediately to its resting position after a small perturbation; cf. Fig. 9.8A. If, for example, the external input to the excitatory layer is gradually increased, the behavior of the systems may change rather dramatically. Figure 9.8B shows that for $I_{ext, 1} = 0.3$ the system does not return immediately to its resting state after an initial perturbation but takes a large detour through phase space. In doing so, the activity of the network transiently increases before it finally settles down again at its resting point; cf. Fig. 9.8B. This behavior is qualitatively similar to the triggering of an action potential in a two-dimensional neuron model (cf. Chapter 3), though the interpretation in the present case is different. We will refer to this state of the network as an excitable state.

Figure 9.8: Phase-space diagrams for homogeneous solutions of the field equation. The arrows indicates the flow field of the differential equation (9.39), the thin lines are the null-clines for u_1 and u_2, and the thick lines, finally, give a sample trajectory with starting point $(u_1, u_2) = (0.9, 0)$. Existence and stability properties of the fixed points depend on the amount of external input to the layer of excitatory neurons ($I_{ext, 1}$). For $I_{ext, 1} < 0.35$ there is an attractive fixed point close to $(0, 0)$ (A and B). For $I_{ext, 1} = 0.5$ the fixed point at $(0, 0)$ is replaced by an unstable fixed point close to $(1, 1)$ which is surrounded by a stable limit cycle (C). In A the sample trajectory reaches the fixed point on the shortest possible way, but in B it takes a large detour which corresponds to a spike-like overshoot of neuronal activity.

If the strength of the input is further increased the system undergoes a series of bifurcations so that the attractive $(0, 0)$-fixed point will finally be replaced by an unstable fixed point near $(1, 1)$ which is surrounded by a stable limit cycle; cf. Fig. 9.8C. This corresponds to an oscillatory state where excitatory and inhibitory neurons get activated alternatingly. Provided that the homogenous solution is stable with respect to inhomogeneous perturbations global network oscillations can be observed; cf. Fig. 9.9.
9.2.2 Traveling waves

Traveling waves are a well-known phenomenon and occur in a broad class of different systems that have collectively been termed *excitable media*. A large class of examples for these systems is provided by reaction-diffusion systems where the interplay of a chemical reaction with the diffusion of its reactants results in an often surprisingly rich variety of dynamical behavior. All these systems share a common property, namely ‘excitability’. In the absence of an external input the behavior of the system is characterized by a stable fixed point, its resting state. Additional input, however, can evoke a spike-like rise in the activation of the system. Due to lateral interactions within the system such a pulse of activity can propagate through the medium without changing its form and thus forming a traveling wave.

In the previous section we have seen that the present system consisting of two separate layers of excitatory and inhibitory neurons can indeed exhibit an excitable state; cf. Fig. 9.8 B. It is thus natural to look for a special solution of the field equations (9.36) in the form of a traveling wave. To this end we make an ansatz,

$$u_k(x, t) = \hat{u}_k(x - vt),$$

with an up to now unknown function \hat{u}_k that describes the *form* of the traveling wave. We can substitute this ansatz into Eq. (9.36) and after a transformation into the moving frame of reference, i.e., with $z \equiv x - vt$, we find

$$-\tau_k v \frac{d\hat{u}_k(z)}{dz} = -\hat{u}_k(z) + \sum_{l=1}^n \int d\zeta w_{kl}(|z - \zeta|) g[\hat{u}_l(\zeta)] + I_{\text{ext}, k}. \quad (9.40)$$

This is a nonlinear integro-differential equation for the form of the traveling wave. In order to obtain a uniquely determined solution we have to specify appropriate boundary conditions. Neurons cannot ‘feel’ each other over a distance larger than the length scale of the coupling function. The average membrane potential far away from the center of the traveling wave will therefore remain at the low-activity fixed point \bar{u}_k, i.e.,

$$\lim_{z \to \pm \infty} \hat{u}_k(z) = \bar{u}_k, \quad (9.41)$$
with

\[
0 = - \ddot{u}_k + \sum_{l=1}^{n} \tilde{w}_{kl} g[\ddot{u}_l] + f^{ext,k}.
\] (9.42)

This condition, however, still does not determine the solution uniquely because Eq. (9.41) is invariant with respect to translations. That is to say, with \(\dot{u}_k(z) \) a solution of Eq. (9.41), \(\dot{u}_k(z + \Delta z) \), is a solution as well for every \(\Delta z \in \mathbb{R} \).

Finding a solution of the integro-differential equation (9.41) analytically is obviously a hard problem unless a particularly simple form of the gain function \(g \) is employed. One possibility is to use a step function such as

\[
g(u) = \begin{cases}
0, & u < \vartheta \\
1, & u \geq \vartheta
\end{cases}
\] (9.43)

with \(\vartheta \in \mathbb{R} \) being the threshold of the activation function. In this case we can use the translation invariance and look for solutions of Eq. (9.41) containing a single pulse of activation that exceeds threshold on a certain finite interval. Since \(g(u_k) \) is equal to unity inside this interval and vanishes outside, the integral in Eq. (9.41) can be carried out and we are left with a system of ordinary differential equations. These differential equations are subject to boundary conditions at \(z = \pm \infty \) [cf. Eq. (9.42)] and, for the sake of self-consistency, to \(u_k(z) = \vartheta \) on the boundaries of the above mentioned interval. In fact, this is too large a number of boundary conditions so as to find a solution in all cases. The differential equations together with its boundary conditions thus form an eigenvalue problem for the remaining parameters such as the propagation velocity, the width of the pulses of activity, and the time lag between the excitatory and the inhibitory pulse. We will not go further into details but refer the reader to the work of, e.g., Amari (1977b).

Figure 9.10: Traveling wave in a network consisting of two separate layers for excitatory and inhibitory neurons. A. Average membrane potential of the excitatory neurons. An additional pulse of external input at \(t = 10 \) and \(x = 0 \) triggers two pulses of activity that propagate symmetrically to the left and to the right. B. Snapshot of the spatial distribution of the average membrane potential at time \(t = 50 \). The solid line corresponds to the excitatory neurons whereas the dashed line is for the inhibitory ones. Note that the activation of the inhibitory neurons is somewhat lagging behind.

Figure 9.10 shows an example of a traveling wave in a network with excitatory (layer 1, \(\tau_1 = 1 \)) and inhibitory
layer 2, \(\tau_2 = 5 \) neurons. The coupling functions are bell-shaped [cf. Eq. \((9.38)\)] with \(\sigma_{11} = \sigma_{12} = \sigma_{21} = 1 \) and \(\bar{w}_{11} = \bar{w}_{21} = 2, \bar{w}_{12} = -1 \), and \(\bar{w}_{22} = 0 \), as before. The excitatory neurons receive tonic input \(I_{ext,1} = 0.3 \) in order to reach the excitable state (cf. Fig. 9.8B). A short pulse of additional excitatory input suffices to trigger a pair of pulses of activity that travel in opposite direction through the medium.
We have seen that the intricate interplay of excitation and inhibition in locally coupled neuronal nets can result in the formation of complex patterns of activity. Neurons have been described by a graded-response type formalism where the 'firing rate' is given as a function of the 'average membrane potential'. This approach is clearly justified for a qualitative treatment of slowly varying neuronal activity. In the context of spatio-temporal patterns of neuronal activity, however, a slightly closer look is in order.

In the following we will dismiss the firing rate paradigm and use the Spike Response Model instead in order to describe neuronal activity in terms of individual action potentials. We start with a large number of SRM neurons arranged on a two-dimensional grid. The synaptic coupling strength \(w \) of neurons located at \(\vec{r}_i \) and \(\vec{r}_j \) is, as hitherto, a function of their distance, i.e., \(w = w(|\vec{r}_i - \vec{r}_j|) \). The response of a neuron to the firing of one of its presynaptic neurons is described by a response function \(\epsilon \) and, finally, the afterpotential is given by a kernel named \(\eta \), as customary. The membrane potential of a neuron located at \(\vec{r}_i \) is thus

\[
u(\vec{r}_i, t) = \int_0^\infty ds \, \eta(s) S(\vec{r}_i, t - s) + \sum_j w(|\vec{r}_i - \vec{r}_j|) \int_0^\infty ds \, \epsilon(s) S(\vec{r}_j, t - s), \tag{9.44}
\]

with \(S(\vec{r}_i, t) = \sum_f \delta(t - t_f) \) being the spike train of the neuron at \(\vec{r}_i \). Note that we have neglected distance-dependent propagation delays; constant (synaptic) delays, however, can be absorbed into the response function \(\epsilon \). Note also that for the sake of notational simplicity we have included the afterpotential of all spikes and not only the afterpotential of the last spike. This, however, will not affect the present discussion because we restrict ourselves to situations where each neurons is firing only once, or with long inter-spike intervals.

Spikes are triggered whenever the membrane potential reaches the firing threshold \(\vartheta \). This can be expressed in compact form as

\[
S(\vec{r}_i, t) = \delta[u(\vec{r}_i, t) - \vartheta]\left[\frac{\partial u(\vec{r}_i, t)}{\partial t}\right]_+. \tag{9.45}
\]

Here, \([...]+\) denotes the positive part of its argument. This factor is required in order to ensure that spikes are triggered only if the threshold is crossed with a positive slope and to normalize the Dirac \(\delta \) functions to unity.

Figure 9.11 shows the result of a computer simulation of a network consisting of 1000×1000 SRM neurons. The coupling function is mexican-hat shaped so that excitatory connections dominate on small and inhibitory connections on large distances. In a certain parameter regime the network exhibits an excitable behavior; cf. Section 9.2.2. Starting from a random initial configuration, a cloud of short stripes of neuronal activity evolves. These stripes propagate through the net and soon start to form rotating spirals with two, three or four arms. The spirals have slightly different rotation frequencies and in the end only a few large spirals with three arms will survive.
Let us try to gain an analytic understanding of some of the phenomenon observed in the computer simulations.

To this end we suppose that the coupling function w is slowly varying, i.e., that the distance between two neighboring neurons is small as compared to the characteristic length scale of w. In this case we can replace in Eq. (9.45) the sum over all presynaptic neurons by an integral over space. At the same time we drop the indices that label the neurons on the grid and replace both h and S by continuous functions of \vec{r}, and t that interpolate in a suitable way between the grid points for which they have been defined originally. This leads to field equations that describe the membrane potential $u(\vec{r}, t)$ of neurons located at \vec{r},

$$u(\vec{r}, t) = \int_0^\infty ds \, \eta(s) \, S(\vec{r} - \vec{s}) + \int d\vec{r}' \, w(|\vec{r}'|) \int_0^\infty ds \, \epsilon(s) \, S(\vec{r}' - \vec{s}) \, , (9.46)$$

Figure 9.11: Snapshots from a simulation of a network of 1000×1000 neurons. [Taken from Kistler et al. (1998)].
together with their spike activity \(S(\bar{r}, t) \),

\[
S(\bar{r}, t) = \delta [u(\bar{r}, t) - \theta] \left[\frac{\partial u(\bar{r}, t)}{\partial t} \right] + , \tag{9.47}
\]

as a function of time \(t \). In the following sections we try to find particular solutions for this integral equation. In particular, we investigate solutions in the form of traveling fronts and waves. It turns out, that the propagation velocity for fronts and the dispersion relation or waves can be calculated analytically; cf. Fig. 9.12. The stability of these solutions is determined in Section 9.3.2.

The approach sketched in Sections 9.3.1 and 9.3.2 (Kistler et al., 1998; Bressloff, 1999; Kistler, 2000) is presented for a network of a single population of neurons, but it can also be extended to coupled networks of excitatory and inhibitory neurons (Golomb and Ermentrout, 2001). In addition to the usual fast traveling waves that are found in purely excitatory networks, additional slow and non-continuous `lurching' waves appear in an appropriate parameter regime (Golomb and Ermentrout, 2001; Rinzel et al., 1998).

9.3.1 Traveling fronts and waves (*)

We start our analysis of the field equations (9.47) and (9.48) by looking for a particular solution in form of a plane front of excitation in a two-dimensional network. To this end we make an ansatz for the spike activity

\[
S(x, y, t) = \delta (t - x/v) . \tag{9.48}
\]

This is a plane front that extends from \(y = -\infty \) to \(y = +\infty \) and propagates in positive \(x \)-direction with velocity \(v \). We substitute this ansatz into the expression for the membrane potential Eq. (9.41) and find

\[
u(x, y, t) = \gamma (t - x/v) + \int \int dx' dy' w \left[\sqrt{(x - x')^2 + (y - y')^2} \right] \varepsilon(t - x'/v) \tag{9.49}
\]

Up to now the propagation velocity is a free parameter. This parameter can be fixed by exploiting a self-consistency condition that states that the membrane potential along the wave front equals the firing threshold; cf. Eq. (9.48). This condition gives a relation between the firing threshold \(\theta \) and the propagation velocity \(v \), i.e.,

\[
u(x = v t, y, t) = \int \int dx' dy' w \left[\sqrt{(v t - x')^2 + (y - y')^2} \right] \varepsilon(t - x'/v) \equiv \theta \tag{9.50}
\]

Note that the afterpotential \(\eta \) drops out because each neuron is firing only once. The propagation velocity as a function of the firing threshold is plotted in Fig. 9.12A. Interestingly, there are two branches that correspond to two different velocities at the same threshold. We will see later on that not all velocities correspond to stable solutions.
Figure 9.12: A. Propagation velocity v of a single plane front versus the firing threshold ϑ. B. Dispersion relation of a traveling wave for different values of the firing threshold ($\vartheta = 0, 0.01, ..., 0.06$; $\vartheta = 0$ is the outermost curve, $\vartheta = 0.06$ corresponds to the curve in the center).

The simulations show that the dynamics is dominated in large parts of the net by a regular pattern of stripes. These stripes are, apart from the centers of the spirals, formed by an arrangement of approximatively plane fronts. We can use the same ideas as above to look for such a type of solution. We make an ansatz,

$$S(x, y, t) = \sum_{n=-\infty}^{\infty} \delta \left(t - \frac{x - n \lambda}{v} \right),$$

that describes a traveling wave, i.e., a periodic arrangement of plane fronts, with wave length λ traveling in positive x direction with (phase) velocity v. Both the phase velocity and the wave length are free parameters that have to be fixed by a self-consistency condition. We substitute this ansatz in Eq. (9.47) and find

$$u(x, y, t) = \sum_{n=-\infty}^{\infty} \eta \left(t - \frac{x - n \lambda}{v} \right) + u_{\text{front}} \left(x, y, t - \frac{x - n \lambda}{v} \right)$$

(9.52)

with

$$u_{\text{front}}(x, y, t) = \int \int dx' dy' w \left[\sqrt{(x - x')^2 + (y - y')^2} \right] \epsilon(t - x'/v).$$

(9.53)

Using the fact that the membrane potential on each of the wave fronts equals the firing threshold we find a relation between the phase velocity and the wave length. This relation can be reformulated as a dispersion relation for the wave number $k = 2 \pi / \lambda$ and the frequency $\omega = 2 \pi v / \lambda$. The dispersion relation, which is shown in Fig. 9.12B for various values of the firing threshold, fully characterizes the behavior of the wave.
9.3.2 Stability (*)

A single front of excitation that travels through the net triggers a single action potential in each neuron. In order to investigate the stability of a traveling front of excitation we introduce the firing time \(t(\mathbf{r}) \) of a neuron located at \(\mathbf{r} \). The threshold condition for the triggering of spikes can be read as an implicit equation for the firing time as a function of space,

\[
\vartheta = \int d\mathbf{r}' \ w(\mathbf{r} - \mathbf{r}') \ \varepsilon [t(\mathbf{r}) - t(\mathbf{r}')] .
\]

(9.54)

In the previous section we have found that \(t(x, y) = x/v \) can satisfy the above equation for certain combinations of the threshold parameter \(\vartheta \) and the propagation velocity \(v \).

We are aiming at a linear stability analysis in terms of the firing times (Bressloff, 1999). To this end we consider a small perturbation \(\delta t(x, y) \) which will be added to the solution of a plane front of excitation traveling with velocity \(v \) in positive \(x \)-direction, i.e.,

\[
t(x, y) = x/v + \delta t(x, y) .
\]

(9.55)

This ansatz will be substituted in Eq. (9.55) and after linearization we end up with a linear integral equation for \(\delta t \), viz.

\[
0 = \int d\mathbf{r}' \ w(\mathbf{r} - \mathbf{r}') \ \varepsilon' [(x - x')/v] \ [\delta t(\mathbf{r}) - \delta t(\mathbf{r}')] .
\]

(9.56)

Due to the superposition principle we can concentrate on a particular form of the perturbation, e.g., on a single Fourier component such as \(\delta t(x, y) = e^{\lambda x} \cos \kappa y \). The above integral equation provides an implicit relation between the wave number \(\kappa \) of the perturbation with the exponent \(\lambda \) that describes its growth or decay as the front propagates through the net. If there is for a certain \(\kappa \) a particular solution of

\[
0 = \int dx' dy' \ w \left[\sqrt{(x - x')^2 + (y - y')^2} \right] \ v' [(x - x')/v]
\times \left[e^{\lambda x} \cos(\kappa y) - e^{\lambda x'} \cos(\kappa y') \right]
\]

(9.2)

with \(\text{Re}(\lambda) > 0 \) then the front is unstable with respect to that perturbation.

Figure 9.13 shows the result of a numerical analysis of the stability equation (9.58). It turns out that the lower branch of the \(v-\vartheta \) curve corresponds to unstable solutions that are susceptible to two types of perturbation, viz., a perturbation with \(\text{Im}(\lambda) = 0 \) and a oscillatory perturbation with \(\text{Im}(\lambda) \neq 0 \). In addition, fronts with a velocity larger than a certain critical velocity are unstable because of a form instability with \(\text{Im}(\lambda) = 0 \) and \(\kappa > 0 \). Depending on the actual coupling function \(w \), however, there may be a narrow interval for the propagation velocity where plane fronts are stable; cf. Fig. 9.13B.

Figure 9.13: Similar plots as in Fig. 9.12A showing the propagation velocity v as a function of the firing threshold ϑ (thick line). Dashes indicate solutions that are unstable with respect to instabilities with $\kappa = 0$. These instabilities could also be observed in a one-dimensional setup. Thin dotted lines mark the domain of instabilities that show up only in two dimensions, i.e., form instabilities with $\kappa > 0$. Wide dots correspond to perturbations with $\text{Im}(\lambda) = 0$ and narrow dots to Hopf-instabilities with $\text{Im}(\lambda) > 0$. A. Coupling function $w(r) = \sum_{i=1}^{2} a_i \exp(-r^2/\lambda_i^2)$ with $\lambda_1^2 = 15$, $\lambda_2^2 = 100$, $a_1 = 1.2$ and $a_2 = -0.2$. B. Similar plot as in A, but with $a_1 = 1.1$ and $a_2 = -0.1$. Note that there is a small interval between $v = 0.475$ and $v = 0.840$ that corresponds to stable fronts. [Taken from Kistler (2000)].

The stability of plane waves can be treated in a similar way as that of a plane front, we only have to account for the fact that each neuron is not firing only once but repetitively. We thus use the following ansatz for the firing times $\{t_n(x,y)| n = 0, \pm 1, \pm 2, \ldots\}$ of a neuron located at (x,y),

$$ t_n(x,y) = \frac{x - n \lambda}{v} + \delta t_n(x,y), \quad (9.57) $$

with $\delta t_n(x,y)$ being a `small' perturbation. If we substitute this ansatz into Eq. (9.53) we obtain

$$ 0 = \sum_n \eta \left[\frac{(n-m) \lambda}{v} \right] [\delta t_m(\vec{r}) - \delta t_n(\vec{r})] + \int d\vec{r}' w(\vec{r} - \vec{r}') \epsilon \left[\frac{x - x' + n \lambda - m \lambda}{v} \right] [\delta t_m(\vec{r}') - \delta t_n(\vec{r})] \quad (9.3), $$

in leading order of δt_n and with $\vec{r} = (x,y)$, $\vec{r}' = (x',y')$. Primes at η and ϵ denote derivation with respect to the argument. This equation has to be fulfilled for all $\vec{r} \in \mathbb{R}^2$ and all $m \in \mathbb{Z}$.

For the sake of simplicity we neglect the contribution of the after potential in Eq. (9.60), i.e., we assume that $\eta'[n \lambda/v] = 0$ for $n > 0$. This assumption is justified for short-lasting after potentials and a low firing frequency.

As before, we concentrate on a particular form of the perturbations $\delta t_n(x,y)$, namely $\delta t_n(x,y) = \exp[\epsilon (x - n \lambda/v)] t_n(x,y)$. The stability of plane waves can be treated in a similar way as that of a plane front, we only have to account for the fact that each neuron is not firing only once but repetitively. We thus use the following ansatz for the firing times $\{t_n(x,y)| n = 0, \pm 1, \pm 2, \ldots\}$ of a neuron located at (x,y),
\[\lambda \] \cos(\kappa x n) \cos(\kappa y y). \] This corresponds to a sinusoidal deformation of the fronts in y-direction described by \(\kappa_y \), together with a modulation of their distance given by \(\kappa_n \). If we substitute this ansatz for the perturbation in Eq. (9.60) we obtain a set of equations that can be reduced to two linearly independent equations for \(c, \kappa_n \), and \(\kappa_y \). The complex roots of this system of equations determines the stability of traveling waves, as it is summarized in Fig. 9.12.

Figure 9.14: A. Dispersion relation (solid lines) of periodic wave trains for various values of the threshold parameter \(\vartheta = 0 \) (uppermost trace), 0.1, ..., 0.6 (center). Network parameters as in Fig. 9.13A. The shading indicates solutions that are unstable with respect to perturbations with \(\kappa_n \in \{0, \pi\} \). The unshaded (white) region is bounded to the left by a form instability with \(\kappa_n = 0 \) and \(\kappa_y > 0 \) (dots). Its right border (dashes) is formed by a Hopf bifurcation with \(\kappa_n = \pi \) and \(\kappa_y > 0 \). The right branch of this curve corresponds to the same type of bifurcation but with \(\kappa_n = 0 \). The remaining dotted lines to the left and to the right indicate form instabilities with \(\kappa_n = \pi \). The long-dashed lines reflect bifurcations with \(\kappa_y = 0 \), i.e., bifurcations that would show up in the corresponding one-dimensional setup. B. Similar plot as in A but with a coupling function as in Fig. 9.12B. The firing threshold varies from \(\vartheta = 0 \) (leftmost trace) to \(\vartheta = 1.0 \) (center) in steps of 0.2. [Taken from Kistler (2000)].
9.4 Robust transmission of temporal information

Any information processing scheme that relies on the precise timing of action potentials obviously requires a means to transmit spikes without destroying their temporal structure. A critical question is thus whether a packet of initially synchronous action potentials can be transmitted from one brain area to the next without losing the information. In this section we show that packets of (almost) synchronous spikes can propagate in a feed-forward structure from one layer to the next in such a way that their degree of synchrony is preserved - despite the presence of noise in the spike generating mechanism. Moreover, the temporal dispersion within such a packet can even be reduced during the transmission. This results in a stable waveform of the spike packet that can propagate - very much like a soliton - through the network (Kistler and Gerstner, 2001; Diesmann et al., 1999; Gewaltig, 2000).

The phenomenon of a stable propagation of synchronous spikes has been proposed by M. Abeles as an explanation for precisely timed spike events in multi-electrode recordings that seem to occur with a frequency that is incompatible with purely random (Poisson) spike trains; but see Oram et al. (1999). He suggested that neurons that participate in the transmission of these spikes form a so-called 'syn-fire chain' (Abeles, 1991). More generally, the propagation of (partially) synchronous spikes is expected to play a role whenever information about a new stimulus has to be reliably transmitted from one set of neurons to the next. The initial response of neurons to stimulus onset appears to have a similar form in different brain areas with a remarkably low jitter (Maraálek et al., 1997).

The mechanisms that produce the low jitter in neuronal firing times during transmission from one 'layer' of neurons to the next can be readily understood. Noise and broad postsynaptic potentials tend to smear out initially sharp spike packets. If, however, the synaptic coupling is strong enough, then postsynaptic neurons will start firing already during the rising phase of their membrane potential. If, in addition, these neurons show pronounced refractory behavior, then firing will cease before the postsynaptic potentials have reached their maximum so that a sharp pulse of spike activity is generated. Refractoriness thus counteracts the effects of noise and synaptic transmission and helps to maintain precise timing.

In the following we show how the theory of population dynamics developed in Chapter 6 can be used to provide a quantitative description of the transmission of spike packets. We consider M pools containing N neurons each that are connected in a purely feed-forward manner, i.e., neurons from pool n project only to pool $n+1$ and there are no synapses between neurons from the same pool. We assume all-to-all connectivity between two successive pools with uniform synaptic weights $\omega_{ij} = \omega/N$; cf. Fig. 9.15. In the framework of the Spike Response Model the membrane
potential of a neuron $i \in \Gamma(n + 1)$ from pool $n + 1$ that has fired its last spike at \hat{t} is given by

$$u_i(t, \hat{t}) = \frac{\omega}{N} \sum_{j \in \Gamma(n)} \int_0^{\infty} \varepsilon(t') S_j(t - t') \, dt' + \eta(t_i - \hat{t})$$

$$= \omega \int_0^{\infty} \varepsilon(t') A_n(t - t') \, dt' + \eta(t_i - \hat{t}) . \quad (9.58)$$

As usual, S_i denotes the spike train of neuron i, ε and η are response kernels describing postsynaptic potential and afterpotential, respectively. $\Gamma(n)$ is the index set of all neurons that belong to pool n, and $A_n(t) = N^{-1} \sum_{j \in \Gamma(n)} S_j(t)$ is the population activity of pool n; cf. Eq. (6.1).

Figure 9.15: Schematic representation of the network architecture. We investigate the transmission of spike packets in a linear chain of pools of neurons that are connected in a strictly feed-forward manner.

In contrast to the previous section, we explicitly take noise into account. To this end we adopt the 'escape noise model' (Section 5.3) and replace the sharp firing threshold by a firing probability that is a function of the membrane potential. The probability to find an action potential in the infinitesimal interval $[t, t + dt)$ provided that the last spike occurred at \hat{t} is given by

$$\text{prob}\{\text{spike in}[t, t + dt) \mid \text{last spike at } \hat{t}\} = f[u(t, \hat{t})] . \quad (9.59)$$

For the sake of simplicity we choose a semi-linear hazard function f, i.e.,

$$f(u) = \begin{cases} 0 , & u \leq 0, \\ u , & u > 0. \end{cases} \quad (9.60)$$

With this probabilistic criterion for triggering spikes both spike train and membrane potential become random variables. However, each pool is supposed to contain a large number of neurons ($N \gg 1$) so that we can replace the population activity A_n in Eq. (9.61) by its expectation value which is given by a normalization condition,

$$\int_{-\infty}^{\hat{t}} S_n(t|\hat{t}) A_n(\hat{t}) \, d\hat{t} = 1 - s_n(t) , \quad (9.61)$$

The survivor function $S_n(t|\hat{t})$ for neurons of pool n is the probability that a neuron that has fired at \hat{t} survives without firing until t. Here, $s_n(t) = S_n(t|\infty)$ accounts for those neurons that have been quiescent in the past, i.e., have not fired at all up to time t. We have seen in Section 5.2 that

$$
S_i(t|\hat{t}) = \exp \left\{ - \int_0^t f[u_i(t',\hat{t})] dt' \right\}.
$$

(9.62)

Simulation studies suggest that a pronounced refractory behavior is required in order to obtain a stable propagation of a spike packet from one layer to the next (Diesmann et al., 1999; Gewaltig, 2000). If neurons were allowed to fire more than once within one spike packet the number of spikes per packet and therewith the width of the packet would grow in each step. Therefore, we use a strong and long-lasting after potential η so that each neuron can fire only once during each pulse.

The survivor function thus equals unity for the duration τ_{AP} of the afterpotential, i.e., $s_n(t,\hat{t}) = 1$ for $0 < t - \hat{t} < \tau_{AP}$ and τ_{AP} being large as compared to the typical pulse width. Let us denote by T_n the moment when a pulse packet arrives at pool n. We assume that for $t < T_n$, all neurons in layer n have been inactive, i.e., $A_n(t) = 0$ for $t < T_n$. Differentiation of Eq. (9.64) with respect to t leads to

$$
A_n(t) = - \frac{\partial}{\partial t} s_n(t) = f[u_n(t)] \exp \left\{ - \int_{-\infty}^t f[u_n(t')] dt' \right\},
$$

(9.63)

with

$$
u_n(t) = \omega \int_0^\infty \varepsilon(t') A_{n-1}(t - t') dt'.
$$

(9.64)

Equation (9.66) provides an explicit expression for the firing-time distribution $A_n(t)$ in layer n as a function of the time course of the membrane potential. The membrane potential $u_n(t)$, in turn, depends on the time course of the activity $A_{n-1}(t)$ in the previous layer, as shown in Eq. (9.67). Both Eq. (9.66) and Eq. (9.67) can easily be integrated numerically; an analytic treatment, however, is difficult, even if a particularly simple form of the response kernel ε is chosen. Following (Diesmann et al., 1999) we therefore concentrate on the first few moments of the firing-time distribution in order to characterize the transmission properties. More precisely, we approximate the firing-time distribution $A_{n-1}(t)$ by a gamma distribution and calculate - in step (i) - the zeroth, first, and second moment of the resulting membrane potential in the following layer n. In step (ii), we use these results to approximate the time course of the membrane potential by a gamma distribution and calculate the moments of the corresponding firing-time distribution in layer n. We thus obtain an analytic expression for the amplitude and the variance of the spike packet in layer n as a function of amplitude and variance of the spike packet in the previous layer.

Particularly interesting is the iteration that describes the amplitude of the spike packet. We will see
below that the amplitude a_n in layer n as a function of the amplitude a_{n-1} in the previous layer is independent of the shape of the spike packet, viz.,

$$a_n = 1 - e^{-\omega a_{n-1}}. \quad (9.65)$$

If $\omega \leq 1$, the mapping $a_{n-1} \rightarrow a_n$ has a single (globally attractive) fixed point at $a = 0$. In this case no stable propagation of spike packets is possible since any packet will finally die out. For $\omega > 1$ a second fixed point at $a_{\infty} \in (0, 1)$ emerges through a pitchfork bifurcation. The new fixed point is stable and its basin of attraction contains the open interval $(0, 1)$. This fixed point determines the wave form of a spike packet that propagates from one layer to the next without changing its form; cf. Fig. 9.16. The fact that the all-off state at $a = 0$ is unstable for $\omega > 1$ is related to the fact that there is no real firing threshold in our model.

Figure 9.16: Propagation of spike packets through a feed-forward network. A. Evolution of the firing-time distribution of a spike packet as it propagates from one layer to the next $(n = 0, 1, \ldots, 4)$. Neurons between layers are only weakly coupled $(\omega = 1)$ so that the packet will fade out. The neurons in layer $n = 0$ are
driven by an external input that creates a sharp initial spike-packet \((\alpha_0 = 10, \lambda_0 = 0.1, a_0 = 1) \). The bars (bin width 0.2) represent the results of a simulation with \(N = 1000 \) neurons per layer; the solid line is the firing-time distribution as predicted by the theory; cf. Eqs. (9.73) and (9.75). The "flow field" to the right characterizes the transmission function for spike-packets in terms of their amplitude \(a_n \) and width \(\sigma_n = \sqrt{\alpha_n / \lambda_n} \). Open symbols connected by a dashed line represent the simulations shown to the left, filled symbols connected by solid lines represent the corresponding theoretical trajectories. Time is given in units of the membrane time constant \(\tau \). B. Same as in A but with increased coupling strength, \(\omega = 4 \). There is an attractive fixed point of the flow field at \(a = 0.98 \) and \(\sigma = 1.5 \) that corresponds to the stable wave form of the spike packet. [Taken from Kistler and Gerstner (2001)].

9.4.0.1 Derivation of the spike packet transfer function (*)

In the following we calculate the form of the spike packet in layer \(n \) as a function of the form of the packet in layer \(n - 1 \). To this end we describe the spike packet in terms of the first few moments, as outlined above. In step (i) we assume that the activity \(A_{n-1}(t) \) in layer \(n - 1 \) is given by a gamma distribution with parameters \(\alpha_{n-1} \) and \(\lambda_{n-1} \), i.e.,

\[
A_{n-1}(t) = a_{n-1} \gamma_{\alpha_{n-1}, \lambda_{n-1}}(t).
\]

Here, \(a_{n-1} \) is the portion of neurons of layer \(n - 1 \) that contribute to the spike packet, \(\gamma_{\alpha, \lambda}(t) = t^{\alpha-1} e^{-t/\lambda} / \Gamma(\alpha) \) the density function of the gamma distribution, \(\Gamma(\cdot) \) the complete gamma function, and \(\Theta(\cdot) \) the Heaviside step function with \(\Theta(t) = 1 \) for \(t > 0 \) and \(\Theta(t) = 0 \) else. The mean \(\mu \) and the variance \(\sigma^2 \) of a gamma distribution with parameters \(\alpha \) and \(\lambda \) are \(\mu = \alpha \lambda \) and \(\sigma^2 = \alpha \lambda^2 \), respectively.

The membrane potential \(u_n(t) \) in the next layer results from a convolution of \(A_{n-1} \) with the response kernel \(\varepsilon \). This is the only point where we have to refer explicitly to the shape of the \(\varepsilon \) kernel. For the sake of simplicity we use a normalized \(\alpha \) function,

\[
\varepsilon(t) = t / \tau^2 \ e^{-t/\tau} \Theta(t) \equiv \gamma_{2, \tau}(t),
\]

with time constant \(\tau \). The precise form of \(\varepsilon \) is not important and similar results hold for a different choice of \(\varepsilon \).

We want to approximate the time course of the membrane potential by a gamma distribution \(\gamma_{\tilde{\alpha}_n, \tilde{\lambda}_n} \). The parameters\(^9\) \(\tilde{\alpha}_n \) and \(\tilde{\lambda}_n \) are chosen so that the first few moments of the distribution
are identical to those of the membrane potential, i.e.,

\[u_n(t) \cong \tilde{a}_n \gamma_{\tilde{\alpha}_n, \tilde{\lambda}_n}(t), \quad (9.68) \]

with

\[
\int_0^\infty r^n u_n(t) \, dt = \int_0^\infty r^n \tilde{a}_n \gamma_{\tilde{\alpha}_n, \tilde{\lambda}_n}(t) \, dt, \quad n \in \{0, 1, 2\}. \quad (9.69)
\]

As far as the first two moments are concerned, a convolution of two distributions reduces to a mere summation of their mean and variance. Therefore, the convolution of \(A_{n-1} \) with \(\varepsilon \) basically translates the center of mass by \(2 \tau \) and increases the variance by \(2 \tau^2 \). Altogether, amplitude, center of mass, and variance of the time course of the membrane potential in layer \(n \) are

\[
\begin{align*}
\tilde{a}_n &= \omega \, a_{n-1}, \\
\tilde{\mu}_n &= \mu_{n-1} + 2\tau, \\
\tilde{\sigma}_n^2 &= \sigma_{n-1}^2 + 2\tau^2,
\end{align*}
\]

\[
\left\{ \begin{array}{l}
\end{array} \right. \quad (9.5)
\]

\[
\left\{ \begin{array}{l}
\end{array} \right. \quad (9.6)
\]

respectively. The parameters \(\tilde{\alpha}_n \) and \(\tilde{\lambda}_n \) of the gamma distribution are directly related to mean and variance, viz.,

\[
\tilde{\alpha}_n = \frac{\tilde{\mu}_n^2}{\tilde{\sigma}_n^2}, \quad \tilde{\lambda}_n = \frac{\tilde{\sigma}_n^2}{\tilde{\mu}_n}.
\]

In step (ii) we calculate the firing-time distribution that results from a membrane potential with time course given by a gamma distribution as in Eq. (9.71). We use the same strategy as in step (i), that is, we calculate the first few moments of the firing-time distribution and approximate it by the corresponding gamma distribution,

\[A_n(t) \cong a_n \gamma_{\alpha_n, \lambda_n}(t). \quad (9.71) \]

The zeroth moment of \(A_n(t) \) (i.e., the portion of neurons in layer \(n \) that participate in the activity pulse) can be cast in a particularly simple form; the expressions for higher order moments, however, contain integrals that have to be evaluated numerically. For amplitude, center of mass, and variance of \(A_n(t) \) we find
\[(9.7) \]

\[\sigma_n = 1 - e^{-\bar{a}_n}, \]

\[\mu_n = m_n^{(1)}, \]

\[\sigma_n^2 = m_n^{(2)} - \left[m_n^{(1)} \right]^2, \]

\[(9.8) \]

\[\left\{ \right. \]

\[(9.9) \]

with

\[m_n^{(k)} = \left(1 - e^{-\bar{a}_n} \right)^{-1} \int_0^\infty u_n(t) \exp \left[- \int_{-\infty}^{t} u_n(t') \, dt' \right] t^k \, dt \]

\[= \frac{\bar{a}_n \Gamma^k(\bar{a}_n)}{(1 - e^{-\bar{a}_n}) \Gamma(\bar{a}_n)} \int_0^\infty \exp \left[- t - \bar{a}_n \Gamma(\bar{a}_n, 0, t)/\Gamma(\bar{a}_n) \right] t^{k-1+\bar{a}_n} \, dt (9.73) \]

being the \(k \)th moment of the firing-time distribution (9.66) that results from a gamma-shaped time course of the membrane potential. \(\Gamma(z, t_1, t_2) = \int_{t_1}^{t_2} t^{z-1} e^{-t} \, dt \) is the generalized incomplete gamma function. The last equality in Eq. (9.76) has been obtained by substituting \(\bar{a}_n \gamma_{\bar{a}_n, \bar{\lambda}_n}(t) \) for \(u_n(t) \).

A combination of Eqs. (9.73) and (9.75) yields explicit expressions for the parameters \((a_n, \mu_n, \sigma_n)\) of the firing-time distribution in layer \(n \) as a function of the parameters in the previous layer. The mapping \((a_{n-1}, \mu_{n-1}, \sigma_{n-1}) \rightarrow (a_n, \mu_n, \sigma_n)\) is closely related to the neural transmission function for pulse-packet input as discussed by (Diesmann et al., 1999).
9.5 Summary

In this chapter we have investigated dynamic properties of spatially structured networks with local interactions by means of two complementatory approaches. The first approach relies on a mean-field approximation that describes neuronal activity in terms of an averaged membrane potential and the corresponding mean firing rate; cf. Eq. (6.129). The second approach is directly related to the microscopic dynamics of the neurons. Equations for the firing time of single action potentials can be solved exactly in the framework of the Spike Response Model. In both cases, most of the observed phenomena - traveling waves, periodic wave trains, and rotating spirals - are very similar to those of chemical reaction-diffusion systems, though the underlying mathematical equations are rather different.

The last section deals with the reliable transmission of temporal information in a hierarchically organized network. We have seen that sharp packets of spike activity can propagate from one layer to the next without changing their shape. This effect, which is closely related to Abeles' synfire chain, has been analyzed in the framework of the population equation derived in Section 6.3.

Literature

There are several books that provide an in-depth introduction to wave propagation in excitable media, see, e.g., the standard reference for mathematical biology by Murray (1993) or the more recent book by Keener and Sneyd (1998). A text that is apart from the mathematics also very interesting from an aesthetic point of view is the book by Meinhardt (1995) on pattern formation in sea shells. An interesting relation between pattern formation in neuronal networks and visual hallucination patterns can be found in a paper by Ermentrout and Cowan (1979). The standard reference for information transmission with packets of precisely timed spikes is the book of Abeles (1991).
9.5 Summary

Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
III. Models of Synaptic Plasticity

Subsections

- **10. Hebbian Models**
 - 10.1 Synaptic Plasticity
 - 10.2 Rate-Based Hebbian Learning
 - 10.3 Spike-Time Dependent Plasticity
 - 10.4 Detailed Models of Synaptic Plasticity
 - 10.5 Summary

- **11. Learning Equations**
 - 11.1 Learning in Rate Models
 - 11.2 Learning in Spiking Models
 - 11.3 Summary

- **12. Plasticity and Coding**
 - 12.1 Learning to be Fast
 - 12.2 Learning to be Precise
 - 12.3 Sequence Learning
 - 12.4 Subtraction of Expectations
 - 12.5 Transmission of Temporal Codes
 - Summary

Gerstner and Kistler

Spiking Neuron Models. Single Neurons, Populations, Plasticity

Cambridge University Press, 2002
10. Hebbian Models

In the neuron models discussed so far each synapse is characterized by a single constant parameter w_{ij} that determines the amplitude of the postsynaptic response to an incoming action potential. Electrophysiological experiments, however, show that the response amplitude is not fixed but can change over time. Appropriate stimulation paradigms can systematically induce changes of the postsynaptic response that last for hours or days. If the stimulation paradigm leads to a persistent increase of the synaptic transmission efficacy, the effect is called long-term potentiation of synapses, or LTP for short. If the result is a decrease of the synaptic efficacy, it is called long-term depression (LTD). These persistent changes are thought to be the neuronal correlate of `learning' and `memory'.

In the formal theory of neural networks the weight w_{ij} of a connection from neuron j to i is considered as a parameter that can be adjusted so as to optimize the performance of a network for a given task. The process of parameter adaptation is called learning and the procedure for adjusting the weights is referred to as a learning rule. Here learning is meant in its widest sense. It may refer to synaptic changes during development just as well as to the specific changes necessary to memorize a visual pattern or to learn a motor task. There are many different learning rules that we cannot all cover in this book. In this chapter we consider the simplest set of rules, viz., synaptic changes that are driven by correlated activity of pre- and postsynaptic neurons. This class of learning rule can be motivated by Hebb's principle and is therefore often called `Hebbian learning'.

Subsections

- **10.1 Synaptic Plasticity**
 - 10.1.1 Long-Term Potentiation
 - 10.1.2 Temporal Aspects

- **10.2 Rate-Based Hebbian Learning**
 - 10.2.1 A Mathematical Formulation of Hebb's Rule

- **10.3 Spike-Time Dependent Plasticity**
10.3.1 Phenomenological Model

10.3.2 Consolidation of Synaptic Efficacies

10.3.3 General Framework (*)

10.4 Detailed Models of Synaptic Plasticity

10.4.1 A Simple Mechanistic Model

10.4.2 A Kinetic Model based on NMDA Receptors

10.4.3 A Calcium-Based Model

10.5 Summary

Literature
Over the last 30 years, a large body of experimental results on synaptic plasticity has been accumulated. Many of these experiments are inspired by Hebb's postulate (Hebb, 1949) that describes how the connection from presynaptic neuron A to a postsynaptic neuron B should be modified:

When an axon of cell A is near enough to excite cell B or repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased.

![Figure 10.1: The change at synapse w_{ij} depends on the state of the presynaptic neuron j and the postsynaptic neuron i and the present efficacy w_{ij}, but not on the state of other neurons k.](image)

Today, 50 years later, this famous postulate is often rephrased in the sense that modifications in the synaptic transmission efficacy are driven by correlations in the firing activity of pre- and postsynaptic neurons. Even though the idea of learning through correlations dates further back in the past (James, 1890), correlation-based learning is now generally called Hebbian learning.
Hebb formulated his principle on purely theoretical grounds. He realized that such a mechanism would help to stabilize specific neuronal activity patterns in the brain. If neuronal activity patterns correspond to behavior, then stabilization of specific patterns implies learning of specific types of behaviors (Hebb, 1949).

10.1.1 Long-Term Potentiation

When Hebb stated his principle in 1949, it was a mere postulate. More than 20 years later, long-lasting changes of synaptic efficacies were found experimentally (Bliss and Lomo, 1973; Bliss and Gardner-Medwin, 1973). These changes can be induced by the joint activity of presynaptic and postsynaptic neuron and resemble the mechanism that Hebb had in mind (Kelso et al., 1986). In this subsection we concentrate on long-term potentiation (LTP), viz., a persistent increase of synaptic efficacies. Long-term depression (LTD) is mentioned in passing.

The basic paradigm of LTP induction is, very schematically, the following (Bliss and Collingridge, 1993; Brown et al., 1989). A neuron is impaled by an intracellular electrode to record the membrane potential while presynaptic fibers are stimulated by means of a second extracellular electrode. Small pulses are applied to the presynaptic fibers in order measure the strength of the postsynaptic response (Fig. 10.2A). The amplitude of the test pulse is chosen so that the stimulation evokes a postsynaptic potential, but no action potentials.

![Figure 10.2](http://diwww.epfl.ch/~gerstner/SPNM/node71.html) Schematic drawing of a paradigm of LTP induction. A. A weak test pulse (left) evokes the postsynaptic response sketched on the right-hand side of the figure. B. A strong stimulation sequence (left) triggers postsynaptic firing (right, the peak of the action potential is out of bounds). C. A test pulse applied some time later evokes a larger postsynaptic
response (right; solid line) than the initial response. The dashed line is a copy of the initial response in A (schematic figure).

In a second step, the input fibers are strongly stimulated by a sequence of high frequency pulses so as to evoke postsynaptic firing (Fig. 10.2B). After that the strength of the postsynaptic response to small pulses is tested again and a significantly increased amplitude of postsynaptic potentials is found (Fig. 10.2C). This change in the synaptic strength persists over many hours and is thus called long-term potentiation.

What can be learned from such an experiment? Obviously, the result is consistent with Hebb's postulate because the joint activity of pre- and postsynaptic units has apparently lead to a strengthening of the synaptic efficacy. On the other hand, the above experiment would also be consistent with a purely postsynaptic explanation that claims that the strengthening is solely caused by postsynaptic spike activity. In order to exclude this possibility, a more complicated experiment has to be conducted (Bliss and Collingridge, 1993; Brown et al., 1989).

In an experiment as it is sketched in Fig. 10.3 a neuron is driven by two separate input pathways labeled S (strong) and W (weak), respectively. Each pathway projects to several synapses on the postsynaptic neuron i. Stimulating of the S pathway excites postsynaptic firing but stimulation of the W channel alone does not evoke spikes. The response to the W input is monitored in order to detect changes of the synaptic efficacy. A 100 Hz input over 600 ms at the W channel evokes no LTP at the W synapses. Similarly, a 100 Hz input (over 400 ms) at the S channel alone does not produce LTP at the W synapses (although it may evoke a change of the S synapses). However, if both stimulations occur simultaneously, then the W synapses are strengthened. This feature of LTP induction is known as cooperativity or associativity. It is consistent with the picture that both presynaptic and postsynaptic activity is required to induce LTP.

![Figure 10.3: Cooperativity in the induction of LTP. Synapses at the W channel are strengthened only if both the presynaptic site is stimulated via the W electrode and...](http://diwww.epfl.ch/~gerstner/SPNM/node71.html)
the postsynaptic neuron is active
due to a simultaneous stimulation
of the S pathway.

Experiments as the one sketched in Figs. 10.2 and 10.3 have shown that synaptic weights change as a function of pre- and postsynaptic activity. Many other paradigms of LTP induction have been studied over the last twenty years. For example, the state of the postsynaptic neuron can be manipulated by depolarizing or hyperpolarizing currents; synaptic channels can be blocked or activated pharmacologically, etc. Nevertheless, the underlying subcellular processes that lead to LTP are still not fully understood.

10.1.2 Temporal Aspects

The essential aspect of the experiments described in the previous section is the AND condition that is at the heart of Hebb's postulate: Both pre- and postsynaptic neuron have to be active in order to induce a strengthening of the synapse. However, such a summary neglects the temporal requirements for weight changes. When are two neurons considered as being active together?

In the experiment sketched in Fig. 10.3 inputs can be switched on and off with some arbitrary timing. A large increase of the synaptic efficacy can be induced by stimulating the W and the S pathway simultaneously. If there is a certain delay in the stimulation of W and S then the synaptic efficacy is only slightly increased or even reduced. Stimulating W and S alternatively with a long interval in between does not result in any change at all (Debanne et al., 1994; Levy and Stewart, 1983; Gustafsson et al., 1987). With this setup, however, a precise measurement of the timing conditions for synaptic changes is difficult, because pre- and postsynaptic activity is generated by extracellular electrodes. With modern patch-clamp techniques it is possible to stimulate or record from one or several neurons intracellularly. Pairing experiments with multiple intracellular electrodes in synaptically coupled neurons have opened the possibility to study synaptic plasticity at an excellent spatial and temporal resolution (Zhang et al., 1998; Markram et al., 1997; Bi and Poo, 1998,1999; Debanne et al., 1998; Magee and Johnston, 1997); see Bi and Poo (2001) for a review.
Figure 10.4: Timing requirements between pre- and postsynaptic spikes. Synaptic changes Δw_{ij} occur only if presynaptic firing at $t_{j}^{(f)}$ and postsynaptic activity at $t_{i}^{(f)}$ occur sufficiently close to each other. Experimentally measured weight changes (circles) as a function of $t_{j}^{(f)} - t_{i}^{(f)}$ in milliseconds overlayed on a schematic two-phase learning window (solid line). A positive change (LTP) occurs if the presynaptic spike precedes the postsynaptic one; for a reversed timing, synaptic weights are decreased. Data points redrawn after the experiments of Bi and Poo (1998).

Figure 10.4 illustrates a pairing experiment with cultured hippocampal neurons where the presynaptic neuron (j) and the postsynaptic neuron (i) are forced to fire spikes at time $t_{j}^{(f)}$ and $t_{i}^{(f)}$, respectively (Bi and Poo, 1998). The resulting change in the synaptic efficacy Δw_{ij} after several repetitions of the experiment turns out to be a function of the spike time differences $t_{j}^{(f)} - t_{i}^{(f)}$ ('spike-time dependent synaptic plasticity'). Most notably, the direction of the change depends critically, i.e., on a millisecond time-scale, on the relative timing of pre- and postsynaptic spikes. The synapse is strengthened if the presynaptic spike occurs shortly before the postsynaptic neuron fires, but the synapse is weakened if the sequence of spikes is reversed; cf. Fig. 10.4A. This observation is indeed in agreement with Hebb's postulate because presynaptic neurons that are active slightly before the postsynaptic neuron are those which 'take part in firing it' whereas those that fire
later obviously did not contribute to the postsynaptic action potential. An asymmetric learning window such as the one in Fig. 10.4, is thus an implementation of the causality requirement that is implicit in Hebb's principle.

Similar results on spike-time dependent synaptic plasticity have been found in various neuronal systems (Zhang et al., 1998; Markram et al., 1997; Egger et al., 1999; Bi and Poo, 1998, 1999; Debanne et al., 1998), but there are also characteristic differences. Synapses between parallel fibers and 'Purkinje-cells' in the cerebellar-like structure of electric fish, for example, show the opposite dependence on the relative timing of presynaptic input and the (so-called 'broad') postsynaptic spike. In this case the synapse is weakened if the presynaptic input arrives shortly before the postsynaptic spike (anti-Hebbian plasticity). If the timing is the other way round then the synapse is strengthened. A change in the timing of less than 10 ms can change the effect from depression to potentiation (Bell et al., 1997b).
10.2 Rate-Based Hebbian Learning

In order to prepare the ground for a thorough analysis of spike-based learning rules in Section 10.3 we will first review the basic concepts of correlation-based learning in a firing rate formalism.

10.2.1 A Mathematical Formulation of Hebb’s Rule

In order to find a mathematically formulated learning rule based on Hebb’s postulate we focus on a single synapse with efficacy w_{ij} that transmits signals from a presynaptic neuron j to a postsynaptic neuron i. For the time being we content ourselves with a description in terms of mean firing rates. In the following, the activity of the presynaptic neuron is denoted by ν_j and that of the postsynaptic neuron by ν_i.

There are two aspects in Hebb’s postulate that are particularly important, viz. locality and cooperativity. Locality means that the change of the synaptic efficacy can only depend on local variables, i.e., on information that is available at the site of the synapse, such as pre- and postsynaptic firing rate, and the actual value of the synaptic efficacy, but not on the activity of other neurons. Based on the locality of Hebbian plasticity we can make a rather general ansatz for the change of the synaptic efficacy,

$$\frac{d}{dt} w_{ij} = F(w_{ij}; \nu_i, \nu_j) .$$ \hspace{1cm} (10.1)

Here, dw_{ij}/dt is the rate of change of the synaptic coupling strength and F is a so far undetermined function (Brown et al., 1991; Kohonen, 1984; Sejnowski and Tesauro, 1989). We may wonder whether there are other local variables (e.g., the membrane potential u_i) that should be included as additional arguments of the function F. It turns out that in standard rate models this is not necessary, since the membrane potential u_i is uniquely determined by the postsynaptic firing rate, $\nu_i = g(u_i)$, with a monotone gain function g.

The second important aspect of Hebb’s postulate, cooperativity, implies that pre- and postsynaptic neuron have to be active simultaneously for a synaptic weight change to occur. We can use this
property to learn something about the function \(F \). If \(F \) is sufficiently well-behaved, we can expand \(F \) in a Taylor series about \(\nu_i = \nu_j = 0 \),

\[
\frac{d}{dt} w_{ij} = c_0(w_{ij}) + c_{\text{post}1}(w_{ij}) \nu_i + c_{\text{pre}1}(w_{ij}) \nu_j + c_{\text{pre}2}(w_{ij}) \nu_i^2 + c_{\text{post}2}(w_{ij}) \nu_j^2 + c_{\text{corr}2}(w_{ij}) \nu_i \nu_j + O(\nu^3). \tag{10.2}
\]

The term containing \(c_{\text{corr}2} \) on the right-hand side of (10.2) is bilinear in pre- and postsynaptic activity. This term implements the AND condition for cooperativity which makes Hebbian learning a useful concept.

The simplest choice for our function \(F \) is to fix \(c_{\text{corr}2} \) at a positive constant and to set all other terms in the Taylor expansion to zero. The result is the prototype of Hebbian learning,

\[
\frac{d}{dt} w_{ij} = c_{\text{corr}2} \nu_i \nu_j. \tag{10.3}
\]

We note in passing that a learning rule with \(c_{\text{corr}2} < 0 \) is usually called anti-Hebbian because it weakens the synapse if pre- and postsynaptic neuron are active simultaneously; a behavior that is just contrary to that postulated by Hebb. A learning rule with only first-order terms gives rise to so-called non-Hebbian plasticity, because pre- or postsynaptic activity alone induces a change of the synaptic efficacy. More complicated learning rules can be constructed if higher-order terms in the expansion of Eq. (10.2), such as \(\nu_i \nu_j^2, \nu_i^2 \nu_j, \nu_i^2 \nu_j^2 \), etc., are included.

The dependence of \(F \) on the synaptic efficacy \(w_{ij} \) is a natural consequence of the fact that \(w_{ij} \) is bounded. If \(F \) was independent of \(w_{ij} \) then the synaptic efficacy would grow without limit if the same potentiating stimulus is applied over and over again. A saturation of synaptic weights can be achieved, for example, if the parameter \(c_{\text{corr}2} \) in Eq. (10.2) tends to zero as \(w_{ij} \) approaches its maximum value, say \(w_{\text{max}} = 1 \), e.g.,

\[
c_{\text{corr}2}(w_{ij}) = \gamma_2 (1 - w_{ij}) \tag{10.4}
\]

with a positive constant \(\gamma_2 \).

Hebb's original proposal does not contain a rule for a decrease of synaptic weights. In a system where synapses can only be strengthened, all efficacies will finally saturate at their upper maximum value. An option of decreasing the weights (synaptic depression) is therefore a necessary requirement for any useful learning rule. This can, for example, be achieved by weight decay, which can be implemented in Eq. (10.2) by setting

\[
c_0(w_{ij}) = - \gamma_0 \ w_{ij}. \tag{10.5}
\]

Here, \(\gamma_0 \) is (small) positive constant that describes the rate by which \(w_{ij} \) decays back to zero in the absence of stimulation. Our formulation (10.2) is hence sufficiently general to allow for a combination
of synaptic potentiation and depression. If we combine Eq. (10.4) and Eq. (10.5) we obtain the learning rule

\[
\frac{d}{dt} w_{ij} = \gamma_2 (1 - w_{ij}) \nu_i \nu_j - \gamma_0 w_{ij}.
\] (10.6)

The factors \((1 - w_{ij})\) and \(w_{ij}\) that lead to a saturation at \(w_{ij} = 1\) for continued stimulation and an exponential decay to \(w_{ij} = 0\) in the absence of stimulation, respectively, are one possibility to implement 'soft' bounds for the synaptic weight. In simulations, 'hard' bounds are often used to restrict the synaptic weights to a finite interval, i.e., a learning rule with weight-independent parameters is only applied as long as the weight stays within its limits.

Another interesting aspect of learning rules is competition. The idea is that synaptic weights can only grow at the expense of others so that if a certain subgroup of synapses is strengthened, other synapses to the same postsynaptic neuron have to be weakened. Competition is essential for any form of self-organization and pattern formation. Practically, competition can be implemented in simulations by normalizing the sum of all weights converging onto the same postsynaptic neuron (Miller and MacKay, 1994); cf. Section 11.1.3. Though this can be motivated by a limitation of common synaptic resources such a learning rule violates locality of synaptic plasticity. On the other hand, competition of synaptic weight changes can also be achieved with purely local learning rules (Kistler and van Hemmen, 2000a; Kempter et al., 2001; Oja, 1982; Song et al., 2000).

10.2.1.1 Example: Postsynaptic gating versus presynaptic gating

Equation (10.6) is just one possibility to specify rules for the growth and decay of synaptic weights. In the framework of Eq. (10.2), other formulations are conceivable; cf. Table 10.1. For example, we can define a learning rule of the form

\[
\frac{d}{dt} w_{ij} = \gamma \nu_i [\nu_j - \nu_\theta (w_{ij})],
\] (10.7)

where \(\gamma\) is a positive constant and \(\nu_\theta\) is some reference value that may depend on the current value of \(w_{ij}\). A weight change occurs only if the postsynaptic neuron is active, \(\nu_i > 0\). We say that weight changes are 'gated' by the postsynaptic neuron. The direction of the weight change depends on the sign of the expression in the rectangular brackets. Let us suppose that the postsynaptic neuron is driven by a subgroup of highly active presynaptic neurons (\(\nu_i > 0\) and \(\nu_j > \nu_\theta\)). Synapses that connect the postsynaptic neuron and one of the highly active presynaptic neurons (\(\nu_j > 0\) and \(\nu_i > \nu_\theta\)). Synapses that connect the postsynaptic neuron and one of the highly active presynaptic neurons are strengthened while the efficacy of other synapses that have not been activated is decreased. Firing of the postsynaptic neuron thus leads to LTP at the active pathway ('homosynaptic LTP') and at the same time to LTD at the inactive synapses ('heterosynaptic LTD'); for reviews see Linden and Connor (1995); Brown et al. (1991); Bi and Poo (2001).

A particularly interesting case from a theoretical point of view is the choice \(\nu_\theta (w_{ij}) = w_{ij}\), i.e.,

\[
\frac{d}{dt} w_{ij} = \nu_i \nu_j - w_{ij}.
\] (10.8)
The synaptic weights thus approach the fixed point \(w_{ij} = \nu_j \) whenever the postsynaptic neuron is active. In the stationary state, the set of weight values \(w_{ij} \) reflects the presynaptic firing pattern \(\nu_j \), \(1 \leq j \leq N \). In other words, the presynaptic firing pattern is stored in the weights. This learning rule is an important ingredient of competitive unsupervised learning (Grossberg, 1976; Kohonen, 1984).

Let us now turn to a learning rule where synaptic changes are `gated' by the presynaptic activity \(\nu_j \). The corresponding equation has the same form as Eq. (10.7) except that the role of pre- and postsynaptic firing rate are exchanged,

\[
\frac{d}{dt} w_{ij} = \gamma (\nu_i - \langle \nu_i \rangle) (\nu_j - \langle \nu_j \rangle).
\]

(10.9)

In this case, a change of synaptic weights can only occur if the presynaptic neuron is active \((\nu_j > 0) \).

The direction of the change is determined by the activity of the postsynaptic neuron. For \(\gamma > 0 \), the synapse is strengthened if the postsynaptic cell is highly active \((\nu_i > \nu_\theta) \); otherwise it is weakened.

For \(\gamma < 0 \), the correlation term has a negative sign and the learning rule (10.9) gives rise to anti-Hebbian plasticity, which has an interesting stabilizing effect on the postsynaptic firing rate. If the presynaptic firing rates are kept constant, the postsynaptic firing rate \(\nu_i \) will finally converge to the reference value \(\nu_\theta \). To see why let us consider a simple rate neuron with output rate \(\nu_i = g(\sum_j w_{ij} \nu_j) \).

For \(\nu_i < \nu_\theta \), all synapses are strengthened \((dw_{ij}/dt > 0 \) for all \(j \)) and the overall input strength \(h_i = \sum_j w_{ij} \nu_j \) is increasing. Since \(g \) is a monotonously growing function of \(h_i \), the output rate tends to \(\nu_\theta \). On the other hand, if \(\nu_i > \nu_\theta \), all synaptic efficacies decrease and so does \(\nu_i \). Hence, \(\nu_i = \nu_\theta \) is a globally attractive fixed point of the postsynaptic activity. Some of the detailed spike-based learning rule, to be discussed below, will show a similar stabilization of the postsynaptic activity.

10.2.1.2 Example: Covariance rule

Sejnowski and Tesauro (1989) have suggested a learning rule of the form

\[
\frac{d}{dt} w_{ij} = \gamma (\nu_i - \langle \nu_i \rangle) (\nu_j - \langle \nu_j \rangle),
\]

(10.10)

called covariance rule. This rule is based on the idea that the rates \(\nu_i(t) \) and \(\nu_j(t) \) fluctuate around mean values \(\langle \nu_i \rangle, \langle \nu_j \rangle \) that are taken as running averages over the recent firing history. To allow a mapping of the covariance rule to the general framework of Eq. (10.2), the mean firing rates \(\langle \nu_i \rangle \) and
\langle \nu_j \rangle \) have to be constant in time. We will return to the covariance rule in Chapter 11.

Table 10.1: The change \(\frac{d}{dt} w_{ij} \) of a synapse from \(j \) to \(i \) for various Hebb rules as a function of pre- and postsynaptic activity. ‘ON’ indicates a neuron firing at high rate (\(\nu > 0 \)), whereas ‘OFF’ means an inactive neuron (\(\nu = 0 \)). From left to right: Standard Hebb rule, Hebb with decay, pre- and postsynaptic gating, covariance rule. The parameters are \(0 < \nu_\theta < \nu_{\text{max}} \) and \(0 < c_0 < (\nu_{\text{max}})^2 \).

<table>
<thead>
<tr>
<th>post (\nu_i)</th>
<th>pre (\nu_j)</th>
<th>(\frac{d}{dt} w_{ij})</th>
<th>(\frac{d}{dt} \nu_i)</th>
<th>(\frac{d}{dt} \nu_j)</th>
<th>(\frac{d}{dt} \nu_{ij})</th>
<th>(\frac{d}{dt} \nu_{\theta})</th>
<th>(\frac{d}{dt} \nu_{ij}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

10.2.1.3 Example: Quadratic terms

All of the above learning rules had \(c_{\text{pre}}^2 = c_{\text{post}}^2 = 0 \). Let us now consider a nonzero quadratic term \(c_{\text{post}}^2 = -\gamma w_{ij} \). We take \(c_{\text{corr}}^2 = \gamma > 0 \) and set all other parameters to zero. The learning rule

\[
\frac{d}{dt} w_{ij} = \gamma [\nu_i (\nu_j - w_{ij}) + \nu_i^2]
\]

is called Oja's rule (Oja, 1982). As we will see in Chapter 11.1.3, Oja's rule converges asymptotically to synaptic weights that are normalized to \(\sum_j w_{ij}^2 = 1 \) while keeping the essential Hebbian properties of the standard rule of Eq. (10.3). We note that normalization of \(\sum_j w_{ij}^2 \) implies competition between the synapses that make connections to the same postsynaptic neuron, i.e., if some weights grow others must decrease.

10.2.1.4 Example: Bienenstock-Cooper-Munroe rule

Higher terms in the expansion on the right-hand side of Eq. (10.2) lead to more intricate plasticity schemes. As an example, let us consider a generalization of the presynaptic gating rule in Eq. (10.9)

\[
\frac{d}{dt} w_{ij} = \eta \phi(\nu_i - \nu_\theta) \nu_j - \gamma w_{ij}
\]
with a nonlinear function \(\phi \) and a reference rate \(\nu_r \). If we replace \(\nu_r \) by a running average of the output rate, \(\langle \nu_i \rangle \), then we obtain the so-called Bienenstock-Cooper-Munroe (BCM) rule (Bienenstock et al., 1982).

Some experiments (Artola et al., 1990; Ngezahayo et al., 2000; Artola and Singer, 1993) suggest that the function \(\phi \) should look similar to that sketched in Fig. 10.5. Synaptic weights do not change as long as the postsynaptic activity stays below a certain minimum rate, \(\nu_G \). For moderate levels of postsynaptic excitation, the efficacy of synapses activated by presynaptic input is decreased. Weights are increased only if the level of postsynaptic activity exceeds a second threshold, \(\nu_e \). The change of weights is restricted to those synapses which are activated by presynaptic input, hence the `gating' factor \(\nu_j \) in Eq. (10.12). By arguments completely analogous to the ones made above for the presynaptically gated rule, we can convince ourselves that the postsynaptic rate has a fixed point at \(\nu_e \).

For the form of the function shown in Fig. 10.5 this fixed point is unstable. In order to avoid that the postsynaptic firing rate blows up or decays to zero, it is therefore necessary to turn \(\nu_e \) into an adaptive variable (Bienenstock et al., 1982). We will come back to the BCM rule towards the end of this chapter.

![Figure 10.5: Bidirectional learning rule.](http://diwww.epfl.ch/~gerstner/SPNM/node72.html)

Synaptic plasticity is characterized by two thresholds for the postsynaptic activity (Bienenstock et al., 1982). Below \(\nu_G \) no synaptic modification occurs, between \(\nu_G \) and \(\nu_e \) synapses are depressed, and for postsynaptic firing rates beyond \(\nu_e \) synaptic potentiation can be observed. A similar dependence is found if weight changes are plotted as a function of the postsynaptic potential rather than the postsynaptic rate (Ngezahayo et al., 2000; Artola and Singer, 1993).
10.3 Spike-Time Dependent Plasticity

In this section we study synaptic plasticity at the level of individual spikes and focus on changes in the synaptic efficacy that are driven by temporal correlations between presynaptic spike arrival and postsynaptic firing.

We have seen in Chapter 1.4 that the neuronal code is still far from being fully understood. In particular, the relevance of precisely timed spikes in neuronal systems is a fundamental, yet unsolved question (Rieke et al., 1996). Nevertheless, there are neuronal systems for which the relevance of temporal information has been clearly shown. Prominent examples are the electro-sensory system of electric fish and the auditory system of barn owls (Konishi, 1993; Carr and Konishi, 1990; Konishi, 1986; Carr, 1993; Heiligenberg, 1991). If timing of spikes is important then we have to deal with the following questions: How does the timing of spikes influence weight changes? How do weight changes influence the timing of spikes?

10.3.1 Phenomenological Model

The experiments described in the Section 10.1 show that changes of the synaptic efficacy are driven by pre- and postsynaptic activity. The amplitude and even the direction of the change depend on the relative timing of presynaptic spike arrival and postsynaptic triggering of action potentials.

In the following we develop a phenomenological model for spike-time dependent synaptic plasticity. We assume that apart from an activity-independent weight decay all changes are triggered by pre- or postsynaptic action potentials. For the sake of simplicity - and for want of detailed knowledge - we take weight changes to be instantaneous, i.e., the synaptic efficacy is a piece-wise continuous function of time with steps whenever a spike occurs. The amplitude of each step depends on the relative timing of previous spikes; cf. Fig. 10.6.

Let us first concentrate on the effect of presynaptic spikes. Each spike that arrives at the presynaptic terminal can trigger a change in the synaptic efficacy even without additional postsynaptic action potentials. In the case of so-called (non-Hebbian) presynaptic LTP, the amplitude $a_{1\text{pre}}$ of these changes is positive; cf. Fig. 10.6B. In addition to this non-Hebbian effect there is also a contribution to the change that depends on the time since the last postsynaptic action potential(s). In analogy to the spike response formalism of Chapter 4.2 we use an integral kernel $a_{2\text{pre, post}}$ to describe the amplitude of the change in the synaptic efficacy. Altogether we have
\[
\frac{d}{dt} w_{ij}(t) = S_j(t) \left[a_1^{\text{pre}} + \int_{-\infty}^{\infty} a_2^{\text{pre, post}}(s) S_i(t-s) \, ds \right], \quad (10.13)
\]

where \(S_j(t) = \sum_f \delta(t-t_j(f)) \) and \(S_i(t) = \sum_f \delta(t-t_i(f)) \) are pre- and postsynaptic spike trains, respectively.

The value of the kernel \(a_2^{\text{pre, post}}(s) \) gives the weight change if a postsynaptic action potential is followed by presynaptic spike arrival with delay \(s \). In pyramidal cells of the hippocampus, for example, this term is negative; cf. Fig. 10.4.

Changes in the synaptic efficacy can also be triggered by postsynaptic action potentials. Similarly to presynaptically triggered changes, the amplitude of the weight change consists of at least two contributions, viz., a non-Hebbian term \(a_1^{\text{post}} \) and the correlation term described by an integral kernel \(a_2^{\text{post, pre}} \). Together with an activity-independent term \(a_0 \) the total change in the synaptic efficacy reads

\[
\frac{d}{dt} w_{ij}(t) = a_0 + S_j(t) \left[a_1^{\text{pre}} + \int_{-\infty}^{\infty} a_2^{\text{pre, post}}(s) S_i(t-s) \, ds \right] + S_i(t) \left[a_1^{\text{post}} + \int_{-\infty}^{\infty} a_2^{\text{post, pre}}(s) S_j(t-s) \, ds \right], \quad (10.14)
\]

cf. Kistler and van Hemmen (2000a). Note that all parameters \(a_0, a_1^{\text{pre}}, a_1^{\text{post}} \) and all kernels \(a_2^{\text{pre, post}}, a_2^{\text{post, pre}} \) may also depend upon the actual value of the synaptic efficacy. A possible consequence of this dependence, for example, is that it becomes increasingly difficult to strengthen a synapse that has already been potentiated and, vice versa, to weaken a depressed synapse (Ngezahayo et al., 2000). This can be exploited in a model in order to ensure that the weight \(w_{ij} \) stays bounded; cf. Section [1]. Here and in the following we will suppress this dependence for the sake of brevity.

Equation (10.14) can easily be extended so as to include more complex dependencies between pre- and postsynaptic spikes or between different consecutive pre- or postsynaptic spikes. Analogously to Eq. (10.2) we can include higher-order terms such as \(S_j(t) \int_{-\infty}^{\infty} a_2^{\text{pre, pre}}(s) S_i(t-s) \, ds \) and \(S_i(t) \int_{-\infty}^{\infty} a_2^{\text{post, post}}(s) S_j(t-s) \, ds \) that are quadratic in pre- or postsynaptic spike trains. Nevertheless, the essence of Hebbian synaptic plasticity is captured by the terms that are bilinear in the pre- and postsynaptic spike train. The terms containing \(a_2^{\text{pre, post}} \) and \(a_2^{\text{post, pre}} \) describe the form of the ‘learning window’ such as the one shown in Fig. 10.4. The kernel \(a_2^{\text{post, pre}}(s) \), which is usually positive, gives the amount of the weight change when a presynaptic spike is followed by a postsynaptic action potential with delay \(s \); cf. the left half of the graph shown in Fig. 10.4. The kernel \(a_2^{\text{pre, post}}(s) \) describes the right half of the graph, i.e., the amount of change if the timing is the other way round. Since experimental results on spike-time dependent plasticity are usually presented in graphical form such as in Fig. 10.4, we define a ‘learning window’ \(W(s) \) as

\[
W(s) = \begin{cases}
 a_2^{\text{post, pre}}(-s) & \text{if } s < 0, \\
 a_2^{\text{pre, post}}(s) & \text{if } s > 0,
\end{cases} \quad (10.15)
\]

where \(s = t_j^{(f)} - t_i^{(f)} \) is the delay between presynaptic spike arrival and postsynaptic firing. Note that \(s < 0 \) refers to presynaptic spike arrival before postsynaptic firing.
Figure 10.6: The lower part of each graph shows presynaptic spikes (neuron j) and postsynaptic spikes (neuron i). The upper part shows the evolution of the weight w_{ij}. A. A zero-order term $a_0 < 0$ leads to a decrease of the synaptic weight w_{ij}. B. Linear order terms change the weight whenever a presynaptic spike arrives or a postsynaptic spike is fired. For $a_{pre} > 0$, presynaptic spike arrival at time $t_j^{(f)}$ leads to a positive weight change $w_{ij} = a_{pre}$. For $a_{post} < 0$, each postsynaptic spike leads to a negative weight change. C. We assume Hebbian plasticity with a_{post}. $a_{post}(t_i^{(f)} - t_j^{(f)}) = W(t_i^{(f)} - t_j^{(f)}) > 0$ for $t_j^{(f)} < t_i^{(f)}$. Thus, if a postsynaptic spike $t_i^{(f)}$ is fired shortly after presynaptic spike arrival at $t_j^{(f)}$, the weight change $W(t_j^{(f)} - t_i^{(f)}) + a_{post}$ at the moment of the postsynaptic spike can be positive, even if $a_{post} < 0$.

10.3.1.1 Example: Exponential learning windows

A simple choice for the learning window - and thus for the kernels $a_{post, pre}$ and $a_{pre, post}$ - inspired by Fig. 10.4 is

$$w(s) = \begin{cases}
A_+ \exp[s/\tau_1] & \text{for } s < 0, \\
A_- \exp[-s/\tau_2] & \text{for } s > 0,
\end{cases} \quad (10.16)$$
with some constants A_\pm and $\tau_{1,2}$. If $A_+ > 0$ and $A_- < 0$ then the synaptic efficacy is increased if presynaptic spike arrives slightly before the postsynaptic firing ($W(s) > 0$ for $s < 0$) and the synapse is weakened if presynaptic spikes arrive a few milliseconds after the output spike ($W(s) < 0$); cf. Fig. 10.7.

![Figure 10.7: Two-phase learning window W as a function of the time difference $s = t_f^{(p)} - t_i^{(f)}$ between presynaptic spike arrival and postsynaptic firing; cf. Eq. (10.16) with $A_+ = -A_- = 1$, $\tau_1 = 10$ ms, and $\tau_2 = 20$ ms (Zhang et al., 1998).](http://diwww.epfl.ch/~gerstner/SPNM/node73.html)

In order to obtain a realistic description of synaptic plasticity we have to make sure that the synaptic efficacy stays within certain bounds. Excitatory synapses, for example, should have a positive weight and must not exceed a maximum value of, say, $w_{ij} = 1$. We can implement these constraints in Eq. (10.16) by setting $A_+ = w_{ij} a_+$ and $A_- = (1 - w_{ij}) a_-$. The remaining terms in Eq. (10.14) can be treated analogously. For each positive term (leading to a weight increase) we assume a weight dependence $\propto (1 - w_{ij})$, while for each negative term (leading to weight decrease) we assume a weight dependence $\propto w_{ij}$. The synapse is thus no longer strengthened (or weakened) if the weight reaches its upper (lower) bound (Kistler and van Hemmen, 2000a; van Rossum et al., 2000).

10.3.2 Consolidation of Synaptic Efficacies

So far we have emphasized that the synaptic coupling strength is a dynamical variable that is subject to rapid changes dependent on pre- and postsynaptic activity. On the other hand, it is generally accepted that long-lasting modifications of the synaptic efficacy form the basis of learning and memory. How can fast dynamical properties be reconciled with long-lasting modifications?

Most learning theories dealing with artificial neural networks concentrate on the *induction* of weight changes. As soon as the ‘learning session’ is over, synaptic plasticity is `switched off’ and weights are taken as fixed parameters. In biological systems, a similar mechanism can be observed during development. There are critical periods in the early life time of an animal where certain synapses show a form of plasticity that is `switched off’ after maturation (Crepel, 1982). The majority of synapses, especially those involved in higher brain functions, however, keep their plasticity throughout their life. At first glance there is thus the risk that previously stored information is simply overwritten by new input (`palimpsest property’). Grossberg has coined the term `stability-plasticity dilemma’ for this problem (Carpenter and Grossberg, 1987; Grossberg, 1987).

To address these questions, Fusi et al. (2000) have studied the problem of the consolidation of synaptic weights. They argue that bistability of synaptic weights can solve the stability-plasticity dilemma. More specifically, the dynamics of synaptic efficacies is characterized by two stable fixed points at $w_{ij} = 0$ and $w_{ij} = 1$. In the absence of stimulation the synaptic weight will thus settle down at either one of these values. Pre- or postsynaptic activity can lead to a transition from one fixed point to the other, but only if the duration of the stimulus presentation or its amplitude exceeds a certain threshold. In other words, synapses can be switched on or off but this will happen only for those synapses where the learning threshold is exceeded. Learning thus affects only a few synapses so that previously stored information is mostly preserved.

In the framework of Eq. (10.14), such a dynamics for synaptic weights can be implemented by setting
\[a_0(w_{ij}) = -\gamma w_{ij} (1 - w_{ij}) (w - w_{ij}) , \quad (10.17) \]

where \(0 < w \theta < 1 \) and \(\gamma > 0 \). In the absence of stimulation, small weights \((w_{ij} < w \theta) \) decay to zero whereas large weights \((w_{ij} > w \theta) \) increase towards one. Spike activity thus has to drive the synaptic weight across the threshold \(w \theta \) before long-lasting changes take place. A combination of Eqs. (10.17) and (10.14) can therefore be considered as a model of induction and consolidation of synaptic plasticity.

10.3.3 General Framework (*)

In Eq. (10.14) weight changes occur instantaneously at the moment of presynaptic spike arrival or postsynaptic firing. In this subsection we will develop a slightly more general equation for the evolution of synaptic weights. The approach taken in this section can be seen as a generalization of the Taylor expansion in the rate model of Section 10.2 to the case of spiking neurons.

We recall that we started our formulation of rate-based Hebbian learning from a general formula

\[\frac{d}{dt} w_{ij} = F(w_{ij}; \nu_i, \nu_j) \quad (10.18) \]

where weight changes are given as a function of the weight \(w_{ij} \) as well as of the pre- and postsynaptic rates \(\nu_j, \nu_i \); cf. Eq. (10.1). The essential assumption was that neuronal activity is characterized by firing rates that change slowly enough to be considered as stationary. Hebbian rules followed then from a Taylor expansion of Eq. (10.18). In the following, we keep the idea of an expansion, but drop the simplifications that are inherent to a description in terms of a mean firing rate.

The internal state of spiking neurons (e.g., integrate-and-fire or Spike Response Model neurons) is characterized by the membrane potential \(u \) which in turn depends on the input and the last output spike. The generalization of Eq. (10.18) to the case of spiking neurons is therefore

\[\frac{d}{dt} w_{ij}(t) = F \left(w_{ij}(t); \{u_{i,\text{post}}(t') < t\}, \{u_{j,\text{pre}}(t' < t)\} \right) , \quad (10.19) \]

where \(F \) is now a functional of the time course of pre- and postsynaptic membrane potential at the location of the synapse. Our notation with \(t' \) and \(t'' \) is intended to indicate that the weight changes do not only depend on the momentary value of the pre- and postsynaptic potential, but also on their history \(t' < t \) and \(t'' < t \). The weight value \(w_{ij} \) and the local value of pre- and postsynaptic membrane potential are the essential variables that are available at the site of the synapse to control the up- and down-regulation of synaptic weights. In detailed neuron models, \(F \) would depend not only on the weight \(w_{ij} \) and membrane potentials, but also on all other variables that are locally available at the site of the synapse. In particular, there could be a dependence upon the local calcium concentration; cf. Section 10.4.

In analogy to the approach taken in Section 10.2, we now expand the right-hand side of Eq. (10.19) about the resting state \(u_{i,\text{post}} = u_{j,\text{pre}} = u_{\text{rest}} \) in a Volterra series (Palm and Poggio, 1977; van Hemmen et al., 2000; Volterra, 1959). For the sake of simplicity we shift the voltage scale so that \(u_{\text{rest}} = 0 \). We find

\[\frac{d w_{ij}}{dt} = a_0(w_{ij}) \int_{0}^{\infty} \alpha_{\text{pre}}^{\text{pre}}(w_{ij}; s) u_{j,\text{pre}}(t - s) \, ds \]
The next terms would be quadratic in u_{ipost} or u_{jpre} and have been neglected. Equation (10.20) provides a framework for the formulation of spike-based learning rules and may be seen as the generalization of the general rate-based model that we have derived in Section 10.2.

In order to establish a connection with various other formulations of spike-based learning rules, we consider the time course of the pre- and postsynaptic membrane potential in more detail. At the presynaptic terminal, the membrane potential is most of the time at rest, except when an action potential arrives. Since the duration of each action potential is short, the presynaptic membrane potential can be approximated by a train of δ functions

$$u_{jpre}(t) = \sum_j \delta(t - t_j^{(f)})$$

(10.21)

where $t_j^{(f)}$ denotes the spike arrival times at the presynaptic terminal.

The situation at the postsynaptic site is somewhat more complicated. For the simple spike response model SRM0, the membrane potential can be written as

$$u_{ipost}(t) = \eta(t - \hat{t}_i) + h_i(t),$$

(10.22)

where \hat{t}_i is the last postsynaptic firing time. In contrast to the usual interpretation of terms on the right-hand side of Eq. (10.22), the function η is now taken as the time course of the back propagating action potential at the location of the synapse. Similarly, $h_i(t)$ is the local postsynaptic potential at the synapse.

For a further simplification of Eq. (10.20), we need to make some approximations. Specifically we will explore two different approximation schemes. In the first scheme, we suppose that the dominating term on the right-hand side of Eq. (10.22) is the back propagating action potential, while in the second scheme we neglect η and consider h as the dominant term. Let us discuss both approximations in turn.

10.3.3.1 (i) Sharply peaked back propagating action potential

We assume that the back propagating action potential is sharply peaked, i.e., it has a large amplitude and short duration. In this case, the membrane potential of the postsynaptic neuron is dominated by the back propagating action potential and the term $h(t)$ in Eq. (10.22) can be neglected. Furthermore η can be approximated by a δ function. The membrane potential at the postsynaptic site reduces then to a train of pulses,

$$u_{ipost}(t) = \sum_j \delta(t - t_j^{(f)})$$

(10.23)
where \(t_{i(f)} \) denotes the postsynaptic firing times. Equation (10.23) is a sensible approximation for synapses that are located on or close to the soma so that the full somatic action potential is `felt' by the postsynaptic neuron. For neurons with active processes in the dendrite that keep the back propagating action potential well focused, Eq. (10.23) is also a reasonable approximation for synapses that are further away from the soma. A transmission delay for back propagation of the spike from the soma to the site of the synapse can be incorporated at no extra cost.

If we insert Eqs. (10.21) and (10.23) into Eq. (10.20) we find

\[
\frac{dw_{ij}}{dt} = a_0 + \sum_f \alpha^{\text{pre}}_1(t - t_{j(f)}) + \sum_f \alpha^{\text{post}}_1(t - t_{i(f)})
\]

\[
+ \sum_f \sum_f \alpha^{\text{corr}}_2(t - t_{j(f)}, t - t_{i(f)}) + \ldots, \tag{10.21}
\]

where we have omitted the \(w_{ij} \) dependence of the right-hand side terms. In contrast to Eq. (10.14) weight changes are now continuous. A single presynaptic spike at time \(t_{j(f)} \), for example, will cause a weight change that builds up during some time after \(t_{j(f)} \). An example will be given below in Eq. (10.31).

In typical plasticity experiments, the synaptic weight is monitored every few hundred milliseconds so that the exact time course of the functions, \(\alpha^{\text{pre}}_1 \), \(\alpha^{\text{post}}_1 \) and \(\alpha^{\text{corr}}_2 \) is not measured. To establish the connection to Eq. (10.14), we now assume that the weight changes are rapid compared to the time scale of weight monitoring. In other words, we make the replacement

\[
\alpha^{\text{pre}}_1(t - t_{j(f)}) \rightarrow a^{\text{pre}}_1 \delta(t - t_{j(f)}) \tag{10.24}
\]

\[
\alpha^{\text{post}}_1(t - t_{i(f)}) \rightarrow a^{\text{post}}_1 \delta(t - t_{i(f)}) \tag{10.25}
\]

where \(a^{\text{pre}}_1 = \int_0^\infty \alpha^{\text{pre}}_1(s) \, ds \) and \(a^{\text{post}}_1 = \int_0^\infty \alpha^{\text{post}}_1(s) \, ds \). For the correlation term we exploit the invariance with respect to time translation, i.e., the final result only depends on the time difference \(t_{j(f)} - t_{i(f)} \). The weight update occurs at the moment of the postsynaptic spike if \(t_{j(f)} < t_{i(f)} \) and at the moment of the presynaptic spike if \(t_{j(f)} > t_{i(f)} \). Hence, the assumption of instantaneous update yields two terms

\[
\alpha^{\text{corr}}_2(t - t_{i(f)}, t - t_{j(f)}) \rightarrow \begin{cases}
\alpha^{\text{pre, post}}_2(t_{j(f)} - t_{i(f)}) \delta(t - t_{j(f)}) & \text{if } t_{j(f)} < t_{i(f)} \\
\alpha^{\text{post, pre}}_2(t_{i(f)} - t_{j(f)}) \delta(t - t_{i(f)}) & \text{if } t_{j(f)} > t_{i(f)}
\end{cases} \tag{10.26}
\]

Thus, for sharply peaked back propagating action potentials and rapid weight changes, the general framework of Eq. (10.20) leads us back to the Eq. (10.14).

10.3.3.2 (ii) No back propagating action potential

In the second approximation scheme, we assume that the membrane potential at the location of the synapse is dominated by the slowly varying potential \(h_i(t) \). This is, for example, a valid assumption in voltage-clamp experiments where the postsynaptic neuron is artificially kept at a constant membrane potential \(h_{\text{post}} \). This is also a good approximation for synapses that are located far away from the soma on a passive dendrite, so that the back propagation of somatic action potentials is negligible.

Let us consider a voltage clamp experiment where \(h_i(t) \) is kept at a constant level \(h_{\text{post}} \). As before, we
suppose that weight changes are rapid. If we insert
\[u_{\text{pre}}(t) = \sum_f \delta(t - t_j^{(f)}) \] and
\[u_{\text{post}}(t) = h_{\text{post}} \]
into Eq. (10.20), we find
\[
\frac{dw_{ij}}{dt} = a_0 + \sum_f a_{\text{pre}1} \delta(t - t_j^{(f)}) \]
\[
+ a_{\text{post}} h_{\text{post}} + a_{\text{corr}2} h_{\text{post}} \sum_f \delta(t - t_j^{(f)}) + \ldots
\] (10.27)

where \(a_{\text{pre}1} = \int_0^\infty \alpha_1^{\text{pre}}(s) \, ds \), \(a_{\text{post}} = \int_0^\infty \alpha_1^{\text{post}}(s) \, ds \) and \(a_{\text{corr}2} = \int_0^\infty \int_0^\infty \alpha_{\text{corr}2}(s, s') \, ds \, ds' \).

Equation (10.28) is the starting point of the theory of spike-based learning of Fusi et al. (2000). Weight changes are triggered by presynaptic spikes. The direction and value of the weight update depends on the postsynaptic membrane potential. In our framework, Eq. (10.28) is a special case of the slightly more general Eq. (10.20).
10.4 Detailed Models of Synaptic Plasticity

In the previous section we have introduced a purely phenomenological model for spike-time dependent synaptic plasticity which is at least qualitatively in agreement with experimental results. In this section we take a slightly different approach and discuss how the core idea of this model, the learning window, arises from elementary kinetic processes. We start in Section 10.4.1 with a simple mechanistic model and turn then, in Section 10.4.2 to a more detailed model with saturation. A calcium-based model is the topic of Section 10.4.3. All three models give a qualitative explanation for the learning dynamics on the level of individual spikes.

10.4.1 A Simple Mechanistic Model

The AND condition in Hebb's postulate suggests that two biochemical components are involved in the induction of LTP. We do not wish to speculate on the nature of these components, but simply call them a and b. We assume that the first component is generated by a chemical reaction chain triggered by presynaptic spike arrival. In the absence of further input, the concentration $[a]$ decays with a time constant τ_a back to its resting level $[a] = 0$. A simple way to describe this process is

$$\frac{d}{dt} [a] = - \frac{[a]}{\tau_a} + d_a \sum_f \delta(t - t_f^{(i)}) , \quad (10.28)$$

where the sum runs over all presynaptic firing times $t_f^{(i)}$. Equation (10.29) states that $[a]$ is increased at each arrival of a presynaptic spike by an amount d_a. A high level of $[a]$ sets the synapse in a state where it is susceptible to changes in its weight. The variable $[a]$ by itself, however, does not yet trigger a weight change.

To generate the synaptic change, another substance b is needed. The production of b is controlled by a second process triggered by postsynaptic spikes,
\[
\frac{\text{d}}{\text{d}t} [b] = -\frac{[b]}{\tau_a} + d_b \sum_f \delta(t - t_i^{(f)}), \tag{10.29}
\]

where \(\tau_b \) is another time constant. The sum runs over all postsynaptic spikes \(t_i^{(f)} \). Note that the second variable \([b] \) does not need to be a biochemical quantity; it could, for example, be the electrical potential caused by the postsynaptic spike itself.

Hebbian learning needs both 'substances' to be present at the same time, thus

\[
\text{d}w_{ij}^{\text{corr}} = \gamma [a(t)] [b(t)], \tag{10.30}
\]

with some rate constant \(\gamma \). The upper index \(\text{corr} \) is intended to remind us that we are dealing only with the correlation term on the right-hand side of Eq. (10.14) or Eq. (10.24).

Let us now consider the synaptic change caused by a single presynaptic spike at \(t_j^{(f)} \geq 0 \) and a postsynaptic spike \(t_i^{(f)} = t_j^{(f)} - s \). Integration of Eqs. (10.29) and (10.30) yields

\[
[a(t)] = d_a \exp\left[-\frac{(t - t_j^{(f)})}{\tau_a}\right] \Theta(t - t_j^{(f)})
\]

\[
[b(t)] = d_b \exp\left[-\frac{(t - t_i^{(f)})}{\tau_b}\right] \Theta(t - t_i^{(f)}), \tag{10.31}
\]

where \(\Theta(.) \) denotes the Heaviside step function as usual. The change caused by the pair of pulses \((t_i^{(f)}, t_j^{(f)})\), measured after a time \(T \), is

\[
\int_0^T \left(\frac{\text{d}}{\text{d}t} w_{ij}^{\text{corr}} \right) \text{d}t = \gamma d_a d_b \int_{\text{max}(t_j^{(f)}, t_i^{(f)})}^T \exp\left[-\frac{t - t_j^{(f)}}{\tau_a} - \frac{t - t_i^{(f)}}{\tau_b}\right] \text{d}t.
\]

The integral over \(t \) can be calculated explicitly. The total weight change that is obtained for \(T \gg \tau_a, \tau_b \) can be identified with the learning window. Thus we find

\[
W(s) = \begin{cases}
A \exp\left[\frac{s}{\tau_a}\right] & \text{for} \ s < 0 \\
A \exp\left[-\frac{s}{\tau_b}\right] & \text{for} \ s > 0
\end{cases}, \tag{10.32}
\]

with \(s = t_j^{(f)} - t_i^{(f)} \) and \(A = \gamma d_a d_b \tau_a \tau_b / (\tau_a + \tau_b) \). As expected, the change of the synaptic efficacy depends only on the time difference between pre- and postsynaptic spike (Gerstner et al., 1998); cf. Fig. 10.8.
Figure 10.8: Exponential learning window \(W \) as a function of the time difference \(s = t_j^{(i)} - t_i^{(j)} \) between presynaptic spike arrival and postsynaptic firing. The time constants for exponential decay are \(\tau_1 = 20\text{ms} \) for \(s < 0 \) and \(\tau_2 = 10\text{ms} \) for \(s > 0 \).

Equation (10.34) describes the change caused by a single pair of spikes. Given a train of presynaptic input spikes and a set of postsynaptic output spikes, many combinations of firing times \((t_i^{(j)}, t_j^{(i)})\) exist. Due to the linearity of the learning equation (10.31), the total change is additive, which is consistent with Eq. (10.14).

The combination of two kinetic processes \(a \) and \(b \) thus yields an exponential learning window as in Eq. (10.16) but with \(A_+ = A_- \). The learning window either describes LTP \((\gamma > 0)\) or LTD \((\gamma < 0)\), but not both. If we want to have an anti-symmetric learning window with LTP and LTD we need additional processes as detailed below.

10.4.1.1 Example: LTP and LTD

For a learning window incorporating both LTP and LTD, we need more microscopic variables. Let us suppose that, as before, we have variables \([a] \) and \([b] \) that contribute to LTP according to (10.31), viz.,

\[
\frac{d}{dt} w_{ij}^{\text{LTP}} = \gamma^{\text{LTP}} [a(t)] [b(t)].
\]

(10.33)

Similarly, we assume that there is a second set of variables \([c] \) and \([d] \), that initiate LTD according to

\[
\frac{d}{dt} w_{ij}^{\text{LTD}} = -\gamma^{\text{LTD}} [c(t)] [d(t)].
\]

(10.34)

The variables \([c] \) and \([d] \) have a dynamics analogous to Eq. (10.29) and Eq. (10.30) with amplitudes \(d_c \) and \(d_d \), and time constants \(\tau_c \) and \(\tau_d \). The total weight change is the sum of both contributions,

\[
w_{ij}^{\text{corr}} = w_{ij}^{\text{LTP}} + w_{ij}^{\text{LTD}},
\]

(10.35)

and so is the learning window, i.e.,

\[
W(s) = \begin{cases}
A_+ \exp[s/\tau_a] - A_- \exp[s/\tau_c] & \text{for } s < 0 \\
A_+ \exp[-s/\tau_b] - A_- \exp[-s/\tau_d] & \text{for } s > 0
\end{cases}
\]

(10.36)

with \(A_+ = \gamma^{\text{LTP}} d_a d_b \tau_a \tau_b / (\tau_a + \tau_b) \) and \(A_- = \gamma^{\text{LTD}} d_c d_d \tau_c \tau_d / (\tau_c + \tau_d) \) (Gerstner et al.).
We now set $d_b = 1/\tau_b$ and $d_c = 1/\tau_c$. In the limit of $\tau_b \to 0$ and $\tau_c \to 0$, we find the asymmetric two-phase learning window introduced in Eq. (10.16). Weight changes are now instantaneous. A postsynaptic spike that is triggered after a presynaptic spike arrival reads out the current value of $[a]$ and induces LTP by an amount

$$W(t_j^{(f)} - t_i^{(f)}) = \gamma^{\text{LTP}} d_a \exp \left(-\frac{t_j^{(f)} - t_i^{(f)}}{\tau_a} \right) \quad \text{for } t_j^{(f)} < t_i^{(f)}. \quad (10.37)$$

A presynaptic spike $t_j^{(f)}$ that arrives after a postsynaptic spike reads out the current value of $[d]$ and induces LTD by an amount

$$W(t_j^{(f)} - t_i^{(f)}) = -\gamma^{\text{LTD}} d_d \exp \left(-\frac{t_j^{(f)} - t_i^{(f)}}{\tau_d} \right) \quad \text{for } t_j^{(f)} > t_i^{(f)}. \quad (10.38)$$

10.4.2 A Kinetic Model based on NMDA Receptors

A model for LTP and LTD that is slightly more elaborate than the simplistic model discussed in the previous section has been developed by Senn et al. (2001b, 1997). This model is based on the assumption that NMDA receptors can be in one of three different states, a resting state, an `up' and a `down' state. Transitions between these states are triggered by presynaptic spike arrival (`rest' –> `up') and postsynaptic firing (`rest' –> `down'). The actual induction of LTP or LTD, however, requires another step, namely the activation of so-called second-messengers. The model assumes two types of second-messenger, one for LTP and one for LTD. If a presynaptic spike arrives before a postsynaptic spike, the upregulation of the NMDA receptors in combination with the activation of the first second-messenger triggers synaptic changes that lead to LTP. On the other hand, if the presynaptic spike arrives after postsynaptic firing, the NMDA receptors are downregulated and the activation of the second-messenger triggers LTD; cf. Fig. 10.9

![Figure 10.9](http://diwww.epfl.ch/~gerstner/SPNM/node74.html)
will be activated (S_{up}). Depending on the amount of activated second messengers S_{up}, postsynaptic spikes lead to LTP. Lower part: Postsynaptic spikes down-regulate NMDA receptors (N_{dn}). In the presence of N_{dn}, presynaptic spikes activate another second messenger (S_{dn}) leading to LTD.

The variables N_{up}, N_{dn}, and N_{rest} describe the portion of NMDA receptors that are in one of the three possible states ($N_{up} + N_{dn} + N_{rest} = 1$). In the absence of pre- and postsynaptic spikes, all receptors return to the rest state,

$$\frac{d}{dt} N_{rest} = \frac{N_{up}}{\tau_{N_{up}}} + \frac{N_{dn}}{\tau_{N_{dn}}}.

(10.39)$$

N_{up} and N_{dn} decay with time constants $\tau_{N_{up}}$ and $\tau_{N_{dn}}$, respectively. Whenever a presynaptic spike arrives, NMDA receptors are up-regulated from rest to the `up'-state according to

$$\frac{d}{dt} N_{up}(t) = r_{up} N_{rest}(t) \sum_f \delta(t - t_{j(f)}) - \frac{N_{up}(t)}{\tau_{N_{up}}},

(10.40)$$

where $t_{j(f)}$ is the arrival time of a presynaptic spike and r_{up} is the proportion of receptors in the `rest' state that are up-regulated. Since presynaptic spike arrival triggers release of the neurotransmitter glutamate, which is then bound to the NMDA receptors, the `up'-state can be identified with a state where the receptor is saturated with glutamate.

Firing of a postsynaptic spike at time $t_{i(f)}$ leads to a down-regulation of NMDA receptors via

$$\frac{d}{dt} N_{dn}(t) = r_{dn} N_{rest}(t) \sum_f \delta(t - t_{j(f)}) - \frac{N_{dn}(t)}{\tau_{N_{dn}}},

(10.41)$$

Senn et al. (2001b) suggest that down-regulation of the NMDA receptor is mediated by the intracellular calcium concentration that changes with each postsynaptic spike. Note that, since $N_{rest} = 1 - N_{up} - N_{dn}$, Eqs. (10.42) and (10.43) account for saturation effects due to a limited number of NMDA-receptors.

The secondary messenger S_{up}, which finally leads to LTP, is activated by postsynaptic spikes, but only if up-regulated NMDA channels are available. In the absence of postsynaptic spikes the concentration of second messengers decays with time constant $\tau_{S_{up}}$. Thus

$$\frac{d}{dt} S_{up}(t) = - \frac{S_{up}(t)}{\tau_{S_{up}}} + r_S N_{up}(t) [1 - S_{up}(t)] \sum_f \delta(t - t_{i(f)}),

(10.42)$$

where r_S is a rate constant. Since $N_{up}(t) > 0$ requires that a presynaptic spike has occurred before t, the activation of S_{up} effectively depends on the specific timing of pre- and postsynaptic spikes (`first pre, then post').

Similarly, the other second messenger S_{dn} is activated by a presynaptic spike provided that there are receptors
in their down regulated state, i.e.,
\[
\frac{d}{dt} S_{dn}(t) = - \frac{S_{dn}(t)}{\tau_{S_{dn}}} + r_{S} N_{dn}(t) [1 - S_{dn}(t)] \sum_{f} \delta(t - t_{j}^{(f)}) , \tag{10.43}
\]

where \(\tau_{S_{dn}} \) is another decay time constant. The second messenger \(S_{dn} \) is therefore triggered by the sequence ‘first post, then pre’. The factors \([1 - S_{up}] \) in Eq. (10.44) and \([1 - S_{dn}] \) in Eq. (10.45) account for the limited amount of second messengers available at the synapse.

Long-term potentiation (weight increase) depends on the presence of \(S_{up} \), long-term depression (weight decrease) on \(S_{dn} \). This is described by
\[
\frac{d}{dt} w_{ij} = \gamma_{LTP} (1 - w_{ij}) [S_{up} - \theta_{up} + \sum_{f} \delta(t - t_{i}^{(f)} - \Delta)]
- \gamma_{LTD} w_{ij} [S_{dn} - \theta_{dn} + \sum_{f} \delta(t - t_{j}^{(f)} - \Delta)] \tag{10.44}
\]

with certain parameters \(\gamma_{LTP/D} \) and \(\theta_{up/dn} \). Here, \([x]_{+} = x \Theta(x)\) denotes a piecewise linear function with \([x]_{+} = x \) for \(x > 0 \) and zero otherwise. The delay \(0 < \Delta \ll 1 \) ensures that the actual weight change occurs after the update of \(S_{up} \), \(S_{dn} \). Note that this is a third-order model. The variable \(S_{up} > 0 \), for example, is already second-order, because it depends on presynaptic spikes followed by postsynaptic action potentials. In Eq. (10.46) the postsynaptic spike is then used again in order to trigger the weight change.

10.4.2.1 Example: Low Rates

For low pre- and postsynaptic firing rates, saturation effects can be neglected and Eq. (10.46) is equivalent to the elementary model discussed in Section 10.4.1. Let us assume that a single spike induces a small change (\(r_{dn}, r_{up} \ll 1 \)) so that we can use \(N_{rest} \approx 1 \) in Eqs. (10.42) and (10.43). The equations for \(N_{up} \) and \(N_{dn} \) are then identical to those for the ‘substances’ \([a] \) and \([d] \) in Eqs. (10.29), (10.35), and (10.36).

Let us furthermore assume that interspike intervals are long compared to the decay time constants \(\tau_{S_{up}} \), \(\tau_{S_{dn}} \) in Eqs. (10.44) and (10.45). Then \(S_{up} \) is negligible except during and shortly after a postsynaptic action potential. At the moment of postsynaptic firing, \(S_{up} \) ‘reads out’ the current value of \(N_{up} \); cf. Eq. (10.44). If this value is large than \(\Theta_{up} \), it triggers a positive weight change; cf. Eq. (10.46). Similarly, at the moment of presynaptic spike arrival \(S_{dn} \) ‘reads out’ the value of \(N_{dn} \) and triggers a weight decrease. Thus, in this limit, the model of Senn et al. corresponds to an exponential time window

\[
W(s) = \begin{cases}
A_{+}(w_{ij}) \exp[s/\tau_{N_{up}}] & \text{for } s < 0 \\
A_{-}(w_{ij}) \exp[-s/\tau_{N_{dn}}] & \text{for } s > 0
\end{cases} \tag{10.45}
\]

with \(A_{+}(w_{ij}) = r_{up} (1 - w_{ij}) \) and \(A_{-}(w_{ij}) = -r_{dn} r_{S} w_{ij} \).
10.4.2.2 Example: High Rates

If we assume that all decay time constants are much longer than typical interspike intervals then the variables \(N_{\text{up/dn}} \) and \(S_{\text{up/dn}} \) will finally reach a steady state. If we neglect correlations between pre- and postsynaptic neuron by replacing spike trains by rates, we can solve for these stationary states,

\[
N_{\text{up}}^\infty = \frac{\tau_{N_{\text{up}}} r_{\text{up}} v_j}{1 + \tau_{N_{\text{up}}} r_{\text{up}} v_j + \tau_{N_{\text{dn}}} r_{\text{dn}} v_i} \quad (10.46)
\]

\[
S_{\text{up}}^\infty = \frac{\tau_{S_{\text{up}}} r_{S} N_{\text{up}} v_i}{1 + \tau_{S_{\text{up}}} r_{S} N_{\text{up}} v_i} \quad (10.47)
\]

and similar equations for \(N_{\text{dn}} \) and \(S_{\text{dn}} \). Note that \(S_{\text{up}}^\infty \) is a function of \(v_i \) and \(v_j \). If we put the equations for \(S_{\text{up}}^\infty \) and \(S_{\text{dn}}^\infty \) in Eq. (10.46) we get an expression of the form

\[
\frac{d}{dt} w_{ij} = \gamma_{\text{LTP}} (1 - w_{ij}) f_{\text{LTP}}(v_i, v_j) v_i - \gamma_{\text{LTD}} w_{ij} f_{\text{LTD}}(v_i, v_j) v_j \quad (10.48)
\]

with functions \(f_{\text{LTP}} \) and \(f_{\text{LTD}} \). We linearize \(f_{\text{LTP}} \) with respect to \(v_j \) about a reference value \(\bar{v} > 0 \) and evaluate \(f_{\text{LTD}} \) at \(v_j = \bar{v} \) in order to make the right-hand side of Eq. (10.50) linear in the input \(v_j \). The result is

\[
\frac{d}{dt} w_{ij} = \phi(w_{ij}; v_i) v_j \quad (10.49)
\]

with \(\phi(w_{ij};0) = \phi(w_{ij}; v_\theta) = 0 \) for some value \(v_\theta \) and \(d\phi/dv_i < 0 \) at \(v_i = 0 \). Equation (10.51) is a generalized Bienenstock-Cooper-Monroe rule where \(\phi \) does not only depend on the postsynaptic rate \(v_i \) but also on the individual synaptic weight; cf. Eq. (10.12). For details see Senn et al. (2001b); Bienenstock et al. (1982).

10.4.3 A Calcium-Based Model

It has been recognized for a long time that calcium ions are an important second messenger for the induction of LTP and LTD in Hippocampus (Malinow et al., 1989; Malenka et al., 1988; Lisman, 1989) and cerebellum (Konnerth and Eilers, 1994; Lev-Ram et al., 1997). Particularly well investigated are 'NMDA synapses' in the hippocampus (Dudek and Bear, 1992; Bliss and Collingridge, 1993; Bindman et al., 1991; Collingridge et al., 1983) where calcium ions can enter the cell through channels that are controlled by a glutamate receptor subtype called NMDA (N-methyl-D-aspartic acid) receptor; cf. Section 2.4.2. These channels are involved in transmission of action potentials in glutamatergic (excitatory) synapses. If an action potential arrives at the presynaptic terminal, glutamate, the most common excitatory neurotransmitter, is released into the synaptic cleft and diffuses to the postsynaptic membrane where it binds to NMDA and AMPA receptors. The binding to AMPA receptors results in the opening of the associated ion channels and hence to a depolarization of the postsynaptic membrane. Channels controlled by NMDA receptors, however, are blocked by magnesium ions and do not open unless the membrane is sufficiently depolarized so as to remove the block. Therefore, calcium ions can enter the cell only if glutamate has been released by presynaptic activity \(\text{and if the postsynaptic membrane is sufficiently depolarized.} \) The calcium influx is the
first step in a complex bio-chemical pathway that leads ultimately to a modification of the glutamate-sensitivity of the postsynaptic membrane.

Biophysical models of Hebbian plasticity (Schiegg et al., 1995; Zador et al., 1990; Holmes and Levy, 1990; Shouval et al., 2001; Gold and Bear, 1994; Lisman, 1989) contain two essential components, viz. a description of intracellular calcium dynamics, in particular a model of calcium entry through NMDA synapses; and a hypothesis of how the concentration of intracellular calcium influences the change of synaptic efficacy. In this section we give a simplified account of both components. We start with a model of NMDA synapses and turn then to the so-called calcium control hypothesis of Shouval et al. (2001).

10.4.3.1 NMDA receptor as a coincidence detector

We have emphasized in Sections 10.1-10.3 that all Hebbian learning rules contain a term that depends on the correlation between the firings of pre- and postsynaptic neurons. The signaling chain that leads to a weight change therefore has to contain a nonlinear processing step that requires that pre- and postsynaptic neurons are active within some short time window. Synaptic channels controlled by NMDA receptors are an excellent candidate for a biophysical implementation of this condition of `coincidence' because the opening of the channel requires both the presence of glutamate which reflects presynaptic activity and, in order to remove the magnesium block, a depolarization of the postsynaptic membrane (Mayer et al., 1984; Nowak et al., 1984). A strong depolarization of the postsynaptic membrane does occur, for example, during the back propagation of an action potential into the dendritic tree (Stuart and Sakmann, 1994; Linden, 1999), which is a signature for postsynaptic activity.

Figure 10.10: NMDA-synapse. A. Vesicles in the presynaptic terminal contain glutamate as a neurotransmitter (filled triangles). At resting potential, the NMDA receptor mediated channel (hatched) is blocked by magnesium (filled circle). B. If an action potential (AP) arrives at the presynaptic terminal the vesicle merges with the cell membrane, glutamate diffuses into the synaptic cleft, and binds to NMDA and non-NMDA receptors on the postsynaptic membrane. At resting potential, the NMDA receptor mediated channel remains blocked by magnesium whereas the non-NMDA channel opens (bottom). C. If the membrane of the postsynaptic neuron is depolarized, the magnesium block is removed and calcium ions can enter into the cell. D. The depolarization of the postsynaptic membrane can be caused by a back propagating action potential (BPAP).

In a simple model of NMDA-receptor controlled channels, the calcium current through the channel is described by
\[I_{Ca}(t) = g_{Ca} \alpha (t - t_j^{(f)}) [u(t) - E_{Ca}] B[u(t)]; \quad (10.50) \]

cf. Chapter 2.4. Here \(g_{Ca} \) is the maximal conductance of the channel and \(E_{Ca} \) is the reversal potential of calcium. The time course of NMDA binding at the receptors is described by \(\alpha (t - t_j^{(f)}) \) where \(t_j^{(f)} \) is the time of spike arrival at the presynaptic terminal. The function

\[B(u) = \frac{1}{1 + 0.28 e^{-0.062 u}} \quad (10.51) \]

describes the unblocking of the channel at depolarized levels of membrane potential.

The time course of \(\alpha \) is taken as a sum of two exponentials with the time constant of the slow component in the range of 100ms. If there are several presynaptic spikes within 100ms, calcium accumulates inside the cell. The change of the intracellular calcium concentration \([Ca^{2+}]\) can be described by

\[\frac{d}{dt} [Ca^{2+}](t) = I_{Ca}(t) - \frac{[Ca^{2+}](t)}{\tau_{Ca}}, \quad (10.52) \]

where \(\tau_{Ca} = 125 \text{ ms} \) is a phenomenological time constant of decay. Without any further presynaptic stimulus, the calcium concentration returns to a resting value of zero. More sophisticated models can take calcium buffers, calcium stores, and ion pumps into account (Schiegg et al., 1995; Zador et al., 1990; Gamble and Koch, 1987).

10.4.3.2 The calcium control hypothesis

While the dynamics of NMDA synapses is fairly well understood in terms of the biophysical processes that control receptor binding and channel opening, much less is known about the complex signaling chain that is triggered by calcium and finally leads to a regulation of the synaptic efficacy (Lisman, 1989). Instead of developing a detailed model, we adopt a phenomenological approach and assume that the change of the synaptic efficacy \(w_{ij} \) is fully determined by the intracellular calcium concentration \([Ca^{2+}]\); an assumption that has been called `calcium control hypothesis' (Shouval et al., 2001). More specifically, we write the weight change as

\[\frac{d}{dt} w_{ij} = \frac{\Omega([Ca^{2+}]) - w_{ij}}{\tau([Ca^{2+}])}. \quad (10.53) \]

For constant calcium concentration, the weight \(w_{ij} \) reaches an asymptotic value \(\Omega([Ca^{2+}]) \) with time constant \(\tau([Ca^{2+}]) \).
Figure 10.11: Calcium control hypothesis. The asymptotic weight value \(w_{ij} = \Omega ([Ca^{2+}]) \) (A) and the time constant \(\tau ([Ca^{2+}]) \) of weight changes (B) as a function of the calcium concentration; cf. Eq. (10.55) [adapted from Shouval et al. (2001)].

Figure 10.11 shows the graph of the function \(\Omega ([Ca^{2+}]) \) as it is used in the model of Shouval et al. (2001). For a calcium concentration below \(\theta_0 \), the weight assumes a resting value of \(w_0 = 0.5 \). For calcium concentrations in the range \(\theta_0 < [Ca^{2+}] < \theta_m \), the weight tends to decrease, for \([Ca^{2+}] > \theta_m \) it increases.

Qualitatively, the curve \(\Omega ([Ca^{2+}]) \) reproduces experimental results that suggest that a high level of calcium leads to an increase whereas an intermediate level of calcium leads to a decrease of synaptic weights. We will see below that the BCM rule of Eq. (10.12) is closely related to the function \(\Omega [Ca^{2+}] \).

The time constant \(\tau ([Ca^{2+}]) \) in the model equation (10.55) decreases rapidly with increasing calcium concentration; cf. Fig. 10.11 B. The specific dependence has been taken as

\[
\tau ([Ca^{2+}]) = \frac{\tau_0}{[Ca^{2+}]^3 + 10^{-4}}
\]

where \(\tau_0 = 500 \text{ms} \) and \([Ca^{2+}] \) is the calcium concentration in \(\mu \text{mol/l} \). At a low level of intracellular calcium (\([Ca^{2+}] \to 0 \)), the response time of the weight \(w_{ij} \) is in the range of hours while for \([Ca^{2+}] \to 1 \) the weight changes rapidly with a time constant of 500 ms. In particular, the effective time constant for the induction of LTP is shorter than that for LTD.

10.4.3.3 Dynamics of the postsynaptic neuron

In order to complete the definition of the model, we need to introduce a description of the membrane potential \(u_i \) of the postsynaptic neuron. As in the simple spiking neuron model SRM0 (cf. Chapter 4), the total membrane potential is described as

\[
u_i(t) = \eta(t - \hat{t}_i) + \sum_{f} \varepsilon(t - t_{j}^{(f)}) . \tag{10.55}\]

Here \(\varepsilon(t - t_{j}^{(f)}) \) is the time course of the postsynaptic potential generated by a presynaptic action potential at time \(t_{j}^{(f)} \). It is modeled as a double exponential with a rise time of about 5ms and a duration of about 50ms. The action potential of the postsynaptic neuron is described as

\[
\eta(s) = u_{AP} \left(0.75 e^{-s/\tau_{fast}} + 0.25 e^{-s/\tau_{slow}} \right) . \tag{10.56}\]

Here \(u_{AP} = 100 \text{ mV} \) is the amplitude of the action potential and \(\hat{t}_i \) is the firing time of the last spike of the postsynaptic neuron. In contrast to the model SRM0, \(\eta \) does not describe the reset of the membrane potential at the soma, but the form of the back propagating action potential (BPAP) at the site of the synapse. It is assumed that the BPAP has a slow component with a time constant \(\tau_{slow} \approx 35 \text{ms} \). The fast component has the same rapid time constant (about 1 ms) as the somatic action potential. The somatic action potential is not described explicitly.
10.4.3.4 Results

Given the above components of the model, we can understand intuitively how calcium influx at NMDA synapses leads to spike-time dependent plasticity. Let us analyze the behavior by comparing the calcium-based model with the elementary model of Section 10.4.1; cf. Eqs. (10.29)-(10.31). Binding of glutamate at NMDA receptors plays the role of the component a that is triggered by presynaptic firing; the back propagating action potential plays the role of the component b that is triggered by postsynaptic firing. As a result of the depolarization caused by the BPAP, the magnesium block is removed and calcium ions enter the cell. The calcium influx is proportional to the product of the NMDA-binding, i.e., the factor α in Eq. (10.52), and the unblocking, i.e., the factor $B(u)$. Finally, the increase in the calcium concentration leads to a weight change according to Eq. (10.55).

![Figure 10.12: Spike-time dependent plasticity in a calcium-based model. A. Calcium transient generated by a presynaptic spike in the absence of postsynaptic firing (bottom) and in the presence of a postsynaptic spike 10ms before (middle) or 10ms after (top) presynaptic spike arrival. Only for the sequence 'pre-before-post' the threshold θ_m for LTP can be reached. B. The final weights obtained after several thousands pre- and postsynaptic spikes that are generated at a rate of 1 Hz (solid line) or 3 Hz (dashed line). The weights are given as a function of the time difference between presynaptic spikes $t_j^{(f)}$ and postsynaptic spikes $t_i^{(f)}$. C. Pairing of presynaptic spikes with postsynaptic depolarization. The weights w_{ij} that are obtained after several hundreds of presynaptic spikes (at a rate of $\nu_j = 0.5$ Hz) as a function of the depolarization of the postsynaptic membrane. [Adapted from Shouval et al. (2001)].

A single presynaptic spike (without a simultaneous postsynaptic action potential) leads to a calcium transient that stays below the induction threshold θ_0; cf. Fig. 10.12A. If a postsynaptic spike occurs 10ms before the presynaptic spike arrival, the calcium transient has a somewhat larger amplitude that attains a level above θ_0. As a consequence, the weight w_{ij} is reduced. If, however, the postsynaptic spike occurs one or a few milliseconds after the presynaptic one, the calcium transient is much larger. The reason is that the blocking of the NMDA synapse is removed during the time when the NMDA receptors are almost completely saturated by glutamate. In this case, the calcium concentration is well above θ_m so that weights increase. Since the time constant $\tau([Ca^{2+}])$ is shorter in the regime of LTP induction than in the regime of LTD induction, the positive weight change is dominant even though the calcium concentration must necessarily pass through the regime of LTD in order to reach the threshold θ_m. The resulting time window of learning is shown in Fig. 10.12B. It exhibits LTP if the presynaptic spike precedes the postsynaptic one by less than 40ms. If the order of spiking is inverted LTD occurs. LTD can also be induced by a sequence of `pre-before-post' if the spike time difference is larger than about 40ms. The reason is that in this case the removal of the magnesium block (induced by the BPAP) occurs at a moment when the probability of glutamate binding is reduced; cf. the factor α in Eq. (10.52). As a consequence less calcium enters the cell - enough to surpass the threshold
θ₀, but not sufficient to reach the threshold θ₁ of LTP. We emphasize that the form of the learning window is not fixed but depends on the frequency of pre- and postsynaptic spike firing; cf. Fig. 10.12B.

LTP and LTD can also be induced in the absence of postsynaptic spikes if the membrane potential of the postsynaptic neuron is clamped to a constant value. A pure spike-time dependent learning rule defined by a learning window \(W(t_j^{(f)} - t_i^{(b)}) \) is obviously not a suitable description of such an experiment. The calcium-based model of Shouval et al. (2001), however, can reproduce voltage-clamp experiments; cf. Fig. 10.12C. Presynaptic spike arrival at low frequency \((ν_j = 0.5 \text{ Hz}) \) is 'paired' with a depolarization of the membrane potential of the postsynaptic neuron to a fixed value \(u_0 \). If \(u_0 \) is below -70mV, no significant weight change occurs. For \(-70 \text{ mV} < u_0 < -50 \text{ mV} \) LTD is induced, while for \(u_0 > -50 \text{ mV} \) LTP is triggered. These results are a direct consequence of the removal of the magnesium block at the NMDA synapses with increasing voltage. The mean calcium concentration - and hence the asymptotic weight value - is therefore a monotonously increasing function of \(u_0 \).

Finally, we would like to emphasized the close relation between Fig. 10.12C and the function \(φ \) of the BCM learning rule as illustrated in Fig. 10.5. In a simple rate model, the postsynaptic firing rate \(ν_i \) is a sigmoidal function of the potential, i.e., \(ν_i = g(u_i) \). Thus, the mapping between the two figures is given by a non-linear transformation of the horizontal axis.
10.5 Summary

Correlation-based learning is, as a whole, often called Hebbian learning. The Hebb rule (10.2) is a special case of a local learning rule because it only depends on pre- and postsynaptic firing rates and the present state w_{ij} of the synapse, i.e., information that is easily `available' at the location of the synapse.

Recent experiments have shown that the relative timing of pre- and postsynaptic spikes critically determines the amplitude and even the direction of changes of the synaptic efficacy. In order to account for these effects, learning rules on the level of individual spikes are formulated with a learning window that consists of two parts: If the presynaptic spike arrives before a postsynaptic output spike, the synaptic change is positive. If the timing is the other way round, the synaptic change is negative (Zhang et al., 1998; Markram et al., 1997; Bi and Poo, 1998, 1999; Debanne et al., 1998). For some synapses, the learning window is reversed (Bell et al., 1997b), for others it contains only a single component (Egger et al., 1999).

Hebbian learning is considered to be a major principle of neuronal organization during development. The first modeling studies of cortical organization development (Willshaw and von der Malsburg, 1976; Swindale, 1982) have incited a long line of research, e.g., Linsker (1986b); Obermayer et al. (1992); Linsker (1986a); Kohonen (1984); Miller et al. (1989); MacKay and Miller (1990); Linsker (1986c). Most of these models use in some way or another an unsupervised correlation-based learning rule similar to the general Hebb rule of Eq. (10.2); see Erwin et al. (1995) for a recent review.

Literature

Correlation-based learning can be traced back to Aristoteles 10.2 and has been discussed extensively by James (1890) who formulated a learning principle on the level of `brain processes' rather than neurons:

When two elementary brain-processes have been active together or in immediate succession, one of them, on re-occurring, tends to propagate its excitement into the other.

For reviews on (hippocampal) LTP, see the book of Byrne and Berry (1989), in particular the articles of Sejnowski and Tesauro (1989) and Brown et al. (1989). Cerebellar LTD has been reviewed by Daniel et al. (1996, 1998) and Linden and Connor (1995). Further references and a classification of different forms of LTP and LTD can be found in the nice review of Bliss and Collingridge (1993). For the relation of LTP and LTD, consult Artola and Singer (1993). A modern and highly recommendable review with a focus on recent results, in particular on spike-time dependent plasticity has been written by Bi and Poo (2001). The theoretical context of spike-time dependent plasticity has been discussed by Abbott (2000).
Neurons in the central nervous system form a complex network with a high degree of plasticity. In the previous chapter we have discussed synaptic plasticity from a phenomenological point of view. We now ask `What are the consequences for the connectivity between neurons if synapses are plastic?'. To do so we consider a scenario known as unsupervised learning. We assume that some of the neurons in the network are stimulated by input with certain statistical properties. Synaptic plasticity generates changes in the connectivity pattern that reflect the statistical structure of the input. The relation between the input statistics and the synaptic weights that evolve due to Hebbian plasticity is the topic of this chapter. We start in Section 11.1 with a review of unsupervised learning in a rate-coding paradigm. The extension of the analysis to spike-time dependent synaptic plasticity is made in Section 11.2. We will see that spike-based learning naturally accounts for spatial and temporal correlations in the input and can overcome some of the problems of a simple rate-based learning rule.

Subsections

- **11.1 Learning in Rate Models**
 - [11.1.1 Correlation Matrix and Principal Components](#)
 - [11.1.2 Evolution of synaptic weights](#)
 - [11.1.3 Weight Normalization](#)
 - [11.1.4 Receptive Field Development](#)

- **11.2 Learning in Spiking Models**
 - [11.2.1 Learning Equation](#)
 - [11.2.2 Spike-Spike Correlations](#)
 - [11.2.3 Relation of spike-based to rate-based learning](#)
 - [11.2.4 Static-Pattern Scenario](#)
 - [11.2.5 Distribution of Synaptic Weights](#)

- **11.3 Summary**
References

Gerstner and Kistler
Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
11.1 Learning in Rate Models

We would like to understand how activity-dependent learning rules influence the formation of connections between neurons in the brain. We will see that plasticity is controlled by the statistical properties of the presynaptic input that is impinging on the postsynaptic neuron. Before we delve into the analysis of the elementary Hebb rule we therefore need to recapitulate a few results from statistics and linear algebra.

11.1.1 Correlation Matrix and Principal Components

A principal component analysis (PCA) is a standard technique to describe statistical properties of a set of high-dimensional data points and is usually performed in order to find those components of the data that show the highest variability within the set. If we think of the input data set as of a cloud of points in a high-dimensional vector space centered around the origin, then the first principal component is the direction of the longest axis of the ellipsoid that encompasses the cloud; cf. Fig. 11.1. If the data points consisted of, say, two separate clouds then the first principal component would give the direction of a line that connects the center points of the two clouds. A PCA can thus be used to break a large data set into separate clusters. In the following, we will quickly explain the basic idea and show that the first principal component gives the direction where the variance of the data is maximal.
Figure 11.1: Ellipsoid approximating the shape of a cloud of data points. The first principal component \mathbf{e}_1 corresponds to the principal axis of the ellipsoid.

Let us consider an ensemble of data points $\{\xi_1^\mu,...,\xi_p^\mu\}$ drawn from a (high-dimensional) vector space, for example $\xi^\mu \in \mathbb{R}^N$. For this set of data points we define the correlation matrix C_{ij} as

$$C_{ij} = \frac{1}{p} \sum_{\mu=1}^{p} \xi_i^\mu \xi_j^\mu = \left\langle \xi_i^\mu \xi_j^\mu \right\rangle_{\mu}.$$ \hspace{1cm} (11.1)

Angular brackets $\left\langle \cdot \right\rangle_{\mu}$ denote an average over the whole set of data points. Similar to the variance of a single random variable we can also define the covariance matrix V_{ij} of our data set,

$$V_{ij} = \left\langle (\xi_i^\mu - \left\langle \xi_i^\mu \right\rangle_{\mu}) (\xi_j^\mu - \left\langle \xi_j^\mu \right\rangle_{\mu}) \right\rangle_{\mu}.$$ \hspace{1cm} (11.2)

In the following we will assume that the coordinate system is chosen so that the center of mass of the set of data points is located at the origin, i.e., $\left\langle \xi_i \right\rangle_{\mu} = \left\langle \xi_j \right\rangle_{\mu} = 0$. In this case, correlation matrix and covariance matrix are identical.

The principal components of the set $\{\xi_1^\mu,...,\xi_p^\mu\}$ are defined as the eigenvectors of the covariance matrix V.

Note that V is symmetric, i.e., $V_{ij} = V_{ji}$. The eigenvalues of V are thus real-valued and different eigenvectors are orthogonal (Horn and Johnson, 1985). Furthermore, V is positive semi-definite since

$$\mathbf{y}^T V \mathbf{y} = \sum_{ij} y_i \left\langle \xi_i^\mu \xi_j^\mu \right\rangle_{\mu} y_j = \left\langle \left(\sum_i y_i \xi_i^\mu \right)^2 \right\rangle_{\mu} \geq 0 \hspace{1cm} (11.3)$$

for any vector $\mathbf{y} \in \mathbb{R}^N$. Therefore, all eigenvalues of V are non-negative.

We can sort the eigenvectors \mathbf{e}_i according to the size of the corresponding eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq 0$. The eigenvector with the largest eigenvalue is called the first principal component. It points in the direction where the variance of the data is maximal. To see this we calculate the variance of the projection of ξ^μ onto an arbitrary direction \mathbf{y} that we write as $\mathbf{y} = \sum_i a_i \mathbf{e}_i$ with $\sum_i a_i^2 = 1$ so that $|\mathbf{y}| = 1$. The variance σ_y^2 along \mathbf{y} is

$$\sigma_y^2 = \left\langle \left[\frac{\mathbf{x}^\mu \cdot \mathbf{y}}{\mathbf{y}^T V \mathbf{y}} \right]^2 \right\rangle_{\mu} = \mathbf{y}^T V \mathbf{y} = \sum_i \lambda_i a_i^2.$$ \hspace{1cm} (11.4)
The right-hand side is maximal under the constraint \(\sum_i a_i^2 = 1 \) if \(a_1 = 1 \) and \(a_i = 0 \) for \(i = 2, 3, \ldots, N \), that is, if \(\bar{y} = \bar{e}_1 \).

11.1.2 Evolution of synaptic weights

In the following we analyze the evolution of synaptic weights using the Hebbian learning rules that have been described in Chapter 10. To do so, we consider a highly simplified scenario consisting of an analog neuron that receives input from \(N \) presynaptic neurons with firing rates \(\nu_i^{\text{pre}} \) via synapses with weights \(w_i \); cf. Fig. 11.2A.

We think of the presynaptic neurons as `input neurons', which, however, do not have to be sensory neurons. The input layer could, for example, consist of neurons in the lateral geniculate nucleus (LGN) that project to neurons in the visual cortex. We will see that the statistical properties of the input control the evolution of synaptic weights.

For the sake of simplicity, we model the presynaptic input as a set of static patterns. Let us suppose that we have a total of \(p \) patterns \(\{ \xi_\mu; 1 < \mu < p \} \). At each time step one of the patterns \(\xi_\mu \) is selected at random and presented to the network by fixing the presynaptic rates at \(\nu_i^{\text{pre}} = \xi_\mu \). We call this the \textit{static-pattern scenario}.

The presynaptic activity drives the postsynaptic neuron and the joint activity of pre- and postsynaptic neurons triggers changes of the synaptic weights. The synaptic weights are modified according to a Hebbian learning rule, i.e., according to the correlation of pre- and postsynaptic activity; cf. Eq. (10.3). Before the next input pattern is chosen, the weights are changed by an amount

\[
\Delta w_i = \gamma \, \nu_i^{\text{post}} \nu_i^{\text{pre}}
\]

(11.5)

Here, \(0 < \gamma \ll 1 \) is a small constant called 'learning rate'. The learning rate in the static-pattern scenario is closely linked to the correlation coefficient \(c_{\text{corr}} \) in the continuous-time Hebb rule introduced in Eq. (10.3). In order to highlight the relation, let us assume that each pattern \(\xi_\mu \) is applied during an interval \(\Delta t \). For \(\Delta t \) sufficiently small, we have \(\gamma = c_{\text{corr}} \Delta t \).

![Figure 11.2: Elementary model. A. Patterns \(\xi_\mu \) are applied as a set of presynaptic firing rates \(\nu_j \), i.e., \(\xi_\mu = \nu_j^{\text{pre}} \) for \(1 \leq j \leq N \). B. The gain function of the postsynaptic neuron is taken as linear, i.e., \(\nu_i^{\text{post}} = h \). It can be seen as a linearization of the sigmoidal gain function \(g(h) \).](http://diwww.epfl.ch/~gerstner/SPNM/node77.html)
In a general rate model, the firing rate ν^post of the postsynaptic neuron is given by a nonlinear function of the total input

$$\nu^\text{post} = g \left(\sum_i w_i \nu_i^\text{pre} \right); \quad (11.6)$$

cf. Fig. 11.2B. For the sake of simplicity, we restrict our discussion in the following to a linear rate model with

$$\nu^\text{post} = \sum_i w_i \nu_i^\text{pre}. \quad (11.7)$$

Obviously, this is a highly simplified neuron model, but it will serve our purpose of gaining some insights in the evolution of synaptic weights.

If we combine the learning rule (11.5) with the linear rate model of Eq. (11.7) we find after the presentation of pattern ξ_μ

$$\Delta w_i = \gamma \sum_j w_j \nu_j^\text{pre} \nu_i^\text{pre} = \gamma \sum_j w_j \xi_j^\mu \xi_i^\mu. \quad (11.8)$$

The evolution of the weight vector $\vec{w} = (w_1, ..., w_N)$ is thus determined by the iteration

$$w_i(n+1) = w_i(n) + \gamma \sum_j w_j \xi_j^\mu_n \xi_i^\mu_n, \quad (11.9)$$

where μ_n denotes the pattern that is presented during the nth time step.

We are interested in the long-term behavior of the synaptic weights. To this end we assume that the weight vector evolves along a more or less deterministic trajectory with only small stochastic deviations that result from the randomness at which new input patterns are chosen. This is, for example, the case if the learning rate is small so that a large number of patterns has to be presented in order to induce a substantial weight change. In such a situation it is sensible to consider the expectation value of the weight vector, i.e., the weight vector $\langle \vec{w}(n) \rangle$ averaged over the sequence $(\xi_1^\mu, \xi_2^\mu, ..., \xi_n^\mu)$ of all patterns that so far have been presented to the network.

From Eq. (11.9) we find

$$\langle w_i(n+1) \rangle = \langle w_i(n) \rangle + \gamma \sum_j w_j(n) \xi_j^\mu_n+1 \xi_i^\mu_n+1$$

$$= \langle w_i(n) \rangle + \gamma \sum_j \langle w_j(n) \rangle \langle \xi_j^\mu_n+1 \xi_i^\mu_n+1 \rangle$$

$$= \langle w_i(n) \rangle + \gamma \sum_j C_{ij} \langle w_j(n) \rangle. \quad (11.10)$$
The angular brackets denote an ensemble average over the whole sequence of input patterns \((\xi^\mu_1, \xi^\mu_2, \ldots)\). The second equality is due to the fact that input patterns are chosen independently in each time step, so that the average over \(w_j(n)\) and \((\xi^\mu_j, n+1, \xi^\mu_i(n+1))\) can be factorized. In the final expression we have introduced the correlation matrix \(C_{ij}\),

\[
C_{ij} = \frac{1}{P} \sum_{\mu=1}^{P} \xi^\mu_i \xi^\mu_j = \left\langle \xi^\mu_i \xi^\mu_j \right\rangle_\mu .
\]

(11.11)

Expression (11.10) can be written in a more compact form using matrix notation,

\[
\left\langle \tilde{w}(n+1) \right\rangle = (\mathbf{I} + \gamma C) \left\langle \tilde{w}(n) \right\rangle = (\mathbf{I} + \gamma C)^{n+1} \left\langle \tilde{w}(0) \right\rangle .
\]

(11.12)

where \(\tilde{w}(n) = (w_1(n), \ldots, w_N(n))\) is the weight vector and \(\mathbf{I}\) is the identity matrix.

If we express the weight vector in terms of the eigenvectors \(\tilde{e}_k\) of \(C\),

\[
\left\langle \tilde{w}(n) \right\rangle = \sum_k a_k(n) \tilde{e}_k ,
\]

(11.13)

we obtain an explicit expression for \(\left\langle \tilde{w}(n) \right\rangle\) for any given initial condition \(a_k(0)\), viz.,

\[
\left\langle \tilde{w}(n) \right\rangle = \sum_k (1 + \lambda_k)^n a_k(0) \tilde{e}_k .
\]

(11.14)

Since the correlation matrix is positive semi-definite all eigenvalues \(\lambda_k\) are real and positive. Therefore, the weight vector is growing exponentially, but the growth will soon be dominated by the eigenvector with the largest eigenvalue, i.e., the first principal component,

\[
\left\langle \tilde{w}(n) \right\rangle \xrightarrow{n \to \infty} (1 + \lambda_1)^n a_1(0) \tilde{e}_1 ;
\]

(11.15)

cf. Section 11.1.1. Recall that the output of the linear neuron model (11.7) is proportional to the projection of the current input pattern \(\tilde{\xi}^\mu\) on the direction \(\tilde{w}\). For \(\tilde{w} \propto \tilde{e}_1\), the output is therefore proportional to the projection on the first principal component of the input distribution. A Hebbian learning rule such as Eq. (11.8) is thus able to extract the first principal component of the input data.

From a data-processing point of view, the extraction of the first principle component of the input data set by a biologically inspired learning rule seems to be very compelling. There are, however, a few drawbacks and pitfalls. First, the above statement about the Hebbian learning rule is limited to the expectation value of the weight vector. We will see below that, if the learning rate is sufficiently low, then the actual weight vector is in fact very close to the expected one.

Second, while the direction of the weight vector moves in the direction of the principal component, the norm of the weight vector grows without bounds. We will see below in Section 11.1.3 that suitable variants of Hebbian learning allow us to control the length of the weight vector without changing its direction.
Third, principal components are only meaningful if the input data is normalized, i.e., distributed around the origin. This requirement is *not* consistent with a rate interpretation because rates are usually positive. This problem, however, can be overcome by learning rules such as the covariance rule of Eq. (10.10) that are based on the deviation of the rates from a certain mean firing rate. We will see in Section 11.2.4 that a spike-based learning rule can be devised that is sensitive only to deviations from the mean firing rate and can thus find the first principal component even if the input is not properly normalized.

![Figure 11.3](http://diwww.epfl.ch/~gerstner/SPNM/node77.html)

Figure 11.3: Weight changes induced by the standard Hebb rule. Input patterns $\xi^\mu \in \mathbb{R}^2$ are marked as circles. The sequence of weight vectors $\vec{w} (1), \vec{w} (2), \ldots,$ is indicated by crosses connected by a solid line. **A.** The weight vector evolves in the direction of the dominant eigenvector (arrow) of the correlation matrix. **B.** If the input patterns are normalized so that their center of mass is at the origin, then the dominant eigenvector of the correlation matrix coincides with the first principal component \vec{e}_1 of the data set.

11.1.2.1 Self-averaging (*)

So far, we have derived the behavior of the *expected* weight vector, $\langle \vec{w} \rangle$. Here we show that explicit averaging is not necessary provided that learning is slow enough. In this case, the weight vector is the sum of a large number of small changes. The weight dynamics is thus `self-averaging' and the weight vector \vec{w} can be well approximated by its expectation value $\langle \vec{w} \rangle$.

We start from the formulation of Hebbian plasticity in continuous time,

$$\frac{d}{dt} w_i = c_{\text{corr}}^2 \nu_{\text{post}}^\text{i pre} \nu_{\text{pre}}^\text{i pre}; \quad (11.16)$$

cf. Eq. (10.3). Each pattern ξ^μ is presented for a short period of duration Δt. We assume that the weights change during the presentation by a small amount only, i.e., $\int_t^{t+\Delta t} dw_j(t')/dt' \, dt' \ll w_j(t)$. This condition can be met either by a short presentation time Δt or by a small learning coefficient c_{corr}^2. Under this condition, we can take the postsynaptic firing rate $\nu_{\text{post}}^\text{i pre} (t) = \sum_j w_j(t) \nu_{\text{i pre}}^\text{i pre}$ as constant for the duration of one presentation.

The total weight change induced by the presentation of pattern ξ^μ to first order in Δt is thus...
\[\Delta w_i(t) = w_i(t + \Delta t) - w_i(t) = \gamma \sum_j w_j(t) \xi_j^\mu \xi_i^\mu + \mathcal{O}(\Delta t^2). \] (11.17)

with \(\gamma = c_{\text{corr}}t \); cf. Eq. (11.8).

In the next time step a new pattern \(\xi'^\nu \) is presented so that the weight is changed to

\[w_i(t + 2 \Delta t) = w_i(t + \Delta t) + c_{\text{corr}}t \Delta t \sum_j w_j(t + \Delta t) \xi_j'^\nu \xi_i'^\nu + \mathcal{O}(\Delta t^2). \] (11.18)

Since we keep only terms to first order in \(\Delta t \), we may set \(w_j(t + \Delta t) = w_j(t) \) in the sum on the right-hand side of Eq. (11.18). Let us suppose that in the interval \([t, t + p \Delta t]\) each of the \(p \) patterns has been applied exactly once. Then, to first order in \(\Delta t \),

\[w_i(t + p \Delta t) - w_i(t) = c_{\text{corr}}t \sum_j w_j(t) \sum_{\mu=1}^{p} \xi_i^\mu \xi_j^\mu + \mathcal{O}(\Delta t^2). \] (11.19)

For \(c_{\text{corr}}t \ll 1 \), all higher-order terms can be neglected. Division by \(p \Delta t \) yields

\[\frac{w_i(t + p \Delta t) - w_i(t)}{p \Delta t} = c_{\text{corr}}t \sum_j w_j(t) C_{ij}. \] (11.20)

The left-hand side can be approximated by a differential operator \(\frac{dw_i}{dt} \),

\[\frac{d}{dt} w_i(t) = c_{\text{corr}}t \sum_j w_j(t) C_{ij}. \] (11.21)

We thus recover our previous result that weights are driven by the correlations in the input but with the additional vantage that no explicit averaging step is necessary (Sanders and Verhulst, 1985).

11.1.3 Weight Normalization

We have seen in Section 11.1.2 that the simple learning rule (10.3) leads to exponentially growing weights. Since this is biologically not plausible, we must use a modified Hebbian learning rule that includes weight decrease and saturation; cf. Chapter 10.2. Particularly interesting are learning rules that lead to a normalized weight vector. Normalization is a desirable property since it leads to a competition between synaptic weights \(w_{ij} \) that converge on the same postsynaptic neuron \(i \). Competition means that if a synaptic efficacy increases, it does so at the expense of other synapses that must decrease.

For a discussion of weight vector normalization two aspects are important, namely what is normalized and how the normalization is achieved. Learning rules can be designed to normalize either the sum of weights, \(\sum_j w_{ij} \), or the quadratic norm, \(|\vec{w}|^2 = \sum_j w_{ij}^2 \) (or any other norm on \(\mathbb{R}^N \)). In the first case, the weight vector is
constrained to a plane perpendicular to the diagonal vector \(\vec{n} = (1, ..., 1) \); in the second case it is constrained to a hyper-sphere; cf. Fig. 11.4.

Figure 11.4: Weight vector normalization. A. Normalization of the summed weights \(\sum_j w_{ij} = 1 \) constrains the weight vector \(\vec{w} \) to a hyper-plane perpendicular to the diagonal vector \(\vec{n} = (1, 1, ..., 1)^T \). Hard bounds \(0 \leq w_{ij} \leq 1 \) force the the weight vector to stay inside the shaded region. B. Normalization of the quadratic norm \(|\vec{w}|^2 = 1 \). The weight change \(\Delta \vec{w} \) (n) is perpendicular to the current weight vector \(\vec{w} \) (n) so that the length of \(\vec{w} \) remains constant (Oja’s learning rule).

Second, the normalization of the weight vector can either be multiplicative or subtractive. In the former case all weights are multiplied by a common factor so that large weights \(w_{ij} \) are corrected by a larger amount than smaller ones. In the latter case a common constant is subtracted from each weight. Usually, subtractive normalization is combined with hard bounds \(0 \leq w_{ij} \leq w_{\text{max}} \) in order to avoid runaway of individual weights.

Finally, learning rules may or may not fall into the class of local learning rules that we have considered in Chapter 10.2.

A systematic classification of various learning rules according to the above three criteria has been proposed by Miller and MacKay (1994). Here we restrict ourselves to two instances of learning with normalization properties which we illustrate in the examples below. We start with the subtractive normalization of the summed weights \(\sum_j w_{ij} \) and turn then to a discussion of Oja's rule as an instance of a multiplicative normalization of \(\sum_j w_{ij}^2 \).

11.1.3.1 Example: Subtractive Normalization of \(\sum_i w_i \)

In a subtractive normalization scheme the sum over all weights, \(\sum_i w_i \), can be kept constant by subtracting the average total weight change, \(N^{-1} \sum_i \Delta \vec{w}_i \), from each synapse after the weights have been updated according to a Hebbian learning rule with \(\Delta \vec{w}_i = \gamma \sum_j w_{ij} \xi_j^\mu \xi_i^\mu \). Altogether, the learning rule is of the form

\[
\Delta w_i = \Delta \vec{w}_i - N^{-1} \sum_j \Delta \vec{w}_j
\]

\[
= \gamma \left(\sum_j w_{ij} \xi_j^\mu \xi_i^\mu - N^{-1} \sum_k \sum_j w_{jk} \xi_j^\mu \xi_k^\mu \right),
\]

(11.22)

where \(\Delta \vec{w}_i \) denotes the weight change that is due to the pure Hebbian learning rule without the normalization.

http://diwww.epfl.ch/~gerstner/SPNM/node77.html (8 of 15) [25.9.2002 7:38:44]
It can easily be verified that $\sum_i \Delta w_i = 0$ so that $\sum_i w_i = \text{const}$. The temporal evolution of the weight vector \vec{w} is thus restricted to a hyperplane perpendicular to $(1, ..., 1) \in \mathbb{R}^N$. Note that this learning rule is non-local because the change of weight depends on the activity of all presynaptic neurons.

In a similar way as in the previous section, we calculate the expectation of the weight vector $\langle \vec{w} \rangle$, averaged over the sequence of input patterns $(\vec{x}^{\mu_1}, \vec{x}^{\mu_2}, ...)$.

\[\langle w_i(n+1) \rangle = \langle w_i(n) \rangle + \gamma \left(\sum_j C_{ij} \langle w_j(n) \rangle - N^{-1} \sum_k \sum_j C_{kj} \langle w_j(n) \rangle \right) \]

or explicitly, using matrix notation

\[\langle \vec{w}(n+1) \rangle = [1 + \gamma (C - \vec{C})]^n \langle \vec{w}(0) \rangle, \]

or explicitly, using matrix notation

\[\langle \vec{w}(n+1) \rangle = [1 + \gamma (C - \vec{C})]^n \langle \vec{w}(0) \rangle, \]

with $\vec{C}_{ij} = N^{-1} \sum_k C_{kj}$. The evolution of the weight vector is thus determined by eigenvectors of the matrix $(C - \vec{C})$ that are in general different from those of the correlation matrix C. Hebbian learning with subtractive normalization is driven by the correlations of the input in the subspace orthogonal to the diagonal vector $(1, ..., 1)$. Though the sum of the weights stays constant individual weights keep growing. It is thus necessary to adopt an additional criterion to stop the learning process and to prevent that some components of the weight vector grow beyond all bounds. A subtractive weight normalization is usually combined with hard boundaries for the weights; cf. Section 11.1. With these constraints, the weight vector converges to a final state where (almost) all weights are saturated at the upper or lower bound (Miller and MacKay, 1994); cf. Fig. 11.5A.

Figure 11.5: Similar plots as in Fig. 11.3 but with weight vector normalization. A. With subtractive normalization, the weight vector evolves along a line that is perpendicular to the diagonal vector $(1, 1)$. Without additional constraints, the length of the weight vector grows without bounds. B. Oja's learning rule results in a quick convergence of the weight vector to the first principal component (arrow) of data set.

11.1.3.2 Example: Multiplicative Normalization of $|\vec{w}|$

Normalization of the sum of the weights, $\sum_i w_i$, needs an additional criterion to prevent individual weights from perpetual growth. A more elegant way is to require that the sum of the squared weights, i.e., the length of the weight vector, $\sum_i w_i^2$, remains constant. This restricts the evolution of the weight vector to a sphere in the N dimensional weight space. In addition, we can employ a multiplicative normalization scheme where all
weights all multiplied by a common factor instead of subtracting a common constant. The advantage of multiplicative compared to subtractive normalization is that small weights will not change their sign during the normalization step.

In order to formalize the above idea we first calculate the `naive' weight change \(\tilde{w}(n) \) in time step \(n \) according to the common Hebbian learning rule,

\[
\Delta \tilde{w}(n) = \gamma \left[\tilde{w}(n) \cdot \xi^\mu \right] \xi^\mu .
\]

(11.25)

The update of the weights is accompanied by a normalization of the norm of the weight vector to unity, i.e.,

\[
\tilde{w}(n+1) = \frac{\tilde{w}(n) + \Delta \tilde{w}(n)}{\| \tilde{w}(n) + \Delta \tilde{w}(n) \|}.
\]

(11.26)

If we assume that the weights are changed only by a very small amount during each step (\(\gamma \ll 1 \)), we can calculate the new weights \(\tilde{w}(n+1) \) to first order in \(\gamma \),

\[
\tilde{w}(n+1) = \tilde{w}(n) + \Delta \tilde{w}(n) - \tilde{w}(n) \left[\tilde{w}(n) \cdot \Delta \tilde{w}(n) \right] + \mathcal{O}(\gamma^2) .
\]

(11.27)

The `effective' weight change \(\Delta \tilde{w}(n) \) including normalization to leading order in \(\gamma \) is thus

\[
\Delta \tilde{w}(n) = \Delta \tilde{w}(n) - \tilde{w}(n) \left[\tilde{w}(n) \cdot \Delta \tilde{w}(n) \right] ,
\]

(11.28)

which corresponds to the vector component of \(\Delta \tilde{w} \) that is orthogonal to the current weight vector \(\tilde{w} \). This is exactly what we would have expected because the length of the weight vector must stay constant; cf. Fig. 11.4B.

We may wonder whether Eq. (11.28) is a local learning rule. In order to answer this question, we recall that the 'naive' weight change \(\Delta \tilde{w}_j = \gamma \nu^{\text{post}} \nu_j^{\text{pre}} \) uses only pre- and postsynaptic information. Hence, we can rewrite Eq. (11.28) in terms of the firing rates,

\[
\Delta w_j = \gamma \nu^{\text{post}} \nu_j^{\text{pre}} - \gamma w_j(n) \left(\nu^{\text{post}} \right)^2 .
\]

(11.29)

In the second term on the right-hand side we have made use of the linear neuron model, i.e., \(\nu^{\text{post}} = \sum_k w_k \nu_k^{\text{pre}} \). Since the weight change depends only on pre- and postsynaptic rates, Eq. (11.29), which is known as Oja's learning rule (Oja, 1982), is indeed local; cf. Eq. (10.11).

In order to see that Oja's learning rule selects the first principal component we show that the eigenvectors \(\{ \tilde{e}_1, \ldots, \tilde{e}_N \} \) of \(C \) are fixed points of the dynamics but that only the eigenvector \(\tilde{e}_1 \) with the largest eigenvalue is stable. For any fixed weight vector \(\tilde{w} \) we can calculate the expectation of the weight change in the next time step by averaging over the whole ensemble of input patterns \(\{ \xi^1, \xi^2, \ldots \} \). With \(\left\langle \Delta \tilde{w}(n) \right\rangle = \gamma C \tilde{w} \) we find from Eq. (11.28)
We claim that any eigenvector \tilde{v}_i of the correlation matrix C is a fixed point of Eq. (11.30). Indeed, if we substitute $\tilde{v} = \tilde{v}_i$ in the above equation we find that $\langle \Delta \tilde{v} \rangle = 0$. In order to investigate the stability of this fixed point we consider a small perturbation $\tilde{v} = \tilde{v}_i + c \tilde{v}_j$ in the direction of \tilde{v}_j. Here, $|c| \ll 1$ is the amplitude of the perturbation. If we substitute $\tilde{v} = \tilde{v}_i + c \tilde{v}_j$ into Eq. (11.30) we find

$$
\langle \Delta \tilde{v} \rangle = c \gamma (\lambda_j - \lambda_i) \tilde{v}_j + O(c^2).
$$

(11.31)

The weight vector will thus evolve in the direction of the perturbation \tilde{v}_j if $\lambda_j > \lambda_i$ so that initial perturbation will increase. In this case, \tilde{v}_i is unstable. On the other hand, if $\lambda_j < \lambda_i$ the averaged weight change tends to decrease the perturbation and \tilde{v}_i is stable. Consequently, the eigenvector of C with the largest eigenvalue, viz., the first principle component, is the sole stable fixed point of the dynamics generated by the learning rule of Eq. (11.26). Figure 11.5B shows a simple example.

11.1.4 Receptive Field Development

Most neurons of the visual system respond only to stimulation from a narrow region within the visual field. This region is called the *receptive field* of that neuron. Depending on the precise position of a narrow bright spot within the receptive field the corresponding neuron can either show an increase or a decrease of the firing rate relative to its spontaneous activity at rest. The receptive field is subdivided accordingly into ‘ON’ and ‘OFF’ regions in order to further characterize neuronal response properties. Bright spots in an ON region increase the firing rate whereas bright spots in an OFF region inhibit the neuron.

Different neurons have different receptive fields, but as a general rule, neighboring neurons have receptive fields that ‘look’ at about the same region of the visual field. This is what is usually called the *retinotopic organization* of the neuronal projections - neighboring points in the visual field are mapped to neighboring neurons of the visual system.

The visual system forms a complicated hierarchy of interconnected cortical areas where neurons show increasingly complex response properties from one layer to the next. Neurons from the lateral geniculate nucleus (LGN), which is the first neuronal relay of visual information after the retina, are characterized by so-called center-surround receptive fields. These are receptive fields that consist of two concentric parts, an ON region and an OFF region. LGN neurons come in two flavors, as ON-center and OFF-center cells. ON-center cells have a ON-region in the center of their receptive field that is surrounded by a circular OFF-region. In OFF-center cells the arrangement is the other way round; a central OFF-region is surrounded by an ON-region; cf. Fig. 11.6.

Neurons from the LGN project to the primary visual cortex (V1), which is the first cortical area involved in the processing of visual information. In this area neurons can be divided into ‘simple cells' and 'complex cells'. In contrast to LGN neurons, simple cells have *asymmetric* receptive fields which results in a selectivity with respect to the orientation of a visual stimulus. The optimal stimulus for a neuron with a receptive field such as that shown in Fig. 11.6D, for example, is a light bar tilted by about 45 degrees. Any other orientation would also stimulate the OFF region of the receptive field leading to a reduction of the neuronal response. Complex cells have even more intriguing properties and show responses that are, for example, selective for movements with a certain velocity and direction (Hubel, 1995).
Figure 11.6: Receptive fields (schematic). A, B. Circularly symmetric receptive field as typical for neurons in the LGN. ON-center cells (A) are excited by light spots (gray) falling into the center of the receptive field. In OFF-center cells (B) the arrangement of excitatory and inhibitory regions in the receptive field is reversed. C, D. Two examples of asymmetric receptive fields of simple cells in the primary visual cortex. The cells are best stimulated by a light bar oriented as indicated by the grey rectangle.

It is still a matter of debate how the response properties of simple cells arise. The original proposal by Hubel and Wiesel (1962) was that orientation selectivity is a consequence of the specific wiring between LGN and V1. Several center-surround cells with slightly shifted receptive fields should converge on a single V1 neuron so as to produce the asymmetric receptive field of simple cells. Alternatively (or additionally), the intra-cortical dynamics can generate orientation selectivity by enhancing small asymmetries in neuronal responses; cf. Section 9.1.3. In the following, we pursue the first possibility and try to understand how activity-dependent processes during development can lead to the required fine-tuning of the synaptic organization of projections from the LGN to the primary visual cortex (Miller, 1995, 1994; Miller et al., 1989; Linsker, 1986c,b,a; Wimbauer et al., 1997a,b; MacKay and Miller, 1990).

11.1.4.1 Model architecture

We are studying a model that consists of a two-dimensional layer of cortical neurons (V1 cells) and two layers of LGN neurons, namely one layer of ON-center cells and one layer of OFF-center cells; cf. Fig. 11.7 A. In each layer, neurons are labeled by their position and projections between the neurons are given as a function of their positions. Intra-cortical projections, i.e., projections between cortical neurons, are denoted by $w_{V1,V1}(x_1, x_2)$, where x_1 and x_2 are the position of the pre- and the postsynaptic neuron, respectively. Projections from ON-center and OFF-center LGN neurons to the cortex are denoted by $w_{V1,ON}(x_1, x_2)$ and $w_{V1,OFF}(x_1, x_2)$, respectively.

In the following we are interested in the evolution of the weight distribution of projections from the LGN to the primary visual cortex. We thus take $w_{V1,ON}(x, x')$ and $w_{V1,OFF}(x, x')$ as the dynamic variables of the model. Intra-cortical projections are supposed be constant and dominated by short-range excitation, e.g.,
\[w_{V_1,V_1}(\vec{x}_1,\vec{x}_2) \propto \exp\left(-\frac{\|\vec{x}_1 - \vec{x}_2\|^2}{\sigma_{V_1,V_1}^2}\right). \quad (11.32) \]

As in the previous section we consider - for the sake of simplicity - neurons with a linear gain function. The firing rate \(\nu_{V_1}(\vec{x}) \) of a cortical neuron at position \(\vec{x} \) is thus given by

\[
\nu_{V_1}(\vec{x}) = \sum_{\vec{x}'} w_{V_1,ON}(\vec{x},\vec{x}') \nu_{ON}(\vec{x}') + \sum_{\vec{x}''} w_{V_1,OFF}(\vec{x},\vec{x}') \nu_{OFF}(\vec{x}')
+ \sum_{\vec{x}' \neq \vec{x}} w_{V_1,V_1}(\vec{x},\vec{x}') \nu_{V_1}(\vec{x}'), \quad (11.1)
\]

where \(\nu_{ON/OFF}(\vec{x}') \) is the firing rate of a neuron in the ON/OFF layer of the LGN.

Due to the intra-cortical interaction the cortical activity \(\nu_{V_1} \) shows up on both sides of the equation. Since this is a linear equation it can easily be solved for \(\nu_{V_1} \). To do so we write \(\nu_{V_1}(\vec{x}) = \sum_{\vec{x}'} \delta_{\vec{x},\vec{x}'} \nu_{V_1}(\vec{x}') \), where \(\delta_{\vec{x},\vec{x}'} \) is the Kronecker \(\delta \) that is one for \(\vec{x} = \vec{x}' \) and vanishes otherwise. Equation (11.33) can thus be rewritten as

\[
\sum_{\vec{x}'} \left(\delta_{\vec{x},\vec{x}'} - w_{V_1,V_1}(\vec{x},\vec{x}') \right) \nu_{V_1}(\vec{x}')
= \sum_{\vec{x}'} w_{V_1,ON}(\vec{x},\vec{x}') \nu_{ON}(\vec{x}') + \sum_\vec{x} w_{V_1,OFF}(\vec{x},\vec{x}') \nu_{OFF}(\vec{x}'). \quad (11.2)
\]

If we read the left-hand side as a multiplication of the matrix \(M(\vec{x},\vec{x}') \equiv [\delta_{\vec{x},\vec{x}'} - w_{V_1,V_1}(\vec{x},\vec{x}')] \) and the vector \(\nu_{V_1}(\vec{x}') \) we can define the inverse \(I \) of \(M \) by

\[
\sum_{\vec{x}'} I(\vec{x}',\vec{x}) M(\vec{x},\vec{x}') = \delta_{\vec{x}',\vec{x}'} \quad (11.33)
\]

and solve Eq. (11.34) for \(\nu_{V_1}(\vec{x}') \). We find

\[
\nu_{V_1}(\vec{x}') = \sum_{\vec{x}'} \bar{w}_{V_1,ON}(\vec{x}',\vec{x}') \nu_{ON}(\vec{x}') + \sum_{\vec{x}'} \bar{w}_{V_1,OFF}(\vec{x}',\vec{x}') \nu_{OFF}(\vec{x}'), \quad (11.34)
\]

which relates the input \(\nu_{ON/OFF} \) to the output via the `effective' weights

\[
\bar{w}_{V_1,ON/OFF}(\vec{x}',\vec{x}') \equiv \sum_\vec{x} I(\vec{x}',\vec{x}) w_{V_1,ON/OFF}(\vec{x},\vec{x}). \quad (11.35)
\]
11.1.4.2 Plasticity

We expect that the formation of synapses between LGN and V1 is driven by correlations in the input. In the present case, these correlations are due to the retinotopic organization of projections from the retina to the LGN. Neighboring LGN neurons receiving stimulation from similar regions of the visual field are thus correlated to a higher degree than neurons that are more separated. If we assume that the activity of individual photoreceptors on the retina is uncorrelated and that each LGN neuron integrates the input from many of these receptors then the correlation of two LGN neurons can be calculated from the form of their receptive fields. For center-surround cells the correlation is a Mexican hat-shaped function of their distance (Miller, 1994; Wimbauer et al., 1997a), e.g.,

$$C_{\text{ON, ON}}(\vec{x}, \vec{x}') = C_{\text{ON, ON}}(\|\vec{x} - \vec{x}'\|) = \exp\left(-\frac{\|\vec{x} - \vec{x}'\|^2}{\sigma^2}\right) - \frac{1}{c^2} \exp\left(-\frac{\|\vec{x} - \vec{x}'\|^2}{c^2 \sigma^2}\right),$$

where c is a form factor that describes the depth of the modulation. $C_{\text{ON, ON}}$ is the correlation between two ON-center type LGN neurons. For the sake of simplicity we assume that OFF-center cells have the same correlation, $C_{\text{OFF, OFF}} = C_{\text{ON, ON}}$. Correlations between ON-center and OFF-center cells, however, have the opposite sign, $C_{\text{ON, OFF}} = C_{\text{OFF, ON}} = - C_{\text{ON, ON}}$.

In the present formulation of the model each LGN cell can contact every neuron in the primary visual cortex. In reality, each LGN cell sends one axon to the cortex. Though this axon may split into several branches its synaptic contacts are restricted to small region of the cortex; cf. Fig. 11.7B. We take this limitation into account by defining an arborization function $A(\vec{x}, \vec{x}')$ that gives the a priori probability that a connection between a LGN cell at location \vec{x} and a cortical cell at \vec{x}' is formed (Miller et al., 1989). The arborization is a rapidly decaying function of the distance, e.g.,

$$A(\vec{x}, \vec{x}') = \exp\left(-\frac{\|\vec{x} - \vec{x}'\|^2}{\sigma_{\text{V1, LGN}}^2}\right).$$

To describe the dynamics of the weight distribution we adopt a modified form of Hebb’s learning rule that is completed by the arborization function,

$$\frac{d}{dt}w_{\text{V1, ON/OFF}}(\vec{x}, \vec{x}') = \gamma A(\vec{x}, \vec{x}') \nu_{\text{V1}}(\vec{x}) \nu_{\text{ON/OFF}}(\vec{x}').$$

If we use Eq. (11.34) and assume that learning is slow enough so that we can rely on the correlation functions to describe the evolution of the weights, we find

$$\frac{d}{dt}w_{\text{V1, ON}}(\vec{x}_1, \vec{x}_2) = \gamma A(\vec{x}_1, \vec{x}_2) \sum_{\vec{x}', \vec{x}''} I(\vec{x}_1, \vec{x}') \times \left[w_{\text{V1, ON}}(\vec{x}', \vec{x}'') - w_{\text{V1, OFF}}(\vec{x}', \vec{x}'') \right] C_{\text{ON, ON}}(\vec{x}'', \vec{x}_2)$$

and a similar equation for $w_{\text{V1, OFF}}$.

Expression (11.41) is still a linear equation for the weights and nothing exciting can be expected. A prerequisite for pattern formation is competition between the synaptic weights. Therefore, the above learning rule is extended by a term $w_{\text{V1, ON/OFF}}(\vec{x}, \vec{x}') \nu_{\text{V1}}(\vec{x})^2$ that leads to weight vector normalization and competition; cf. Oja’s
11.1.4.3 Simulation results

Many of the standard techniques for nonlinear systems that we have already encountered in the context of neuronal pattern formation in Chapter 9 can also be applied to the present model (Wimbauer et al., 1998; MacKay and Miller, 1990). Here, however, we will just summarize some results from a computer simulation consisting of an array of 8×8 cortical neurons and two times 20×20 LGN neurons. Figure 11.8 shows a typical outcome of such a simulation. Each of the small rectangles shows the receptive field of the corresponding cortical neuron. A bright color means that the neuron responds with an increased firing rate to a bright spot at that particular position within its receptive field; dark colors indicate inhibition.

There are two interesting aspects. First, the evolution of the synaptic weights has lead to asymmetric receptive fields, which give rise to orientation selectivity. Second, the structure of the receptive fields of neighboring cortical neurons are similar; neuronal response properties thus vary continuously across the cortex. The neurons are said to form a map for, e.g., orientation.

The first observation, the breaking of the symmetry of LGN receptive fields, is characteristic for all pattern formation phenomena. It results from the instability of the homogeneous initial state and the competition between individual synaptic weights. The second observation, the smooth variation of the receptive fields across the cortex, is a consequence of the excitatory intra-cortical couplings. During the development, neighboring cortical neurons tend to be either simultaneously active or quiescent and due to the activity dependent learning rule similar receptive fields are formed.

Figure 11.8: Receptive fields (small squares) of 64 cortical neurons (large grid). Each small square shows the distribution of weights $w_{V1,\text{ON}}(\vec{x}, \vec{x} + \Delta \vec{x}) - w_{V1,\text{OFF}}(\vec{x}, \vec{x} + \Delta \vec{x})$, where \vec{x} is the position of the cortical neuron and $\Delta \vec{x}$ the position of the white or black spot within the small rectangle [adapted from Wimbauer et al. (1998)].
11.2 Learning in Spiking Models

In the previous section we have seen that the evolution of synaptic weights under a rate-based learning rule depends on correlations in the input. What happens, if the rate-based learning rule is replaced by a spike-time dependent one?

In Section 11.2.1 we will derive an equation that relates the expectation value of the weight vector to statistical properties of pre- and postsynaptic spike trains. We will see that spike-time dependent plasticity is sensitive to spatial and temporal correlations in the input. In certain particularly simple cases spike-spike correlations can be calculated explicitly. This is demonstrated in Section 11.2.2 in the context of a linear Poisson neuron. This neuron model is also used in Section 11.2.3 for a comparison of spike-based and rate-based learning rules as well as in Section 11.2.4 where we revisit the static-pattern scenario of Section 11.1.2. Finally, in Section 11.2.5, we discuss the impact of stochastic spike arrival on the synaptic weights and derive a Fokker-Planck equation that describes the temporal evolution of the weight distribution.

11.2.1 Learning Equation

We will generalize the analysis of Hebbian learning that has been developed in Section 11.1 to spike-based learning rules based on the phenomenological model of Section 10.3.1. In this model the synaptic weight $w_{ij}(t)$ is a piecewise continuous function of time with steps whenever a presynaptic spike arrives or when a postsynaptic action potential is triggered, i.e.,

$$
\frac{dw_{ij}(t)}{dt} = a_0 + a_1^{\text{pre}} S_j(t) + a_1^{\text{post}} S_i(t)
$$

$$
+ S_i(t) \int_{-\infty}^{\infty} W(s) S_i(t-s) \, ds + S_i(t) \int_{-\infty}^{\infty} W(-s) S_j(t-s) \, ds, \quad (11.5)
$$

cf. Eqs. (10.14)-(10.15). As before we want to relate the synaptic weight change to the statistical properties of the input. Given the increased level of complexity, a few remarks about the underlying statistical ensemble are in order.
In the previous section we have considered presynaptic firing rates ν_j as random variables drawn from an ensemble of input patterns ξ^μ_j. The output rate, however, was a deterministic function of the neuronal input. In the context of spike-time dependent plasticity, we consider the set of presynaptic spike arrival times $(t_1, t_2, ...)$ as a random variable. The underlying 'randomness' may have several reasons. For example, different stimulation paradigms may be selected one by one in very much the same way as we have selected a new input pattern in the previous section. In contrast to the rate model, we do not want to restrict ourselves to deterministic neuron models. Hence, the randomness can also be produced by a stochastic neuron model that is used in order account for noise; cf. Chapter 5. In this case, the output spike train can be a random variable even if the input spike trains are fixed. A simple example is the Poisson neuron model that generates output spikes via an inhomogeneous Poisson process with an intensity that is a function of the membrane potential. In any case, we consider the set of spike trains $(S_1, S_2, ...)$ as a random variable. The underlying 'randomness' may have several reasons. For example, different stimulation paradigms may be selected one by one in very much the same way as we have selected a new input pattern in the previous section. In contrast to the rate model, we do not want to restrict ourselves to deterministic neuron models. Hence, the randomness can also be produced by a stochastic neuron model that is used in order account for noise; cf. Chapter 5. In this case, the output spike train can be a random variable even if the input spike trains are fixed. A simple example is the Poisson neuron model that generates output spikes via an inhomogeneous Poisson process with an intensity that is a function of the membrane potential. In any case, we consider the set of spike trains $(S_1, S_2, ...)$ as a random variable. The underlying 'randomness' may have several reasons. For example, different stimulation paradigms may be selected one by one in very much the same way as we have selected a new input pattern in the previous section. In contrast to the rate model, we do not want to restrict ourselves to deterministic neuron models. Hence, the randomness can also be produced by a stochastic neuron model that is used in order account for noise; cf. Chapter 5. In this case, the output spike train can be a random variable even if the input spike trains are fixed. A simple example is the Poisson neuron model that generates output spikes via an inhomogeneous Poisson process with an intensity that is a function of the membrane potential.

For the time being we are interested only in the long-term behavior of the synaptic weights and not in the fluctuations that are caused by individual spikes. As in Section 11.1.2 we therefore calculate the expectation value of the weight change over a certain interval of time,

$$\langle w_{ij}(t+T) - w_{ij}(t) \rangle_E = \left\langle \int_t^{t+T} \frac{d}{dt} w_{ij}(t') dt' \right\rangle_E. \tag{11.38}$$

With the abbreviation

$$\langle f(t) \rangle_T \equiv T^{-1} \int_t^{t+T} f(t') dt' \tag{11.39}$$

we obtain from Eq. (11.42)

$$\langle w_{ij}(t+T) - w_{ij}(t) \rangle_E = a_0 + a_1^{\text{pre}} \left\langle \langle S_j(t) \rangle_T \right\rangle_E + a_1^{\text{post}} \left\langle \langle S_i(t) \rangle_T \right\rangle_E$$

$$+ \int_0^\infty W(s) \left\langle \langle S_i(t-s) S_j(t) \rangle_T \right\rangle_E ds$$

$$+ \int_{-\infty}^0 W(s) \left\langle \langle S_i(t) S_j(t+s) \rangle_T \right\rangle_E ds. \tag{11.40}$$

If the time interval T is long as compared to typical interspike intervals then the time average is taken over many pre- or postsynaptic spikes. We can thus assume that the average $\left\langle \langle S_i(t) S_j(t+s) \rangle_T \right\rangle_E$ does not change if we replace t by $t-s$ as long as $s \ll T$. Furthermore, if $W(s)$ decays to zero sufficiently fast as $|s| \to \infty$ then the integration over s in the last term of Eq. (11.45) can be restricted to a finite interval determined by the width of the learning window W. In this case it is possible to replace $\left\langle \langle S_i(t) S_j(t+s) \rangle_T \right\rangle_E$ by $\left\langle \langle S_i(t-s) S_j(t) \rangle_T \right\rangle_E$ and to collect the last two terms of Eq. (11.45) into a single integral, provided that the width of learning window is small as compared to T. With this approximation we find
The instantaneous firing rate $\nu_i(t)$ of neuron i is the ensemble average of its spike train,

$$\nu_i(t) \equiv \langle S_i(t) \rangle_E.$$ \hfill (11.42)

Similarly, we define the joint firing rate ν_{ij} of neuron i and j as

$$\nu_{ij}(t, t') \equiv \langle S_i(t) S_j(t') \rangle_E,$$ \hfill (11.43)

which is the joint probability density to find both a spike at time t and at time t' in neuron i and j, respectively. Note that $\nu_{ij}(t, t')$ is a probability density both in t and t' and thus has units of one over time squared.

Since averaging is a linear operation we can exchange ensemble average and time average. We obtain the following expression for the expected weight change in the interval from t to $t + T$ as a function of the statistical properties of the spike trains,

$$\frac{\langle w_{ij}(t + T) - w_{ij}(t) \rangle_E}{T} = a_0 + a_{1\text{pre}} \langle \nu_j(t) \rangle_T + a_{1\text{post}} \langle \nu_i(t) \rangle_T$$

$$+ \int_{-\infty}^{\infty} W(s) \left(\langle \nu_{ij}(t - s, t) \rangle_T - \langle \nu_{ij}(t) \rangle_T \right) \, ds. \quad (11.44)$$

The time average $\langle \nu_{ij}(t - s, t) \rangle_T$ is the correlation function of pre- and postsynaptic spike train on the interval $[t, t + T]$. This function clearly depends on the actual value of the weight vector. In deriving Eq. (11.49) we already had to assume that the correlations are a slowly varying function of time. For the sake of consistency we thus have the requirement that the weight vector itself is a slowly varying function of time. If this is the case then we can exploit the self-averaging property of the weight vector and argue that fluctuations around the expectation value are negligible and that Eq. (11.49) is a good approximation for the actual value of the weight vector. We thus drop the ensemble average on the left-hand side of Eq. (11.49) and find for the time-averaged change of the synaptic weight the following learning equation,

$$\frac{d}{dt} \langle w_{ij}(t) \rangle_T = a_0 + a_{1\text{pre}} \langle \nu_j(t) \rangle_T + a_{1\text{post}} \langle \nu_i(t) \rangle_T$$

$$+ \int_{-\infty}^{\infty} W(s) \langle \nu_{ij}(t - s, t) \rangle_T \, ds; \quad (11.6)$$

cf. (Kistler and van Hemmen, 2000a; Kempter et al., 1999). As expected, the long-term dynamics of the synaptic weights depends on the correlation of pre- and postsynaptic spike train on the time scale of the learning window. In the following we will always use the smooth time-averaged weight vector $\langle w_{ij}(t) \rangle_T$, but for the sake of brevity we shall drop the angular brackets.
11.2.2 Spike-Spike Correlations

It is tempting to rewrite the correlation term \(\langle \nu_i(t-s) \nu_j(t) \rangle_T \) that appears on the right-hand side of Eq. (11.50) in terms of the instantaneous firing rates \(\nu_i(t) \nu_j(t) \). This, however, is only allowed, if the spike trains of neuron \(i \) and \(j \) were independent, i.e., if \(\langle S_i(t-s) S_j(t) \rangle_E = \langle S_i(t-s) \rangle_E \langle S_j(t) \rangle_E \). Such an approach would therefore neglect the specific spike-spike correlations that are induced by presynaptic action potentials.

Correlations between pre- and postsynaptic spike trains do not only depend on the input statistics but also on the dynamics of the neuron model and the way new output spikes are generated. The influence of a single presynaptic spike on the postsynaptic activity can be measured by a peri-stimulus time histogram (PSTH) triggered on the time of presynaptic spike arrival; cf. Section 7.4.1. The form of the PSTH characterizes the spike-spike correlations between presynaptic spike arrival and postsynaptic action potential. For high noise, the spike-spike correlations contain a term that is proportional to the time-course of the postsynaptic potential \(\epsilon \), while for low noise this term is proportional to its derivative \(\epsilon' \); cf. Figs. 7.12.

In the following, we will calculate the spike-spike correlations in a particularly simple case, the linear Poisson neuron model. As we will see, the spike-spike correlations contain in this case a term proportional to the postsynaptic potential \(\epsilon \). The linear Poisson neuron model can therefore be considered as a reasonable approximation to spiking neuron models in the high-noise limit.

11.2.2.1 Example: Linear Poisson neuron model

As a generalization of the analog neuron with linear gain function discussed in Section 11.1.2 we consider here a linear Poisson neuron. The input to the neuron consists of \(N \) Poisson spike trains with time-dependent intensities \(\nu_j(t) \). Similar to the SRM neuron the membrane potential \(u_i \) of neuron \(i \) is a superposition of postsynaptic potentials \(\epsilon \) with \(\int_0^\infty \epsilon(s) \, ds = 1 \),

\[
u_i(t) = \sum_j w_{ij} \int_0^\infty \epsilon(s) S_j(t-s) \, ds. \quad (11.45)\]

In contrast to Section 4.2.3 we neglect refractoriness and external input.

Postsynaptic spikes are generated by an inhomogeneous Poisson process with an intensity \(\nu_i^{\text{post}}(t) \) that is a (semi-)linear function of the membrane potential,

\[
u_i^{\text{post}}(t | u) = [u_i(t)]_. \quad (11.46)\]

Here, \([\cdot]_+ \) denotes the positive part of the argument in order to avoid negative rates. In the following, however, we will always assume that \(u_i(t) \geq 0 \). The notation \(\nu_i^{\text{post}}(t | u) \) indicates that the output rate depends on the actual value of the membrane potential.

We thus have a doubly stochastic process (Bartlett, 1963; Cox, 1955) in the sense that in a first step, a set of input spike trains is drawn from an ensemble characterized by Poisson rates \(\nu_j^{\text{pre}} \). This realization of input spike trains then determines the membrane potential which produces in a second step a specific realization of the
output spike train according to $\nu_i^{\text{post}}(t|u)$. It can be shown that, because of the finite duration of the postsynaptic potential ε, the output spike trains generated by this composite process are no longer Poisson spike trains; their expectation value $\langle S_i(t) \rangle_E \equiv \nu_i^{\text{post}}(t)$, however, is simply equivalent to the expectation value of the output rate, $\nu_i^{\text{post}}(t) = \langle \nu_i^{\text{post}}(t|u) \rangle_E$ (Kistler and van Hemmen, 2000a). Due to the linearity of the neuron model the output rate is given by a convolution of the input rates with the response kernel ε,

$$\nu_i^{\text{post}}(t) = \sum_j w_{ij} \int_0^\infty \varepsilon(s) \nu_j^{\text{pre}}(t-s) \, ds. \tag{11.47}$$

The joint firing rate $\nu_{ij}^{\text{post,pre}}(t,t') = \langle S_i(t) S_j(t') \rangle_E$ of pre- and postsynaptic neuron is the joint probability density to find an input spike at synapse j at time t' and an output spike of neuron i at time t. According to Bayes’ Theorem this probability equals the probability of observing an input spike at time t' times the conditional probability of observing an output spike at time t given the input spike at time t', i.e.,

$$\nu_{ij}^{\text{post,pre}}(t,t') = \langle S_i(t) | \text{input spike at } t' \rangle_E \langle S_j(t') \rangle_E. \tag{11.48}$$

In the framework of a linear Poisson neuron, the term $\langle S_i(t) | \text{input spike at } t' \rangle_E$ equals the sum of the expected output rate (11.53) and the specific contribution $w_{ij} \varepsilon(t - t')$ of a single (additional) input spike at time t'. Altogether we obtain

$$\nu_{ij}^{\text{post,pre}}(t,t') = \nu_i^{\text{post}}(t) \nu_j^{\text{pre}}(t') + w_{ij} \varepsilon(t - t') \nu_j^{\text{pre}}(t'). \tag{11.49}$$

The first term on the right-hand side is the `chance level' to find two spikes at t and t', respectively, if the neurons were firing independently at rates $\nu_i^{\text{post}}(t)$ and $\nu_j^{\text{pre}}(t')$. The second term describes the correlation that is due to synaptic coupling. If the presynaptic neuron has fired a spike at t' then the chance for the postsynaptic neuron to fire an spike at time $t > t'$ is increased by $w_{ij} \varepsilon(t - t')$. Note that this expression respects causality: The probability to find first a postsynaptic spike and then a presynaptic spike is just chance level because $\varepsilon(t - t') = 0$ for $t < t'$.

11.2.2.2 Example: Learning equation for a linear Poisson neuron

If we use the result from Eq. (11.55) in the learning equation (11.50) we obtain

$$\frac{d}{dt} w_{ij}(t) = a_0 + a_1 \langle \nu_j^{\text{pre}}(t) \rangle_T + a_1^{\text{post}} \langle \nu_i^{\text{post}}(t) \rangle_T$$

$$+ \int_{-\infty}^\infty W(s) \langle \nu_i^{\text{post}}(t-s) \nu_j^{\text{pre}}(t) \rangle_T \, ds + w_{ij}(t) \langle \nu_j^{\text{pre}}(t) \rangle_T W_-, \tag{11.7'}$$

with $W_- = \int_0^\infty W(-s) \varepsilon(s) \, ds$.

In linear Poisson neurons, the correlation between pre- and postsynaptic activity that drives synaptic weight changes consists of two contributions. The integral over the learning window in Eq. (11.56) describes correlations in the instantaneous firing rate. The last term on the right-hand side of Eq. (11.56) finally accounts for spike-spike correlations of pre- and postsynaptic neuron.
If we express the instantaneous firing rates $\nu_i(t)$ in terms of their fluctuations $\Delta \nu_i(t)$ around the mean $\langle \nu_i(t) \rangle_T$,

$$\nu_i(t) = \Delta \nu_i(t) + \langle \nu_i(t) \rangle_T , \quad (11.50)$$

then we can rewrite Eq. (11.56) together with Eq. (11.53) as

$$\frac{d}{dt} w_{ij}(t) = a_0 + a_1^{\text{pre}} \langle \nu_j^{\text{pre}}(t) \rangle_T + a_1^{\text{post}} \langle \nu_j^{\text{post}}(t) \rangle_T + \tilde{W} \langle \nu_j^{\text{pre}}(t) \rangle_T \langle \nu_i^{\text{post}}(t) \rangle_T + \sum_k \omega_{ik} Q_{kj}(t) + \omega_{ij}(t) \langle \nu_j^{\text{pre}}(t) \rangle_T W - \quad (11.58)$$

with

$$Q_{kj}(t) = \int_{-\infty}^{\infty} W(s) \int_{-\infty}^{\infty} \varepsilon(s') \langle \Delta \nu_k^{\text{pre}}(t-s-s') \Delta \nu_j^{\text{pre}}(t) \rangle_T ds't ds. \quad (11.51)$$

Here we have implicitly assumed that the temporal averaging interval T is much longer than the length of the learning window, the duration of a postsynaptic potential, or a typical interspike interval, so that $\langle \nu_i^{\text{post}}(t-s) \rangle_T \approx \langle \nu_i^{\text{post}}(t) \rangle_T$ and $\langle \nu_j^{\text{pre}}(t-s) \rangle_T \approx \langle \nu_j^{\text{pre}}(t) \rangle_T$.

The term containing $Q_{kj}(t)$ on the right-hand side of Eq. (11.58) shows how spatio-temporal correlations $\langle \Delta \nu_k^{\text{pre}}(t') \Delta \nu_j^{\text{pre}}(t) \rangle_T$ in the input influence the evolution of synaptic weights. What matters are correlations on the time scale of the learning window and the postsynaptic potential.

11.2.3 Relation of spike-based to rate-based learning

In Section 11.1.2 we have investigated the weight dynamics in the context of an analog neuron where the postsynaptic firing rate is an instantaneous function of the input rates. We have seen that learning is driven by (spatial) correlations within the set of input patterns. The learning equation (11.56) goes one step further in the sense that it explicitly includes time. Consequently, learning is driven by *spatio-temporal* correlations in the input.

In order to compare the rate-based learning paradigm of Section 11.1.2 with the spike-based formulation of Eq. (11.56) we thus have to disregard temporal correlations for the time being. We thus consider a linear Poisson neuron with stationary input rates, $\langle \nu_j(t) \rangle_T = \nu_j(t) = \nu_j$, and assume that the synaptic weight is changing slowly as compared to the width of the learning window and the postsynaptic potential. The weight dynamics is given by Eq. (11.56),

$$\frac{d}{dt} w_{ij}(t) = a_0 + a_1^{\text{pre}} \nu_j + a_1^{\text{post}} \nu_i + \tilde{W} \nu_i \nu_j + W \cdot w_{ij}(t) \nu_j. \quad (11.52)$$
with \(\tilde{W} = \int_{-\infty}^{\infty} W(s) \, ds \) and \(W_\nu = \int_{0}^{\infty} W(-s) \, e(s) \, ds \). If we identify

\[
c_0(w_{ij}) = a_0, \quad c_1^{\text{pre}}(w_{ij}) = a_1^{\text{pre}} + w_{ij}(t) \, W, \quad c_1^{\text{post}}(w_{ij}) = a_1^{\text{post}},
\]

(11.53)

and

\[
c_2^{\text{corr}}(w_{ij}) = \tilde{W},
\]

(11.54)

we recover the general expression for synaptic plasticity based on the rate description given in Eq. (10.2). The total area under the learning window thus plays the role of the correlation parameter \(c_2^{\text{corr}} \) that is responsible for Hebbian or anti-Hebbian plasticity in a rate formulation. The spike-spike correlations simply give rise to an additional weight-dependent term \(w_{ij}(t) \, W \) in the parameter \(c_1^{\text{pre}}(w_{ij}) \) that describes presynaptically triggered weight changes.

We may wonder what happens if we relax the requirement of strictly stationary rates. In the linear Poisson model, the output rate depends via Eq. (11.53) on the input rates and changes in the input rate translate into changes in the output rate. If the rate of change is small, we can expand the output rate

\[
\nu_i^{\text{post}}(t - s) \approx \nu_i^{\text{post}}(t) - s \frac{d}{dt} \nu_i^{\text{post}}(t) + \mathcal{O}(s^2)
\]

(11.55)

on the right-hand side of Eq. (11.56),

\[
\frac{d}{dt} w_{ij}(t) = a_0 + a_1^{\text{pre}} \nu_j^{\text{pre}}(t) + a_1^{\text{post}} \nu_i^{\text{post}}(t) + \tilde{W} \nu_i^{\text{post}}(t) \nu_j^{\text{pre}}(t)
\]

\[+ W, w_{ij}(t) \nu_j^{\text{pre}}(t) - \nu_j^{\text{pre}}(t) \frac{d}{dt} \nu_i^{\text{post}}(t) \int_{-\infty}^{\infty} s \, W(s) \, ds.
\]

(11.56)

Here, we have dropped the temporal averages because rates are assumed to change slowly relative to \(T \).

As compared to Eq. (11.60) we encounter an additional term that is proportional to the first moment \(\int s \, W(s) \, ds \) of the learning window. This term has been termed \textit{differential}-Hebbian (Roberts, 1999; Xie and Seung, 2000) and plays a certain role in the context of conditioning and reinforcement learning (Rao and Sejnowski, 2001; Montague et al., 1995).

11.2.3.1 Stabilization of Postsynaptic Rates

Another interesting property of a learning rule of the form (10.2) or (11.60) is that it can lead to a normalization of the postsynaptic firing rate and hence to a normalization of the sum of the synaptic weights. This can be achieved even without including higher order terms in the learning equation or postulating a dependence of the parameters \(a_0, a_1^{\text{pre/post}} \), etc., on the actual value of the synaptic efficacy.

Consider a linear Poisson neuron that receives input from \(N \) presynaptic neurons with spike activity described by independent Poisson processes with rate \(\nu^{\text{pre}} \). The postsynaptic neuron is thus firing at a rate \(\nu_i^{\text{post}}(t) = \nu_i^{\text{pre}} \sum_{j=1}^{N} w_{ij}(t) \). From Eq. (11.56) we obtain the corresponding dynamics for the synaptic weights, i.e.,

\[
\tilde{W} = \int_{-\infty}^{\infty} W(s) \, ds
\]

and

\[
W_\nu = \int_{0}^{\infty} W(-s) \, e(s) \, ds
\]

(11.53)
with \(\bar{W} = \int_{-\infty}^{\infty} W(s) \, ds \) and \(W_\varepsilon = \int_{0}^{\infty} \varepsilon(s) \, W(-s) \, ds \). In this particularly simple case the weight dynamics is characterized by a fixed point for the sum of the synaptic weights, \(\sum_j w_{ij} \), and, hence, for the postsynaptic firing rate, \(\nu_i^{\text{post}} = \nu_i^{\text{FP}} \),

\[
\nu_i^{\text{FP}} = -\frac{a_0 + \nu_{i}^{\text{pre}} \nu_{i}^{\text{pre}}}{a_1^{\text{post}} + \nu_{i}^{\text{pre}} \bar{W} + N^{-1} W_\varepsilon}.
\]

(11.58)

This fixed point is attractive if the denominator is negative. Since \(\nu_i^{\text{post}} \) is a firing rate we have the additional requirement that \(\nu_i^{\text{FP}} \geq 0 \). Altogether we thus have two conditions for the parameters of the learning rule, i.e.,

\[
a_1^{\text{post}} + \nu_{i}^{\text{pre}} \bar{W} + N^{-1} W_\varepsilon < 0 \quad \text{and} \quad a_0 + \nu_{i}^{\text{pre}} \nu_{i}^{\text{pre}} \geq 0.
\]

Note that we would obtain a - apart from the term \((N^{-1} W_\varepsilon) \) - completely analogous result from the rate formulation in Eq. (10.2) if we identify \(c^2_{\text{corr}} = \bar{W} \); cf. Eq. (11.4). Note further, that the linearity is not essential for the stabilization of the postsynaptic rate. Any model where the output rate is a monotonous function of the sum of the synaptic weights yields qualitatively the same result.

11.2.4 Static-Pattern Scenario

In order to illustrate the above results with a concrete example we revisit the static-pattern scenario that we have already studied in the context of analog neurons in Section 11.1.2. We consider a set of static patterns \(\{\xi^\mu, 1 < \mu < p\} \) that are presented to the network in a random sequence \((\mu_1, \mu_2, \ldots) \) during time steps of length \(\Delta t \).

Presynaptic spike trains are described by an inhomogeneous Poisson process with a firing intensity that is determined by the pattern that is currently presented. Hence, the instantaneous presynaptic firing rates are piecewise constant functions of time,

\[
\nu_{i j}^{\text{pre}}(t) = \sum_k \xi_{ij}^{\mu_k} \Theta [t - (k - 1) \Delta t] \Theta [k \Delta t - t].
\]

(11.59)

Due to the randomness by which the patterns are presented the input does not contain any non-trivial temporal correlations. We thus expect to obtain the very same result as in Section 11.1.2, i.e., that the evolution of synaptic weights is determined by the correlation matrix of the input pattern set.

For linear Poisson neurons the joint firing rate of pre- and postsynaptic neuron is given by Eq. (11.55).
\[V_{ij}(t-s, t) = \nu_{i}^{\text{post}}(t-s) \nu_{j}^{\text{pre}}(t) + w_{ij}(t) \varepsilon(s) \nu_{j}^{\text{pre}}(t). \] (11.60)

The postsynaptic firing rate is
\[\nu_{i}^{\text{post}}(t) = \sum_{j} \int_{0}^{\infty} w_{ij}(t-s) \varepsilon(s) \nu_{j}^{\text{pre}}(t-s) \, ds \]
\[\approx \sum_{j} w_{ij}(t) \int_{0}^{\infty} \varepsilon(s) \nu_{j}^{\text{pre}}(t-s) \, ds, \] (11.61)

where we have assumed implicitly that the synaptic weights are approximately constant on the time scale defined by the duration of the postsynaptic potential \(\varepsilon \) so that we can pull \(w_{ij} \) in front of the integral.

As usual, we are interested in the long-term behavior of the synaptic weights given by Eq. (11.56). We thus need the time-average of \(\nu_{i}^{\text{post}}(t-s) \nu_{j}(t) \) over the interval \(T \),
\[\left\langle \nu_{i}^{\text{post}}(t-s) \nu_{j}^{\text{pre}}(t) \right\rangle_T = \sum_{k} w_{ik}(t) \int_{0}^{\infty} \varepsilon(s') \left\langle \nu_{k}^{\text{pre}}(t-s-s') \nu_{j}^{\text{pre}}(t) \right\rangle_T \, ds'. \] (11.62)

Due to the linearity of the neuron model, the correlation of input and output is a linear combination of the correlations \(\left\langle \nu_{k}^{\text{pre}}(t-s) \nu_{j}^{\text{pre}}(t) \right\rangle_T \) in the input firing rates, which are independent from the specific neuron model. We assume that all patterns are presented once during the time interval \(T \) that defines the time scale on which we are investigating the weight dynamics. For \(s = 0 \) the time average corresponds to an ensemble average over the input patterns and the input correlation functions equals the correlation of the input pattern, \(\left\langle \nu_{k}^{\text{pre}}(t) \nu_{j}^{\text{pre}}(t) \right\rangle_T = \left\langle \xi_{k}^{\mu} \xi_{j}^{\mu} \right\rangle_{\mu} \). Here, \(\left\langle \cdot \right\rangle_{\mu} \) denotes an ensemble average over the set of input patterns. Since we have assumed that input patterns are presented randomly for time steps of length \(\Delta t \) the correlation \(\left\langle \nu_{k}^{\text{pre}}(t-s) \nu_{j}^{\text{pre}}(t) \right\rangle_T \) will be computed from two independent input patterns if \(|s| > \Delta t \), i.e., \(\left\langle \nu_{k}^{\text{pre}}(t-s) \nu_{j}^{\text{pre}}(t) \right\rangle_T = \left\langle \xi_{k}^{\mu} \right\rangle_{\mu} \left\langle \xi_{j}^{\mu} \right\rangle_{\mu} \). For \(0 < s < \Delta t \) the input correlation is a linear function of \(s \). Altogether we obtain
\[\left\langle \nu_{k}^{\text{pre}}(t-s) \nu_{j}^{\text{pre}}(t) \right\rangle_T = \left\langle \xi_{k}^{\mu} \right\rangle_{\mu} \left\langle \xi_{j}^{\mu} \right\rangle_{\mu} + \left(\left\langle \xi_{k}^{\mu} \xi_{j}^{\mu} \right\rangle_{\mu} - \left\langle \xi_{k}^{\mu} \right\rangle_{\mu} \left\langle \xi_{j}^{\mu} \right\rangle_{\mu} \right) \Lambda(s/\Delta t). \] (11.63)

Here, \(\Lambda \) is the triangular function
\[\Lambda(s) = (1 - |s|) \Theta(1 - |s|) ; \] (11.64)

cf. Fig. 11.9A. If we use this result in the learning equation (11.56) we find
\[\frac{d}{dt} \bar{w}_{ij}(t) = \sum_{k} w_{ik}(t) \left\langle \xi_{k}^{\mu} \right\rangle_{\mu} \left\langle \xi_{j}^{\mu} \right\rangle_{\mu} \bar{W} + \sum_{k} w_{ik}(t) Q_{kj} + w_{ij}(t) \left\langle \xi_{j}^{\mu} \right\rangle_{\mu} W. \] (11.65)

with \(\bar{W} = \int_{-\infty}^{\infty} W(s) \, ds, W_{s} = \int_{0}^{\infty} \varepsilon(s) W(-s) \, ds, \) and
Here we have used \(\int_0^\infty \varepsilon(s) \, ds = 1 \) and dropped all non-Hebbian terms (\(a_0 = a_0^{\text{pre}} = a_0^{\text{post}} = 0 \)).

Figure 11.9: Static-pattern scenario. A. Temporal correlations in the firing rate of presynaptic neurons have a triangular shape \(\Lambda(s/\Delta t) \) (solid line). The correlation between pre- and postsynaptic neurons involves a convolution with the response kernel \(\varepsilon(s) \) (dashed line). B. The definition of the matrix \(Q_{kj} \) in Eq. (11.74) contains the overlap of the learning window \(W(s) \) (dashed line) and the convolution \(\int \varepsilon(s') \, \Lambda[(s - s')/\Delta t] \, ds' \) (solid line). If the duration of one presentation is long as compared to the width of the learning window and the response kernel \(\varepsilon \) the the overlap equals approximately the area below the learning window \(\overline{W} \). If the presentation is short, as shown here, then the overlap may be different from zero, even if \(\overline{W} = 0 \).

In order to understand this result let us first consider the case where both the width of the learning window and the postsynaptic potential is small as compared to the duration \(\Delta t \) of one pattern presentation. The integral over \(s' \) in the definition of the matrix \(Q_{kj} \) is the convolution of \(\varepsilon \) with a triangular function centered around \(s = 0 \) that has a maximum value of unity. Since \(\varepsilon \) is normalized, the convolution yields a smoothed version of the originally triangular function that is approximately equal to unity in a neighborhood of \(s = 0 \); cf. Fig. 11.9B. If the learning window is different from zero only in this neighborhood, then the integral over \(s \) in Eq. (11.74) is just \(\overline{W} \), the area under the learning window. We can thus collect the first two terms on the right-hand side of Eq. (11.73) and obtain

\[
\frac{d}{dt} w_{ij}(t) = \sum_k w_{ik}(t) \left\langle \xi_k^\mu \xi_j^\mu \right\rangle_\mu \overline{W} + w_{ij}(t) \left\langle \xi_j^\mu \right\rangle_\mu W. \tag{11.67}
\]

Apart from the non-Hebbian term \(w_{ij}(t) \left\langle \xi_j^\mu \right\rangle_\mu W \), the weight dynamics is determined by the correlation matrix \(\left\langle \xi_k^\mu \xi_j^\mu \right\rangle_\mu \) of the (unnormalized) input patterns. This is exactly what we would have expected from the comparison of rate-based and spike based learning; cf. Eq. (11.60).

More interesting is the case where the time scale of the learning window is of the same order of magnitude as the presentation of an input pattern. In this case, the integral over \(s \) in Eq. (11.74) is different from \(\overline{W} \) and we can choose a time window with \(\overline{W} = 0 \) so that the first term on the right-hand side of Eq. (11.73) vanishes. In this case, the weight dynamics is no longer determined by \(\left\langle \xi_k^\mu \xi_j^\mu \right\rangle_\mu \) but by the matrix \(Q_{jk} \).
\[
\frac{d}{dt} w_{ij}(t) = \sum_k w_{ik}(t) Q_{kj} + w_{ij}(t) \left< \xi_j^\mu \right> \mu W, \quad (11.68)
\]

which is proportional to the properly normalized covariance matrix of the input patterns,

\[
Q_{kj} \propto \left< \xi_k \xi_j^\mu \right> \mu - \left< \xi_k \right> \mu \left< \xi_j^\mu \right> \mu = \left< \left(\xi_k^\mu - \left< \xi_k \right> \mu \right) \left(\xi_j^\mu - \left< \xi_j \right> \mu \right) \right> \mu. \quad (11.69)
\]

If we assume that all presynaptic neurons have the same mean activity, \(\left< \xi_k \right> \mu = \left< \xi_j^\mu \right> \mu \), then we can rewrite Eq. (11.76) as

\[
\frac{d}{dt} w_{ij}(t) = \sum_k w_{ik}(t) [Q_{kj} + \delta_{kj} \left< \xi_j^\mu \right> \mu W]. \quad (11.70)
\]

The eigenvectors and the eigenvalues of the matrix in square brackets are (apart from a common additive constant \(\left< \xi_j^\mu \right> \mu W \) for the eigenvalues) the same as those of the matrix \(Q \). We have already seen that this matrix is proportional to the properly normalized covariance matrix of the input patterns. If the proportionality constant is positive, i.e., if the integral over \(s \) in Eq. (11.74) is positive, then the dynamics of the weight vector is determined by the principal component of the set of input patterns.

11.2.5 Distribution of Synaptic Weights

If spike arrival times are described as a stochastic process, the weight vector itself is also a random variable that evolves along a fluctuating trajectory. In Section 11.2.4, we have analyzed the expectation value of the synaptic weights smoothed over a certain interval of time. In the limit where the synaptic weights evolve much slower than typical pre- or postsynaptic interspike intervals, an approximation of the weight vector by its expectation values is justified. However, if the synaptic efficacy can be changed substantially by only a few pre- or postsynaptic spikes then the fluctuations of the weights have to be taken into account. Here, we investigate the resulting distribution of synaptic weights in the framework of a Fokker-Planck equation (Rubin et al., 2001; van Rossum et al., 2000).

Figure 11.10: Transitions of weight values due to synaptic plasticity. The probability density \(P(w, t) \) increases if small weights increase, \(w' \longrightarrow w' + A_+(w) \), or if large weights decrease, \(w'' \longrightarrow w'' - A_-(w) \).

We consider a single neuron \(i \) that receives input from several hundreds of presynaptic neurons. All presynaptic neurons fire independently at a common constant rate \(\nu^{\text{pre}} \). We are interested in the probability density \(P(w, t) \) for the synaptic weight of a given synapse. We assume that all weights are restricted to the interval \([0, w^{\text{max}}]\) so that the normalization \(\int_0^{w^{\text{max}}} P(w, t) \, dw = 1 \) holds. Weight changes due to potentiation or depression of...
synapses induce changes in the density function \(P(w, t) \). The Fokker-Planck equation that we will derive below describes the evolution of the distribution \(P(w, t) \) as a function of time; cf. Fig. 11.10.

For the sake of simplicity, we adopt a learning window with two rectangular phases, i.e.,

\[
W(s) = \begin{cases}
A_+(w_{ij}) & \text{for } -d < s < 0 \\
A_-(w_{ij}) & \text{for } 0 < s < d \\
0 & \text{else}
\end{cases}
\tag{11.71}
\]

cf. Fig. 11.11A. Synapses are potentiated if the presynaptic spike shortly precedes the postsynaptic one. If the order of spike firing is reversed, the synapse is depressed.

There are basically two possibilities to restrict the synaptic weights to the interval \([0, w_{\text{max}}]\); we can either impose hard or soft bounds to the weight dynamics; cf. Section 10.2.1. Hard bounds means that the weights are simply no longer increased (decreased) if the upper (lower) bound is reached. Soft bounds, on the other hand, gradually slow down the evolution if the weight approaches one of its bounds. A simple way to implement soft bounds in our formalism is to define (Kistler and van Hemmen, 2000a)

\[
A_+(w_{ij}) = (w_{\text{max}} - w_{ij}) a_+ , \tag{11.72}
\]

\[
A_-(w_{ij}) = -w_{ij} a_- , \tag{11.73}
\]

with constants \(a_+ \) and \(a_- \). The choice of how the bounds are implemented turns out to have an important influence on the weight distribution \(P(w, t) \) (Rubin et al., 2001; van Rossum et al., 2000).

\[
\begin{align*}
A_+ \quad & \text{LTP} \\
0 \quad & \text{LTD} \\
A_- \quad & \text{LTD}
\end{align*}
\]

Figure 11.11: A. Rectangular learning window \(W(t_j^f - t_i^f) \). LTP occurs if the presynaptic spike arrives before the postsynaptic one whereas LTD occurs if the order of timing is reversed. B. Whether LTP or LTD is dominant depends on the overlap between the learning window \(W(s) \) (dashed line) and the correlations (solid line) between pre- and postsynaptic spike firing. The correlations consist of a constant bias term and a time-dependent term with a peak at negative values of \(s \); cf. Eq. (11.71).

In order to derive the evolution of the distribution \(P(w, t) \) we consider transitions in the `weight space' induced by pre- and postsynaptic spike firing. The evolution is described by a master equation of the form

\[
\frac{\partial}{\partial t} P(w, t) = -p_+(w) P(w, t) - p_-(w) P(w, t) \tag{11.74}
\]

\[
+ \int_0^{w_{\text{max}}} \delta [w - w' - A_+(w')] p_+(w', t) P(w', t) \, dw'
\]

\[
+ \int_0^{w_{\text{max}}} \delta [w - w' + A_-(w')] p_-(w', t) P(w', t) \, dw' ;
\]

cf. Fig. 11.10. Here \(p_+ \) (or \(p_- \)) is the probability that a presynaptic spike falls in the positive (or negative) phase of the learning window. Using the definition of the joint firing rate of pre- and postsynaptic neuron

\[
\nu_{\text{post, pre}}(t, t') = \langle S_{\text{post}}(t) S_{\text{pre}}(t') \rangle_E \tag{11.75}
\]
we have

\[p_+(w, t) = \int_{-\infty}^{0} \nu_{\text{post}, \text{pre}} (t, t - s) \, ds \]

(11.76)

\[p_-(w, t) = \int_{0}^{\infty} \nu_{\text{post}, \text{pre}} (t, t - s) \, ds ; \]

(11.77)

cf. Fig. 11.11B.

Equation (11.82) can be rewritten in the form of a Fokker-Planck equation if we expand the right-hand side to second order in the transition amplitudes \(A_+ \) and \(A_- \) (van Kampen, 1992),

\[\frac{\partial}{\partial t} P(w, t) = - \frac{\partial}{\partial w} [A(w) P(w, t)] + \frac{\partial^2}{\partial w^2} [B(w) P(w, t)] \]

(11.78)

with

\[A(w, t) = p_+(w, t) A_+(w) - p_-(w, t) A_-(w) \]

(11.79)

\[B(w, t) = p_+(w, t) A_+^2(w) - p_-(w, t) A_-^2(w) \]

(11.80)

Figure 11.12: Stationary distribution of synaptic weights. **A.** With soft bounds, the distribution of weights \(P_0(w) \) has a single peak. **B.** With hard bounds, the distribution peaks at the two boundaries \(w = 0 \) and \(w = w_{\text{max}} \); (schematic figure)

The Fokker-Planck equation (11.86) can be solved numerically to find stationary solutions. It turns out that the qualitative form of the distribution depends critically on how the bounds for the weights are implemented; cf. Rubin et al. (2001); van Rossum et al. (2000) for details. With soft bounds the distribution is unimodal whereas with hard bounds it peaks at both borders of the interval; cf. Fig. 11.12. Experimental data suggests a unimodal distribution, consistent with soft bounds (van Rossum et al., 2000).
11.3 Summary

The synaptic weight dynamics can be studied analytically if weights are changing slowly as compared to the time scale of the neuronal activity. We have seen that weight changes are driven by correlations between pre- and postsynaptic activity. More specifically, simple Hebbian learning rules can find the first principal component of a normalized input data set. If non-Hebbian terms are included then both spike-based and rate-based learning rules can be constructed that are characterized by a stable fixed point for the sum of the synaptic weights. This fixed point leads to an intrinsic normalization of the output firing rate.

The interesting aspect of spike-time dependent plasticity is that it naturally accounts for temporal correlations in the input by means of a learning window. Explicit expressions for temporal spike-spike correlations can be obtained for certain simple types of neuron model such as the linear Poisson model. In this case, correlations between pre- and postsynaptic neurons can be formulated in terms of the correlations in the input. It can be shown that, under certain circumstances, the weight vector evolves in the direction of the principal component of the input pattern set, even if the input is not normalized.

Spike-based and rate-based rules of plasticity are equivalent as long as temporal correlations are disregarded. The integral over the learning window \(\int_{-\infty}^{\infty} W(s) \, ds \) plays the role of the Hebbian correlation term \(c_{\text{corr}}^2 \). If rates vary rapidly, i.e. on the time scale of the learning window, then spike-time dependent plasticity is distinct from a rate-based formulation.

In addition to an analysis of the expectation value of the synaptic weight vector the distribution of weights can be described by means of a Fokker-Planck equation. The stationary distribution depends on the details of the learning rule.

References

More on the theory of unsupervised learning and principal component analysis can be found in the classical book by Hertz et al. (1991). Models of the development of receptive fields and cortical maps have a long tradition in the field of computational...
neuroscience; see, e.g., Shouval and Perrone (1995); Miller (1994); Miller et al.
(1989); von der Malsburg (1973); Linsker (1986c); Sejnowski (1977); Kohonen
(1984); Sejnowski and Tesauro (1989); MacKay and Miller (1990); for a review see,
e.g., Erwin et al. (1995); Wiskott and Sejnowski (1998). The linear rate model
discussed in Section 11.1 is reviewed in Miller (1995). The essential aspects of the
weight dynamics in linear networks are discussed in Miller and MacKay (1994); Oja

The theory of spike-based Hebbian learning has been developed by Rubin et al.
(2001); Roberts and Bell (2000); Eurich et al. (1999); Roberts (1999,2000); Senn
et al. (2001b); Song et al. (2000); Häfliger et al. (1997); van Rossum et al. (2000);
(); Gerstner et al. (1996a); Ruf and Schmitt (1997); Kistler and van Hemmen
(2000b); Q; and others. Spike-based learning rules are closely related to rules for
sequence learning (Gerstner et al., 1993b; Herz et al., 1988; Gerstner and Abbott,
1997; Minai and Levy, 1993; Herz et al., 1989; van Hemmen et al., 1990; Abbott
and Blum, 1996), where the idea of an asymmetric learning windows is exploited.
12. Plasticity and Coding

In Chapters 10 and 11 we have explored the principle of Hebbian synaptic plasticity. In this final chapter we would like to close the chain of arguments that we have followed across the book and establish a link between synaptic plasticity and the problems of neuronal coding and signal transmission. We will start the chapter with the question of rapid and reliable signal transmission, a question that we have encountered on several occasions in this book. In Section 12.1 we will see that an asymmetric spike-time dependent learning rule is capable of detecting early events that may serve as predictors for others. Such a mechanism can speed up signal processing and, hence, the reaction time. In Section 12.2 we show that spike-time dependent plasticity can enhance signal transmission by selectively strengthening synaptic connections that transmit precisely timed spikes at the expense of those synapses that transmit poorly timed spikes. In Section 12.3 we turn to sequence learning and explore whether spike-time dependent plasticity can support coding schemes that are based on spatio-temporal spike patterns with a millisecond resolution. The last two sections study coding properties of specific neuronal systems. In Section 12.4 we will illustrate the role of an inverted (or anti-)Hebb rule for the subtraction of expectations - which has been hypothesized as an important component of signal processing in electric fish. Finally, in Section 12.5 we will see that a spike-time dependent Hebbian rule can play an important role in the developmental tuning of signal transmission in the auditory system of barn owls.

Subsections
- 12.1 Learning to be Fast
- 12.2 Learning to be Precise
 - 12.2.1 The Model
 - 12.2.2 Firing time distribution
 - 12.2.3 Stationary Synaptic Weights
 - 12.2.4 The Role of the Firing Threshold
- 12.3 Sequence Learning
- 12.4 Subtraction of Expectations
 - 12.4.1 Electro-Sensory System of Mormoryd Electric Fish
12.5 Transmission of Temporal Codes

- 12.5.1 Auditory Pathway and Sound Source Localization
- 12.5.2 Phase Locking and Coincidence Detection
- 12.5.3 Tuning of Delay Lines

Summary

References
12.1 Learning to be Fast

In many real-world situations we must react rapidly to the earliest signs that could warn us about harmful stimuli. If an obstacle blocks our way, we want to avoid it before a painful contact occurs. If we ride a bicycle, we should make correcting steering movements already at small inclination angles of the bicycle, well before we fall down. Spike-time dependent learning rules with a temporally asymmetric learning window provide a hint of how a simple predictive coding could be implemented on the neuronal level.

![Figure 12.1: A. A postsynaptic neuron receives inputs from twenty presynaptic cells at intervals of 3ms. All synapses have the same weight. The neuron emits two output spikes at about 31 and 58ms after stimulus onset. B. After 5 repetitions of the same stimulus the neuron fires after 10ms (dashed line); after a total of 100 repetitions the neuron fires already after about 5ms (solid line). C. The reason is that synapses that have been active slightly before the postsynaptic spikes are strengthened while others are depressed. To illustrate this point, the learning window $W(t_j^{(f)} - t_i^{(f)})$ is shown twice, each time centered at the postsynaptic firing time $t_i^{(f)}$ of the first trial (shown in part A). D. The sequence of presynaptic spikes could be generated by a stimulus that moves from top to bottom.](http://diwww.epfl.ch/~gerstner/SPNM/node81.html (1 of 3) [25.9.2002 7:38:59])

Let us consider a single neuron that receives inputs from, say, twenty presynaptic cells which are stimulated one after the other; cf. Fig. 12.1. Initially, all synapses w_{ij} have the same weight w_0. The
postsynaptic neuron fires two spikes; cf. Fig. 12.1A. All synapses that have been activated before the postsynaptic spike are strengthened while synapses that have been activated immediately afterwards are depressed; cf. Fig. 12.1C. In subsequent trials the threshold is therefore reached earlier; cf. Fig. 12.1B. After many trials, those presynaptic neurons that fire first have developed strong connections while other connections are depressed. Thus a temporally asymmetric learning rule favors connections that can serve as ‘earliest predictors’ of other spike events (Song et al., 2000; Mehta et al., 2000).

This theoretical observation predicts a shift in so-called place fields of hippocampal neurons that seems to be in agreement with experiment observations (Mehta et al., 2000). More generally, early predictors play a central role in the theory of conditioning and reinforcement learning (Rescorla and Wagner, 1972; Schultz et al., 1997; Montague et al., 1995; Sutton and Barto, 1981).

12.1.0.1 Example: Hippocampal place fields

![Diagram of hippocampal place fields](http://diwww.epfl.ch/~gerstner/SPNM/node81.html)

Figure 12.2: A The place fields of neurons in regions CA3 of hippocampus are indicated as cones along the track that extends from S to T. The place field of the neuron in CA1 shown with solid lines has its center at c and extends from l to r. B. After the rat has made several movements from left to right, some connections are increased (thick lines) others decreased (dotted lines). As a result, the place field center c has moved to the left.

Place cells are neurons in rodent hippocampus that are sensitive to the spatial location of the animal in an environment. The sensitive area is called the place field of the cell. If, for example, a rat runs on a linear track from a starting point S to a target point T, this movement would first activate cells with a place fields close to S, then those with a place field in the middle of the track, and finally those with a place field close to T; cf. Fig. 12.2. In a simple feedforward model of the hippocampus (Mehta et al., 2000), a first set of place cells is identified with neurons in region CA3 of rat hippocampus. A cell further down the processing stream (i.e., a cell in hippocampal region CA1) receives input from several cells in CA1. If we assume that initially all connections have the same weight, the place field of a CA1 cell is therefore broader than that of a CA3 cell.

During the experiment, the rat moves repeatedly from left to right. During each movement, the same sequence of CA3 cells is activated. This has consequences for the connections from CA3 cells to CA1 cells. Hebbian plasticity with an asymmetric learning window strengthens those connections where the presynaptic neuron fires early in the sequence. Connections from neurons that fire later in the sequence are weakened. As a result the center of the place field of a cell in CA3 is shifted to the left; cf. Fig. 12.2B. The shift of place fields predicted by asymmetric Hebbian learning has been confirmed experimentally (Mehta et al., 2000).

12.1.0.2 Example: Conditioning

The shift of responses towards early predictors plays a central role in conditioning. The basic idea is best explained by the paradigm of Pavlovian conditioning (Pavlov, 1927). Tasting or smelling food (stimulus s2) evokes an immediate response r. During the conditioning experiment, a bell (stimulus s1) rings always at a fixed time interval ΔT before the food stimulus. After several repetitions of
the experiment, it is found that the response now occurs already after the first stimulus (s_1). Thus the reaction has moved from stimulus s_2 to stimulus s_1 which reliably predicts s_2.

Spike-time dependent plasticity with an asymmetric learning window allows to replicate this result, if the time difference ΔT between the two stimuli is less than the width of the learning window. The mechanism is identical to that of the previous example with the only difference that the input spikes are now clustered into two groups corresponding to the stimuli s_1 and s_2; cf. Fig. 12.3.

![Figure 12.3](image)

Figure 12.3: A. Conditioning paradigm. A response neuron r can receive input from two neuronal populations, representing the stimuli s_1 and s_2. B. Membrane potential of the postsynaptic neuron. Before learning, stimulation of the presynaptic population s_1 which occurs at about $t = 10$ ms leads to subthreshold excitation of the postsynaptic neuron whereas stimulation of group s_2 40 milliseconds later evokes postsynaptic firing. C. After learning postsynaptic firing is already triggered by the stimulus s_1.

In behavioral experiments with monkeys, conditioning is possible with time intervals that span several seconds (Schultz et al., 1997) whereas typical learning windows extend over 50-100 milliseconds (Zhang et al., 1998; Markram et al., 1997; Bi and Poo, 1998,1999; Debanne et al., 1998; Magee and Johnston, 1997). In order to explain conditioning with time windows longer than 100 milliseconds, additional assumptions regarding neuronal architecture and dynamics have to be made; see, e.g., Brown et al. (1999); Suri and Schutz (2001); Fiala et al. (1996). A potential solution could be provided by delayed reverberating loops; cf. Chapter 8.3. As an aside we note that, traditionally, conditioning experiments have been discussed on the level of rate coding. For slowly changing firing rates, spike-time dependent rules learning rules with an asymmetric learning window yield a differential Hebbian term [cf. Eq. (11.64)] that is proportional to the derivative of the postsynaptic rate, which is the starting point of models of conditioning (Schultz et al., 1997; Montague et al., 1995).
12.2 Learning to be Precise

We have seen in Section 12.1 that learning rules with an asymmetric learning window can selectively strengthen those synapses that reliably transmit spikes at the earliest possible time before the postsynaptic neuron gets activated by a volley of spikes from other presynaptic neurons. This mechanism may be relevant to speed up the information processing in networks that contain several hierarchically organized layers.

Here we are going to discuss a related phenomenon that may be equally important in networks that are based on a time-coding paradigm, i.e., in networks where information is coded in the precise firing time of individual action potentials. We show that an asymmetric learning window can selectively strengthen synapses that deliver precisely timed spikes at the expense of others that deliver spikes with a broad temporal jitter. This is obviously a way to reduce the noise level of the membrane potential and to increase the temporal precision of the postsynaptic response (Kistler and van Hemmen, 2000a).

12.2.1 The Model

We consider a neuron i that receives spike input from N presynaptic neurons via synapses with weights w_{ij}, $1 \leq j \leq N$. The membrane potential $u_i(t)$ is described by the usual SRM$_0$ formalism with response kernels ε and η, and the last postsynaptic firing time \hat{t}_i, i.e.,

$$u_i(t) = \eta(t - \hat{t}_i) + N^{-1} \sum_{j=1 \atop j \neq i}^{N} \int_{0}^{\infty} w_{ij}(t - s) \varepsilon(s) S_j(t - s) \, ds. \quad (12.1)$$

Postsynaptic spikes are triggered according to the escape-noise model (Section 5.3) with a rate ν that is a nonlinear function of the membrane potential,

$$\nu(u) = \nu_{\text{max}} \Theta(u - \vartheta). \quad (12.2)$$

If the membrane potential is below the firing threshold ϑ, the neuron is quiescent. If the membrane potential reaches the threshold, the neuron will respond with an action potential within a characteristic response time of ν_{max}^{-1}. Note that the output rate is determined by the shape of the η kernel rather than by $\nu(u)$. In particular, the constant ν_{max} is not the maximum firing rate but the reliability of the neuron. The larger ν_{max}, the faster the neuron will fire after the firing threshold has been reached. For $\nu_{\text{max}} \to \infty$ we recover the sharp firing
threshold of a noiseless neuron model. We refer to this neuron model as the \textit{nonlinear Poisson model}.

Presynaptic spike trains are described by inhomogeneous Poisson processes with a time-dependent firing intensity $\nu_i(t)$. More specifically, we consider a volley of spikes that reaches the postsynaptic neuron approximately at time t_0. The width of the volley is determined by the time course of the firing intensities ν_i.

For the sake of simplicity we use bell-shaped intensities with a width σ_i centered around t_0. The width σ_i is a measure for the temporal precision of the spikes that are conveyed via synapse i. The intensities are normalized so that, on average, each presynaptic neuron contributes a single action potential to the volley.

Synaptic plasticity is implemented along the lines of Section [11]. Synaptic weights change whenever presynaptic spikes arrive or when postsynaptic action potentials are triggered,

$$\frac{d}{dt} w_{ij}(t) = a_0 + a_1^{\text{pre}} S_j(t) + a_1^{\text{post}} S_i(t) + S_j(t) \int_{-\infty}^{\infty} W(s) S_i(t - s) \, ds + S_i(t) \int_{-\infty}^{\infty} W(-s) S_j(t - s) \, ds; \quad (12.1)$$

cf. Eqs. (10.14)-(10.15). In order to describe Hebbian plasticity we choose an asymmetric exponential learning window W that is positive for $s < 0$ and negative for $s > 0$,

$$W(s) = \begin{cases} A_+ \exp(s/\tau), & \text{if } s \leq 0 \\ A_- \exp(-s/\tau), & \text{if } s > 0 \end{cases} \quad (12.3)$$

with $A_+ > 0$ and $A_- < 0$; cf. Fig. 12.4.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure12.4.png}
\caption{Asymmetric exponential learning window W as a function of the time difference s between presynaptic spike arrival and postsynaptic firing with $A_+ = A_- = 1$ and $\tau = 1$; cf. Eq. (12.4).}
\end{figure}

In addition to the Hebbian term we also take advantage of the non-Hebbian terms a_1^{pre} and a_1^{post} in order to ensure that the postsynaptic firing rate stays within certain bounds. More precisely, we use $0 < a_1^{\text{pre}} \ll 1$ and $-1 \ll a_1^{\text{post}} < 0$. A positive value for a_1^{pre} leads to growing synapses even if only the presynaptic neuron is active. This effect will bring the neuron back to threshold even if all synaptic weights were strongly depressed. A small negative value for a_1^{post}, on the other hand, leads to a depression of the synapse, if the postsynaptic neuron is firing at an excessively high rate. Altogether, the non-Hebbian terms keep the neuron at its operating point.

Apart from the postsynaptic firing rate we also want to have individual synaptic weights to be restricted to a finite interval, e.g., to $[0, 1]$. We can achieve this by introducing a dependence of the parameters in Eqs. (12.3) and (12.4) on the actual value of the synaptic weight. All terms leading to potentiation should be proportional to

http://diwww.epfl.ch/~gerstner/SPNM/node82.html (2 of 7) [25.9.2002 7:39:04]
(1 - \(w_{ij}\)) and all terms leading to depression to \(w_{ij}\); cf. Section 11.4. Altogether we have

\[
\frac{\mathrm{d}}{\mathrm{d}t}w_{ij}(t) = a_{i}^{\text{pre}}[1 - w_{ij}(t)]S_{j}(t) + a_{i}^{\text{post}}w_{ij}(t)S_{i}(t)
\]

\[+ S_{i}(t) \int_{0}^{\infty} W(s)S_{j}(t - s) \, \mathrm{d}s + S_{j}(t) \int_{0}^{\infty} W(-s)S_{i}(t - s) \, \mathrm{d}s, \quad (12.2)\]

and \(A_{+} = a_{+}[1 - w_{ij}(t)]\), \(A_{-} = a_{-}w_{ij}(t)\) with constants \(a_{+} > 0\) and \(a_{-} < 0\). The constant term \(a_{0}\) describing weight decay has been discarded.

12.2.2 Firing time distribution

We have seen in Section 11.2.1 that the evolution of synaptic weights depends on correlations of pre- and postsynaptic spike trains on the time scale of the learning window. In order to calculate this correlation we need the joint probability density for pre- and postsynaptic spikes (‘joint firing rate’), \(\nu_{ij}(t, t')\); cf. Eq. (11.48). We have already calculated the joint firing rate for a particularly simple neuron model, the linear Poisson neuron, in Section 11.2.2. Here, however, we are interested in nonlinear effects due to the neuronal firing threshold. A straightforward calculation of spike-spike correlations is therefore no longer possible. Instead we argue, that the spike correlation of the postsynaptic and a single presynaptic neuron can be neglected in neurons that receive synaptic input from many presynaptic cells. In this case, the joint firing rate is just the product of pre- and postsynaptic firing intensities,

\[
\nu_{ij}(t, t’) \approx \nu_{i}(t) \nu_{j}(t’). \quad (12.4)
\]

It thus remains to determine the postsynaptic firing time distribution given the presynaptic spike statistics. As we have already discussed in Section 11.2.2 the output spike train is the result of a doubly stochastic process (Bartlett, 1963; Cox, 1955) in the sense that first presynaptic spike trains are produced by inhomogeneous Poisson processes so that the membrane potential is in itself a stochastic process. In a second step the output spike train is generated from a firing intensity that is a function of the membrane potential. Though the composite process is not equivalent to an inhomogeneous Poisson process, the output spike train can be approximated by such a process with an intensity that is given by the expectation of the rate \(\nu\) with respect to the input statistics (Kistler and van Hemmen, 2000a),

\[
\tilde{\nu}_{i}(t) = \langle \nu[i(t)] \rangle. \quad (12.5)
\]

The angular bracket denote an average over the ensemble of input spike trains.

Due to refractoriness, the neuron cannot fire two spikes directly one after the other; an effect that is clearly not accounted for by a description in terms of a firing intensity as in Eq. (12.7). A possible way out is to assume that the afterpotential is so strong that the neuron can fire only a single spike followed by a long period of silence. In this case we can focus on the probability density \(p_{\text{first}}(t)\) of the first postsynaptic spike which is given by the probability density to find a spike at \(t\) times the probability that there was no spike before, i.e.,

\[
p_{\text{first}}(t) = \tilde{\nu}_{i}(t) \exp \left[- \int_{\hat{t}}^{t} \tilde{\nu}_{i}(t’) \, \mathrm{d}t’\right], \quad (12.6)
\]

cf. the definition of the interval distribution in Eq. (5.9). The lower bound \(\hat{t}\) is the time when the neuron has fired its last spike from which on we consider the next spike to be the ‘first’ one.

Given the statistics of the presynaptic volley of action potentials we are now able to calculate the expected...
firing intensity $\tilde{V}_j(t)$ of the postsynaptic neuron and hence the firing time distribution $p_{\text{first}}(t)$ of the first action potential that will be triggered by the presynaptic volley. In certain limiting cases, explicit expressions for $p_{\text{first}}(t)$ can be derived; cf. Fig. 12.5 (see Kistler and van Hemmen (2000a) for details).

![Figure 12.5: Probability density of the postsynaptic firing time with (p_{first}, dotted line) and without refractoriness (\tilde{V}, dashed line). The solid line shows a simulation of a neuron that receives input from $N = 100$ presynaptic neurons via synapses with strength $w_{ij} = 1/N$. Presynaptic spike rains are generated by an inhomogeneous Poisson process with rate function $\nu_j = (2 \pi \sigma^2)^{1/2} \exp(-t^2/2\sigma^2)$ and $\sigma = 1$. The kernel is an alpha function $t/\tau \exp(1 - t/\tau)$ with time constant $\tau = 1$ so that the maximum of the membrane potential amounts to $u = 1$, if all spikes were to arrive simultaneously. The postsynaptic response is characterized by $\nu_{\text{max}} = 1$ and $\tilde{\nu} = 0.5$ in A and $\tilde{\nu} = 0.75$ in B. Increasing the threshold improves the temporal precision of the postsynaptic response, but the overall probability of a postsynaptic spike is decreased. Taken from (Kistler and van Hemmen, 2000a).]

12.2.3 Stationary Synaptic Weights

In the limiting case of many presynaptic neurons and strong refractoriness the joint firing rate of pre- and postsynaptic neuron is given by

$$\nu_{ij}(t, t') = p_{\text{first}}(t) \nu_j(t').$$ \hspace{1cm} (12.7)

We can use this result in Eq. (11.50) to calculate the change of the synaptic weight that is induced by the volley of presynaptic spikes and the postsynaptic action potential that may have been triggered by this volley. To this end we choose the length of the time interval T such that the time averages in learning equation (11.50) include all spikes within the volley and the postsynaptically triggered action potential.

A given combination of pre- and postsynaptic firing times will result in a, say, potentiation of the synaptic efficacy and the synaptic weight will be increased whenever this particular stimulus is applied. However, due to the soft bounds that we have imposed on the weight dynamics, the potentiating terms become less and less effective as the synaptic weight approaches its upper bound at $w_{ij} = 1$, because all terms leading to potentiation are proportional to $(1 - w_{ij})$. On the other hand, terms that lead to depression become increasingly effective due to their proportionality to w_{ij}. At some point potentiation and depression balance each other so that a fixed point for the synaptic weight is reached.

Figure 12.6 shows the stationary synaptic weight as a function of the firing time statistics given in terms of the temporal jitter σ of pre- and postsynaptic spikes and their relative firing time. For small values of σ, that is, for precisely timed spikes, we recover the shape of the learning window: The synaptic weight saturates close to its maximum value if the presynaptic spikes arrive before the postsynaptic neuron is firing. If the timing is the other way round, the weight will be approximately zero. For increasing levels of noise in the firing times this relation is smeared out and the weight takes an intermediate value that is determined by non-Hebbian terms rather than by the learning window.
12.2.4 The Role of the Firing Threshold

We have seen that the stationary value of the synaptic weight is a function of the statistical properties of pre- and postsynaptic spike train. The synaptic weights, on the other hand, determine the distribution of postsynaptic firing times. If we are interested in the synaptic weights that are produced by a given input statistics, we thus have to solve a self-consistency problem which can be done numerically by using explicit expressions for the firing time distributions derived along the lines sketched above.

Figure 12.7 shows an example of a neuron that receives spike input from two groups of presynaptic neurons. The first group is firing synchronously with a rather high temporal precision of $\sigma = 0.1$. The second group is also firing synchronously but with a much broader jitter of $\sigma = 1$. (All times are in units of the membrane time constant.) The spikes from both groups together form the spike volley that impinges on the postsynaptic neuron and induce changes in the synaptic weights. After a couple of these volleys have hit the neuron the synaptic weights will finally settle at their fixed point. Figure 12.7A shows the resulting weights for synapses that deliver precisely timed spikes together with those of the poorly timed group as a function of the neuronal firing threshold.

As is apparent from Fig. 12.7A there is a certain domain for the neuronal firing threshold ($\vartheta \approx 0.25$) where synapses that convey precisely timed spikes are substantially stronger than synapses that deliver spikes with a broad temporal jitter. The key for an understanding of this result is the normalization of the postsynaptic firing rate by non-Hebbian terms in the learning equation.

The maximum value of the membrane potential if all presynaptic neurons deliver one precisely timed spike is $u_{\text{max}} = 1$. The axis for the firing threshold in Fig. 12.7 therefore extends from 0 to 1. Let us consider high firing thresholds first. For $\vartheta \approx 1$ the postsynaptic neuron will reach its firing threshold only, if all presynaptic spikes arrive almost simultaneously, which is rather unlikely given the high temporal jitter in the second group. The probability that the postsynaptic neuron is firing an action potential therefore tends to zero as $\vartheta \rightarrow 1$; cf. Fig. 12.7C. Every time when the volley fails to trigger the neuron the weights are increased due to presynaptic potentiation described by $a_{1,\text{pre}} > 0$. Therefore, irrespective of their temporal precision all synapses will finally reach an efficacy that is close to the maximum value.
On the other hand, if the firing threshold is very low, then a few presynaptic spikes suffice to trigger the postsynaptic neuron. Since the neuron can fire only a single action potential as a response to a volley of presynaptic spikes the neuron will be triggered by earliest spikes; cf. Section 12.1. The early spikes however are mostly spikes from presynaptic neurons with a broad temporal jitter. The postsynaptic neuron has therefore already fired its action potential before the spikes from the precise neurons arrive. Synapses that deliver precisely timed spikes are hence depressed, whereas synapses that deliver early but poorly timed spikes are strengthened.

For some intermediate values of the firing threshold, synapses that deliver precisely timed spikes are strengthened at the expense of the other group. If the firing threshold is just high enough so that a few early spikes from the poorly timed group are not able to trigger an action potential then the neuron will be fired most of the time by spikes from the precise group. These synapses are consistently strengthened due to the Hebbian learning rule. Spikes from the other group, however, are likely to arrive either much earlier or after the neuron has already fired so that the corresponding synapses are depressed.

A neuron that gets synaptic input predominantly from neurons that fire with a high temporal precision will also show little temporal jitter in its firing time relative to its presynaptic neurons. This is illustrated in Fig. 12.7B which gives the precision Δt of the postsynaptic firing time as a function of the firing threshold. The curve exhibits a clear peak for firing thresholds that favor 'precise' synapses. The precision of the postsynaptic firing time shows similarly high values in the high firing threshold regime. Here, however, the overall probability ν_{post} for the neuron to reach the threshold is very low (Fig. 12.7C). In terms of a 'coding efficiency' defined by $\nu_{\text{post}}/\Delta t$ there is thus a clear optimum for the firing threshold near $\vartheta = 0.25$ (Fig. 12.7D).

Figure 12.7: A. Synaptic weights for a neuron receiving input from two groups of synapses - one group ($n_1 = 20$) delivers precisely timed spikes ($\sigma_1 = 0.1$) and the other one ($n_2 = 80$) spikes with a broad distribution of arrival times ($\sigma_2 = 1.0$). The upper trace shows the resulting stationary synaptic weight for the group of
precise synapses; the lower trace corresponds to the second group. The solid lines give the analytic result obtained for two limiting cases; see (Kistler and van Hemmen, 2000a) for details. The dashed lines show the results of a computer simulation. The parameters for the synaptic plasticity are the same as in Fig. 12.6. B, C, D, precision Δr^{-1}, reliability $\tilde{\nu}_{\text{post}}$, and 'coding efficiency' $\tilde{\nu}_{\text{post}}/\Delta t$ as a function of the threshold ϑ for the same neuron as in A. Reliability is defined as the overall firing probability $\tilde{\nu}_{\text{post}} = \int dt \, p_{\text{first}}(t)$. Precision is the inverse of the length of the interval containing 90 percent of the postsynaptic spikes, $\Delta t = t_2 - t_1$ with

$$\int_{-\infty}^{t_1} dt \, p_{\text{first}}(t) = \int_{t_2}^{\infty} dt \, p_{\text{first}}(t) = 0.05 \, \tilde{\nu}_{\text{post}}.$$

Taken from (Kistler and van Hemmen, 2000a).

12.2 Learning to be Precise

Next: 12.3 Sequence Learning Up: 12. Plasticity and Coding Previous: 12.1 Learning to be
Gerstner and Kistler

Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
12.3 Sequence Learning

It has been recognized for a long time that asymmetric Hebbian plasticity is well suited to store spatio-temporal patterns in a neuronal network (Gerstner et al., 1993b; Minai and Levy, 1993; Herz et al., 1989; Hertz and Prugel-Bennet, 1996; Sompolinsky and Kanter, 1986). In standard sequence learning models, where groups of neurons are trained to fire one after the other, external input is used during an initial training period in order to induce neurons to fire in the desired spatio-temporal spike pattern. Let us suppose that neuron j fires shortly before neuron i. Hebbian synaptic plasticity with an asymmetric learning window will thus strengthen the synapse from neuron j to neuron i. After successfull training, weights are kept fixed and the network is able to reproduce the learnt spatio-temporal spike pattern even in the absence of the external input because spikes of neuron j will stimulate neuron i and hence help to `recall' the sequence of firing. The resulting network architecture is equivalent to a synfire chain (Abeles, 1991) with feedforward connectivity; cf. Section 9.4.

Figure 12.8: Sequence learning. A. In a sequence, different groups of neurons (1,2,3,4) are activated one after the other. During learning the sequence is imposed by external stimuli. B. A presynaptic neuron j in one of the groups is connected to the postsynaptic neuron i in another group via several synapses with different axonal transmission delays $\Delta_1, \Delta_2, \Delta_3$. Initially, external stimulation by short current pulses (left) causes pre- and postsynaptic spikes (short vertical bars) at time $t_j^{(f)}$ and $t_i^{(f)}$, respectively. The presynaptic spike generates three EPSPs with different delays (middle). If a Hebbian
learning rule strengthens the connection with transmission delay Δ_2, a presynaptic spike $t_j(f)$ can later cause a postsynaptic spike $t_i(f)$ with approximately the same time difference $t_i(f) - t_j(f)$ as imposed during the initial stimulation. The bottom graph shows a hypothetical sharply peaked learning window (dashed line) and a more realistic window with two phases (solid line). The maximum of the learning window is so that the connection with transmission delay Δ_2 is maximally reinforced. t^pre indicates the presynaptic spike arrival time. (schematic figure).

The network should be able to recall the learnt sequence at the correct speed. This can most easily be achieved if each pair of neurons has several connections with a broad distribution of delays; cf. Fig. 12.8B. We assume that neuron i receives input from neuron j via three connections with different axonal transmission delays Δ_1, Δ_2, and Δ_3. A single presynaptic action potential that has been fired at time $t_j(f)$ evokes therefore three EPSPs which start after the presynaptic spike arrival time $t^\text{pre} = t_i(f) + \Delta_1$, $t_i(f) + \Delta_2$, and $t_i(f) + \Delta_3$, respectively. In order to preserve the timing, Hebbian learning should maximally reinforce the connection that could have been causal for the postsynaptic spike at time $t_i(f)$. A postsynaptic action potential is triggered in the low-noise limit most likely during the rising phase of the EPSP, while in the high-noise limit it occurs most likely at the time when the EPSP reaches its maximum; cf. Section 7.4.1, in particular Fig. 7.12. If we denote the rise time of the EPSP as δ^{rise} and the time difference between presynaptic spike arrival and postsynaptic firing by $s = t^\text{pre} - t_i(f)$, then the learning window $W(s)$ should have its maximum s^* in the range $0.5 \delta^{\text{rise}} < s^* < \delta^{\text{rise}}$; (Gerstner et al., 1993b; Herz et al., 1989; Gerstner et al., 1996a; Senn et al., 2001a). We call this the causality condition of Hebbian learning.

In early papers on sequence learning, it was assumed that the learning window is sharply peaked at s^*, so that only connections with the optimal delay are strengthened (Gerstner et al., 1993b; Herz et al., 1989). It is, however, also possible to achieve selective reinforcement of the optimal delay lines with a broader learning window, if a competition mechanism between different synapses leading onto the same postsynaptic neuron is implemented (Gerstner et al., 1996a; Senn et al., 2001a). As we have seen in Section 11.2.3, synaptic competition in a stochastically firing network of spiking neurons can be induced by a stabilization of the postsynaptic firing rate.

12.3.0.1 Example: Coding by spatio-temporal spike patterns
A network of $N = 1000$ spiking neurons has been trained on three spatio-temporal patterns that are defined with a temporal resolution of one millisecond. Each pattern consists of a sequence of spikes from different neurons during a time window of $T = 40$ time steps, i.e., 40ms. The sequence is then repeated. A spike pattern $\mu (1 \leq \mu \leq 3)$ is defined here by exactly one firing time $t_i^{(f)}(\mu)$ for each single neuron $1 \leq i \leq N$. The firing time is drawn from a random distribution with uniform probability $p = 0.025$ for all discrete time steps $t_i^{(f)} \in \{1, 2, ..., 40\}$. Thus, in an ideal and noiseless pattern all neurons fire regularly with a rate of 25Hz, but the firing of different neurons is randomly correlated.

During the training session all spike patterns $1 \leq \mu \leq 3$ are impressed on the neurons and the synaptic efficacies are adjusted according to a Hebbian learning rule with a suitable time window. In order to check whether the patterns are now stable attractors of the neuronal dynamics, retrieval of the patterns has to be studied. A retrieval session is started by a short external stimulus of duration $t_{\text{init}} = 5$ms. It consists of a spatio-temporal sequence of short pulses that initialized the network during 5 ms in a state consistent with one of the learnt patterns. The pattern μ that is matched should be completed and cyclically retrieved afterwards.
The results of three retrieval sessions with different stimuli are shown in Fig. 12.9A-C. For each pattern, the ensemble activity (spatial average) during retrieval is plotted in (i),
the spike pattern of a few selected neurons during the retrieval session is shown in (ii) and the mean firing rate in (iii).

Let us first turn to the spatio-temporal spike pattern, Fig. 12.9A(ii)-C(ii). We have selected 30 neurons whose label has been plotted along the y-axis. Time is plotted along the x-axis. The origin $t = 0$ marks the end of the stimulus, thus for all $t \geq 0$, the external input vanishes. All spikes of a given neuron i appear as black dots along a line parallel to the $x=axis$. For ease of visualization of the different spike patterns, we have used a little trick. Neurons with index $i = 1,..., 10$ did not learn random patterns but ‘meaningful’ objects like diagonal stripes so that different spike patterns can be easily recognized.

If we analyze the series of Fig. 12.9A-C, a number of conclusions regarding potential neuronal coding schemes can be drawn. First of all, it is indeed possible to store and retrieve spatio-temporal spike patterns with a time resolution of 1ms in a network of spiking neurons. This may seem remarkable in view of the typical duration of an EPSP (approximately 5-15ms) which is much longer, but can easily be explained since (i) firing occurs, at least in the low-noise limit, during the rise time of the EPSP which is typically much shorter (1-5ms) than the duration of the EPSP and (ii) after firing a neuron becomes refractory so that it cannot emit further spikes which would reduce the temporal precision; cf. Section 9.4.

Second, we see from Fig. 12.9 that several patterns can be stored in the same network. These patterns are defined by their spatio-temporal correlations and cannot be distinguished by mean firing rates or ensemble activity. To illustrate this point, let us count the number of spikes along a horizontal line and divide by the total recording time ($T = 200ms$). This procedure allows us to determine the mean firing rate of the neuron plotted in subgraphs (iii) to the right of the spike pattern. We see that all neurons have approximately the same firing rate, 25 Hz. Thus, if we consider the mean firing rate only, we cannot detect any significant structure in the firing behavior of the neurons. Instead of averaging over time we could also average over space. If we count the number of spikes in every millisecond (along a vertical line in the spike raster) and divide by the total number of neurons, we find the ensemble activity plotted in (i). We see that immediately after the stimulus the ensemble activity is high ($\approx 5\%$), but then settles rapidly to an average of 2.5% and no significant structure is left. Nevertheless, if we look at the spike raster (ii), we see that the network remains in a regular firing state. The specific spike pattern has been induced by the stimulus and is different for Figs. 12.9A, B, and C. Data analysis methods that are based on mean firing rates or ensemble activities would miss the information contained in the time-resolved spike raster. Indeed, the above examples clearly show that single spikes can carry important information.

Does this imply that the cortical spike activity is actually a huge spatio-temporal pattern that is stored in the synaptic connectivity? Do neurons use a temporal code at a millisecond time scale? Do different brain states correspond to different spatio-temporal patterns that are recalled from the storage? The answer is most likely negative - for a number of reasons. Simulations, for example, show that the spatio-temporal patterns that are presented during learning become stable attractors of the network dynamics. However, if we try to store in a network of 1000 neurons more than, say, 20 patterns the dynamics breaks down rapidly. Since a single spatio-temporal pattern of 40 millisecond...
duration contains 40 different spatial patterns that are retrieved one after another, a lot of information needs to be stored in the synaptic connections to cover a short interval of time.

On the other hand, specialized structures such as delayed reverberating loops in the olivo-cerebellar system that operate intrinsically at a time scale of 100 ms instead of 1 ms may actually rely on spatio-temporal spike patterns as a neuronal code; cf. Section 8.3.3. Furthermore, transient spatio-temporal spike activity without stable attractors could play a role for dynamical short-term memory and information processing (Kistler and De Zeeuw, 2002; Maass et al., 2002).

The final decision, whether the brain uses spatio-temporal spike patterns as a code has to come from experiments. The simulations shown in Fig. 12.9 suggest that during retrieval of a spatio-temporal spike pattern neuronal firing times are strongly correlated, a result which should clearly be visible in experimental data. On the other hand, recent analysis of experimental spike trains show that correlations between the firing times of different neurons are rather weak and can be explained by stochastic models (Oram et al., 1999). Thus, spatio-temporal spike patterns with milisecond resolution are probably not a widely spread coding scheme in the brain.
12.4 Subtraction of Expectations

In this and the following section we discuss temporal coding in specialized neuronal systems. We start in this section with the problem of electro-sensory signal processing in Mormoryd electric fish.

12.4.1 Electro-Sensory System of Mormoryd Electric Fish

Mormoryd electric fish probe their environment with electric pulses. The electric organ of the fish emits a short electric discharge. The spatio-temporal electric field that is generated around the fish by the discharge depends on the location of objects in the surroundings. In order to reliably detect the location, size, or movement of objects the electro-sensory system must compare the momentary spatio-temporal electric field with the one that would occur in the absence of external objects. In other words, it must subtract the expected spatio-temporal image from the actual sensory input.

Experiments have shown that so-called medium ganglion cells in the electro-sensory lateral lobe (ELL) of electric fish can solve the task of subtracting expectations (Bell et al., 1997a). These cells receive two sets of input; cf. Fig. 12.10A. Information on the timing of a discharge pulse emitted by the electric organ is conveyed via a set of delay lines to the ganglion cells. The signal transmission delay Δ_j between the electric organ discharge and spike arrival at the ganglion cell changes from one connection to the next and varies between zero and 100 milliseconds. A second set of input conveys the characteristics of the spatio-temporal electric field sensed by the fish's electro-receptors.
Figure 12.10: A. Schematic view of ganglion cell input. Information about the timing of electric organ discharge is transmitted by a set of delayed spikes (top) while the sensory image is encoded in a second set of spikes (bottom). B. Synaptic plasticity as a function of the time difference \(s = t_j^{(f)} - t_i^{(f)} \) between postsynaptic broad spikes and presynaptic spikes. The synapse is depressed, if the presynaptic spike arrives slightly before the back-propagating action potential (-100ms < \(s < 0 \)) while it is strongly increased if the presynaptic spike arrives slightly after the postsynaptic one. This dependence is modeled by a spike-time dependent learning window \(W(s) \). The presynaptic term \(a_1^{pre} \) (horizontal dashed line) takes care of the fact that for very large time differences there is always a positive synaptic change. Experimental data points redrawn after Bell et al. (1997b).

In experiments, electric organ discharges are triggered repetitively at intervals of \(T = 150 \) ms. If the sensory input has, after each discharge, the same spatio-temporal characteristics, the ganglion cell responds with stochastic activity at a constant rate; cf. Fig. 12.11A. If the sensory input suddenly changes, the ganglion cell reacts strongly. Thus the ganglion cell can be seen as a novelty detector. The predictable contribution of the sensory image is subtracted, and only unpredictable aspects of a sensory image evoke a response. In the following paragraph we will show that a spike-time dependent learning rule with anti-Hebbian characteristics can solve the task of subtracting expectations (Roberts and Bell, 2000; Bell et al., 1997b).

12.4.2 Sensory Image Cancellation

In this section we review the model of Roberts and Bell (2000). We start with the model of the ganglion cell, turn then to the model of synaptic plasticity, and compare finally the model results with experimental results of ganglion cell activity.

12.4.2.1 Neuron model

We consider a single ganglion cell that receives two sets of inputs as indicated schematically in Fig. 12.10A. After each electric organ discharge, a volley of 150 input spikes arrives at different delays \(\Delta_1, \Delta_2, \ldots, \Delta_{150} \). Each spike evokes upon arrival an excitatory postsynaptic potential with time course \(\epsilon(s) \). A second set of input carries the sensory stimulus. Instead of modeling the sequence of spike arrival times, the time course of the stimulus is summarized by a function \(h_{\text{stim}}(s) \) where \(s = 0 \) is the moment of the electric organ discharge. The total membrane potential of the ganglion cell \(i \) is

\[
\nu_i(t) = \sum_{n=1}^{n_{\text{max}}} \left[\sum_j w_{ij} \epsilon(t - n T - \Delta_j) + h_{\text{stim}}(t - n T) \right]
\] (12.8)
where w_{ij} is the synaptic efficacy, $T = 150$ ms the interval between electric organ discharges, and n_{max} the total number of repetitions of the stimulus h_{stim} up to time t.

A ganglion cell is described as a (semi-)linear Poisson model that emits spikes at a rate

$$\nu_i(t) = [u_{i}(t) - \vartheta]_+. \quad (12.9)$$

There are two types of action potential, i.e., a narrow spike that travels along the axon and transmits information to other neurons; and a broad spike that back-propagates into the apical dendrite. It is therefore the broad spike that conveys information on postsynaptic spike firing to the site of the synapse. Both types of spike are generated by an inhomogeneous Poisson process with rate (12.11) but the threshold ϑ of the broad spike is higher than that of the narrow spike.

Figure 12.11: Sensory image cancellation and negative after-image in experiments (A) and simulation (B). Each trial corresponds to one horizontal line. The electric organ discharge is elicited at time $t = 0$; Spikes are denoted by black dots. For the first 50 trials no sensory input is given. After trial 50 a time-dependent stimulus is applied which is repeated in the following trials. The neuron adapts. After the stimulus is removed (trial 3500), the time course of the neuronal activity exhibits a negative after-image of the stimulus. The stimulus onset is denoted by a vertical bar; taken with slight adaptations from Roberts and Bell (2000), experiments of Bell et al. (1997a).

12.4.2.2 Synaptic plasticity

The synaptic efficacy w_{ij} changes according to a spike-time dependent plasticity rule

$$\frac{d}{dt} w_{ij}(t) = S_j(t) \left[a_{1}^{\text{pre}} + \int_{0}^{\infty} W(s) S_i(t - s) \, ds \right]$$
\[+ S_i(t) \left[\int_0^\infty W(-s) S_j(t-s) \, ds \right]; \quad (12.10) \]

cf. Eq. (10.14). Here \(a_{1\text{pre}} > 0 \) is a non-Hebbian presynaptic term, \(W(s) \) with \(\tilde{W} = \int_{-\infty}^\infty W(s) \, ds \) < 0 is the learning window, \(S_j(t) = \sum_f \delta(t - t_j^{(f)}) \) is the train of presynaptic spike arrivals, and \(S_i(t) = \sum_f \delta(t - t_i^{(f)}) \) is the train of postsynaptic broad spikes. The learning window \(W(t_i^{(f)} - t_j^{(f)}) \) as a function of the time difference between a back-propagating broad spike and a presynaptic spike has been measured experimentally (Bell et al., 1997b). It has two phases, one for LTP and one for LTD, but the timing is reversed as compared to other spike-time dependent plasticity rules (Zhang et al., 1998; Markram et al., 1997; Bi and Poo, 1998; Debanne et al., 1998). In particular, a presynaptic spike that arrives slightly before a postsynaptic broad spike leads to depression of the synapse; cf. Fig. 12.10B. It can thus be called anti-Hebbian. While Hebbian learning windows are apt to detect and reinforce temporal structure in the input, anti-Hebbian rules suppress any temporal structure, as we will see in the following paragraph.

12.4.2.3 Results

A simulation of the model introduced above is shown in Fig. 12.11B. During the first 50 trials, no stimulus was applied (\(h_{\text{stim}} \equiv 0 \)). In all subsequent trials up to trial 3500, an inhibitory stimulus \(h_{\text{stim}}(s) \) with triangular time course has been applied. While the activity is clearly suppressed in trial 51, it recovers after several hundred repetitions of the experiment. If the stimulus is removed thereafter, the neuronal activity exhibits a negative after-image of the stimulus, just as in the experiments shown in Fig. 12.11A.

Using the methods developed in Chapter 11, it is possible to show that, for \(a_{1\text{pre}} > 0 \) and \(\tilde{W} < 0 \), the learning rule stabilizes the mean output rate (of broad spikes) at a fixed point \(\nu_{FP} = -a_{1\text{pre}}/\tilde{W} \). Moreover, weights \(w_{ij} \) are adjusted so that the membrane potential has minimal fluctuations about \(u_{FP} = \nu_{FP} + \theta \). To achieve this, the weights must be tuned so that the term \(\sum_j w_{ij} \varepsilon(t - \Delta_j) \) cancels the sensory input \(h_{\text{stim}}(t) \) - which is the essence of sensory image cancellation (Roberts and Bell, 2000).
12.5 Transmission of Temporal Codes

While the relevance of spike timing in the millisecond range in cortical areas is a topic of intense debate, there are a few specific systems where temporal coding is generally accepted. One of the most prominent examples is the auditory system of the barn owl (Carr and Konishi, 1988, 1990; Konishi, 1986; Carr, 1993, 1995), and this is the system we will focus on in this section. Owls hunt at night. From behavioral experiments it is known that owls can locate sound sources even in complete darkness with a remarkable precision. To do so, the signal processing in the auditory pathway must achieve a temporal precision in the microsecond range with elements that are noisy, unreliable and rather slow. In this section, we use the results of previous chapters and show that spiking neurons that are driven in the sub-threshold regime are sensitive to temporal structure in the presynaptic input, in particular to synchronous spike arrival; cf. Sections 5.8 and 7.3. On the other hand, synchronous spike arrival is only possible if presynaptic transmission delays are appropriately tuned. A spike-time dependent Hebbian learning rule can play the role of delay tuning or delay selection (Eurich et al., 1999; Gerstner et al., 1996a, 1997; Kempter et al., 1999; Senn et al., 2001a; Hüning et al., 1998).

We start this section with an outline of the problem of sound source localization and a rough sketch of the barn owl auditory pathway. We turn then to the problem of coincidence detection and the idea of delay selection by a spike-time dependent learning rule.

12.5.1 Auditory Pathway and Sound Source Localization

Barn owls use interaural time differences (ITD) for sound source localization (Carr and Konishi, 1990; Moiseff and Konishi, 1981; Jeffress, 1948). Behavioral experiments show that barn owls can locate a sound source in the horizontal plane with a precision of about 1-2 degrees of angle (Knudsen et al., 1979). A simple calculation shows that this corresponds to a temporal difference of a few microseconds (< 5 \mu s) between the sound waves at the left and right ear. These small temporal differences must be detected and evaluated by the owl's auditory system; see Fig. 12.12.
Figure 12.12: A. Jeffress model. Sound waves (dashed circles) from a source located to the right of the owl's head arrive at the two ears where they excite neuronal activity. Neuronal signals travel along transmission lines to an array of coincidence detectors (grey filled circles). The coincidence-detecting neurons respond, if signals from both sides arrive simultaneously. Due to transmission delays, the position of the coincidence detector activated by the signals (black filled circle) depends on the location of the external sound source. B. Auditory pathway (schematic). At the cochlea a sound wave is separated into its frequency components. Phase locked spikes are transmitted along the auditory nerve to the nucleus magnocellularis (NM), an intermediate processing step. Action potentials at the output of the NM are phase locked as well. The signals from both ears meet in the nucleus laminaris (NL). Neurons in the NL are sensitive to the interaural time difference (ITD) and can be considered as the coincidence detectors of the Jeffress model. In further processing steps, the output of neurons with different frequencies is combined to resolve remaining ambiguities; taken from Gerstner et al. (1998).

The basic principle of how such a time-difference detector could be set up was discussed by Jeffress (1948) more than 50 years ago. It consists of delay lines and an array of coincidence detectors. If the sound source is on the right-hand side of the auditory space, the sound wave arrives first at the right ear and then at the left ear. The signals propagate from both ears along transmission lines towards the set of coincidence detectors. A signal originating from a source located to the right of the owl's head, stimulates a coincidence detector on the left-hand side of the array. If the location of the signal source is shifted, a different coincidence detector responds. The `place' of a coincidence detector is therefore a signature for the location of the external sound source; cf. Fig. 12.12). Such a representation has been called `place' coding (Carr and Konishi, 1990; Konishi, 1986).

Remarkably enough, such a coincidence detector circuit was found four decades later by Carr and Konishi (1990) in the nucleus laminaris of the barn owl. The existence of the circuit confirms the general idea of temporal difference detection by delayed coincidence measurement. It gives, however, no indication of how the precision of a few microseconds is finally achieved.

In order to better understand how precise spike timing arises, we have to study signal processing in the auditory pathway. Three aspects are important: frequency separation, phase locking, and phase-correct averaging.

The first few processing steps along the auditory localization pathway are sketched in Fig. 12.12B. The figure represents, of course, a simplified picture of auditory information processing, but it captures some essential ingredients. At both ears the sound wave is separated into its frequency components. Signals then pass an intermediate processing area called nucleus magnocellularis (NM) and meet at the nucleus laminaris (NL). Neurons there are found to be sensitive to the interaural time difference (ITD). Due to the periodicity of a sinusoidal wave, the ITD of a single
frequency channel is really a phase difference and leaves some ambiguities. In the next processing step further up in the auditory pathway, information on phase differences from different frequency channels is combined to retrieve the temporal difference and hence the location of the sound source in the horizontal plane. Reviews of the basic principles of auditory processing in the owl can be found in Konishi (1993, 1986).

Let us now discuss the first few processing steps in more detail. After cochlear filtering, different frequencies are processed by different neurons and stay separated up to the nucleus laminaris. In the following we may therefore focus on a single frequency channel and consider a neuron which responds best to a frequency of, say, 5kHz.

If the ear is stimulated with a 5kHz tone, neurons in the 5kHz channel are activated and fire action potentials. At first sight, the spike train looks noisy. A closer look, however, reveals that the pulses are phase locked to the stimulating tone: Spikes occur preferentially around some phase \(\varphi_0 \) with respect to the periodic stimulus. Phase locking is, of course, not perfect, but subject to two types of noise; cf. Fig. 12.13. First, spikes do not occur at every cycle of the 5kHz tone. Often the neuron misses several cycles before it fires again. Second, spikes occur with a temporal jitter of about \(\sigma = 40 \mu s \) around the preferred phase (Sullivan and Konishi, 1984) [Sullivan and Konishi, 1984].

For the sake of simplicity we describe the spike train by a Poisson process with a periodically modulated rate

\[
\nu_j(t) = p \sum_{m=-\infty}^{\infty} \mathcal{G}_\sigma (t - m T - \Delta_j)
\]

where \(T \) is the period of the tone (e.g., \(T = 0.2 \)ms for our 5kHz signal), \(\mathcal{G}_\sigma \) is a Gaussian with variance \(\sigma \), and \(\Delta_j = \varphi_0 T/2\pi \) is a delay associated with the preferred phase \(\varphi_0 \) of spikes of a given presynaptic neuron \(j \). The amplitude \(p \) with \(0 < p < 1 \) is the probability of firing in one period. The temporally averaged mean firing rate is \(\langle \nu_j \rangle = p/T \). Examples of spike trains generated from Eq. (12.13) are shown in Fig. 12.13.

Phase locking can be observed in the auditory nerve connecting the cochlea and the nucleus magnocellularis, in the nucleus magnocellularis, and also in the nucleus laminaris. The phase jitter

Figure 12.13: Spike trains in the auditory pathway show phase locking and can be described by a time dependent firing rate \(\nu(t) \) [in kHz] which is modulated by the signal. Four samples of spike trains are shown at the bottom of the Figure.
\(\sigma \) even decreases from one processing step to the next so that the temporal precision of phase locking increases from around 40 \(\mu \)s in the nucleus magnocellularis to about 25 \(\mu \)s in the nucleus laminaris. The precision of phase locking is the topic of the following subsection.

12.5.2 Phase Locking and Coincidence Detection

We focus on a single neuron \(i \) in the nucleus laminaris (NL). The neuron receives input from neurons in the nucleus magnocellularis through about 150 synapses. All input lines belong to the same frequency channel. The probability of spike arrival at one of the synapses is given by Eq. (12.13) where \(j \) labels the synapses and \(T = 0.2 \text{ms} \) is the period of the signal.

As a neuron model for \(i \) we take an integrate-and-fire unit with membrane time constant \(\tau_m \) and synaptic time constant \(\tau_s \). From experiments on chickens it is known that the duration of an EPSP in the NL is remarkably short (< 1ms) (Reyes et al., 1994, 1996). Neurons of an auditory specialist like the barn owl may be even faster. In our model equations, we have set \(\tau_m = \tau_s = 0.1 \text{ms} \).

These values correspond to an EPSP with a duration of about 0.25ms.

The short duration of EPSPs in neurons in the NL and NM is due to an outward rectifying current which sets in when the membrane potential exceeds the resting potential (Manis and Marx, 1991; Oertel, 1983). The purely passive membrane time constant is in the range of 2ms (Reyes et al., 1994), but the outward rectifying current reduces the effective membrane resistance whenever the voltage is above the resting potential. In a conductance-based neuron model (cf. Chapter 2), all membrane currents would be described explicitly. In our integrate-and-fire model, the main effect of the outward rectifying current is taken into account by working with a short effective membrane time constant \(\tau_m = 0.1 \text{ms} \). A membrane constant of 0.1ms is much shorter than that found in cortical neurons where \(\tau_m \approx 10 - 50 \text{ms} \) seem to be typical values; see, e.g., [Bernander et al. 1991]. Note, however, that for temporal coding in the barn owl auditory system, \(\tau_m = 0.1 \text{ms} \) is quite long as compared to the precision of phase locking of 25 \(\mu \)s found in auditory neurons and necessary for successful sound source localization.

![Figure 12.14: Phase Locking (schematic).](http://diwww.epfl.ch/~gerstner/SPNM/node85.html)
are phase-locked to the stimulus in bundles of spikes (bottom). The postsynaptic potentials evoked by presynaptic spike arrival are summed and yield the total postsynaptic potential \(u(t) \) which shows a pronounced oscillatory structure. Firing occurs when \(u(t) \) crosses the threshold. The output spike is phase locked to the external signal, since the threshold crossing is bound to occur during a rising phase of \(u \); adapted from Gerstner et al. (1998).

To get an intuitive understanding of how phase locking arises, let us study an idealized situation and take perfectly coherent spikes as input to our model neuron; cf. Fig. 12.14. Specifically, let us consider a situation where 100 input lines converge on the model neuron. On each line, spike arrival is given by (12.13) with \(\sigma \to 0 \) and \(p = 0.2 \). If the delays \(\Delta_j \) are the same for all transmission lines (\(\Delta_j = \Delta_0 \)), then in each cycle a volley of 20±5 synchronized spikes arrive. The EPSPs evoked by those spikes are added as shown schematically in Fig. 12.14. The output spike occurs when the membrane potential crosses the threshold \(\vartheta \). Note that the threshold must be reached from below. It follows that the output spike must always occur during the rise time of the EPSPs generated by the last volley of spikes before firing.

Since the input spikes are phase-locked to the stimulus, the output spike will also be phase-locked to the acoustic waveform. The preferred phase of the output spike \(\varphi_i \) will, of course be slightly delayed with respect to the input phase \(\varphi_0 = \Delta_0 (2 \pi / T) \). The typical delay will be less than the rise time \(\tau_{rise} \) of an EPSP. Thus, \(\varphi_i = (\Delta_0 + 0.5 \tau_{rise}) (2 \pi / T) \) will be a reasonable estimate of the preferred output phase.
5kHz stimulation and four samples of input spike trains (vertical bars). The model neuron receives input from 154 presynaptic neurons (Carr and Konishi, 1990; Carr, 1993) in volleys of phase-locked spikes with a jitter of $\sigma = 40 \mu s$ driven by a 5kHz tone. Spikes are generated by a stochastic process with periodically modulated rate (solid line in B). The model neuron fires (arrow) if $u(t)$ reaches a threshold ϑ. Firing must always occur during the time when u increases so that, in the case of coherent input, output spikes are phase-locked as well (see also Fig. 12.16A). If input spikes arrive incoherently, $u(t)$ follows a trajectory with stochastic fluctuations but no systematic oscillations (dashed line in A); see Fig. 12.16B. Voltage summed over all 154 synapses. Each input spike evokes an excitatory postsynaptic potential (EPSP) shown on an enlarged voltage scale (same time scale) in the inset of A. The EPSPs from all neurons are added linearly and yield the membrane voltage u (A, main figure).

With the spike input shown in C the membrane voltage exhibits oscillations (solid line). The model neuron fires (arrow) if u reaches a threshold ϑ. Firing must always occur during the time when u increases so that, in the case of coherent input, output spikes are phase-locked as well (see also Fig. 12.16A). If input spikes arrive incoherently, $u(t)$ follows a trajectory with stochastic fluctuations but no systematic oscillations (dashed line in A); see Fig. 12.16B. Voltage

in a: arbitrary units; the threshold ϑ is 36 times the amplitude of a single EPSP. Rate in B in kHz. Taken from Gerstner et al. (1996a).
Can we transfer the above qualitative arguments to a more realistic scenario? We have simulated a neuron with 154 input lines. At each synapse spikes arrive a time-dependent rate as in Eq. (12.13). The temporal jitter has been set to \(\sigma = 40 \mu s \). The delays \(\Delta_j \) (and hence the preferred phases) have a jitter of 35 \(\mu s \) around some mean value \(\Delta_0 \). As before, \(p = 0.2 \) for all inputs.

A short interval taken from a longer simulation run with these input parameters is shown in Fig. 12.15. Part A shows the membrane potential \(u(t) \) as a function of time; Fig. 12.15B and C show the distribution of spike arrival times. Even though spike arrival is rather noisy, the trajectory of the membrane potential exhibits characteristic periodic modulations. Hence, following the same arguments as in Fig. 12.14 we expect the output spike to be phase-locked. Fig. 12.16A confirms our expectations: the distribution of output phases exhibits a pronounced peak. The width of the distribution corresponds to a temporal precision of \(\sigma_{out} = 25 \mu s \), a significant increase in precision compared to the input jitter \(\sigma = 40 \mu s \).

Figure 12.16: Phase histograms of output spikes. A. The input spikes from the 154 presynaptic neurons arrive *coherently* with the spiking statistics as shown in Figs. 12.15B and C. In this case, the distribution of output spikes exhibits a pronounced maximum indicating a high degree of phase locking. The width of the peak corresponds to a temporal precision of 25 \(\mu s \). B. If input spikes arrive incoherently, the histogram of output phases has no significant structure; taken from Gerstner et al. (1996a).

So far we have assumed that the delays \(\Delta_j \) have a small variation of 35 \(\mu s \) only. Hence the preferred phases \(\varphi_j = \Delta_j (2 \pi / T) \) are nearly identical for all input lines. If the preferred phases are drawn stochastically from a uniform distribution over \([0, 2 \pi]\), then spike arrival at the neuron is effectively *incoherent*, even though the spikes on each input line exhibit phase-locking. If input spikes arrive incoherently, the temporal precision is lost and the output spikes have a flat phase distribution; see Fig. 12.16B.

We conclude that spiking neurons are capable of transmitting phase information, if input spikes arrive with a high degree of coherence. If input spikes arrive incoherently, the temporal information is lost. As we will see in the following subsection, this observation implies that that the reliable transmission of temporal codes requires a mechanism for delay-line tuning.
12.5.3 Tuning of Delay Lines

Each neuron in the nucleus laminaris (NL) of the barn owl receives input from about 150 presynaptic neurons (Carr and Konishi, 1990; Carr, 1993) [Carr and Konishi, 1990; Carr, 1993]. The high degree of convergence enables the neuron to increase the signal-to-noise ratio by averaging over many (noisy) transmission lines. As we have seen in the preceding section, the temporal precision of phase locking is indeed increased from 40 \(\mu s \) in the input lines to 25 \(\mu s \) in the output of our model neuron in the NL.

Such an averaging scheme, however, can work only, if the preferred phases \(\varphi_j \) of all input lines are (nearly) the same. Otherwise the temporal precision is decreased or even lost completely as shown in Fig. 12.16B. To improve the signal-to-noise ratio, `phase-correct' averaging is needed. The question arises of how a neuron in the NL can perform correct averaging.

The total delay from the ear to the NL has been estimated to be in the range of 2-3ms (Carr and Konishi, 1990). Even if the transmission delays vary by only 0.1-0.2ms between one transmission line and the next, the phase information of a 5kHz signal is completely lost when the signals arrive at the NL. Therefore the delays must be precisely tuned so as to allow the neurons to perform phase-correct averaging.

Precise wiring of the auditory connections could be set up genetically. This is, however, rather unlikely since the owl's head grows considerably during development. Moreover, while neurons in the nucleus laminaris of the adult owl are sensitive to the interaural phase difference, no such sensitivity was found for young owls (Carr, 1995). This indicates that delay tuning arises only later during development. It is clear that there can be no external supervisor or controller that selects the appropriate delays. What the owl needs is an adaptive mechanism which can be implemented locally and which achieves a tuning of appropriate delays.

Tuning can be achieved either by selection of appropriate delay lines (Gerstner et al., 1996a) or by changes in axonal parameters that influence the transmission delay along the axon (Eurich et al., 1999; Senn et al., 2001a; Hüning et al., 1998). We focus on learning by delay selection; cf. Fig. 12.17.

Figure 12.17: Delay selection (schematic). A. When pulses are generated at the ear, they are phase locked to the periodic stimulus (dashed). B. Several transmission lines converge on a single coincidence detector neuron in the nucleus laminaris. In order to achieve a high temporal resolution, pulses should arrive synchronously at the coincidence detector neuron. With a broad distribution of delays, spike arrival is effectively asynchronous (spike train at top). Spike-time dependent Hebbian learning selects and reinforces some of the transmission lines and suppresses other (black crosses). After learning, pulses arrive with a high degree of coherence (spike train, middle). The periodic stimulus is represented for comparison (dashed line, bottom).
Immediately after birth a large number of connections are formed. We suppose that during an early period of post-natal development a tuning process takes place which selectively reinforces transmission lines with similar preferred phase and eliminates others (Gerstner et al., 1996a). The selection process can be implemented by a spike-time dependent Hebbian learning rule as introduced in Chapter 10.

Figure 12.18: Learning Window W as a function of the delay s between postsynaptic firing and presynaptic spike arrival. The graph on the right-hand side shows the boxed region around the maximum on an expanded scale. If $W(s)$ is positive (negative) for some s, the synaptic efficacy is increased (decreased). The postsynaptic firing occurs at $s = 0$ (vertical dashed line). Learning is most efficient if presynaptic spikes arrive shortly before the postsynaptic neuron starts firing, as in synapse A. Another synapse B, which fires after the postsynaptic spike, is decreased. Taken from Gerstner et al. (1996a).

In order to illustrate delay selection in a model study, we assume that both ears are stimulated by a pure 5kHz tone with interaural time difference ITD=0. The effect of stimulation is that spikes arrive at the synapses with a periodically modulated rate $\nu_j(t)$ as given by Eq. (12.13). During learning, synaptic weights are modified according to a spike-time dependent Hebbian learning rule

$$\frac{d}{dt} w_{ij}(t) = S_j(t) \left[a_{i\text{pre}} + \int_0^\infty W(s) S_i(t-s) \, ds \right] + S_i(t) \int_0^\infty W(-s) S_j(t-s) \, ds,$$

where $a_{i\text{pre}}$ is taken as small but positive. The learning window $W(s)$ is the one shown in Fig. 12.18. It has a negative integral $\overline{W} = \int W(s) \, ds < 0$ and a maximum at $s^* = 0.05\text{ms}$. The choice $s^* = - \frac{\tau_{\text{rise}}}{2}$ guarantees stable learning (Gerstner et al., 1996a). As we have seen in Section 11.2.3, the combination of a learning window with negative integral and a positive non-Hebbian term $a_{i\text{pre}}$ leads to a stabilization of the postsynaptic firing rate. Thus the postsynaptic neuron remains during learning in the subthreshold regime, where it is
most sensitive to temporal coding; cf. Section 5.8. The rate stabilization induces in turn an effective competition between different synapses. Thus, we expect that some synapses grow at the expense of others that must decay.

The results of a simulation run are shown in Fig. 12.19. Before learning the neurons receives input over about 600 synapses from presynaptic neurons. Half of the input lines originate from the left, the other half from the right ear. The total transmission delays Δ_j are different between one line and the next and vary between 2 and 3ms. At the beginning of learning all synaptic efficacies have the same strength $w_{ij} = 1$ for all j. The homogeneous weight distribution becomes unstable during learning (Fig. 12.19, Middle). The instability can been confirmed analytically using the methods developed in Chapter 11 (Kempter, 1997). After learning the synaptic efficacies have approached either the upper bound $w_{\text{max}} = 3$ or they have decayed to zero. The transmission lines which remain after learning have either very similar delays, or delays differing by a full period (Fig. 12.19, Bottom). Thus, the remaining delays form a consistent pattern that guarantees that spikes arrive with a high degree of coherence.

Figure 12.19: Development of tuning to a 5kHz tone. The left column shows the strength of synaptic efficacies w_{ij} of all synapses. Synapses are indexed according to the delay Δ_j of the corresponding transmission line and are plotted as $w_{ij} = \frac{w(\Delta)}{2}$. On the right, we show the vector strength (v_s, solid line) and the output firing rate (v_f, dashed) as a function of the interaural time delay (ITD). **Top.** Before learning, there are 600 synapses (300 from each ear) with different delays, chosen randomly from a Gaussian distribution with mean 2.5ms and variance 0.3ms. All weights have unit value. The output is not phase-locked ($v_s \approx 0.1$) and shows no dependence upon the ITD. **Middle.** During learning, some synapses are strengthened others decreased. Those synapses which increase have delays that are similar or that differ by multiples of the period $T = 0.2$ms of the stimulating tone.

The vector strength of the output increases and starts to depend on the ITD. **Bottom.** After learning, only about 150 synapses (≈ 75 from each ear) survive.
Both the output firing rate ν and the vector strength vs show the characteristic dependence upon the ITD as seen in experiments with adult owls [Carr and Konishi, 1990]. The neuron has the maximal response ($\nu = 200\text{Hz}$) for ITD=0, the stimulus used during the learning session of the model neuron. The vector strength at ITD=0 is $vs \approx 0.8$ which corresponds to a temporal precision of 25 μs. Taken from Gerstner et al. (1997).

The sensitivity of the output firing rate to the interaural time difference (ITD) and the degree of phase locking were tested before, during, and after learning (right column in Fig. 12.19). Before learning, the neuron shows no sensitivity to the ITD. This means that the neuron is not a useful coincidence detector for the sound source localization task. During learning ITD sensitivity develops similar to that found in experiments (Carr, 1995). After learning the output rate is significantly modulated as a function of ITD. The response is maximal for ITD=0, the ITD used during learning. The form of the ITD tuning curves corresponds to experimental measurements.

To test the degree of phase locking in the output we have plotted the vector strength, vs, as a function of ITD. By definition the vector strength is proportional to the first Fourier component of the histogram of phase distributions; cf. Fig. 12.16. It is therefore a suitable measure of phase-locking. The vector strength is normalized so that $vs = 1$ indicates perfect phase locking (infinite temporal precision or $\sigma_{out} = 0$). Let us focus on the value of vs in the case of optimal stimulation (ITD=0). Before learning $vs \approx 0.1$, which indicates that there is no significant phase locking. The value of $vs \approx 0.8$ found after learning confirms that after the tuning of the synapses, phase locking is very pronounced.

To summarize, spike-time dependent Hebbian synaptic plasticity selects delay lines so that spikes arrive with maximal coherence. After learning the postsynaptic neuron is sensitive to the interaural time difference, as it should be for the neuron that are used for sound source localization. A temporal resolution in the range of a few microseconds can be achieved even though the membrane time constant and synaptic time constant are in the range of 100 microseconds.
Summary

Spike timing influences synaptic plasticity, and changes of synaptic efficacies induce variations in spike timing. In this chapter we have seen several examples of an interaction between plasticity and neuronal coding. Apart from some generic considerations regarding rapid and reliable signal transmission or sequence learning, we have also considered two specialized neuronal systems where the relevance of spike timing has clearly been shown. The example of subtraction of expectations in Mormoryd electric fish is noteworthy because it is one of the few cases where a direct link between measured synaptic properties and a clear computational paradigm has been established. The barn owl auditory system is remarkable because of the high temporal precision that the barn owl exhibits in in behavioral experiments of sound source localization. To achieve this precision a tuning mechanism such as a spike-time dependent learning rule is necessary. It is tempting to speculate that future experiments will establish similar links between spike timing and synaptic plasticity in other neuronal systems.

References

For reviews of the coding principles and neural processing architecture in electric fish, see Heiligenberg (1991). The essential steps of sound source localization in the auditory system of the barn owl are reviewed in Konishi (1993, 1986). The paper of Carr (1993) provides a highly recommendable review of temporal processing in the brain with a special emphasis on the sensory systems of electric fish, bats, and owls.

References

For reviews of the coding principles and neural processing architecture in electric fish, see Heiligenberg (1991). The essential steps of sound source localization in the auditory system of the barn owl are reviewed in Konishi (1993, 1986). The paper of Carr (1993) provides a highly recommendable review of temporal processing in the brain with a special emphasis on the sensory systems of electric fish, bats, and owls.
Bibliography

Realistic synaptic inputs for model neural networks.
Network, 2:245-258.

Decoding neuronal firing and modeling neural networks.

Synaptic plasticity - taming the beast.

Functional significance of long-term potentiation for sequence learning and prediction.

The path integral for dendritic trees.

Model neurons: from Hodgkin-Huxley to Hopfield.

Asynchronous states in a network of pulse-coupled oscillators.

Local cortical circuits.
Springer-Verlag, Berlin Heidelberg New York.

Corticonics.
Cambridge Univ. Press, Cambridge.

Firing rates and well-timed events.

Spatiotemporal firing patterns in the frontal cortex of behaving monkeys.
Adrian, E. D. (1926).
The impulses produced by sensory nerve endings.
J. Physiol. (Lond.), 61:49-72.

Adrian, E. D. (1928).
The basis of sensation.
W. W. Norton, New York.

Response synchronization in the visual cortex.

Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum.

Characteristics of random nets of analog neuron-like elements.

A method of statistical neurodynamics.

Dynamics of pattern formation in lateral-inhibition type neural fields.

Dynamics of pattern formation in lateral-inhibition type neural fields.

Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex.

A model of spontaneous activity and local delay activity during delay periods in the cerebral cortex.
Cerebral Cortex, 7:237-252.

Neurocomputing: Foundations of research.

Different voltage dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex.
Long-term depression of excitatory synaptic transmission and its relationship
to long-term potentiation.
Trends Neurosci., 16(11):480-487.

Information Theory.
Dover, New York.

Temporal precision of spike trains in extrastriate cortex of the behaving
macaque monkey.
Neural Comput., 8:1185-1202.

Bair, W., Koch, C., Newsome, W., and Britten, K. (1994).
Power spectrum analysis of MT neurons in the behaving monkey.

The spectral analysis of point processes.

Alternating oscillatory and stochastic dynamics in a model for a neuronal
assembly.

The generation and subtraction of sensory expectations within cerebellar-like
structures.
suppl. I.

Bell, C., Han, V., Sugawara, Y., and Grant, K. (1997b).
Synaptic plasticity in a cerebellum-like structure depends on temporal order.

Relations among climbing fiber responses of nearby Purkinje cells.

Large deviations for langevin spin glass dynamics.

Theory of orientation tuning in visual cortex.
Refactoriness and neural precision.

The structure and precision of retinal spike trains.

Noise as a signal for neuronal populations.

Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type.

Synaptic modification of correlated activity: Hebb's postulate revisited.

Distributed synaptic modification in neural networks induced by patterned stimulation.
Nature, 401:792-796.

Reliability and information transmission in spiking neurons.

Reading a neural code.

Theory of the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex.
reprinted in Anderson and Rosenfeld, 1990.

Very short-term visual memory via reverberation: a role for the cortico-thalamic excitatory circuit in temporal filling-in during blinks and saccades?

Long-term potentiation (ltp) and depression (ltd) in the neocortex and hippocampus: an overview.

A synaptic model of memory: long-term potentiation in the hippocampus.

Long-lasting potentiation of synaptic transmission in the dendate area of
anunaesthetized rabbit following stimulation of the perforant path.

Long-lasting potentiation of synaptic transmission in the dendate area of
anaesthetized rabbit following stimulation of the perforant path.

Almost-synchronous solutions for mutually coupled excitatory neurons.

The Book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System.

Synaptically generated wave propagation in excitable neural media.

Dynamics of compartmental model neurons.
Neural Networks, 7:1153-1165.

Maximum likelihood analysis of spike trains of interacting nerve cells.

Nerve cell spike train data analysis: a progressiion of thetechniques.

Empirical examination of the threshold model of neuronal firing.

How the basal ganglia use parallel excitatory and inhibitory learning
pathways to selectively respond to unexpected rewarding cues.

(1989).
Long-term potentiation in two synaptic systems of the hippocampal brain
slice.

Hebbian modifications in hippocampal neurons.
In Baudry, M. and Davis, J. L., editors, *Long-term potentiation.*, pages

Dynamics of sparsely connected networks of excitatory and inhibitory spiking
neurons.

Effects of synaptic noise and filtering on the frequency response of spiking
neurons.

Fast global oscillations in networks of integrate-and-fire neurons with low
firing rates.
Neural Comput., 11:1621-1671.

Spike initiation by transmembrane current: a white-noise analysis.

Buck, J. and Buck, E. (1976).
Synchronous fireflies.

Role of temporal integration and fluctuation detection in the highly irregular
firing of leaky integrator neuron model with partial reset.
Neural Comput., 9:985-1000.

Analysis of integrate-and-fire neurons: synchronization of synaptic input and
spike output.
Neural Comput., 11:871-901.

Neural Models of Plasticity.

Synaptic noise and other sources of randomness in motoneuron interspike
intervals.

Diffusion approximation and first passage time problem for a neuron model.
Art 2: Self-organization of stable category recognition codes for analog input patterns.

Processing of temporal information in the brain.

The development of nucleus laminaris in the barn owl.

Axonal delay lines for measurement in the owl's brainstem.

A circuit for detection of interaural time differences in the brain stem of the barn owl.

Mean-field equations, bifurcation map and route to chaos in discrete time neural networks.
Physica D, 74:24-44.

Phase-locking in weakly heterogeneous neuronal networks.
Physica D, 118:343-370.

Dynamics of spiking neurons with electrical coupling.
Neural Comput., 12:1643-1678.

Spontaneous action potential fluctuations due to channel fluctuations.

Excitatory amino acids in synaptic transmission in the schaffer collateral-commissural pathway of the rat hippocampus.

Aperiodic stochastic resonance.

Neural repetitive firing - modifications of the hodgkin-huxley axon suggested
by experimental results from crustacean axons.

Intrinsic firing patterns of diverse cortical neurons.

Noise in human muscle spindles.

Elements of Information Theory.

Wiley, New York.

Some statistical methods connected with series of events.

Renewal theory.

Mathuen, London.

The statistical analysis of series of events.

Mathuen, London.

Crepel, F. (1982).

Regression of functional synapses in the immature mammalian cerebellum.

Trends Neurosci., 5:266-269.

Dynamics of spin systems with randomly asymmetric bonds: Ising spins and Glauber dynamics.

Mathematical aspects of Hodgkin-Huxley theory.

Synaptic plasticity in the cerebellum.

Cellular mechanisms of cerebellar LTD.

Triggered correlation.

Real-time performance of a movement-sensitive neuron in the blowfly visual
system: coding and information transfer in short spike sequences.

de Ruyter van Steveninck, R. R., Lowen, G. D., Strong, S. P., Koberle, R., and
Reproducibility and variability in neural spike trains.
Science, 275:1805.

De Zeeuw, C. I., Simpson, J. I., Hoogenraad, C. C., Galjart, N., Koekkoek, S. K. E.,
Microcircuitry and function of the inferior olive.

Receptive-field dynamics in the central visual pathways.

Asynchronous pre- and postsynaptic activity induces associative long-term
depression in area CA1 of the rat Hippocampus in vitro.

Long-term synaptic plasticity between pairs of individual CA3 pyramidal
cells in rat hippocampal slice cultures.

Primary cortical representation of sounds by the coordination of
action-potential timing.

An exactly solvable asymmetric neural network model.

Control of action potential timing by intrinsic subthreshold oscillations in
olfactory bulb output neurons.

Impact of network activity on the integrative properties of neocortical
pyramidal neurons in vivo.

Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance.

Homosynaptic long-term depression in area cal of hippocampus and effects of n-methyl-d-aspartate receptor blockade.

Coherent oscillations: A mechanism of feature linking in the visual cortex?
Biol. Cybern., 60:121-130.

Synchronous oscillatory activities between areas 17 and 18 in the cat's visual cortex.
J. Neurophysiol.
in press.

The rf-cinematogram: a cross-correlation technique for mapping several visual fields at once.

Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex.

The spectral shaping of neural discharges by refractory effects.

Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in barrel cortex.

Modeling neuronal assemblies: theory and implementation.

A computer based model for realistic simulations of neural networks.

Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks.

Interhemispheric synchronization of oscillatory neural responses in cat visual cortex.

Direct physiological evidence for scene segmentation by temporal coding.

Specific k+ channels are required to sustain high frequency firing in fast-spiking neocortical interneurons.

Type i membranes, phase resetting curves, and synchrony.

Neural Comput., 8:979-1001.

A mathematical theory of visual hallucination patterns.

Biol. Cybern., 34:137-150.

Frequency plateaus in a chain of weakly coupled oscillators.

Parabolic bursting in an excitable system coupled with a slow oscillation.

The effects of spike frequency adaptation and negative feedback on the synchronization of neuronal oscillators.

Synchronization induced by temporal delays in pulse-coupled oscillators.

Models of orientation and ocular dominance columns in the visual cortex: a critical comparison.

Neural Comput., 7:425-468.

Dynamics of self-organized delay adaption.

Large-scale activity in neural nets i: Theory with application to motoneuron pool responses.

Is the integrate-and-fire model good enough - a review.

Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones.

Metabotropic glutamate receptor activation in cerebellar purkinje cells as a substrate for adaptive timing of the classically conditioned eye-blink reflex.

Impulses and physiological states in models of nerve membrane.

A flexible neural analog using integrated circuits.

Interpretation of the repetitive firing of nerve cells.

Neurophysiology of a vlsi spiking neural network: Lann21.

Collective behavior of networks with linear (vlsi) integrate and fire neurons.

Principles of spike train analysis.

Synaptic integration in a model of cerebellar granule cells.
Corrigenda have been published in J. Neurophysiol. (1996) 75(6), without covering, however, all typing errors.

The dynamics of free calcium in dendritic spines in response to repetitive synaptic input.
Science, 236:1311-1315.
Stochastic resonance.

A stochastic model of repetitive activity of neurons.

Neuronal populations coding of movement direction.
Science, 233:1416-1419.

Mutual temporal relations among neuronal spike trains.

Time structure of the activity in neural network models.

Spiking neurons.
In Maass, W. and Bishop, C. M., editors, Pulsed Neural Networks, chapter 1,
pages 3-53. MIT-Press.

Population dynamics of spiking neurons: fast transients, asynchronous states
and locking.

Population dynamics of spiking neurons: fast transients, asynchronous states,
and locking.

Learning navigational maps through potentiation and modulation of
hippocampal place cells.

Hebbian learning of pulse timing in the barn owl auditory system.
In Maass, W. and Bishop, C. M., editors, Pulsed Neural Networks,
chapter 14, pages 353-377. MIT-Press.

A neuronal learning rule for sub-millisecond temporal coding.
Nature, 386:76-78.

A developmental learning rule for coincidence tuning in the barn owl auditory system.

A biologically motivated and analytically soluble model of collective oscillations in the cortex: I. theory of weak locking.

Associative memory in a network of `spiking' neurons.
Network, 3:139-164.

Coherence and incoherence in a globally coupled ensemble of pulse emitting units.

Coding and information processing in neural networks.

What matters in neuronal locking.
Neural Comput., 8:1653-1676.

Dynamics of a model for the variability of the interspike intervals in a retinal neuron.

Evolution of synchronous spike volleys in cortical networks - Network simulations and continuous probabilistic models.
Shaker Verlag, Aachen, Germany.
PhD thesis.

Instantaneous return processes and neuronal firings.

Gluss, B. (1967).
A model of neuron firing with exponential decay of potential resulting in
diffusion equations for the probability density.

A model of dendritic spike Ca$^{2+}$ concentration exploring possible basis for sliding synaptic modification threshold.

Response of neurons of the superior olivary complex of the cat to acoustic stimuli of long duration.

Bistability in pulse propagation in networks of excitatory and inhibitory populations.

Clustering in globally coupled phase oscillators.

Clustering in globally coupled inhibitory neurons.

Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.

Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex.

Adaptive pattern classification and universal recoding i: Parallel development and coding of neuronal feature detectors.

Biol. Cybern., 23:121-134.

reprinted in Anderson and Rosenfeld, 1990.

The adaptive brain I.

Elsevier.

Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus.

J. Neurosci., 7:774-780.

A spike based learning neuron in analog vlsi.

Dynamics and Bifurcations.

Existence and stability of persistent states in large neuronal networks.

Synchrony in excitatory neural networks.

Modeling feature selectivity in local cortical circuits.
In Koch, C. and Segev, I., editors, Methods in Neuronal Modeling. MIT Press, Cambridge MA.

Neural Networks.
Prentice Hall, Upper Saddle River, NJ.

The organization of behavior.
Wiley, New York.

Neural Nets in Electric Fish.

Noise and the psth response to current transients: I. General theory and application to the integrate-and-fire neuron.

Noise and the psth response to current transients II. Iintegrate-and-fire model with slow recovery and application to motoneuron data.

Introduction to the theory of neural computation.
Addison-Wesley, Redwood City CA.

Learning short synfire chains by self-organization.
Network, 7:357-363.

Weakly connected neural networks.
Springer.

Neural networks with dynamical thresholds.

Matrix analysis.
Cambridge University Press, Cambridge, UK.

Eye, brain, and vision.
W. H. Freeman, New York.

Eye, Brain, and Vision.
Scientific American Library. W. H. Freeman, ???

Receptive fields of single neurons in the cat's striate cortex.
J. Physiol. (Lond.), 148:574-591.

Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.

Functional architecture of macaque monkey visual cortex.

Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons.

Synaptic delay learning in pulse-coupled neurons.

The Cerebellum and Neural Control.
Raven Press, New York.

Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models.

Neural excitability, spiking, and bursting.

Resonate-and-fire neurons.
Neural Networks, 14:883-894.

Jackson, J. D. (1962).

Classical Electrodynamics.
Wiley.

Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro.
J. Physiol. (Lond.), 372:129-147.

James, W. (1890).

Psychology (Briefer Course), ch. 16.
Holt, New York.

A place theory of sound localisation.

Hippocampal ca3 region predicts memory sequences: accounting for the phase precession of place cells.

Diffusion models of the stochastic activity of neurons.
In *Neural Networks*, pages 116-144, Berlin. Springer.

Principles of Neural Science.

A spike-train probability model.

Mathematical Physiology, volume 8 of *Interdisciplinary Applied Mathematics.*

Hebbian synapses in hippocampus.

Naturwissenschaftliche Reihe, Darmstadt.
Hebbian learning and spiking neurons.

Intrinsic stabilization of output rates by spike-based hebbian learning.
Neural Comput., submitted.

Reduction of conductance-based neuron models.

The speed of sight.

Infinite-ranged models of spin-glasses.

The synaptic connexions to intercostal motoneurones as revealed by the average common excitation potential.
J. Physiology, 275:103-134.

Existence and stability of local excitations in homogeneous neural fields.

Stability properties of solitary waves and periodic wave trains in a two-dimensional network of spiking neurons.

Dynamical working memory and timed responses: The role of reverberating loops in the olivo-cerebellar system.
Neural Comput. (submitted).

Stable propagation of activity pulses in populations of spiking neurons.
Neural Comput., in press.

Reduction of Hodgkin-Huxley equations to a single-variable threshold model.

Modeling collective excitations in cortical tissue.
Short-term synaptic plasticity and network behavior.

Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials.

Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic potentials.

Time window control: A model for cerebellar function based on synchronization, reverberation, and time slicing.

Decoding cortical neuronal signals: network models, information estimation and spatial tuning.

Knight, B. W. (1972a).
Dynamics of encoding in a population of neurons.

Knight, B. W. (1972b).
The relationship between the firing rate of a single neuron and the level of activity in a population of neurons.

Dynamics of encoding in neuron populations: some general mathematical features.

Cross-correlation functions for a neuronal model.
Biophys. J., 14:567-582.

Sound localization by the barn owl (tyto alba) measured with the search coil technique.

Biophysics of Computation.
Do neurons have a voltage or a current threshold for action potential initiation?

The role of single neurons in information processing.

Self-organization and associative memory.

Centrally synthesized maps of sensory space.

Listening with two ears.

Synaptic plasticity and calcium dynamics in cerebellar Purkinje neurons.
Supplement 1.

Symmetry and phase locking in chains of weakly coupled oscillators.

Integrator or coincidence detector? The role of the cortical neuron revisited.

Stimulus-dependent assembly formation of oscillatory responses: I.
synchronization.
Neural Comput., 3:155-166.

Asymmetrically diluted neural networks.

Oscillatory neuronal responses in the visual cortex of the awake macaque monkey.

Multimicroelectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers.

From neuron to brain.

Self-entrainment of a population of coupled nonlinear oscillators.

Stationary bumps in networks of spiking neurons.

On approximations of Stein's neuronal model.

Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics.

The effect of random initial value in neural first-passage-time models.

Lapicque, L. (1907).

Recherches quantitatives sur l'excitation electrique des nerfs traitée comme une polarisation.

Intrinsic dynamics in neuronal networks. I. Theory.

J. Neurophysiol., 83:808-827.

Dynamical representation of odors by oscillating and evolving neural assemblies.

Trends Neurosci., 19:489-496.

Determination of the precision of spike timing in the visual cortex of anaesthetised cats.

Synergies and coincidence requirements between NO, cGMP, and Ca++ in the induction of cerebellar long-term depression.
Broadband neural encoding in the cricket cercal sensory system enhanced by
stochastic resonance.

Temporal contiguity requirements for long-term associative
potentiation/depression in hippocampus.
Neurosci., 8:791-797.

Comparison of integrate-and-fire neurons: a case study.

Linden, D. J. (1999).
The return of the spike: postsynaptic action potentials and the induction of
LTP and LTD.

Long-term synaptic depression.

Transmission of noise coded versus additive signals through a neuronal
ensemble.

From basic network principles to neural architecture: emergence of
orientation columns.

From basic network principles to neural architecture: emergence of
orientation selective cells.

Linsker, R. (1986c).
From basic network principles to neural architecture: emergence of
spatial-opponent cells.

A mechanism for Hebb and anti-Hebb processes underlying learning and
memory.

The intrinsic electrophysiological properties of mammalian neurons: Insights
into central nervous system function.

The noncontinuous nature of movement execution.

J. Physiol. (Lond.), 404:241-258.

Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: An *in vitro* study.
J. Physiol. (Lond.), 376:163-182.

Stochastic resonance in neuron models.

Lower bounds for the computational power of spiking neurons.

Computing with spiking neurons.
In Maass, W. and Bishop, C. M., editors, *Pulsed Neural Networks*, chapter 2, pages 55-85. MIT-Press.

Pulsed Neural Networks.
MIT-Press.

preprint.

A model for repetitive firing in neurons.
Kybernetik, 16:53-64.

Analysis of linsker's application of Hebbian rules to linear networks.
Network, 1:257-297.

A synaptically controlled associative signal for hebbian plasticity in hippocampal neurons.
Reliability of spike timing in neocortical neurons.
Science, 268:1503-1506.

Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission.
Science, 242:81-84.

Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of ltp.
Science, 245:862-866.

Outward currents in isolated ventral cochlear nucleus neurons.

Detecting and estimating signals in noisy cable structures, I: Neuronal noise sources.
Neural Comput., 11:1797-1829.

Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs.

Redistribution of synaptic efficacy between neocortical pyramidal neurons.

On the relationship between synaptic input and spike output jitter in individual neurons.

Effective neural response function for collective population states.
Network, 10:351-373.

On the population dynamics of interacting spiking neurons.
Preprint, xx:xx.

Voltage-dependent block by Mg$^{2+}$ of nmda responses in spinal cord neurones.

A logical calculus of ideas immanent in nervous activity.
Theory of stochastic resonance.

Experience-dependent asymmetric shape of hippocampal receptive fields.

Algorithmic Beauty of Sea Shells.

Information processing in dendritic trees.
Neural Comput., 6(1031-1085).

Temporal correlations in stochastic networks of spiking neurons.
Neural Comput., xx:xx.

A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity dependent competition between ON- and OFF-center inputs.
J. Neurosci., 14:409-441.

Receptive fields and maps in the visual cortex: Models of ocular dominance and orientation columns.

Ocular dominance column development: analysis and simulation.

The role of constraints in hebbian learning.
Neural Comput., 6:100-126.

A statistical study of cochlear nerve discharge patterns in response to complex speech stimuli.

A model for visual shape recognition.

Sequence learning in a single trial.
Synchronization of pulse coupled biological oscillators.

xxx.
J. Comp. Physiol., 144:299-304.

Bee foraging in uncertain environments using predictive hebbian learning.

Statistical signs of synaptic interaction in neurons.

Voltage oscillations in the barnacle giant muscle fiber.

Mountcastle, V. B. (1957).
Modality and topographic properties of single neurons of cat's somatosensory
cortex.

Mathematical Biology.

An active pulse transmission line simulating nerve axon.
Proc. IRE, 50:2061-2070.

The Hodgkin-Huxley model.
In Bower, J. M. and Beeman, editors, *The book of Genesis*, chapter 4, pages

Synchrony in heterogeneous networks of spiking neurons.
Neural Comput., 12:1607-1641.

Synaptic activity modulates the induction of bidirectional synaptic changes in
adult mouse hippocampus.

Magnesium gates glutamate-activated channels in mouse central neurons.

The length of attractors in asymmetric random neural networks with
deterministic dynamics.

Dynamics of diluted attractor neural networks with delays.

A population density approach that facilitates large-scale modeling of neural
networks: Analysis and application to orientation tuning.

Statistical-mechanics analysis of self-organization and pattern formation
during the development of visual maps.

Synaptic responses and electrical properties of cells in brain slices of the
mouse anteroventral cochlear nucleus.

A simplified neuron model as a principal component analyzer.

Hippocampus, theta, and spatial memory.

Hippocampus, theta, and spatial memory.

On the simulation of a large population of neurons.

Temporal encoding of two-dimensional patterns by single units in primate
inferior temporal cortex. 3. Information theoretic analysis.

Stochastic nature of precisely timed spike patterns in visual system neuronal
responses.

The Volterra representation and the Wiener expansion: Validity and pitfalls.

Probability, random variables, and stochastic processes.

Pavlov, I. P. (1927).

Conditioned reflexes.
Oxford Univ. Press.

Neuronal spike trains and stochastic point processes I. the single spike train.

Neuronal spike trains and stochastic point processes II. simultaneous spike trains.

Activity in sparsely connected excitatory neural networks: effect of connectivity.
Neural Networks, 11:415-434.

A quantitative population model of whiskers barrels: re-examining the Wilson-Cowan equations.

Aspects of Signal Processing in Noisy Neurons.

The ModUhl software collection.
Technical report, MPI für Strömungsforschung, Göttingen.
http://www.chaos.gwgd.de/ plesser/ModUhl.htm.

Noise in integrate-and-fire neurons: from stochastic input to escape rates.

Stochastic resonance in a model neuron with reset.

Functional identification of input-output transforms of motoneurons in cat.
J. Physiol., 504:401-424.

Effects of background noise on the response of rat and cat motoneurones to excitatory current transients.

Experimental evaluation of input-output models of motoneuron discharges.

Cable theory for dendritic neurons.

Histologie du système nerveux de l'homme et des vertébré.

A. Maloine, Paris.

Spike-timing dependent Hebbian plasticity as temporal difference learning.

The power ratio and the interval map: spiking models and extracellular recordings.

A theory of pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement.

Membrane properties underlying the firing of neurons in the avian cochlear nucleus.

submitted.

preprint, xx:xx.

Spikes - Exploring the neural code.

MIT Press, Cambridge, MA.

Excitation dynamics: insights from simplified membrane models.

Analysis of neuronal excitability and oscillations.

Propagating activity patterns in large-scale inhibitory neuronal networks.

The Fokker Planck equation: methods of solution and applications.
Springer-Verlag, Berlin.

A biologically motivated and analytically soluble model of collective oscillations in the cortex: II. Application to binding and pattern segmentation.

Synchronous oscillatory activity in sensory systems: new vistas on mechanisms.

Dynamics of temporal learning rules.

Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation.

Stochastic model neuron without resetting of dendritic potential: application to the olfactory system.

Equilibrium properties of temporally asymmetric Hebbian plasticity.

Unsupervised learning in networks of spiking neurons using temporal coding.

Averaging methods in nonlinear dynamics systems.
Springer-Verlag, New York.
Intracellular Ca^{2+} stores can account for the time course of LTP induction: A model of Ca^{2+} dynamics in dendritic spines.

Stimulus-dependent assembly formation of oscillatory responses: II. desynchronization.

Ion channel stochasticity may be critical in determining the reliability and precision of spike timing.

Schrödinger, E. (1915).
Zur Theorie der Fall- und Steigversuche and Teilchen mit Brownscher Bewegung.

A neural substrate for prediction and reward.

Sensitivity of neurons in Aplysia to temporal patterns of arriving impulses.

Storing covariance with nonlinearly interacting neurons.

The book of hebb.

The hebb rule for synaptic plasticity: algorithms and implementations.

Senn, W., Schneider, M., and Ruf, B. (2001a).
Activity-dependent development of axonal and dendritic delays or, why synaptic transmission should be unreliable.
Neural Comput., xx:xx.

An algorithm for synaptic modification based on exact timing of pre- and post-synaptic action potentials.
An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing.

Dynamics of a random neural network with synaptic depression.
Neural Networks, 9:575-588.

Noise, neural codes and cortical organization.

The variable discharge of cortical neurons: implications for connectivity, computation, and information coding.
J. Neurosci., 18:3870-3896.

A mathematical theory of communication.
reprinted in Shannon and Weaver 1949.

A unified model of calcium dependent synaptic plasticity.
submitted, xx:xx.

Post-Hebbian learning rules.

Random process model for the firing pattern of single auditory nerve fibers.

The role of synchrony in neocortical processing and synaptic plasticity.

Visual feature integration and the temporal correlation hypothesis.

The highly irregular firing pattern of cortical cells is inconsistent with temporal integration of random epsps.

Simple codes versus efficient codes.

Competitive hebbian learning through spike-time-dependent synaptic plasticity.

Structural study of inferior olivary nucleus of the cat: Morphological correlations of electrotonic coupling.

Frequency spectrum of coupled stochastic neurons with refractoriness.

Noise spectrum and signal transmission trough a population of spiking neurons.

Effect of lateral connections on the accuracy of the population code for a network of spiking neurons.
preprint.

A theoretical analysis of neuronal variability.

Stein, R. B. (1967a).
The information capacity of nerve cells using a frequency code.
Biophys. J., 7:797-826.

Stein, R. B. (1967b).
Some models of neuronal variability.
Biophys. J., 7:37-68.

Attention modultaes synchronized neuronal firing in primate somatosensory cortex.
A single spike suffices: the simplest form of stochastic resonance in model neurons.

Network, 7:687-716.

Novel integrate-and-fire like model of repetitive firing in cortical neurons.
can be downloaded from http://www.sloan.salk.edu/ zador/publications.html.

Nonlinear dynamical systems and chaos.
Addison-Wesley, Reading MA.

Active propagation of somatic action potentials into neocortical pyramidal cell dendrites.

Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl.

Temporal difference model reproduces anticipatory neural activity.

Towards a modern theory of adaptive networks: expectation and prediction.

A model for the formation of orientation columns.

L-type Ca^{2+} channels mediate the slow Ca^{2+}-dependent afterhyperpolarization current in rat ca3 pyramidal cells in vitro.

Global competition and local cooperation in a network of neural oscillators.

Temporal encoding in nervous systems: a rigorous definition.

The brain.

Speed of processing in the human visual system.

Information encoding in short firing rate epochs by single neurons in the primate temporal visual cortex.

Information encoding and the responses of single neurons in the primate visual cortex.

A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.

Mean-field analysis of neuronal spike dynamics.
Network, 4:259-284.

Time for retrieval in recurrent associative memories.

Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell.

Patterns of synchrony in inhomogeneous networks of oscillators with pulse interaction.

Rapid state switching in balanced cortical networks.
Network, 6:111-124.

Introduction to theoretic neurobiology.
Cambridge Univ. Press, Cambridge.

On the theory of the Brownian motion.

van Hemmen, J. L., Gerstner, W., Herz, A. V. M., Kühn, R., Sulzer, B., and Vaas,
 Encoding and decoding of patterns which are correlated in space and time.
 In Dorffner, G., editor, *Konnektionismus in Artificial Intelligence und

 Calculation of Volterra kernels for solutions of nonlinear differential
 equations.

 Stochastic processes in physics and chemistry.

 Stable Hebbian learning from spike timing-dependent plasticity.

 Partially synchronized states in networks of pulse-coupled neurons.

 When inhibition not excitation synchronizes neural firing.

 Chaos in neuronal networks with balanced excitatory and inhibitory activity.

 Irregular firing in cortical circuits with inhibition/excitation balance.
 In Bower, J., editor, *Computational Neuroscience: Trends in Research, 1997*,

 Chaotic balanced state in a model of cortical circuits.
 Neural Comput., 10:1321-1371.

 Nonlinear Differential Equations and Dynamical Systems.

 Theory of functionals and of integral and integro-differential equations.
 Dover, New York.

 Self-organization of orientation selective cells in the striate cortex.
 Kybernetik, 14:85-100.

The correlation theory of brain function.
Internal Report 81-2, MPI für Biophysikalische Chemie, Göttingen.
Reprinted in Models of Neural Networks II, Domany et al. (Eds.), Springer, 1994.

Sensory segmentation with coupled neural oscillators.

Stability of the asynchronous state in networks of non-linear oscillators.

Emergent synchrony in locally coupled neural oscillators.

Pattern segmentation in associative memory.
Neural Comput., 2:94-106.

Modeling the mammalian visual system.

A model of the peripheral auditory system.
Kybernetik, 3:153-175.

Dynamic organization of motor control within the olivocerebellar system.

Channel noise in neurons.

Minireview of stochastic resonance.
Chaos, 8:539-548.

How patterned neuronal connections can be set up by self-organization.

Excitatory and inhibitory interactions in localized populations of model
neurons.

A mathematical theory of the functional dynamics of cortical and thalamic
nervous tissue.

Wilson, M. A. and McNaughton, B. L. (1993).
Dynamics of the hippocampal ensemble code for space.

Analysis of a correlation-based model for the development of
orientation-selective receptive fields in the visual cortex.

Development of spatiotemporal receptive fields of simple cells: I. model
formulation.

Development of spatiotemporal receptive fields of simple cells: ii. simulation
and analysis.

Constraint optimization for neural map formation: a nuifying framework for
weight growth and normalization.

Spike-based learning rules and stabilization of persistent neural activity.
In Solla, S. A., Leen, T. K., and Müller, K.-R., editors, *Advances in Neural

Multiple channels and calcium dynamics.
In Koch, C. and Segev, I., editors, *Methods in neuronal modeling: From

Biophysical model of a hebbian synapse.

Impact of synaptic unreliability on the information transmitted by spiking
neuron.

A critical window for cooperation and competition among developing
retinotectal synapses.
Nature, 395:37-44.
Gerstner and Kistler
Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
Index

action potential
adaptation
afterpotential
alpha function
AMPA receptor
analog neuron
arborization function
Arrhenius formula
Arrhenius&Current model
asynchronous firing
asynchronous firing stability
attractor length
auditory system
autocorrelation function
axon
back propagating action potential
balanced excitation and inhibition
barn owl, auditory system
BCM rule
bifurcation
bifurcation Hopf
bifurcation saddle-node
binary neuron
blobs of activity
cable equation

calcium

current

dynamics

second messenger

cluster states

coding, neuronal
coding, neuronal
correlation code

phase code

pulse code

rate code

signal transmission

spike code

coefficient of variation

coincidence detector

coincidence rate

compartmental model

competition

complex cells

conditioning

conductance-based neuron model

connectivity

mexican hat

sparse random

continuity equation

correlation code

correlation function

correlation matrix
field equation

blob/bump solution
for hypercolumn
for several populations
for spiking neurons
homogeneous solution

firing intensity

firing rate
instantaneous
joint

first passage time

first principal component

fish, electric

FitzHugh-Nagumo model
impulse response
nullclines
fixed point
flow field

flux
across threshold
drift
jump
refractory

Fokker-Planck equation
frozen noise
gain function

gain function
and population activity
of Hodkgin-Huxley model
of integrate-and-fire model
 noise-free
 with noise
of neocortical neuron model
 type I
 type II
gating variable
Green's function
hazard
hazard model
Hebb's postulate
Hodgkin-Huxley model
Hodgkin-Huxley model
 eta kernel
 gain function
 kappa kernel
 reduction to SRM
 reduction to two dimensions
Hopf bifurcation
Hopf bifurcation
 subcritical
 supercritical
hypercolumn
impulse response
impulse response
 FitzHugh-Nagumo model
inferior olive
information theory
inhibition
 shunting
inhibitory rebound
integrate-and-fire model
integrate-and-fire model
 gain function
leaky
multi-compartment

multi-compartment
relation to SRM
relation to SRM₀

noisy

nonlinear
quadratic
relation to detailed model
relation to SRM
two-compartment

interneuron model
reduction to nonlinear i&f
reduction to SRM

interval distribution
interval distribution
input-dependent
for escape rate models
for inhomogeneous Poisson process
for periodic input
interspike

ion channel
ion channel
A-current
potassium
sodium
ion current
calcium

kappa kernel
definition
for Hodgkin-Huxley model
interpretation
Kramers-Moyal expansion
Langevin equation
lateral geniculate nucleus (LGN)
learning equation
learning rule
 Oja's
learning window
limit cycle
locking
locking
 noise-free
 theorem
 with noise
long-term potentiation|see LTP
low-connectivity network
LTP
 heterosynaptic
 homosynaptic
Markov Process
master equation
McCulloch-Pitts neuron
mean field dynamics
membrane potential
membrane potential
 density
 stationary distribution
Morris-Lecar model
Nernst potential
neuron
 bursting
 postsynaptic
presynaptic neurotransmitter

NMDA receptor

coincidence detector

noise

noise model

diffusive noise

noisy integration

noisy reset

noisy threshold

random connectivity

stochastic spike arrival

noise spectrum

noise

channel

escape

Gaussian white

Johnson

slow

synaptic

thermal

nullclines

Oja's rule

orientation selectivity

orientation selectivity

map

orientation selectivity, model of

Ornstein-Uhlenbeck process

oscillation

oscillation

as an instability

cluster states
of spatial network
synchronous irregular
synchronous locked
owl
pairing experiment
phase code
phase plane analysis
phase portrait
place cells
point process
Poisson neuron
Poisson neuron
linear
with absolute refractoriness
Poisson process
Poisson process
homogeneous
inhomogeneous
population
population activity
population activity
as a flux
asynchronous firing
blobs/bumps of
continuum model
definition
density equation
field equation
integral equation
linearized equation
noise-free equation
spike response model
 definition
 motoneuron model
 relation to Hodgkin-Huxley model
 relation to integrate-and-fire
 simplified model SRM₀

spike train
spike train
 irregular

spiking neuron model
spiking neuron model
 SRM₀

spontaneous activity
stability
stability-plasticity dilemma
stable manifold
static-pattern scenario
 with analog neurons
 with spiking neurons

Stein's model
stimulation
 sub-/superthreshold
stochastic differential equation
stochastic intensity
stochastic process
 doubly stochastic
stochastic rate model
stochastic resonance
survivor function

synapse

synapse
 AMPA
 excitatory
inhibitory
NMDA
postsynaptic neuron
postsynaptic potential
presynaptic neuron

synaptic plasticity
anti-Hebbian
associativity
competition
consolidation of synaptic weights
cooperativity
Hebbian
locality
non-Hebbian
spike-time dependent

synaptic transmission failure
synaptic weights
competition
distribution
evolution of
hard bounds
long-term behavior
multiplicative normalization
normalization
soft bounds
subtractive normalization

synaptic transmission failures
synchrony
synfire chain
threshold
of Hodgkin-Huxley model
of type I models
of type II models

transfer function
transfer function
with diffusive noise
with escape noise
with slow noise

transient response
transient response
noise-free
with noise

transinformation
type I/II model
type I/II model
bifurcations
onset of oscillations
stable manifold
threshold

Volterra series
waves
in rate model
in spiking model
of spike packets

Wiener-Khinchin Theorem

Wilson-Cowan model
Wilson-Cowan model
differential equation
field equation
integral equation
working memory

Gerstner and Kistler
Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002
AMPARs2.1

AMPAR is short for α-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid.

... obtain2.2

We want outward currents to be positive, hence the change in the sign of i_{ext} and i_{syn}.

\begin{footnotesize}
\begin{itemize}
\item 2.1 AMPA-receptors
\item 2.2 We want outward currents to be positive, hence the change in the sign of i_{ext} and i_{syn}.
\end{itemize}
\end{footnotesize}
Exceptions are the rare cases where the function F or G is degenerate; e.g., $F(u, w) = w^2$. ... normally3.1
... potential4.1

Note that in Eq. (4.20) we consider the synaptic current as an *external* current whereas in Chapter 2 we have considered it as a membrane current and therefore used a different sign convention. In both cases, an excitatory input increases the membrane potential.

... currents5.1

We neglect here intrinsically bursting and chaotic neurons.
In a simulation, spike arrival could for example be simulated by independent Poisson processes.
Neurons which have never fired before are assigned a formal firing time $\hat{t} = -\infty$.\footnote{2}
It is called white noise because the power spectrum (i.e. the Fourier transform of the autocorrelation) is flat. A Poisson process is an example of a statistical process with autocorrelation \((7.73)\); cf. Chapter 5.

The decay of the activity is exponential in \(n\) if \(\omega < 1\); for \(\omega = 1\) the decay is polynomial in \(n\).
We use a tilde in order to identify parameters that describe the time course of the membrane potential. Parameters without a tilde refer to the firing-time distribution.

... parameters9.2

... analogously10.1

Note that w_{ij} is a step function of time with discontinuities whenever a presynaptic spike arrives or a postsynaptic action potential is triggered. In order to obtain a well-defined differential equation we specify that the amplitude of the step depends on the value of w_{ij} immediately before the spike. In mathematical terms, we impose the condition that $w_{ij}(t)$ is continuous from left, i.e., that

$$
limit_{s \rightarrow 0, s > 0} w_{ij}(t(f) - s) = w_{ij}(t(f)).$$

10.1
... Aristoteles

Aristoteles, "De memoria et reminiscencia": There is no need to consider how we remember what is distant, but only what is neighboring, for clearly the method is the same. For the changes follow each other by habit, one after another. And thus, whenever someone wishes to recollect he will do the following: He will seek to get a starting point for a change after which will be the change in question.