Cortex A8 Processor

Richard Grisenthwaite
ARM Ltd
Evolution of the ARM Architecture

- Original ARM architecture:
 - 32 bit RISC architecture
 - 16 Registers
 - 1 being the Program counter
 - Conditional execution on all instructions
 - Load/Store Multiple operations
 - Good for Code Density
 - Shifts available on data processing and address generation
 - Original architecture had 26 bit address space
 - Augmented by a 32 bit address space early in the evolution

- Thumb instruction set was the next big step
 - ARMv4T architecture (ARM7TDMI)
 - Introduced a 16 bit instruction set alongside the 32 bit instruction set
 - Switching ISA as part of branch or exception
 - Not a full instruction set – ARM still essential
Evolution of the Architecture (2)

- ARMv5TEJ (ARM926EJ-S) introduced:
 - Better interworking between ARM and Thumb
 - DSP focussed additional instructions
 - Jazelle-DBX for Java byte code interpretation in hardware

- ARMv6 (ARM1136JF-S) introduced:
 - Media processing – SIMD within the integer datapath
 - Enhanced exception handling
 - Overhaul of the memory system architecture

- ARMv7 rolls in a number of substantive changes:
 - Thumb-2*
 - TrustZone*
 - Jazelle-RCT
 - Neon
 - ARMv7 is split into 3 profiles
 - * - Introduced initially as extensions to ARMv6
Thumb-2

- Combined 32 and 16 bit instruction set
 - Instructions can be freely mixed
 - 16 bit instructions include the original Thumb instruction set
 - Complete compatibility with Thumb binaries
 - Some new 16 bit instructions for key code size wins
- Virtually all instructions available in ARM ISA available in Thumb-2
 - Some minor cleaning up of system management instructions
 - In principle can stand-alone as a complete ISA
- Unified assembly language for ARM and Thumb-2
 - Assembly can be targeted to either ISA
- Conditional execution made available via IT instruction:

<table>
<thead>
<tr>
<th>ARM</th>
<th>Thumb-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 bytes</td>
<td>14 bytes</td>
</tr>
<tr>
<td>CMP r3,#1</td>
<td>CMP r3, #1 ;2 bytes</td>
</tr>
<tr>
<td>EOREQ r1,r1,#0x4000</td>
<td>ITTET ;2 bytes</td>
</tr>
<tr>
<td>EOREQ r1,r1,#2</td>
<td>MOVWEQ r3, #0x4002 ; 4 bytes</td>
</tr>
<tr>
<td>MOVNE r3,#0</td>
<td>EOREQ r1, r3 ; 2 bytes</td>
</tr>
<tr>
<td>MOVEQ r3,#1</td>
<td>MOVNE r3, #0 ; 2 bytes</td>
</tr>
<tr>
<td></td>
<td>MOVEQ r3, #1 ; 2 bytes</td>
</tr>
</tbody>
</table>
Thumb-2 (2)

- “Thumb Code density at ARM Performance”
 - In principle this could be achieved with ARM and Thumb previously
 - Much of the code running is not performance critical
 - With code knowledge, can compile non-critical code to Thumb
 - Much simpler with Thumb-2

Expect to see growing emphasis on Thumb-2 in the future

ARM still totally committed to ARM ISA compatibility

 The ARM instruction set is still completely supported
 No plans to “downgrade” the ARM ISA in the applications space
TrustZone

- Architectural extensions to introduce a “Security” state
 - Orthogonal to User/Privileged split
- Effectively two virtual CPUs separated by a new mode
 - Monitor mode the gatekeeper for switching CPUs
 - Some hardware registers duplicated to aid switching
- Memory tagged as secure and non-secure by the system
 - Only the secure CPU can access the secure memory & peripherals
 - System can include secure and non-secure peripherals
ARM NEON™ Technology Overview

- 64/128-bit Hybrid SIMD architecture
- Independent Register file with 2 aliased views:
 - 32 x 64-bit registers (D0-D31)
 - 16 x 128-bit registers (Q0-Q15)

- Integer and SP Floating-point processing
 - 8, 16, 32, 64-bit Integers
 - Single-precision Floating-point

- Encoded in ARM and Thumb-2
- 2 to 4x performance improvement over ARMv6 SIMD
- Accelerates audio, video, and 3D-graphics
NEON SIMD Structure Load/Store

- Native support for structures
 - e.g. Complex Numbers, Pixels, Co-ordinates
 - Memory treated as an Array of Structures (AoS)

- Eliminates ‘shuffling’ overhead
 - Optimised memory access as single transfer
 - Data arranged for efficient SIMD processing

Load

\[
\text{VLD3.16 } \{D0, D1, D2\}, \ [R0]!
\]

Transfer four 3 x 16-bit structures

Store

\[
\text{VST3.16 } \{D0, D1, D2\}, \ [R0]!
\]
NEON Vectorising Compiler Target

- **NEON** provides a **consistent algorithm mapping**
 - Apply narrowing analysis
 - Vectorize over loop iterations

- **Enabled by architectural model**
 - Orthogonal instruction framework
 - Few inter-lane operations
 - Fused Data Type conversion

- **NEON** designed in conjunction with compiler technology
 - Ensure architecture optimised for this compiled mode
 - Benefits of CSE, unrolling, scheduling, register allocation
 - Portable solutions by avoiding hand coding or intrinsics
jazelle®-RCT: Runtime Compilation Target

- Beneficial to Java and a wide range of emerging languages
 - Microsoft .NET MSIL, Perl, Python etc
- Enables high performance in smallest memory footprint
 - Optimal balance between speed and code density with run-time compilers
- Low cost and low power
 - Less than 8K gates and small memory footprint result in lower power
- Complementary to jazelle® DBX on mid-tier devices
 - for optimum Java performance and efficiency
- Broad industry adoption
 - Sun Microsystems, Aplix and Esmertec are early adopters
- Builds on success of jazelle® DBX technology
Cortex-A8 Processor Highlights

- First implementation of the ARMv7 instruction-set architecture, including the Advanced SIMD media instructions (NEON™)

- In-order, dual-issue, superscalar microprocessor core
 - 13-stage main integer pipeline
 - 10-stage NEON media pipeline
 - dedicated L2 cache with 9-cycle latency
 - branch prediction based on global history

- Key metrics
 - delivers 2000 DMIPS for next-generation consumer applications
 - average IPC of 0.9 across multiple benchmark suites
 - includes EEMBC, SpecInt95, Mediabench, and partner-provided applications
 - achieves 1GHz when fabricated in high-performance technologies
 - consumes less than 300mW in low-power devices
 - less than 4mm² at 65nm, excluding NEON, L2 cache, and Embedded Trace
ARM Cortex-A8: why Superscalar?

- In-order instruction issue
 - less complex than out-of-order
 - fewer structures means lower power
 - less need for custom design

- can maintain high IPC with
 - fully symmetric ALU pipelines
 - all critical forwarding paths supported
 - dual-issue of dependent instruction pairs

- Static scheduling with instruction replay on memory stall
 - low-power consumption due to early availability of gate enables
 - fire-and-forget instruction issue removes critical paths from the design

- Net result
 - high-frequency design with out-of-order performance, but in-order clock frequency and power consumption

- Average IPC of 0.9 across 150+ ARM and industry benchmarks
Full Cortex-A8 Pipeline Diagram

13-Stage Integer Pipeline

10-Stage NEON Pipeline
Control Flow

- Dynamic branch predictor components
 - 512-entry 2-way BTB
 - 4K-entry GHB indexed by branch history and PC
 - 8-entry return stack

- Branch resolution
 - all branches are resolved in single stage
 - Maintains speculative and non-speculative versions of branch history and return stack

Branch prediction maintains 95% accuracy over a wide codebase
Instruction Decode

- Instruction decode queue highlights
 - pending queue reduces Fetch stalls and increases pairing opportunities
 - replay queue keeps instructions for reissue on memory system stall
 - scoreboard predicts register availability using static scheduling techniques
 - cross-checks in D3 allow issue of dependent instruction pairs

Replay penalty = 9 cycles

Instruction Execute

- Integer register writeback
- ALU pipe 0
- MUL pipe 0
- ALU pipe 0
- LS pipe 0 or 1
Instruction Execution

- Execution pipeline highlights
 - 2 symmetric ALU pipelines: Shift/ALU/SAT
 - Load/store pipe used by instructions in either pipeline
 - Multiply instructions are tied to pipe 0
 - All key forwarding paths supported
 - Static scheduling allows for extensive clock gating
Memory System on Cortex-A8

- Harvard Level 1 Caches – both 32KByte 4 way set associative
 - VIPT Instruction cache; VIPT Data cache with alias detection
 - Level 1 Data cache is blocking
 - Non-Neon read misses cache cause replay of subsequent instructions
 - Reduces complexity in later pipeline stages
 - Good for power and clock frequency
 - Neon data not allocated to L1 (but will read/update in L1 if necessary)

- Unified Level 2 Cache
 - PIPT, 8 way set associative
 - Fully pipelined and non-blocking
 - Up to 9 memory transactions in flight
 - Streams to the Neon processing unit; up to 16GByte/s bandwidth

- 64 or 128 bit AMBA AXI interconnect to memory
 - Split transaction burst based protocol
 - Supports multiple outstanding memory transactions to minimise memory latencies
Memory System

LS pipeline
- 32k 4-way set associative data cache
- Address hash array used to predict cache way
- Saves power and improves timing
- Load data forwarding in E3 to all critical sources
- One-cycle load-use penalty for ALU
- Store data not required until E3

BIU pipeline
- 9-cycle minimum access latency to L2 cache
- L2 built using standard compiled RAMS (64k-2MB configurable size)
- 64/128bit AXI L3 bus interface supports up to 9 outstanding transactions
NEON Interfaces

Skewed late in pipeline, past the retire point
reduces interface complexity
exception handling not required
decoupling queues from integer machine
removes load-use penalty
negative impact on NEON -> ARM transfers
nonblocking ARM register file helps hide latency

Streaming to and from L2 memory system
up to 8 outstanding transactions
can receive 128 bits/cycle
can receive data from L1 or L2 memory system
independent NEON store buffer
NEON Media Engine Unit

Instruction issue
- static scheduling with fire-and-forget issue
- 1 LS + 1 NINT/NFP can issue each cycle

Execution pipelines
- all pipelines are 64-bit SIMD
- floating-point MAC executed using both FADD and FMUL pipelines
Cortex-A8 NEON Technology

- Accelerating standardization of media processing for next generation mobile and consumer products
- The ideal software target to run rapidly evolving downloadable media players such as Windows Media Player 10 and Real Player

<table>
<thead>
<tr>
<th>Technology</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEG-4</td>
<td>275MHz</td>
</tr>
<tr>
<td>GSM-AMR</td>
<td>13MHz</td>
</tr>
<tr>
<td>MP3 Decoder</td>
<td>9.4MHz</td>
</tr>
</tbody>
</table>

Video, 30fps VGA decode

MPEG-4 including de-ring and de-block filters, yuv2rgb

H.264 (estimated)

- 275MHz
- 350MHz

GSM-AMR, worst case

- 13MHz

MP3 decode, 320kbps 48kHz, worst case

- 9.4MHz

1) MPEG-4 Simple Profile @ 30fps 512kbps, 133MHz SDRAM 10-1-1-1-1-1-1-1 memory, includes deblocking and deringing filters
2) MP3 Decoder @ 320kbps 48kHz (worst case), 133MHz SDRAM 10-1-1-1-1-1-1-1 memory
3) GSM-AMR (worst case), 3 cycle per word memory
4) H.264 Decoder Baseline profile
Coresight Debug and Trace

- Hardware Debug and Trace are key components
 - Valued by the people who use the systems!
- ARM's Coresight moves to a system-centric debug philosophy
 - SoC are not just the core any more
 - Multiple sources of trace data – cores, buses, software instrumentation
 - Multiple debug components – cores, buses watchers etc
 - Cross-triggering of debug events to multiple cores
 - System identification of components in the SoC essential to debug
 - Topology identification methodology as well
- Coresight is a debug and trace focussed system architecture
 - Debug components part of a debug memory space
 - Standardised interface to JTAG or Serial-Wire Debug
 - Open standards to encourage 3rd party adoption
- Cortex-A8 incorporates Coresight compliant interfaces
Implementation Strategy: Motivation

- Why use a semicustom design flow?
 - required to achieve project frequency, area, and power targets

- Why not deliver a hard macrocell?
 - too many restrictions on circuit and layout optimizations possible
 - design porting does not scale well with increases in design size and complexity

- The goal:
 - provide our partners with an alternative method of IP delivery that
 - achieves Cortex-A8 power, area, and frequency targets
 - minimizes the additional effort required from the silicon partner
ARM Cortex-A8 Processor Summary

- Industry-leading performance and power efficiency
 - Greater than 2000 DMIPS for demanding tethered applications
 - Less than 300mW for low power mobile applications
- More than 7 major new technology innovations:
 - NEON, Jazelle-RCT, Thumb-2, TrustZone, AMBA AXI, CoreSight, IEM
- Supported end-to-end by ARM Technology
 - RealView ARCHITECT ESL Models – Artisan AdvantageCE Libraries
- Industry momentum fueling wide adoption
 - 5 licensees, 1/3 of the Top 15 WW Semiconductor Vendors

* Source: Gartner Dataquest (March 2005)
Questions?