On the Energy Detection of Unknown Deterministic Signal over Nakagami Channels with Selection Combining

Sanjeewa Herath, Nandana Rajatheva
Asian Institute of Technology, Thailand.

Chinthya Tellambura
University of Alberta, Canada.

CCECE
05th May 2009
Presentation Outline

Motivation

System Model

Detection Problem
 Fading
 Diversity

Novel Derivations
 Fading - Nakagami-m
 Selection Combiner - Nakagami-m

Numerical Results

Conclusion
Why Spectrum Sensing?

Secondary (unlicensed) users are allowed to utilize spectrum holes opportunistically

- Improves spectrum efficiency
- Spectrum scarcity is resolved to certain extend

Spectrum sensing with Energy detection
Why Energy Detection?

- Primary transmission is modeled as an unknown deterministic signal
- Privacy of primary transmissions is guaranteed
 - Detect just existence of transmissions in the spectrum band of interest
 - Less priori knowledge (Signal shape, duration etc not used)
 - Inherent security to primary communication - not tapped
 - Simple in structure - we will see
 - Detect any shape of signal
- Detect the received energy over a period and decide (sub optimal)
- Performance variation over different wireless environment is important
 - Quantify the performance reduction over Fading
 - Overcome with receiver diversity, user cooperation
Detector Model

![Diagram of energy detection process](image)

Figure: Energy Detection

- Detection is a test of binary hypothesis ([2])
 - H_0: Primary transmission does not exist (noise) - χ^2_{2u}
 - H_1: Primary transmission exist - $\chi^2_{2u}(\epsilon)$
- Selection diversity - Select the branch with highest SNR
 - Simple structure is preserved - minor modification
 - Performance is improved
Detection

- Detection probability (P_d) (Conditional) [3]

$$P_d = Q_u\left(\sqrt{2\gamma}, \sqrt{\lambda}\right)$$ \hspace{1cm} (1)

- False alarm probability (P_f)

$$P_f = \frac{\Gamma \left(u, \frac{1}{2}\right)}{\Gamma(u)}$$ \hspace{1cm} (2)

- Average detection probability (\overline{P}_d)

$$\overline{P}_d = \int_0^\infty Q_u\left(\sqrt{2\gamma}, \sqrt{\lambda}\right)f_\gamma(\gamma) \, d\gamma$$ \hspace{1cm} (3)

- False alarm - Does not depend on SNR \Rightarrow fading

u - Time bandwidth product (integers - by choice)

$Q_u(\cdot, \cdot)$ - u^{th} order Marcum Q-function

γ - SNR; λ - Energy threshold

$\Gamma(\cdot, \cdot)$ - incomplete gamma function
Detection over Fading Channels

- Existing results over fading channels
 - Rayleigh fading - [3, 4, 5]
 - Rician fading - [3, 5]-\(u = 1\)
 - Nakagami-m fading [3]-integer \(m\), [5]-integral

- Integrals found involving Marcum-Q
 - Product of Marcum-Q, Bessel, exponential and rational of \(\gamma\)
 - Uses limited amount of results available [6, 7]
 - Difficult to evaluate in general

- In this paper: Detection over Nakagami-\(m\) fading - alternative result
 - Use of alternative representations of Marcum-Q function
 - Introduced in [8] for analyzing EGC (our result)
 - Transform the integrals to other forms - relatively tractable
Detection over Diversity Receivers

- Find the conditional detection probability and average over the respective PDF of output SNR
- Available results over Rayleigh branches
 - Selection Combining (SC) [3], [4]
 - Maximal Ratio Combining (MRC) [3], [4]
 - Equal gain diversity combining (EGC) [8] - Nakagami-\(m\)
 - Switch and Stay Combining (SSC) [3]
 - Square-Law Combining Schemes (SLC, SLS) [3]
- All diversity results are limited to Rayleigh fading - except our results in [8]
- In this paper: Selection Combining over Nakagami-\(m\) fading
 - Less complex in implementation
 - Quantify the performance gain/loss over
 - Number of branches \(L\)
 - Other parameters \(m, u, \gamma\)
 - Difficulty of integrals? overcome by transforms using alternate representations
Detection over Nakagami-\(m\) Fading

- **Alternate representation** [9]

\[
Q_u(\sqrt{2\gamma}, \sqrt{\lambda}) = \sum_{n=0}^{\infty} \frac{\gamma^n e^{-\gamma}}{n!} \sum_{k=0}^{n+u-1} \frac{e^{-\frac{\lambda}{2}}}{k!} \left(\frac{\lambda}{2}\right)^k
\] (4)

- **Avg. detection probability** \(\overline{P}_{d,Nak}\)

\[
\overline{P}_{d,Nak} = \frac{e^{-\frac{\lambda}{2}}}{\Gamma(m)} \left(\frac{m}{\gamma + m}\right)^m \sum_{n=0}^{\infty} \left(\frac{\gamma}{\gamma + m}\right)^n \frac{(n + m - 1)!}{n!} \sum_{k=0}^{n+u-1} \frac{1}{k!} \left(\frac{\lambda}{2}\right)^k
\]

- **Error bound** \(|E_{Nak}|

\[
|E_{Nak}| \leq \left(\frac{m}{\gamma + m}\right)^m \left[{}_1F_0 \left(m; \frac{\gamma}{\gamma + m} \right) - \sum_{n=0}^{N} \left(\frac{\gamma}{\gamma + m}\right)^n \frac{(m)_n}{n!} \right]
\]

Hypergeometric series - \(pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; x)\)

Pochhammer symbol - \((a)_n\)
Detection over Selection Combining

- Alternate representation [9]

\[Q_u \left(\sqrt{2\gamma}, \sqrt{\lambda} \right) = 1 - e^{-\left(\gamma + \frac{\lambda}{2}\right)} \sum_{n=u}^{\infty} \left(\frac{\lambda}{2\gamma} \right)^n I_n(\sqrt{2\lambda\gamma}) \] (5)

- Avg. Detection over dual branch any \(m \)

\[
\overline{P}_{d,sc,2} = 1 - \frac{2e^{-\frac{\lambda}{2}}}{m} \frac{\Gamma(2m)}{\Gamma^2(m)} \left(\frac{m}{\gamma + 2m} \right)^{2m} \sum_{n=u}^{\infty} \frac{1}{n!} \left(\frac{\lambda}{2} \right)^n \times \Psi_1 \left(2m, 1; m + 1, n + 1; \frac{m}{\gamma + 2m}, \frac{\lambda\gamma}{2(\gamma + 2m)} \right) \] (6)

- Error bound | \(E_{sc,2} \) |

\[
| E_{sc,2} | \leq \frac{2e^{-\frac{\lambda}{2}}}{m} \frac{\Gamma(2m)}{\Gamma^2(m)} \left(\frac{m}{\gamma + 2m} \right)^{2m} \left(e^{\frac{\lambda}{2}} - \sum_{n=0}^{N} \frac{1}{n!} \left(\frac{\lambda}{2} \right)^n \right) \times \Psi_1 \left(2m, 1; m + 1, N + 1; \frac{m}{\gamma + 2m}, \frac{\lambda\gamma}{2(\gamma + 2m)} \right) \] (7)

Horns function - \(\Psi_1 (\alpha, \beta; \gamma, \gamma'; x, y) \)
Detection over Selection Combining cont...

- Avg. Detection over integer \(m \) any number of branches

\[
\overline{P}_{d,sc,L} = 1 - Le^{-\frac{\lambda}{2}} \left(\frac{m}{\gamma} \right)^m \sum_{n=u}^{\infty} \sum_{k=0}^{L-1} \left(\frac{L - 1}{k} \right) (-1)^k \frac{1}{n!} \left(\frac{\lambda}{2} \right)^n \\
\times \sum_{i=0}^{k(m-1)} \frac{\zeta_i (m, k, \gamma) (m)_i}{\beta_L^{(i+m)}} \, _1F_1 \left(i + m; n + 1; \frac{\lambda}{2\beta_L} \right)
\]

- Error bound \(| E_{sc,L} |\)

\[
| E_{sc,L} | \leq L e^{-\frac{\lambda}{2}} \left(\frac{m}{\gamma} \right)^m \left[e^{\frac{\lambda}{2}} - \sum_{n=0}^{N} \frac{1}{n!} \left(\frac{\lambda}{2} \right)^n \right] \sum_{k=0}^{L-1} \left(\frac{L - 1}{k} \right) \\
\times \sum_{i=0}^{k(m-1)} \frac{\zeta_i (m, k, \gamma) (m)_i}{\beta_L^{(i+m)}} \, _1F_1 \left(i + m; N + 1; \frac{\lambda}{2\beta_L} \right)
\]
False Alarm Probability

- Pick the branch with maximum SNR - \(\text{max}(\gamma_1, \gamma_2, \ldots, \gamma_L) \)
- SNR in each branch - \(\gamma_l = \frac{h^2 E_s}{N_{01}}, \ l = 1, 2, \ldots, L \)
- Select the branch with maximum \(h_l \)
- Under \(H_0 \): Samples from noise (does not matter branch selection)
- The statistics of decision variable is \(\chi^2_{2u} \)
- False alarm probability (tail of \(\chi^2_{2u} \))

\[
\overline{P}_{f,sc,L} = \frac{\Gamma \left(u, \frac{\lambda}{2} \right)}{\Gamma(u)} \tag{9}
\]

- Nothing to average
Convergence of Series

- Truncation error

![Error Bound Graph]

Figure: Error Bounds $u = 1, m = 2, SNR = 10 \, dB, L = 2$ and $P_f = 0.01$
Figure: Complementary ROC curves over Nakagami-m fading channel ($u = 1, m = 2, SNR = \{0, 10, 15, 20\} \text{ dB}$)
Detector Performance - m

Figure: Complementary ROC curves over Nakagami-m fading channel ($u = 1$, $m = \{1, 2, 3, 4\}$, $SNR = 10 \text{ dB}$)
Detector Performance - Branches

Figure: Complementary ROC curves of SC receiver over Nakagami-m fading channel
$(L = \{1, 2, 3, 4\}, u = 2, m = 2, SNR = 10 \, dB)$
Conclusion

- Energy Detection over Fading
 - Nakagami-m Fading
 - Exact detection probability, Alternative expression

- Energy Detection over SC
 - Nakagami-m Fading
 - Exact detection probability

- Use of alternative representation of Marcum-Q function for evaluation of related integral

- Simulation results
 - support the decision variable formulation, derivations

- Helpful in designing and evaluating
 - Cognitive radio, Ultra wide-band
 - Detector threshold for expected false alarm rate and different u and $\bar{\gamma}$
Thank You

5th May 2009
References I

References II

