www.pudn.com > geometric.rar > closestpt.m, change:2004-08-13,size:4951b

```function [xpt,ypt,inode,d]=closestpt(x,y,xnot,ynot)  % [xpt,ypt,inode,d]=closestpt(x,y,xnot,ynot) %  % Given a piecewise linear curve whose nodes are defined by the vectors x & y % CLOSESTPT returns the x,y coordinates of the point on the curve which is % closest to (xnot,ynot) (which is not necessarily on the curve). This % algorithm works well if (xnot,ynot) is close to the curve, however, if % it is far away, then the returned point is just the closest node. % xpt,ypt= coordinates of the closest point % inode = closest point either is (x(inode),y(inode)) or occurs between  % 		(x(inode),y(inode)) & (x(inode+1),y(inode+1)) % d = euclidean distance from (xnot,ynot) to (xpt,ypt)    % % G.F. Margrave, December 1993 % % NOTE: It is illegal for you to use this software for a purpose other % than non-profit education or research UNLESS you are employed by a CREWES % Project sponsor. By using this software, you are agreeing to the terms % detailed in this software's Matlab source file.   % BEGIN TERMS OF USE LICENSE % % This SOFTWARE is maintained by the CREWES Project at the Department % of Geology and Geophysics of the University of Calgary, Calgary, % Alberta, Canada.  The copyright and ownership is jointly held by  % its author (identified above) and the CREWES Project.  The CREWES  % project may be contacted via email at:  crewesinfo@crewes.org %  % The term 'SOFTWARE' refers to the Matlab source code, translations to % any other computer language, or object code % % Terms of use of this SOFTWARE % % 1) Use of this SOFTWARE by any for-profit commercial organization is %    expressly forbidden unless said organization is a CREWES Project %    Sponsor. % % 2) A CREWES Project sponsor may use this SOFTWARE under the terms of the  %    CREWES Project Sponsorship agreement. % % 3) A student or employee of a non-profit educational institution may  %    use this SOFTWARE subject to the following terms and conditions: %    - this SOFTWARE is for teaching or research purposes only. %    - this SOFTWARE may be distributed to other students or researchers  %      provided that these license terms are included. %    - reselling the SOFTWARE, or including it or any portion of it, in any %      software that will be resold is expressly forbidden. %    - transfering the SOFTWARE in any form to a commercial firm or any  %      other for-profit organization is expressly forbidden. % % END TERMS OF USE LICENSE  xhat1=[]; xhat2=[]; yhat1=[]; yhat2=[]; if length(x) ~= length(y) 	error(' Vectors x and y must have same length'); end  %t=clock; n=length(x);  % test for equality ind= find(x==xnot); if(~isempty(ind)) 	ind2=find(y(ind)==ynot); 	if(~isempty(ind2)) 			xpt=x(ind(ind2)); 			ypt=y(ind(ind2)); 			inode=ind(ind2); 			d=0.0; 			return; 	end end  % find the points which bracket xnot,ynot indx = surround(x,xnot); indy = surround(y,ynot);  it=[]; for k=1:length(indx) 	if isempty(indy) 		it=find(isempty(indx)); 	else  		it=find(indx(k)==indy); 	end 	if(~isempty(it)) 		itest=indx(k); 		break; 	end end  if(isempty(it)) 	% if no points bracket (xnot,ynot) then it is way exterior to the curve 	% we have no choice but to compute the distances to the various nodes and find  	% the minimum 	d=sqrt( (x-xnot).^2 + (y-ynot).^2 ); 	[d,ind]=sort(d); 	d1=d(1);%closest node 	d2=d(2);%next closest 	% we hunt for a minimum at on the line segments going into and outof the closest 	% point  	i1=ind(1); 	i2=i1+1; 	if( i2<=length(x) ) 		[dp1,xhat1,yhat1]=pdist([x(i1) x(i2)],[y(i1) y(i2)],xnot,ynot); 		if( ~oncurve(x,y,xhat1,yhat1) ) 			dp1=inf; 		end 	else 		dp1=inf; 	end 	i2=ind(1)-1; 	if( i2>=1 ) 		[dp2,xhat2,yhat2]=pdist([x(i1) x(i2)],[y(i1) y(i2)],xnot,ynot); 		if( ~oncurve(x,y,xhat2,yhat2) ) 			dp2=inf; 		end 	else 		dp2=inf; 	end 	% test for dp1 & dp2 finding the same point 	 	if( ~isempty(xhat1) & ~isempty(xhat2) & ~isempty(yhat1) & ~isempty(yhat2) ) 		if( xhat1==xhat2 & yhat1==yhat2 ) 			dp1=inf; 		end 	elseif( isempty(xhat1) & isempty(xhat2) & ~isempty(yhat1) & ~isempty(yhat2) ) 		if( yhat1==yhat2 ) 			dp1=inf; 		end 	elseif( ~isempty(xhat1) & ~isempty(xhat2) & isempty(yhat1) & isempty(yhat2) ) 		if( xhat1==xhat2 ) 			dp1=inf; 			 		end 	elseif( isempty(xhat1) & isempty(xhat2) & isempty(yhat1) & isempty(yhat2) ) 			dp1=inf; 	end 	 	 	indd=find([dp1 dp2 d1]==min([dp1 dp2 d1])); 	 	if( indd==1 ) 			xpt=xhat1; 			ypt=yhat1; 			inode=i1; 			d=dp1; 	elseif( indd==2 ) 			xpt=xhat2; 			ypt=yhat2; 			inode=i2; 			d=dp2; 	else	 		xpt=x(ind(1)); 		ypt=y(ind(1)); 		inode=ind(1); 		d=d(ind(1)); 	end 		 	return; end 	 %compute perpedicular distance  if( x(itest+1)~=x(itest) ) 	m=(y(itest+1)-y(itest))./(x(itest+1)-x(itest)); 	b=y(itest)-m.*x(itest);  	dtest=abs(m*xnot-ynot+b)./sqrt(m.*m+1);  	d=min(dtest);  	it=find(d==dtest); 	ind=itest(it); 	xpt=(m*(ynot-y(ind))+xnot+m*m*x(ind))/(m*m+1); 	ypt=m*(xpt-x(ind))+y(ind); 	inode=ind; else 	xpt=x(itest); 	ypt=ynot; 	d=abs(x(itest)-xnot); 	inode=itest(1); end
```