INDEX
A
AASHTO Green Book, 3-21
acceleration of the lead car, fluctuation in the, 4-8
acceleration control, 3-24
acceleration noise, 7-8
actuated signals, 9-23
adaptive signals, 9-19
adaptive signal control, 9-27
aerial photography, 2-3, 6-11
aerodynamic conditions, 7-9
aero-dynamic effects, 7-11
age, 3-16
aggregated data, 6-3
aggressive driving, 6-20
aging eyes, 3-16
air pollutant levels, 7-15
air pollutants, 7-13, 7-14
air pollution, 7-13
air quality standards, 7-14, 7-15
air quality models, 7-15
air quality, 7-13, 7-15
air resistance, 7-12
alternative fuel, 7-15
alternative fuels, 7-12
altitude, 7-8, 7-8
ambient temperature, 7-8, 7-8
Ambient Air Quality Standards, 7-13
analytical solution, 5-3, 5-3, 5-9
arrival and departure patterns, 5-9, 5-9
arterials, 5-6, 5-9
Athol, 2-2, 2-10, 2-22
auxiliary electric devices, 7-8
average block length, 6-20, 6-20, 6-22
average cycle length, 6-20
average flows, 6-8
average maximum running speed, 6-17
average number of lanes per street, 6-20, 6-22
average road width, 6-6
average signal cycle length, 6-20, 6-23
average signal spacing, 6-10
average space headway, 5-6, 5-6
average speed, 6-3, 6-6, 6-8, 6-10, 6-11, 6-17, 6-22, 7-9, 7-11
average speed limit, 6-20
average street width, 6-10, 6-11

B
ballistic, 3-8
bifurcation behavior, 5-15
block length, average, 6-20, 6-20, 6-22
blockages per hour, 6-22
boundary, 5-4, 5-4, 5-10-5-11, 5-23, 5-24, 5-36
brake and carburetion systems, 7-8
braking inputs, 3-7
braking performances, 3-20, 4-1
braking performance reaction time, 3-5

C
California standards, 7-15
CALINE-4 dispersion model, 7-15
capacity, 4-1
carbon monoxide, 7-13
car-following, 10-2, 10-3, 10-8, 10-15
car following models, 4-1
catastrophe theory, 2-8, 2-27, 2-28
central city, 6-8
central vs. peripheral processes, 3-17
cchangeable message signs, 3-12
changes in cognitive performance, 3-17
changes in visual perception, 3-16
chase car, 6-21, 6-22
Clean Air Act, 7-13, 7-13
closed-loop braking performance, 3-21
coefficient of variation, 3-11
cognitive changes, 3-16
collective flow regime, 6-16
composite emission factors, 7-15
compressibility, 5-1, 5-9
compressible gases, 5-22, 5-22
computer simulation, 6-22, 6-23
concentration, 2-1, 2-5, 2-8, 2-20, 2-29, 4-15, 6-16, 6-17, 6-20, 6-23
concentration at maximum flow, 6-25
conditions, 5-4, 5-6-5-9, 5-11, 5-23, 5-27, 5-29-5-30, 5-32, 5-36, 5-38, 5-43, 5-45
confidence intervals, 10-17, 10-17, 10-20, 10-21, 10-26
congested operations, 2-11, 2-22
continuity equation, 5-1-5-3, 5-20, 5-22, 5-24, 5-25
continuous simulation models, 10-3
continuum models, 5-1, 5-3, 5-20, 5-29, 5-41
control, 3-1, 4-2
control movement time, 3-7, 3-7
control strategies, 6-22
convection motion and relaxation, 5-20
convection term, 5-20, 5-22
convergence, 5-11
coordinate transformation method, 9-11
correlation methods, 10-22, 10-22
critical gap values for unsignalized intersections, 3-26
cruising, 7-11
cruising speed, 7-11

decceleration-acceleration cycle, 7-11, 7-11
decision making, 4-2
defensive driving, 3-17-3-17
delay models at isolated signals, 9-2
delay per intersection, 6-10
density, 1-4-1-4, 2-1-2-3, 2-7, 2-11, 2-18, 2-21, 2-28
density and speed, 2-3, 2-22
disabled drivers, 3-2
discontinuity, 5-1, 5-4
discrete simulation models, 10-3
discretization, 5-10, 5-10-5-14, 5-26, 5-30, 5-34
display for the driver, 3-2
dissipation times, 5-8
distractors on/near roadway, 3-28
disturbance, 4-15
Drake et al., 2-7, 2-12, 2-20, 2-23, 2-24, 2-28, 2-36
driver as system manager, 3-2
driver characteristics, 7-8
driver performance characteristics, 3-28
driver response or lag to changing traffic signals, 3-9
drivers age, 3-16
driving task, 3-9, 3-28
drugs, 3-17-3-17

driving task, 3-9, 3-28
drugs, 3-17-3-17

entrance or exit ramps, 5-12
equilibrium, 5-1-5-1, 5-3, 5-10, 5-22-5-23, 5-45
ergodic, 6-17
evasive maneuvers, 3-15
expectancies, 3-7
exposure time, 3-13

F
gap acceptance, 3-10, 3-25
gasoline type, 7-8
gasoline volatility, 7-15
Gaussian diffusion equation, 7-15
gender, 3-16, 3-16
glare recovery, 3-17
“good driving” rules, 4-1
grades, 7-8
Greenberg, 2-20, 2-20, 2-21, 2-34
Greenshields, 2-18, 2-18, 2-34
guidance, 3-1

G
gap acceptance, 3-10, 3-25
gasoline type, 7-8
gasoline volatility, 7-15
Gaussian diffusion equation, 7-15
gender, 3-16, 3-16
"good driving" rules, 4-1
grades, 7-8
Greenberg, 2-20, 2-20, 2-21, 2-34
Greenshields, 2-18, 2-18, 2-34
guidance, 3-1
headways, 2-2, 2-2, 2-3, 2-8
Hick-Hyman Law, 3-3
high order models, 5-1-5-1, 5-15
Highway Capacity Manual, 4-1
highway driving, 7-11
Human Error, 3-1
humidity, 7-15
hysteresis phenomena, 5-15

identification, 3-9, 3-15
idle flow rate, 7-12
idling, 7-11, 7-11
Index of Difficulty, 3-8
individual differences in driver performance, 3-16
infinitesimal disturbances, 4-15
information filtering mechanisms, 3-17
information processor, 3-2
initial and boundary conditions, 5-5, 5-5, 5-6, 5-11
inner zone, 6-10
inspection and maintenance, 7-15
instantaneous speeds, 7-12
interaction time lag, 5-12, 5-12, 5-13
intersection capacity, 6-11
intersection density, 6-20
intersections per square mile, 6-20
intersection sight distance, 3-10, 3-27
Intelligent Transportation Systems (ITS),
 2-1-2-2, 2-5, 2-6, 2-8, 2-19-2-20, 2-24,
 2-32-2-33, 3-1, 6-25

jam concentration, 4-14
jam density, 5-3, 5-8, 5-11-5-14

kinetic theory of traffic flow, 6-16

lane-changing, 10-5
lane miles per square mile, 6-20
lead (Pb), 7-13
legibility, 3-9
levels of service, 6-2
light losses and scattering in optic train, 3-16
local acceleration, 5-20, 5-26
log-normal probability density function, 3-5
looming, 3-13
loss of visual acuity, 3-16

macroscopic, 6-1
macroscopic measure, 6-16
macroscopic models, 6-6
macroscopic relations, 6-25
macular vision, 3-17
maximum average speed, 6-3
maximum flow, 6-11
May, 2-2-2-7, 2-9, 2-12, 2-22, 2-24, 2-33, 2-36
measurements along a length of road, 2-3
Measures of Effectiveness, 10-17, 10-17, 10-25
medical conditions, 3-18
merging, 3-25
meteorological data, 7-15
methanol, 7-15
microscopic, 6-22
microscopic analyses, 6-1
minimum fraction of vehicles stopped, 6-25
minimum trip time per unit distance, 6-17, 6-17
mixing zone, 7-16
method of characteristics, 5-4
model validation, 10-5
model verification, 10-5, 10-15
momentum equation, 5-1-5-1, 5-22, 5-26, 5-29
motion detection in peripheral vision, 3-14
movement time, 3-7
moving observer method, 2-3, 2-3
MULTSIM, 7-12

navigation, 3-1
NETSIM, 6-22, 6-23
network capacity, 6-6
network topology, 6-1
network concentrations, 6-22, 6-24
network features, 6-20, 6-20
network-level relationships, 6-23
network-level variables, 6-25
network model, 6-1, 6-6
network performance, 6-1
network types, 6-6
network-wide average speed, 6-8
nighttime static visual acuity, 3-11
nitrogen dioxide, 7-13
non-instantaneous adaptation, 5-23
non-linear models, 4-15
normal or gaussian distribution, 3-5
normalized concentration, 4-15
normalized flow, 4-15
number of lanes per street, 6-20
number of stops, 6-23, 7-8
numerical solution, 5-9, 5-11, 5-12, 5-29, 5-31-5-33, 5-49

O

object detection, 3-15
obstacle and hazard detection, 3-15
obstacle and hazard recognition, 3-15
obstacle and hazard identification, 3-15
occupancy, 1-4, 2-1, 2-9, 2-11, 2-21, 2-22, 2-25-2-26, 2-28, 2-32, 2-34, 2-36
off-peak conditions, 6-6
Ohno's algorithm, 9-8
oil viscosity, 7-8
oncoming collision, 3-13
open-loop, 3-8
open-loop braking performance, 3-20
oscillatory solutions, 5-15
outer zone, 6-10
overtaking and passing in the traffic stream, 3-24
overtaking and passing vehicles, 3-24
overtaking and passing vehicles (Opposing Traffic), 3-25
oxygenated fuels/reformulated gasoline, 7-15
ozone, 7-13

P

partial differential equation, 5-4, 5-30
particulate matter, 7-13
pavement roughness, 7-8
pavement type, 7-8
peak conditions, 6-6
perception-response time, 3-3
peripheral vs. central processes, 3-17
perception, 4-2

period of measurement, 7-15
"Plain Old Driving" (POD), 3-1
platoon dynamics, 5-6
platooning effect on signal performance, 9-15
pollutant dispersion, 7-16
Positive Guidance, 3-28
positive kinetic energy, 7-11
pupil, 3-16

Q

quality of service, 6-20, 6-25
quality of traffic service, 6-12, 6-16
queue, 5-4, 5-7, 5-10
queue discharge flow, 2-12, 2-13, 2-15
queue length, 5-6, 5-9
queue length stability, 5-8

R

radial motion, 3-13
random numbers, 10-2-10-2, 10-22, 10-26
reaction time, 3-3, 3-3, 3-4, 3-7, 3-8, 3-16, 3-17
real-time driver information input, 3-28
refueling emissions controls, 7-15
relaxation term, 5-23
resolving power, 3-11
response distances and times to traffic control devices, 3-9
response time, 3-4, 3-7, 3-15, 3-16, 3-20
response to other vehicle dynamics, 3-13
road density, 6-15
roadway gradient, 7-8
rolling friction, 7-9
rolling resistance, 7-12
running (moving) time, 6-17
running speed, 6-10, 6-10, 6-11

S

saturation flow, 6-10
scatter in the optic train, 3-17
scattering effect of, 3-17
senile myosis, 3-16
sensitivity coefficient, 4-15, 5-12, 5-12
shock waves, 5-1, 5-1, 5-3-5-4, 5-6, 5-29, 5-30, 5-50
signalized intersection, 5-6, 5-6, 5-7
signalized links and platoon behavior, 5-9
short-term events, 6-22
signals,
 actuated, 9-23
 adaptive, 9-19
signal control, adaptive, 9-27
signal densities, 6-10
signal density, 6-20
signals per intersection, 6-22
sign visibility and legibility, 3-11
signage or delineation, 3-17
simulation models, building 10-5
site types, 7-15
smog, 7-13
Snellen eye chart, 3-11
sound velocity, 5-22
source emissions, 7-14
space headway, 2-1, 2-5
space mean speed, 2-6-2-7, 2-9-2-10, 6-15, 7-11
spacing, 2-1, 2-1, 2-26, 4-8, 5-2, 5-17, 5-29, 5-34
specific maneuvers at the guidance level, 3-24
speed, 2-3, 2-6, 2-8, 2-11, 2-14, 2-16, 2-18, 2-22,
 2-24, 2-28, 2-31, 2-33, 4-1, 4-15
speed (miles/hour) versus vehicle concentration
 (vehicles/mi), 4-17
speed and acceleration performance, 3-24
speed-concentration relation, 4-13
speed-density models, 2-19
speed-density relation, 5-15-5-15, 5-20, 5-22-5-23,
 5-27, 5-34
speed-flow models, 2-13, 2-1, 9-6-8
speed-flow relation, 6-6
speeds from flow and occupancy, 2-8, 2-9
speed limit changes, 3-28
speed noise, 7-8, 7-12
speed of the shock wave, 5-4
speed-spacing, 4-15
speed-spacing relation, 4-1
spillbacks, 5-9
stability analysis, 5-8, 5-25, 5-28-5-29, 5-43
standard deviation of the vehicular speed distribution,
 5-22, 5-39
state equations, 5-9, 5-9
State Implementation Plans (SIPs), 7-15
stationary sources, 7-13
statistical distributions, 10-5, 10-6
steady-state, 7-11
steady-state delay models, 9-3
steady-state expected deceleration, percentile estimates
 of , 3-21
steady-state flow, 4-15
steady-state traffic speed control, 3-24
steering response times, 3-9, 3-9
stimulus-response equation, 4-3
stochastic process, 10-17
stochastic simulation, 10-5
stop time, 6-17, 6-17
stopped time, 6-10
stopped delay, 7-11
stopping maneuvers, 3-15
stopping sight distance, 3-26
stop-start waves, 5-15-5-15, 5-17, 5-24, 5-26, 5-36,
 5-39
street network, 6-20
structure chart, 10-8
substantial acceleration, 5-20, 5-20
sulfur dioxide, 7-13
summer exodus to holiday resorts, 5-17
surface conditions, 7-8
suspended particulate , 7-13

T

tail end, 5-6-5-8
temperature, 7-15
time-dependent delay models, 9-10
time headway, 2-1
time mean speed, 2-6-2-7
tire pressure, 7-8
tire type, 7-8
total delay, 6-23
total trip time, 6-17
TRAF-NETSIM , 6-22, 6-23
traffic breakdowns, 5-15, 5-42
traffic conditions, 7-9
traffic control devices (TCD), 3-9
traffic control system, 6-1
traffic data, 7-15
traffic dynamic pressure, 5-23
traffic intensity, 6-2, 6-15
traffic network, 6-1
traffic performance, 6-1
traffic signal change, 3-9
traffic simulation, 10-1, 6-17, 10-4, 10-7, 10-15-10-17, 10-20, 10-22
traffic stream, 4-1
trajectories of vehicles, 5-4
trajectory, 5-4, 5-7-5-9
transients, 5-15-5-15, 5-17, 5-20
transmission type, 7-8
travel demand levels, 6-1
travel time, 6-1, 6-10
trip time per unit distance, 7-9
two-fluid model, 6-1, 6-17, 6-22-6-23, 6-25
two-fluid parameters, 6-18, 6-18, 6-20, 6-23, 6-25
two-fluid studies, 6-20
two-fluid theory, 6-12, 6-16, 6-24
turning lanes, 5-9, 5-9

U
undersaturation, 5-8
effect of upstream signals, 9-15
UMTA, 7-15
UMTA Model, 7-15
urban driving cycle, 7-11
urban roadway section, 7-11
uncongested flows, 2-12

V
variability among people, 3-16
vehicle ahead, 3-13
vehicle alongside, 3-14
vehicle characteristics, 7-8
vehicle emissions, 7-14
vehicle fleet, 7-8
vehicle mass, 7-8, 7-9, 7-12
vehicle miles traveled, 6-11
vehicle shape, 7-8
vehicles stopped, average fraction of the, 6-17
viscosity, 5-22, 5-24, 5-29, 5-34
visual acuity, 3-11
visual angle, 3-11-3-13, 3-15, 3-16
visual performance, 3-11
volatile organic compounds, 7-13

W
Wardrop, 2-4, 2-4, 2-6-2-7
Wardrop and Charlesworth, 2-4, 2-4
Weber fraction, 3-13, 3-13
wheel alignment, 7-8
wind, 7-8
wind conditions, 7-8
wind speed, 7-15
work zone traffic control devices, 3-17

Y
yield control for secondary roadway, 3-27