用 Pt100 组成的温度测量电路

温度传感器 Pt100 具有测温范围大，温度系数小和线性好的特点。图 1 为一个由恒流源、传感器 Pt100（0℃时的 R0 为 100Ω）和反相放大器组成的温度测量电路。它与通用常用的惠斯顿电桥和差分放大器组成的电路(图 2)相比，具有电路简单，成本低和误差小的特点。图 2 所示电路中，带有 Pt100 的电桥电路位于恒流源上面，产生的共模电压经差分放大器放大后，使输出产生误差，精密度下降。

\[V_0 = \frac{R_1}{R_2} V_1 - \frac{R_1}{R_2} V_2 \] (3)

将式 (1) 和 (2) 代入式 (3)，得到:

\[V_0 = V_1 R_1 \frac{R_0 R_2 - R_0 R_1 - k \theta_0}{R_2} \] (4)

考虑到 Pt100 的温度特性为

\[R_0 = R_0 + k(\theta - \theta_0) \] (5)

其中 \(k = 0.385, \theta_0 = 0^\circ \text{C} \) 时的 \(R_0 \) 为 100Ω。由此得

\[V_0 = V_1 \frac{R_0}{R_2} + \theta + V_1 R_4 \frac{R_0 R_2 - R_0 R_1 - k \theta_0}{R_2} \] (6)

选择 \(V_1, R_1, R_2, R_4 \) 可得 \(V_0 \) 的变化斜率。调节 \(R_1 \) 可以确定 \(\theta_0 = 0^\circ \text{C} \) 时输出 \(V_0 \) 的偏移。

为了减少 Pt100 的热能耗，应选择 \(I_0 \) 小一些 (\(I_0 = 5 \text{mA} \))。\(R_4 \) 可由式 (1) 确定。\(R_1 / R_2 \) 是任意的，只要保证在要求的温度范围内 \(\theta_0 \) 不变即可。

由图 1 给出的元件参数可得

\[V_0 = 0.385 V_1 \] (7)

该电路调整时分两步。首先用 100Ω 电阻代替 Pt100，相当于 \(\theta = 0^\circ \text{C} \)，调整 \(R_1 \) 使 \(V_0 = 0 \text{V} \)。然后，换上 Pt100，在一定温度下调节 \(W_1 \) 得到希望的 \(V_0 \) 值。可以看到，\(V_1 \) 大于 1V，否则 \(I_0 \) 将大于 10mA。这样调整，求得了温度测量比例系数。电阻 \(R_0 \) 是补偿运算放大器的输出失真电流，其值由下式确定

\[\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \] (8)

（上接第 37 页）

\[\Omega' > \omega_2 \]

\[X_2(\Omega - \Omega') = 0 \]

当 \(\Omega < - \omega_2 - \omega_2 \) 时，

\[\Omega - \Omega' < \Omega + \omega_2 < - \omega_2 \]

\[X_2(\Omega - \Omega') = 0 \]

故在 \(\Omega > \omega_2 + \omega_2 \) 或 \(\Omega < - (\omega_2 + \omega_2) \)，即 \(|\Omega| > \omega_2 + \omega_2 \) 时

\[W(\Omega) = 0 \]

由此可知 \(W(\Omega) \) 是带宽有限的信号。所以，要由 \(w(t) \) 的采样 \(w_n(t) \) 完全恢复 \(w(t) \) 必须满足采样定理，亦即最大采样间隔 \(T \) 需满足

\[\frac{2 \pi}{T} > 2(\omega_2 + \omega_2) \]

或者

\[T < \frac{\pi}{(\omega_2 + \omega_2)} \]

<电子技术>1988 年第 6 期