Figures to Accompany

Design-for-Test for Digital IC’s and Embedded Core Systems

Alfred L. Crouch

© 1999 Prentice Hall, All Rights Reserved
Chapter 1 Test and Design-for-Test Fundamentals
Figure 1-1 Cost of Product
Figure 1-2 Concurrent Test Engineering
Figure 1-3 Why Test?
Figure 1-4 Definition of Testing
Figure 1-5 Measurement Criteria
Figure 1-6 Fault Modeling
Figure 1-7 Types of Testing
Figure 1-8 Manufacturing Test Load Board
Figure 1-9 Using ATE
Figure 1-10 Pin Timing
Figure 1-11 Test Program Components

Chapter 2 Automatic Test Pattern Generation Fundamentals
Figure 2-1 The Overall Pattern Generation Process
Figure 2-2 Why ATPG?
Figure 2-3 The ATPG Process
Figure 2-4 Combinational Stuck-At Fault
Figure 2-5 The Delay Fault
Figure 2-6 The Current Fault
Figure 2-7 Stuck-At Fault Effective Circuit
Figure 2-8 Fault Masking
Figure 2-9 Fault Equivalence Example
Figure 2-10 Stuck-At Fault ATPG
Figure 2-11 Transition Delay Fault ATPG
Figure 2-12 Path Delay Fault ATPG
Figure 2-13 Current Fault ATPG
Figure 2-14 Two-Time-Frame ATPG
Figure 2-15 Fault Simulation example
Figure 2-16 Vector Compression and Compaction
Figure 2-17 Some Example Design Rules for ATPG Support
Figure 2-18 ATPG Measurables

Chapter 3 Scan Architectures and Techniques
Figure 3-1 Introduction to Scan-based Testing
Figure 3-2 An Example Non-Scan Circuit
Chapter 4 Memory Test Architectures and Techniques

Figure 4-1 Introduction to Memory Testing
Figure 4-2 Memory Types
Figure 4-3 Simple Memory Organization
Figure 4-4 Memory Design Concerns
Figure 4-5 Memory Integration Concerns
Figure 4-6 Embedded Memory Test Methods
Figure 4-7 Simple Memory Model
Figure 4-8 Bit-Cell and Array Stuck-At Faults
Figure 4-9 Array Bridging Faults
Figure 4-10 Decode Faults
Figure 4-11 Data Retention Faults
Figure 4-12 Memory Bit Mapping
Figure 4-13 Algorithmic Test Generation
Figure 4-14 Scan Boundaries
Figure 4-15 Memory Modeling
Figure 4-16 Black Box Boundaries
Figure 4-17 Memory Transparency
Figure 4-18 The Fake Word Technique
Figure 4-19 Memory Test Needs
Figure 4-20 Memory BIST Requirements
Figure 4-21 An Example Memory BIST
Figure 4-22 MBIST Integration Issues
Figure 4-23 MBIST Default Values
Figure 4-24 Banked Operation
Figure 4-25 LFSR-Based Memory BIST
Figure 4-26 Shift-Based Memory BIST
Figure 4-27 ROM BIST
Figure 4-28 Memory Test Summary

Chapter 5 Embedded Core Test Fundamentals
Figure 5-1 Introduction to Embedded Core Test and Test Integration
Figure 5-2 What is a CORE?
Figure 5-3 Chip Designed with Core
Figure 5-4 Reuse Core Deliverables
Figure 5-5 Core DFT Issues
Figure 5-6 Core Development DFT Considerations
Figure 5-7 DFT Core Interface Considerations
Figure 5-8 DFT Core Interface Concerns
Figure 5-9 DFT Core Interface Considerations
Figure 5-10 Registered Isolation Test Wrapper
Figure 5-11 Slice Isolation Test Wrapper
Figure 5-12 Slice Isolation Test Wrapper Cell
Figure 5-13 Core DFT Connections through the Test Wrapper
Figure 5-14 Core DFT Connections with Test Mode Gating
Figure 5-15	Other Core Interface Signal Concerns
Figure 5-16	DFT Core Interface Frequency Considerations
Figure 5-17	A Reuse Embedded Core’s DFT Features
Figure 5-18	Core Test Economics
Figure 5-19	Chip with Core Test Architecture
Figure 5-20	Isolated Scan-Based Core-Testing
Figure 5-21	Scan Testing the Non-Core Logic
Figure 5-22	Scan Testing the Non-Core Logic
Figure 5-23	Memory Testing the Device
Figure 5-24	DFT Integration Architecture
Figure 5-25	Test Program Components
Figure 5-26	Selecting or Receiving a Core
Figure 5-27	Embedded Core DFT Summary