TABLE OF CONTENTS

(Click an item in red and go directly to that location)

1. INTRODUCTION .. 1-1
 1.1 References .. 1-4

2. TRAFFIC STREAM CHARACTERISTICS ... 2-1
 2.1 Measurement Procedures .. 2-2
 2.1.1 Measurement at a Point .. 2-2
 2.1.2 Measurements Over a Short Section 2-2
 2.1.3 Measurement Along a Length of Road 2-3
 2.1.4 Moving Observer Method ... 2-3
 2.1.5 ITS Wide-Area Measurements 2-4
 2.2 Variables of Interest ... 2-5
 2.2.1 Flow Rates .. 2-5
 2.2.2 Speeds .. 2-5
 2.2.3 Concentration .. 2-9
 2.3 Traffic Stream Models .. 2-11
 2.3.1 Importance of Location to the Nature of the Data 2-11
 2.3.2 Speed-Flow Models ... 2-13
 2.3.3 Speed-Density Models ... 2-19
 2.3.4 Flow-Concentration Models 2-22
 2.3.5 Three-Dimensional Models .. 2-26
 2.3.6 Conclusions About Traffic Stream Models 2-31
 References .. 2-32

3. HUMAN FACTORS .. 3-1
 3.1 Introduction .. 3-1
 3.1.1 The Driving Task ... 3-1
 3.2 Discrete Driver Performance ... 3-3
 3.2.1 Perception-Response Time ... 3-3
 3.3 Control Movement Time ... 3-7
 3.3.1 Braking Inputs .. 3-7
 3.3.2 Steering Response Times ... 3-9
 3.4 Response Distances and Times to Traffic Control Devices 3-9
 3.4.1 Traffic Signal Change .. 3-9
 3.4.2 Sign Visibility and Legibility 3-11
 3.4.3 Real-Time Displays and Signs 3-12
 3.4.4 Reading Time Allowance .. 3-13
 3.5 Response to Other Vehicle Dynamics 3-13
 3.5.1 The Vehicle Ahead ... 3-13
 3.5.2 The Vehicle Alongside ... 3-14
 3.6 Obstacle and Hazard Detection, Recognition, and Identification 3-15
 3.6.1 Obstacle and Hazard Detection 3-15
 3.6.2 Obstacle and Hazard Recognition and Identification 3-15
 3.7 Individual Differences in Driver Performance 3-16
 3.7.1 Gender .. 3-16
 3.7.2 Age .. 3-16
 3.7.3 Driver Impairment ... 3-17
 References .. 2-32
3.8 Continuous Driver Performance .. 3-18
 3.8.1 Steering Performance .. 3-18
 3.8.1.1 Human Transfer Function for Steering 3-18
 3.8.1.2 Performance Characteristics Based on Models 3-19
 3.9 Braking Performance .. 3-20
 3.9.1 Open-Loop Braking Performance .. 3-20
 3.9.2 Closed-Loop Braking Performance ... 3-21
 3.9.3 Less-Than-Maximum Braking Performance 3-21
 3.10 Speed and Acceleration Performance ... 3-23
 3.10.1 Steady-State Traffic Speed Control 3-23
 3.10.2 Acceleration Control ... 3-23
 3.11 Specific Maneuvers at the Guidance Level 3-23
 3.11.1 Overtaking and Passing in the Traffic Stream 3-23
 3.11.1.1 Overtaking and Passing Vehicles (4-Lane or 1-Way) ... 3-23
 3.11.1.2 Overtaking and Passing Vehicles (Opposing Traffic) 3-24
 3.12 Gap Acceptance and Merging .. 3-24
 3.12.1 Gap Acceptance .. 3-24
 3.12.2 Merging .. 3-24
 3.13 Stopping Sight Distance .. 3-25
 3.14 Intersection Sight Distance ... 3-26
 3.14.1 Case I: No Traffic Control ... 3-26
 3.14.2 Case II: Yield Control for Secondary Roadway 3-26
 3.14.3 Case III: Stop Control on Secondary Roadway 3-26
 3.15 Other Driver Performance Characteristics 3-27
 3.15.1 Speed Limit Changes ... 3-27
 3.15.2 Distractors On/Near Roadway .. 3-27
 3.15.3 Real-Time Driver Information Input 3-28
 References .. 3-28

4. CAR FOLLOWING MODELS ... 4-1
 4.1 Model Development .. 4-2
 4.2 Stability Analysis ... 4-6
 4.2.1 Local Stability .. 4-6
 4.2.2 Asymptotic Stability ... 4-9
 4.2.2.1 Numerical Examples .. 4-10
 4.2.2.2 Next-Nearest Vehicle Coupling 4-13
 4.3 Steady-State Flow ... 4-14
 4.4 Experiments And Observations .. 4-20
 4.4.1 Car Following Experiments .. 4-22
 4.4.1.1 Analysis of Car Following Experiments 4-23
 4.4.2 Macroscopic Observations: Single Lane Traffic 4-32
 4.5 Automated Car Following ... 4-38
 4.6 Summary and Conclusions ... 4-38
 References .. 4-39

5. CONTINUUM FLOW MODELS .. 5-1
 5.1 Simple Continuum Models .. 5-1
 5.1.1 The Conservation Equation .. 5-2
 5.1.2 Analytical Solution of the Conservation Equation; Shock Waves 5-3
 5.1.3 Applications ... 5-5

References.. 3-39
8. UNSIGNALIZED INTERSECTION THEORY 8-1

8.1 Introduction .. 8-1
8.1.1 The Attributes of a Gap Acceptance Analysis Procedure 8-1
8.1.2 Interaction of Streams at Unsignalized Intersections 8-1
8.1.3 Chapter Outline ... 8-1

8.2 Gap Acceptance Theory ... 8-2
8.2.1 Usefulness of Gaps ... 8-2
8.2.2 Estimation of the Critical Gap Parameters 8-3
8.2.3 Distribution of Gap Sizes .. 8-6

8.3 Headway Distributions Used in Gap Acceptance Calculations 8-6
8.3.1 Exponential Headways ... 8-6
8.3.2 Displaced Exponential Distribution 8-7
8.3.3 Dichotomized Headway Distributions 8-7
8.3.4 Fitting the Different Headway Models to Data 8-8

8.4 Interaction of Two Streams ... 8-11
8.4.1 Capacity .. 8-11
8.4.2 Quality of Traffic Operations .. 8-16
8.4.3 Queue Length .. 8-19
8.4.4 Stop Rate .. 8-22
8.4.5 Time Dependent Solution ... 8-23
8.4.6 Reserve Capacity ... 8-26
8.4.7 Stochastic Simulation ... 8-27

8.5 Interaction of Two or More Streams in the Priority Road 8-28
8.5.1 The Benefit of Using a Multi-Lane Stream Model 8-28

8.6 Interaction of More than Two Streams of Different Ranking 8-31
8.6.1 Hierarchy of Traffic Streams at a Two Way Stop Controlled Intersection 8-31
8.6.2 Capacity for Streams of Rank 3 and Rank 4 8-32

8.7 Shared Lane Formula .. 8-35
8.7.1 Shared Lanes on the Minor Street 8-35
8.7.2 Shared Lanes on the Major Street 8-35

8.8 Two-Stage Gap Acceptance and Priority 8-36

8.9 All-Way Stop Controlled Intersections 8-37
8.9.1 Richardson’s Model ... 8-37
9. TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS

9.1 Introduction ... 9-1
9.2 Basic Concepts of Delay Models at Isolated Signals .. 9-2
9.3 Steady-State Delay Models ... 9-3
 9.3.1 Exact Models .. 9-3
 9.3.2 Approximate Models .. 9-5
9.4 Time-Dependent Delay Models ... 9-10
9.5 Effect of Upstream Signals .. 9-15
 9.5.1 Platooning Effect On Signal Performance ... 9-15
 9.5.2 Filtering Effect on Signal Performance .. 9-17
9.6 Theory of Actuated and Adaptive Signals ... 9-19
 9.6.1 Theoretically-Based Models ... 9-19
 9.6.2 Approximate Delay Models .. 9-23
 9.6.3 Adaptive Signal Control ... 9-27
9.7 Concluding Remarks .. 9-27
References .. 9-28

10. TRAFFIC SIMULATION... 10-1

10.1 Introduction .. 10-1
10.2 An Illustration .. 10-1
10.3 Car-Following ... 10-2
10.4 Random Number Generation .. 10-2
10.5 Classification of Simulation Models ... 10-3
10.6 Building Simulation Models ... 10-5
10.7 Illustration .. 10-5
10.8 Statistical Analysis of Simulation Data ... 10-17
 10.8.1 Statistical Analysis for a Single System .. 10-17
 10.8.1.1 Fixed Sample-Size Procedures ... 10-20
 10.8.1.2 Sequential Procedures .. 10-21
 10.8.2 Alternative System Configurations ... 10-22
 10.8.3 Variance Reduction Techniques ... 10-22
 10.8.4 Conclusions ... 10-23
10.9 Descriptions of Some Available Models .. 10-23
10.10 Looking to the Future ... 10-24
References .. 10-25

Index ... 11-1
LIST OF FIGURES

2. TRAFFIC STREAM CHARACTERISTICS

Figure 2.1
Four Methods of Obtaining Traffic Data ... 2-2

Figure 2.2
Effect of Measurement Location on Nature of Data .. 2-12

Figure 2.3
Speed-Flow Curves Accepted for 1994 HCM ... 2-14

Figure 2.4
Generalized Shape of Speed-Flow Curve Proposed by Hall, Hurdle, & Banks 2-14

Figure 2.5
Speed-Flow Data for Queue Discharge Flow at Varied Distances Downstream from the Head of the Queue ... 2-15

Figure 2.6
1985 HCM Speed-Flow Curve .. 2-15

Figure 2.7
Results from Fitting Polygon Speed-Flow Curves to German Data 2-16

Figure 2.8
Data for Four-Lane German Autobahns (Two-Lanes per Direction) 2-17

Figure 2.9
UK Speed-Flow Curve .. 2-17

Figure 2.10
Greenshields' Speed-Flow Curve and Data ... 2-18

Figure 2.11
Greenshields' Speed-Density Graph and Data ... 2-20

Figure 2.12
Speed-Concentration Data from Merritt Parkway and Fitted Curves 2-21

Figure 2.13
Three Parts of Edie's Hypothesis for the Speed-Density Function, Fitted to Chicago Data .. 2-23

Figure 2.14
Greenshields' Speed-Flow Function Fitted to Chicago Data 2-24

Figure 2.15
Four Days of Flow-Occupancy Data from Near Toronto 2-25

Figure 2.16
The Three-Dimensional Surface for Traffic Operations 2-26

Figure 2.17
Two-Dimensional Projection of Data Used in Three-Dimensional Study 2-27

Figure 2.18
One Perspective on Three-Dimensional ... 2-28

Figure 2.19
Second Perspective on the Three-Dimensional Relationship 2-28

Figure 2.20
Conceptualization of Traffic Operations on a Catastrophe Theory Surface Using the Maxwell Convention ... 2-29

Figure 2.21
Comparison of Observed Speed with Speeds Estimated using Catastrophe Theory Model .. 2-30

Figure 2.22
Comparison of Observed Speeds with Speeds Estimated by Edie's Model 2-30
3. HUMAN FACTORS

Figure 3.1 Generalized Block Diagram of the Car-Driver-Roadway System. 3-2
Figure 3.2 Lognormal Distribution of Perception-Reaction Time. ... 3-4
Figure 3.3 A Model of Traffic Control Device Information Processing. .. 3-10
Figure 3.4 Looming as a Function of Distance from Object. .. 3-14
Figure 3.5 Pursuit Tracking Configuration ... 3-19
Figure 3.6 Typical Deceleration Profile for a Driver without Antiskid Braking System on a Dry Surface. 3-22
Figure 3.7 Typical Deceleration Profile for a Driver without Antiskid Braking System on a Wet Surface. 3-22

4. CAR FOLLOWING MODELS

Figure 4.1 Schematic Diagram of Relative Speed Stimulus and a Weighing Function Versus Time 4-4
Figure 4.1a Block Diagram of Car-Following .. 4-5
Figure 4.1b Block Diagram of the Linear Car-Following Model. ... 4-5
Figure 4.2 Detailed Motion of Two Cars Showing the Effect of a Fluctuation in the Acceleration of the Lead Car 4-8
Figure 4.3 Changes in Car Spacings from an Original Constant Spacing Between Two Cars 4-9
Figure 4.4 Regions of Asymptotic Stability. .. 4-11
Figure 4.5 Inter-Vehicle Spacings of a Platoon of Vehicles Versus Time for the Linear Car Following. 4-11
Figure 4.6 Asymptotic Instability of a Platoon of Nine Cars. .. 4-12
Figure 4.7 Envelope of Minimum Inter-Vehicle Spacing Versus Vehicle Position 4-13
Figure 4.8 Inter-Vehicle Spacings of an Eleven Vehicle Platoon. ... 4-14
Figure 4.9 Speed (miles/hour) Versus Vehicle Concentration (vehicles/mile). 4-17
Figure 4.10 Normalized Flow Versus Normalized Concentration .. 4-17
Figure 4.11 Speed Versus Vehicle Concentration(Equation 4.39) .. 4-18
Figure 4.12 Normalized Flow Versus Normalized Vehicle Concentration (Equation 4.40) 4-18
Figure 4.13 Normalized Flow Versus Normalized Concentration (Equations 4.51 and 4.52) 4-21
Figure 4.14
Normalized Flow versus Normalized Concentration Corresponding to the Steady-State Solution of Equations 4.51 and 4.52 for \(m=1 \) and Various Values of \(\gamma \). .. 4-21

Figure 4.15
Sensitivity Coefficient Versus the Reciprocal of the Average Vehicle Spacing. 4-24

Figure 4.16
Gain Factor, \(\lambda \), Versus the Time Lag, \(T \), for All of the Test Runs. 4-24

Figure 4.17
Gain Factor, \(\lambda \), Versus the Reciprocal of the Average Spacing for Holland Tunnel Tests. 4-25

Figure 4.18
Gain Factor, \(\lambda \), Versus the Reciprocal of the Average Spacing for Lincoln Tunnel Tests 4-26

Figure 4.19
Sensitivity Coefficient, \(a_{n_0} \), Versus the Time Lag, \(T \) .. 4-28

Figure 4.20
Sensitivity Coefficient Versus the Reciprocal of the Average Spacing .. 4-29

Figure 4.21
Sensitivity Coefficient Versus the Ratio of the Average Speed .. 4-29

Figure 4.22
Relative Speed Versus Spacing ... 4-31

Figure 4.23
Relative Speed Thresholds Versus Inter-Vehicle Spacing for Various Values of the Observation Time. 4-32

Figure 4.24
Speed Versus Vehicle Concentration .. 4-34

Figure 4.25
Flow Versus Vehicle Concentration ... 4-34

Figure 4.26
Speed Versus Vehicle Concentration (Comparison of Three Models) ... 4-35

Figure 4.27
Flow Versus Concentration for the Lincoln and Holland Tunnels. ... 4-36

Figure 4.28
Average Speed Versus Concentration for the Ten-Bus Platoon Steady-State Test Runs 4-37

5. CONTINUUM FLOW MODELS

Figure 5.1
Road Section Used for Deriving the Conservation Equation. ... 5-2

Figure 5.2
Shock Wave Formation Resulting from the Solution of the Conservation Equation. 5-5

Figure 5.3
Queue Length Developments at a Signalized Intersection During a Saturated Cycle. 5-7

Figure 5.4
Shock Wave Developments Between Two Signalized Intersections During a Saturated Downstream Cycle. 5-10

Figure 5.5
Space Discretization of a Simple Link. .. 5-11

Figure 5.6
Space Discretization of a 2-Lane, One Dimensional Freeway Section. 5-13

Figure 5.7
Macroscopic Models ... 5-16

Figure 5.8
Hysteresis Phenomenon as an Example of Dynamic Behavior of Traffic Flow. 5-16
Figure 5.9 a, b
 Time Series of Mean Speed for Unstable Traffic Flow ... 5-18
Figure 5.9 c, d
 Time Series of Mean Speed for Unstable Traffic Flow with Small Undulations 5-18
Figure 5.10
 Time Development of Mean Speed from Adjacent Measurement Sites 5-19
Figure 5.11
 Time Development of Speed Upstream on Toll Gate at Tokyo Expressway 5-19
Figure 5.12a
 Speed Measurements from Interstate 80 between Oakland and San Jose. 5-21
Figure 5.12b
 Measurement Array for Speed Measurements from Interstate 80 between Oakland and San Jose 5-22
Figure 5.13
 Construction of Partially Continuous Wave Solutions .. 5-25
Figure 5.14
 Wave Number Dependence from the Linear Stability Analysis. 5-28
Figure 5.15
 Traffic Parameter a and Stability Domain of the Homogeneous Traffic Flow. 5-28
Figure 5.16
 Stepwise Integration of the Quasi Linear Differential Equation in Time and Space Grid 5-31
Figure 5.17
 Flow Chart of the Numerical Solution Procedure .. 5-33
Figure 5.18
 Principal Arrangement for Parameter Validation by Comparison of Measurements and Calculations. 5-33
Figure 5.19
 Autobahn Section for Validation of the Macroscopic Freeway Model. 5-35
Figure 5.20
 Measurement and Simulated Time Series at the Mean Speed of the Intermediate Cross Section on the Test Section. 5-35
Figure 5.21a
 Temporal Traffic Density Development One to Four Minutes 5-36
Figure 5.21b
 Traffic Density Course after Six to Ten Minutes. ... 5-37
Figure 5.21c
 Density Speed Course after 12 to 24 Minutes ... 5-37
Figure 5.21d
 Density Speed Course at the Bottleneck after 30 Minutes .. 5-38
Figure 5.22
 Density-Dependent Relaxation Time. .. 5-39
Figure 5.23
 Speed Distribution Idealized Gaussian Distribution for Free and Nearly Free Traffic Flow 5-40
Figure 5.24
 Anticipation Coefficient .. 5-40
Figure 5.25
 Time Series of Mean Speed on Autobahn A5 Bruchsal-Karlsruhe 5-41
Figure 5.26
 Speed Distribution During Congestion Formation of Figure 5.25. 5-42
Figure 5.27
 Standard Deviation of the Acceleration Noise for Different Traffic Densities 5-44
Figure 5.28
 Time Gap Distribution for the Median Lane From the Autobahn A8 near Stuttgart, Germany. 5-46
Figure 5.29
 Traffic Volume Distribution as Result of a Laplace Transformation. 5-47
6. MACROSCOPIC FLOW MODELS

Figure 6.1
Total Vehicle Distance Traveled Per Unit Area on Major Roads as a Function of the Distance from the Town Center ... 6-2

Figure 6.2
Grouped Data for Nottingham Showing Fitted (a) Power Curve, (b) Negative Exponential Curve, and (c) Lyman-Everall Curve ... 6-4

Figure 6.3
Complete Data Plot for Nottingham; Power Curve Fitted to the Grouped Data ... 6-4

Figure 6.4
Data from Individual Radial Routes in Nottingham, Best Fit Curve for Each Route is Shown ... 6-5

Figure 6.5
Theoretical Capacity of Urban Street Systems ... 6-7

Figure 6.6
Vehicles Entering the CBDs of Towns Compared with the Corresponding Theoretical Capacities of the Road Systems .. 6-7

Figure 6.7

Figure 6.8
Speeds and Scaled Flows, 1952-1966 ... 6-9

Figure 6.9
Estimated Speed-Flow Relations in Central London (Main Road Network) ... 6-9

Figure 6.10
Speed-Flow Relations in Inner and Outer Zones of Central Area ... 6-10

Figure 6.11
Effect of Roadway Width on Relation Between Average (Journey) Speed and Flow in Typical Case ... 6-12

Figure 6.12
Effect of Number of Intersections Per Mile on Relation Between Average (Journey) Speed and Flow in Typical Case ... 6-12

Figure 6.13
Effect of Capacity of Intersections on Relation Between Average (Journey) Speed and Flow in Typical Case ... 6-13

Figure 6.14
Relationship Between Average (Journey) Speed and Number of Vehicles on Town Center Network ... 6-13

Figure 6.15
Relationship Between Average (Journey) Speed of Vehicles and Total Vehicle Mileage on Network ... 6-14

Figure 6.16
The α-Relationship for the Arterial Networks of London and Pittsburgh, in Absolute Values ... 6-14

Figure 6.17
The α-Relationship for the Arterial Networks of London and Pittsburgh, in Relative Values ... 6-15

Figure 6.18
The α-Map for London, in Relative Values .. 6-16

Figure 6.19
Trip Time vs. Stop Time for the Non-Freeway Street Network of the Austin CBD ... 6-18

Figure 6.20
Trip Time vs. Stop Time Two-Fluid Model Trends .. 6-19

Figure 6.21
Trip Time vs. Stop Time Two-Fluid Model Trends Comparison ... 6-19

Figure 6.22
Two-Fluid Trends for Aggressive, Normal, and Conservative Drivers ... 6-21
7. TRAFFIC IMPACT MODELS

Figure 7.1
Safety Performance Function and Accident Rate. .. 7-2
Figure 7.2
Shapes of Selected Model Equations .. 7-5
Figure 7.3
Two Forms of the Model in Equation 7.4 ... 7-6
Figure 7.4
Fuel Consumption Data for a Ford Fairmont (6-Cyl.)
Data Points represent both City and Highway Conditions. 7-9
Figure 7.5
Fuel Consumption Versus Trip Time per Unit Distance for a Number of Passenger Car Models. 7-10
Figure 7.6
Fuel Consumption Data and the Elemental Model Fit for Two Types of Passenger Cars 7-10
Figure 7.7
Constant-Speed Fuel Consumption per Unit Distance for the Melbourne University Test Car 7-12

8. UNSIGNALIZED INTERSECTION THEORY

Figure 8.1
Data Used to Evaluate Critical Gaps and Move-Up Times 8-3
Figure 8.2
Regression Line Types. .. 8-4
Figure 8.3
Typical Values for the Proportion of Free Vehicles .. 8-9
Figure 8.4
Exponential and Displaced Exponential Curves (Low flows example). 8-9
Figure 8.5
Arterial Road Data and a Cowan (1975) Dichotomized Headway Distribution (Higher flows example). .. 8-10
Figure 8.6
Arterial Road Data and a Hyper-Erlang Dichotomized Headway Distribution (Higher Flow Example) 8-10
Figure 8.7
Illustration of the Basic Queuing System. .. 8-12
Figure 8.8
Comparison Relation Between Capacity (q-m) and Priority Street Volume (q-p) 8-14
Figure 8.9
Comparison of Capacities for Different Types of Headway Distributions in the Main Street Traffic Flow .. 8-14
Figure 8.10
The Effect of Changing α in Equation 8.31 and Tanner's Equation 8.36. 8-15
Figure 8.11
Probability of an Empty Queue: Comparison of Equations 8.50 and 8.52. 8-18
9. TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS

Figure 9.1
Deterministic Component of Delay Models. ... 9-2
Figure 9.2
Queuing Process During One Signal Cycle ... 9-3
Figure 9.3
Percentage Relative Errors for Approximate Delay Models by Flow Ratios 9-9
Figure 9.4
Relative Errors for Approximate Delay Models by Green to Cycle Ratios 9-9
Figure 9.5
The Coordinate Transformation Method .. 9-11
Figure 9.6
Comparison of Delay Models Evaluated by Brilon and Wu (1990) with Moderate Peaking (z=0.50). 9-14
Figure 9.7
Comparison of Delay Models Evaluated by Brilon and Wu (1990) with High Peaking (z=0.70). 9-14
Figure 9.8
Observations of Platoon Diffusion ... 9-16
Figure 9.9
HCM Progression Adjustment Factor vs Platoon Ratio Derived from TRANSYT-7F 9-18
10. TRAFFIC SIMULATION

Figure 10.1
Several Statistical Distributions. ... 10-7

Figure 10.2
Vehicle Positions During Lane-Change Maneuver. 10-8

Figure 10.3
Structure Chart of Simulation Modules. .. 10-9

Figure 10.4
Comparison of Trajectories of Vehicles from Simulation Versus Field Data for Platoon 123. 10-16

Figure 10.5
Graphical Displays .. 10-18

Figure 10.6
Animation Snapshot .. 10-19
List of Tables

3. HUMAN FACTORS

Table 3.1
Hooper-McGee Chaining Model of Perception-Response Time ... 3-4
Table 3.2
Brake PRT - Log Normal Transformation .. 3-6
Table 3.3
Summary of PRT to Emergence of Barrier or Obstacle .. 3-6
Table 3.4
Percentile Estimates of PRT to an Unexpected Object .. 3-7
Table 3.5
Movement Time Estimates .. 3-9
Table 3.6
Visual Acuity and Letter Sizes ... 3-11
Table 3.7
Within Subject Variation for Sign Legibility .. 3-12
Table 3.8
Object Detection Visual Angles (Daytime) (Minutes of Arc) .. 3-15
Table 3.9
Maneuver Classification ... 3-19
Table 3.10
Percentile Estimates of Steady State Unexpected Deceleration 3-21
Table 3.11
Percentile Estimates of Steady State Expected Deceleration .. 3-21
Table 3.12
Critical Gap Values for Unsignalized Intersections .. 3-25
Table 3.13
PRTs at Intersections .. 3-27

4. CAR FOLLOWING MODELS

Table 4.1
Results from Car-Following Experiment ... 4-25
Table 4.2
Comparison of the Maximum Correlations obtained for the Linear and Reciprocal Spacing Models for the Fourteen Lincoln Tunnel Test Runs .. 4-27
Table 4.3
Maximum Correlation Comparison for Nine Models, a_n,m the Fourteen Lincoln Tunnel Test Runs. .. 4-28
Table 4.4
Results from Car Following Experiments ... 4-30
Table 4.5
Macroscopic Flow Data .. 4-33
Table 4.6
Parameter Comparison (Holland Tunnel Data) ... 4-35
7. TRAFFIC IMPACT MODELS

Table 7.1
Federal Emission Standards ... 7-14
Table 7.2
Standard Input Values for the CALINE4 ... 7-17
Table 7.3
Graphical Screening Test Results for Existing Network 7-19

8. UNSIGNALIZED INTERSECTION THEORY

Table 8.1
"A" Values for Equation 8.23 ... 8-8
Table 8.2
Evaluation of Conflicting Rank Volume \(q_p \) .. 8-34

9. TRAFFIC FLOW AT SIGNALIZED INTERSECTIONS

Table 9.1
Maximum Relative Discrepancy between the Approximate Expressions and Ohno's Algorithm 9-8
Table 9.2
Cycle Length Used For Delay Estimation for Fixed-Time and Actuated Signals Using Webster's Formula 9-23
Table 9.3
Calibration Results of the Steady-State Overflow Delay Parameter (k) ... 9-26

10. TRAFFIC SIMULATION

Table 10.1
Classification of the TRAF Family of Models .. 10-4
Table 10.2
Executive Routine .. 10-9
Table 10.3
Routine MOTIV .. 10-10
Table 10.4
Routine CANLN .. 10-11
Table 10.5
Routine CHKLC .. 10-12
Table 10.6
Routine SCORE .. 10-13
Table 10.7
Routine LCHNG .. 10-14
Table 10.8
Simulation Output Statistics: Measures of Effectiveness 10-25