Target Tracking Using Delayed Measurements with Implicit Constraints

Umut Orguner
Department of Electrical Engineering
Linköping University
Linköping, 581 83, Sweden
Email: umut@isy.liu.se

Fredrik Gustafsson
Department of Electrical Engineering
Linköping University
Linköping, 581 83, Sweden
Email: fredrik@isy.liu.se

Abstract—In target tracking, standard sensors as radar and EO/IR observe the target with a negligible delay, since the speed of light is much larger than the speed of the target. This contribution studies the case where the ratio of the target and the propagation speed is not negligible, as is the case in sensor networks with microphones, geophones or sonars for instance, where the speed of air, ground waves and water cause a state dependent and stochastic delay of the observations. The proposed approach utilizes a temporary augmentation of the state vector with the observation delay, and sampling based approaches are suggested for modifying standard filters as the extended Kalman filter, unscented Kalman filters and possibly particle filters. An application example with bearing only tracking using a single microphone array is used as an illustration.

Keywords: Delayed measurements, state estimation, target tracking, implicit constraints, deterministic sampling, EKF, UKF, unscented transform.

I. INTRODUCTION

Sensors used in target tracking all observe emitted (passive sensors) or reflected (active sensors) energy from the target. The classical standard sensor is the active radar, and common examples of passive sensors include vision (EO/IR sensors and daylight cameras) and radar warning systems. The observation delay in these sensors is negligible since the speed of light is much larger than the speed of the target. One further example relating to sensor networks concerns positioning and tracking in wireless networks as mobile phone systems.

However, one trend in sensor networks is to use standard low cost sensors as microphones and geophones on land, and sonar in water. The assumption of negligible target speed compared to the speed of the media cannot always be made here. Consider for instance an array of sensors that by coherent signal processing techniques gives a bearing measurement to a previous position of the target. This time delay depends on the distance between the sensor and the target at that unknown time instant. This gives a further dimension to target tracking, where both the target state and the observation delays are unknown. With many (arrays of) sensors in the network, the observations are completely asynchronized over space.

We here make a simplified introduction to the problem whose solution is investigated in this work. The general and more formal problem formulation is given in Section II. Consider a case where we have perfect knowledge of the target state vector \(x_{k-1} \) at time \(t_{k-1} \), and that position \(p_{t_{k-1}} \) is a subset of the state vector. One sensor gets an observation related to \(x_{k-\Delta_k} \) at time \(t_k \) of for instance range, bearing or transversal speed (Doppler measurement). The delay \(\Delta_k \) can be described as a function of the position (and hence the state) of the target at time \(t_k - \Delta_k \) using the physics rules of signal propagation in the medium as

\[
\Delta_k = d(x_{t_k-\Delta_k})
\]

On the other hand, using an assumed or known target dynamics, we can obtain a prediction of \(x_{t_k-\Delta_k} \) from perfectly known \(x_{t_{k-1}} \) as

\[
x_{t_k-\Delta_k} = f_{t_k-\Delta_k, t_{k-1}}(x_{t_{k-1}})
\]

Now, (1) and (2) together define an implicit equation for \(\Delta_k \) whose solution can be derived with iterative techniques. This type of implicit and in general nonlinear constraints and their inclusion into the estimation process are examined in this paper. In this simplified scenario given above, we have neglected three sources of uncertainty:

- The initial state \(x_{t_{k-1}} \) is random and in a filtering context represented with a prior distribution.
- The solution of the implicit equation depends on the process noise which was not included in the simplified description (2). This introduces an uncertainty in the delay estimate.
- The propagation time itself through the simplified description (1) might be uncertain due to possible reasons such as the uncertain position of the sensor.

The proposed approach in this work, which can cover all the uncertainties mentioned above as well, is based on including the delay in the state vector temporarily while processing the observation taken at time \(t_k \). The augmented state is then predicted using the implicit delay constraint which is followed by a measurement update. Then, using a non-standard marginalization step, the posterior distribution for \([x_{t_k-\Delta_k}, \Delta_k] \) is marginalized and predicted to the closest unambiguous time instant.

Consideration of implicit delay constraints in the estimation process makes this work highly related to the area of constrained state estimation. The existing solutions which can
handle equality constraints in the estimation cycles consist of two main approaches. One and possibly the more popular of these is the use of constraints as the measurements where the constraint equation is considered as a (possibly noisy) information source about the state \([11]-[3]\). A conceptually similar method which uses the the so called three block Kalman filter of \([4]\) is given in \([5]\). The second approach of handling constraints is the projection type methods in which the unconstrained estimates are projected onto the constraint surface (manifold) at the end of each estimation cycle \([6]\). Another more useful form of projection based method has been proposed recently in \([7]\). In \([8]\), a comparison of these two types of algorithms is presented along with some cases which yield equivalent results. A conceptually different method which can be related to both approaches is to search cases which yield equivalent results. A conceptually different method has been proposed recently in \([7]\). In \([8]\), a comparison of these is the use of constraints as the measurements where these must be interpreted information-wise. Note that this can be handled with our methodology whereas the existing ones are more suitable for explicit constraint. The second and the more important aspect that differentiates our study from the existing ones is that we consider the inclusion of the constraints as early as possible in the prediction update of the estimation process. This alleviates the performance reducing effects of non-constrained prediction. In order to observe this, we present an application of the idea of considering the constraints as measurement to our problem as an additional algorithm in Section V. We consider the following discrete-time nonlinear state space model defined on a probability space \((\Omega, \mathcal{F}, P)\)

\[
\begin{align*}
 x_{k+1} &= f_k(x_k) + w_{k+1}, t_k \\
 \{x_k \in \mathbb{R}^n\} & \text{ is the state sequence with initial distribution } x_0 \sim p_0(x_0). \end{align*}
\]

where \(\{x_k \in \mathbb{R}^n\} \) is the state sequence with initial distribution \(x_0 \sim p_0(x_0)\). We adopt an implicit simplified notation such that the system state dynamics given by (3) is a discretized version of a corresponding continuous time dynamics

\[
\dot{x}_t = f(x_t) + w_t.
\]

In (3), \(t_k \in \mathbb{R}\) is an arbitrary time value and \(f_{k+1,k} (\cdot)\) is the state transition function transforming \(x_{k+1}\) to \(x_k\) according to continuous time dynamics \(f(\cdot)\). We also assume that the time sequence \(\{t_k\}_{k=0}^\infty\) is non-decreasing and therefore the transformation involved in (3) is not necessarily invertible. \(\{w_{k+1}, t_k \in \mathbb{R}^n\}\) is a white process noise sequence with distribution \(w_{k+1} \sim p_w(x_{k+1}, t_k)\). Here it is important to emphasize that \(w_{k+1}, t_k\) models the lumped effects of a continuous independent increment process noise \(w_t\) between the time instants \(t_k\) and \(t_{k+1}\). The discrete delayed measurements \(\{y_k \triangleq y(t_k) \in \mathbb{R}^m\} \) of this system are given as

\[
y_k = h_k(x_{t_k-\Delta_k}) + v_k
\]

where \(\Delta_k\) is the amount of delay in the measurement \(y_k\) and \(\{v_k \in \mathbb{R}^m\}\) is a white measurement noise sequence independent from the process noise with distribution \(v_k \sim p_v(\cdot)\). We here assume that we have a knowledge about the time delay \(\Delta_k\) in the form of an implicit equation (which we call as \(c_k\)) as follows

\[
c_k : \Delta_k = d_k(x_{t_k-\Delta_k}, t_k) + \tau_k
\]

where \(d_k(\cdot, \cdot)\) is in general a nonlinear function of the delayed state value \(x_{t_k-\Delta_k}\) and time \(t_k\) and \(\{\tau_k \in \mathbb{R}\}\) is a white noise sequence independent from the process and measurement noise with distribution \(\tau_k \sim p_\tau(\cdot)\). Our main motivation for selecting such an expression for the time delay sequence \(\Delta_k\) is the case of a passive sound sensor whose delay expression is given as

\[
\Delta_k = \frac{\|p(t_k - \Delta_k) - p_{\Delta_k}^\tau\|}{v_k} + \tau_k
\]

where \(p(t_k - \Delta_k)\) is the position of the target at time \(t_k - \Delta_k\) (which is a function of the delayed state \(x_{t_k-\Delta_k}\) and hence the form of (6)), \(p_{\Delta_k}^\tau\) is the position of the sensor at time \(t_k\) and \(v_k\) is the speed of sound. The noise term \(\tau_k\) then represents unpredictable effects in the transmission of the sound (pressure) wave in the environmental conditions or the possible uncertainty in the position of the sensor. In this work, we consider each constraint \(c_k\) of (6) as a piece of information to include into the estimation process and we show the cumulative information of constraints up to and including time \(n\) as \(c_{0:n} = \{c_k\}_{k=0}^n\). Although the constraints themselves are not random variables, in the following, we are going to use them as the arguments of the probability density functions in given conditions and Bayes rules and these must be interpreted information-wise. Note that this type of notation is unconventional in the literature and here adopted for ease of notation. Throughout the study, we assume that all measurement acquisition times \(\{t_k\}_{k=0}^\infty\) and auxiliary variables (like sensor positions etc.) used in the constraint equation (of course, other than state component \(x_{t_k-\Delta_k}\) in (6)) are known. Therefore, the constraints \(c_{0:\infty}\) are known beforehand but their availability to the estimators is limited for the purpose of recursive estimation. Our aim is to find a possibly approximate solution for the posterior density \(p(x_{t_k}|y_{0:k}, c_{0:k})\). This problem can be approached in a Bayesian framework. The Bayesian density recursion for \(p(x_{t_k}|y_{0:k}, c_{0:k})\) is given as

\[
p(x_{t_k}|y_{0:k}, c_{0:k}) = \frac{p(y_k|x_{t_k}, y_{0:k-1}, c_{0:k})}{p(y_k|y_{0:k-1}, c_{0:k})} p(x_{t_k}|y_{0:k-1}, c_{0:k})
\]

(8)

Here, an important problem is the calculation/approximation \(p(y_k|x_{t_k}, y_{0:k-1}, c_{0:k})\) which arises due to the fact that the
observation t_k measures the delayed state $x_{t_k - \Delta_k}$. This necessitates one to have a considerable knowledge of Δ_k before calculating an estimate for $x_{t_k - \Delta_k}$ and hence for $p(x_{t_k}|y_{0:k})$. However, due to (6), Δ_k and $x_{t_k - \Delta_k}$ are implicitly constrained which makes it impossible to calculate/approximate one of them without knowing the other. Therefore, one has to keep a joint density of the state x_{t_k} and the delay sequence Δ_k together. We can write a similar equation to (8) for this case as follows

$$p(x_{t_k}, \Delta_k|y_{0:k}, c_{0:k}) = \frac{p(y_k|x_{t_k}, \Delta_k, y_{0:k-1}, c_{0:k})}{p(y_k|y_{0:k-1}, c_{0:k})} \times p(x_{t_k}, \Delta_k|y_{0:k-1}, c_{0:k}).$$

One can, however, get a more useful joint density considering

$$p(x_{t_k}, \Delta_k|y_{0:k}, c_{0:k}) = \int p(x_{t_k}|x_{t_k-\Delta_k}, \Delta_k, y_{0:k}, c_{0:k}) \times p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k}, c_{0:k})dx_{t_k-\Delta_k}.$$ (10)

Therefore, instead of obtaining a recursion for the joint density $p(x_{t_k}, \Delta_k|y_{0:k}, c_{0:k})$, one can find a recursion for $p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k}, c_{0:k})$ and use (10) to obtain $p(x_{t_k}, \Delta_k|y_{0:k}, c_{0:k})$. The preference of the joint density $p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k}, c_{0:k})$ must be intuitively clear because its arguments $x_{t_k-\Delta_k}$ and Δ_k appear in the delay constraint c_k directly.

Problem Definition: Given the state dynamics (3) and measurement relation (5), find a possibly approximate recursion for the joint density $p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k}, c_{0:k})$ considering the implicit delay constraint (6).

III. DETERMINISTIC SAMPLING BASED SOLUTION

We here examine the problem assuming that we are at an intermediate stage of an estimation process with an available representation of previous estimated density $p(x_{t_k-1-\Delta_k-1}, \Delta_k-1|y_{0:k-1-1}, c_{0:k-1-1})$. The task is now to derive the current estimated density $p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k}, c_{0:k})$ from the previous one using all possible available information in the measurement y_k and the constraint c_k. In this work, we always consider the case $t_k - \Delta_k \geq t_{k-1} - \Delta_{k-1}$ and hence all the measurements $\{y_k\}_{k=0}^{\infty}$ are in sequence measurements (i.e., not out of sequence measurements [10–[12]). Using Bayes rule, we can write the probability density $p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k}, c_{0:k})$ as

$$p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k}, c_{0:k}) = \frac{p(y_k|x_{t_k-\Delta_k})}{p(y_k|y_{0:k-1}, c_{0:k})} \times p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k-1}, c_{0:k}).$$ (11)

which shows that $p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k}, c_{0:k})$ is the measurement updated version of the predicted density $p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k-1}, c_{0:k})$. Noting that the density $p(y_k|x_{t_k-\Delta_k})$ is available and the corresponding measurement update can easily be approximated, the main problem reduces to calculating (or approximating) the prediction density $p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k-1}, c_{0:k})$. Therefore, the challenging part of the problem is to find $p(x_{t_k-\Delta_k}, \Delta_k|y_{0:k-1}, c_{0:k})$ from the previous estimated density $p(x_{t_k-1-\Delta_k-1}, \Delta_k-1|y_{0:k-1-1}, c_{0:k-1-1})$. The main difficulty involved in this operation is that there is no directly available recursion connecting Δ_k to Δ_{k-1} other than the implicit relation c_k which connects them through the state sequence. Such a description is quite hard to obtain and the resulting recursions if tractable are quite rough ones which could degrade prediction performance. There is, on the other hand, another method of including c_k in the estimation process by taking advantage of the implicit property of c_k which we describe in the following parts of this section. Another heuristic based method is investigated in Section IV which results in a different approach, which utilizes constraints in the measurement update, to compare to our main algorithm given below.

Suppose we have a probability density representation of $p(x_{t_k-1-\Delta_k-1}, \Delta_k-1|c_{0:k-1})$ in terms of N deterministically selected samples (called σ-points in the literature) $\{x_{t_k-1-\Delta_k-1, \Delta_k-1}^{(i)}\}_{i=1}^{N}$. Then, we are going to find the density $p(x_{t_k-\Delta_k}, \Delta_k|c_{0:k})$ which includes the constraint c_k using the modified versions $\{x_{t_k-1-\Delta_k-1, \Delta_k-1}^{(i)}\}_{i=1}^{N}$ of the samples $\{x_{t_k-1-\Delta_k-1, \Delta_k-1}^{(i)}\}_{i=1}^{N}$ where

$$\tilde{x}_{t_k-\Delta_k}^{(i)} = g_x(x_{t_k-1-\Delta_k-1, \Delta_k-1})$$

$$\tilde{\Delta}_k^{(i)} = g_{\Delta}(x_{t_k-1-\Delta_k-1, \Delta_k-1}).$$ (12)

The functions $g_x(...)$ and $g_{\Delta}(...) \text{ which must be dependent on the constraint relation } c_k \text{ can be selected in many ways.}$ We construct those functions implicitly using the constraint relation c_k itself as a recursion. Then, the transformed σ-point $\{x_{t_k-1-\Delta_k-1, \Delta_k-1}^{(i)}\}$ becomes a limit point of this recursion initialized by the corresponding σ-point $\{x_{t_k-1-\Delta_k-1, \Delta_k-1}^{(i)}\}$. This recursion which is the backbone of our study and our main assumption is presented in the following theorem.

Theorem 1: Let $d_k(...)$ be a differentiable function of x and t. Consider the recursion

$$\Delta_k(m+1) = d_k(x_{t_k-\Delta_k(m), t_k}) + \tau$$ (14)

which is initialized by $\Delta_k(0) = d_k(\bar{x}, t_k) + \tau$ where τ is a scalar constant and $x_{t_k-\Delta_k}$ is calculated using

$$x(t_k - \Delta_k) = f_{t_k-\Delta_k, t_{k-1}}(\bar{x}).$$ (15)

Here, \bar{x} and $\bar{\Delta}$ are given state and delay values. The sequence $\Delta_k(m)$ converges exponentially to a fixed point $\Delta_k(\infty)$ satisfying

$$\Delta_k(\infty) = d_k(x_{t_k-\Delta_k(\infty), t_k}) + \tau$$ (16)

if $\|\nabla_x d_k^T(x, t_k) f(x)\| < 1$ for all x, where $\nabla_x d_k(x, t_k) \triangleq \frac{\partial d_k}{\partial x}(x, t_k)$.

Proof: Proof and discussion are skipped due to space considerations.

In the following parts of this section, we are going to propose a complete solution for the estimation problem described above using the result of Theorem 1 in its prediction step as a means of transforming the σ-points. The initial
assumption to begin with is the Gaussianity of the densities $p(x_{t_{k}}−\Delta_{k},|\xi_{k}|y_{0:k},c_{0:k}).$ Therefore, at each time step, our method holds a single mean and covariance value for the description of the probability density. Now, defining the augmented vector $\xi_{k} ≜ [x_{t_{k}}^{T}−\Delta_{k}]^{T}$, we can write

$$p(x_{t_{k}}−\Delta_{k},|\xi_{k}|y_{0:k},c_{0:k}) = \mathcal{N}(\xi_{k}|\hat{\xi}_{k}|k,k,\Xi_{k}|k,k)$$ (17)

where the notation $\mathcal{N}(x,\bar{x},\Sigma)$ stands for a Gaussian probability density function which has a mean \bar{x} and covariance Σ evaluated at the dummy variable x. In (17), we define the quantities $\hat{\xi}_{k}|k,k,\Xi_{k}|k,k$ in a partitioned way as

$$\hat{\xi}_{k}|k,k = \begin{bmatrix} \hat{\xi}_{k}^{1}|k,k \\hat{\xi}_{k}^{2}|k,k \end{bmatrix} \triangleq \begin{bmatrix} \hat{x}_{t_{k}}−\Delta_{k}|k,k \\Delta_{k}|k,k \end{bmatrix}$$ (18)

$$\Xi_{k}|k,k = \begin{bmatrix} \Xi_{k}^{11}|k,k \Xi_{k}^{12}|k,k \Xi_{k}^{21}|k,k \Xi_{k}^{22}|k,k \end{bmatrix} \triangleq \begin{bmatrix} P_{\hat{x}_{t_{k}}−\Delta_{k}}^{\hat{x}_{t_{k}}−\Delta_{k}} & P_{\hat{x}_{t_{k}}−\Delta_{k}}^{\Delta_{k}} \\ P_{\hat{x}_{t_{k}}−\Delta_{k}}^{\Delta_{k}} & P_{\Delta_{k}}^{\Delta_{k}} \end{bmatrix}$$ (19)

which we are going to refer to interchangeably. The method can be decomposed into three parts as follows:

- **Prediction Update:** Predict $p(x_{t_{k}}−\Delta_{k},|\xi_{k}|y_{0:k−1},c_{0:k−1})$ from $p(x_{t_{k−1}}−\Delta_{k−1},|\xi_{k−1}|y_{0:k−1},c_{0:k−1})$ using σ-points and Theorem 1. In other words, find $\hat{\xi}_{k−1}|k−1,k$ and $\Xi_{k−1}|k−1,k$ from the transformed σ-points generated from $\hat{\xi}_{k−1}|k−1,k−1$ and $\Xi_{k−1}|k−1,k−1$.

- **Measurement Update:** Update the predicted density $p(x_{t_{k}}−\Delta_{k},|\xi_{k}|y_{0:k},c_{0:k})$ with the measurement y_{k}. This part is simply the implementation of (11). If the measurement is a linear function of ξ_{k}, then the update can be done using Kalman filter measurement update optimally. If nonlinearity is involved, suboptimal approaches like extended Kalman filter or unscented Kalman filter measurement updates can be applied.

- **Final Estimate Calculation:** This part is the calculation of the final estimate $\hat{x}_{t_{k}}$ from the density $p(x_{t_{k}}−\Delta_{k},|\xi_{k}|y_{0:k},c_{0:k})$ using the system dynamics

$$x_{t_{k}} = f_{t_{k}}(\hat{x}_{t_{k}},t_{k}−\Delta_{k}|\hat{x}_{t_{k}}−\Delta_{k}) + \hat{w}_{t_{k},t_{k}−\Delta_{k}}.$$ (20)

This is the implementation of the marginalized version of the integral (10). Even if the original system dynamics $f(.)$ is linear, the overall transformation from ξ_{k} to $x_{t_{k}}$ becomes nonlinear due to the delay term. Suboptimal approaches like EKF or UKF transformation strategies can be used.

We examine all three parts in different subsections in the following.

A. Prediction Update

This part makes a prediction update while adding the next constraint c_{k} into the prediction using transformed σ-points. Suppose that we are given a mean ψ and a covariance Ψ of size n_{ψ} and $n_{\psi} \times n_{\psi}$ respectively. Then the generation of $2n_{\psi} + 1$ σ-points $\{\psi(i)\}_{i=0}^{2n_{\psi}}$ and their corresponding weights $\{\alpha(i)\}_{i=0}^{2n_{\psi}}$ is done as follows.

$$\psi(0) = \psi,$$ \hspace{1cm} $$\alpha(0) = \alpha(0)$$ (21)

$$\psi(i) = \psi + \gamma \left[\frac{n_{\psi}}{1−\alpha(0)} \Psi \right]^{T},$$ \hspace{1cm} $$\alpha(i) = \frac{1−\alpha(0)}{2n_{\psi}}$$ (22)

$$\psi(i+n_{\psi}) = \psi − \gamma \left[\frac{n_{\psi}}{1−\alpha(0)} \Psi \right]^{T},$$ \hspace{1cm} $$\alpha(i+n_{\psi}) = \frac{1−\alpha(0)}{2n_{\psi}}$$ (23)

for $i = 1,\ldots,n_{\psi}$ where the notation $[.]_{n}$ and $\sqrt{.}$ denotes the nth column and positive semi-definite square root of a matrix respectively and $\gamma < 1$ is a real positive number. This type of σ-point generation is usually applied in unscented Kalman filter [13], [14] and the resulting transformation is called as the unscented transform [15] when $\gamma = 1$. When each σ-point is transformed by a transformation $g(.)$ such that $\psi(i) \triangleq g(\psi(i))$, the resulting mean and covariance of the transformed random variable ψ are calculated as follows.

$$\bar{\psi} = \sum_{i=0}^{2n_{\psi}} \alpha(i) \psi(i)$$ (24)

$$\Psi_{k−1|k−1,k−1} = \alpha(0)(\psi(0)−\bar{\psi})^{T} + \frac{1}{\gamma} \sum_{i=1}^{2n_{\psi}} \alpha(i)(\psi(i)−\bar{\psi})^{T}.$$ (25)

Noting the multiplication factor of $\frac{1}{\gamma}$ in front of the summation in (25), one can see that this type of covariance calculation is different from that of UKF. It can be shown that when γ goes to zero, this update mechanism converge to an EKF type update.\(^2\)

The general σ-point based strategy described above is going to be used in different ways in the following depending on whether the random variable ξ_{k} in c_{k} (i.e., in (6)) is identically zero or not.

Suppose that $p(x_{t_{k−1}}−\Delta_{k−1},|\Delta_{k−1}|y_{0:k−1},c_{0:k−1})$ is Gaussian and we are given its mean $\hat{\xi}_{k−1}|k−1,k−1$ and its covariance $\Xi_{k−1|k−1,k−1}$.

1) Case $\xi_{k} = 0$: In this case, one sets $\psi = \hat{\xi}_{k−1|k−1,k−1}$ and $\Psi = \Xi_{k−1|k−1,k−1}$ in the σ-point generation algorithm and then generates the σ-points. Note that each generated σ-point $\psi(i)$ can be partitioned as ξ_{k} given in (18). Then, for $i = 0,\ldots,2n_{\psi}$, one sets

$$\xi = \psi^{1,\psi}, \Delta = \psi^{2,\psi}, \tau = 0$$ (26)

in Theorem 1 where $\psi^{m,\psi}$ denotes the mth partition of the (ψ)th σ-point and obtains the corresponding Δ_{k} (\infty) which we denote here as $\Delta_{k}^{1,\psi}(\infty)$ using the recursion (14). We show an illustration of this prediction process in Figure 1. One can terminate the recursion (14) safely once $|\Delta_{k}(m)−\Delta_{k}(m−1)| < \varepsilon_{th}$ where ε_{th} is a predefined threshold. Then

\(^2\)Proof of this is skipped for space considerations.
the transformed σ-points $\tilde{x}^{(i)}_{k|k-1,k}$ representing the predicted density $p(x_t|\Delta_k, \bar{x}_{0:k-1}, c_{0,k})$ are given as

$$\tilde{x}^{(i)}_{k|k-1,k} = \left[x(t_k - \Delta_k^{(i)}(\infty)) \right]$$

where $x(t_k - \Delta_k^{(i)}(\infty))$ is calculated using (15). Notice that the prediction algorithm (15) of the theorem does not add the process noise uncertainty involved into the predicted states and therefore they have to be taken care of in another way. For this purpose, one calculates for each σ-point the covariance matrix $\bar{W}^{(i)}_{k|k-1,k} = \text{blkdiag}(W^{(i)}_{k|k-1,k}, 0)$ where

$$W^{(i)}_{k|k-1,k} \triangleq \text{Cov}(W_{t_k - \Delta_k^{(i)}(\infty),t_k-1-\Delta^{(i)}})$$

and the function blkdiag(…) forms the block diagonal matrix composed of the input arguments. In (28), the dependence of Δ to be used on the corresponding σ-point index is shown with a superscript (i). Then, the mean $\hat{x}_{k|k-1,k}$ and covariance $\Xi_{k|k-1,k}$ of $p(x_t|\Delta_k, \bar{x}_{0:k-1}, c_{0,k})$ can be easily calculated using the formulas given below.

$$\hat{x}_{k|k-1,k} = \sum_{i=0}^{2n} \alpha^{(i)} \hat{x}_{k|k-1,k}$$

$$\Xi_{k|k-1,k} = \sigma^2 \left[\sum_{i=0}^{2n} \alpha^{(i)} \left[\hat{x}^{(i)}_{k|k-1,k} - \hat{x}_{k|k-1,k} \right] \right] + \bar{W}^{(i)}_{k|k-1,k}$$

Even though the case $\tau_k = 0$ is natural when everything related to the calculation of the function d_k in (6) is exact, it might cause computational problems related to the singularity of the covariance $\Xi_{k|k-1,k}$ which must be evident since Δ_k is an exact function of $x_{t_k-\Delta_k}$ when $\tau_k = 0$. Therefore, it might be reasonable, in some cases, to assume a small variance on τ_k even if it is not the case in reality.

2) Case $\tau_k \neq 0$: This case is a little more involved since the statistics of τ_k must be included into the σ-point generation. Suppose that the random variable τ_k has a mean τ_k and variance Γ_k. Then we form the mean ψ and covariance Ψ which are used in the σ-point generation as follows

$$\psi = \begin{bmatrix} \hat{x}_{k-1|k-1,k-1} \\ \tau_k \end{bmatrix}, \quad \Psi = \text{blkdiag}(\Xi_{k-1|k-1,k-1}, \Gamma_k)$$

Note that the σ-points generated by this setting can be partitioned into three parts the first two of which are the same as the partitions of ξ_k and the third partition gives us the τ value to be used in the recursion. Therefore, this time, for each $i = 0, \ldots, 2(n \xi + 1)$, we set

$$\hat{x} = \psi^{1,(i)} \quad \Delta = \psi^{2,(i)} \quad \tau = \psi^{3,(i)}$$

and use the recursion (14) of the theorem to obtain $\Delta^{(i)}(\infty)$. The rest of the calculations are exactly the same with the increased number of transformed σ-points. In (30), we assumed that τ_k is uncorrelated from the other variables like state and delay by selecting a block diagonal covariance matrix. If this is not the case, which can happen for example if the known sensor positions are erroneous causing a correlation between state estimates and τ_k, any second order properties that can be calculated may be added into the cross terms of the matrix Ψ of (30). It is also easy to see that when Ψ is selected as in (30), only the two extra σ-points calculated give different results than the case with $\tau_k = 0$. Those extra two points serve to include the uncertainty in τ_k into the resulting mean $\hat{x}_{k|k-1,k}$ and covariance $\Xi_{k|k-1,k}$.

B. Measurement Update

This part of the algorithm is the most straightforward one of the three. We here introduce the EKF type measurement update. Other σ-point based approaches like UKF measurement update can also be used in the usual manner. Since the prediction has been handled in the previous sub-section, we have the mean $\hat{x}_{k|k-1,k}$ and the covariance $\Xi_{k|k-1,k}$ of the density $p(x_t|\Delta_k, \bar{x}_{0:k-1}, c_{0,k})$ at hand. Using (5) and a EKF-type local linearization we can obtain the measurement prediction and its covariance as follows.

$$\hat{y}_{k|k-1,k} = h_k(\hat{x}_{k|k-1,k}) \quad \Sigma_{k|k-1,k} = H_k \Xi_{k|k-1,k} H_k^T + V_k$$

where $H_k = \frac{\partial h_k}{\partial x} |_{x=\hat{x}_{k|k-1,k}}$ and $V_k = \text{Cov}(v_k)$. We define the corresponding Kalman gain as

$$K_{k|k-1,k} = \Xi_{k|k-1,k} \left[\begin{array}{c} H_k^T \\ 0_{1 \times n_y} \end{array} \right] S_{k|k-1,k}^{-1}$$

Note the increase in the number of σ-points by two due to the addition of τ_k statistics into the generation process.
which uses the implicit assumption that \(\Delta \) the unknown variables. This model is still a non-standard one since in (38), both sides process described as follows.

\[
\begin{align*}
\hat{x}_k|k &= \hat{x}_k|k-1 + K_k|k-1(y_k - \hat{y}_k|k-1, k) \\
\hat{\Sigma}_k|k &= \hat{\Sigma}_k|k-1 - K_k|k-1 S_k|k-1 K_k^T|k-1, k
\end{align*}
\]

(33)

(34)

Note that although the measurement \(y_k \) is not a direct function of \(\Delta_k \), the update (33) might still affect the final delay estimate \(\Delta_k|k \) due to the correlation between \(\hat{\xi}_1(k-1, k) \) and \(\hat{\xi}_2(k-1, k) \) given by the cross covariance matrix \(\Xi_k(12|k-1, k) \) (or \(P^x_k(k-1, k) \)).

C. Final Estimate Calculation

In this part, one has to derive a final estimate \(\hat{x}_{tk} | k \) and covariance \(P_{tk} | k \) from the measurement updated mean \(\hat{\xi}_k | k \) and the covariance \(\Xi_k | k \) using the relation (20) repeated for convenience below.

\[
x_{tk} = \hat{x}_{tk} - \Delta_t (x_{tk} - \Delta_k) + w_{tk} - \Delta_k.
\]

(35)

The most basic approach to be used here is the EKF prediction update which suggests

\[
\dot{x}_{tk} | k = F_{tk}|k - \dot{\xi}_k | k \left(\hat{\xi}_k | k \right)
\]

(36)

\[
P_{tk} | k = F_{tk}|k - \dot{\xi}_k | k \Xi_k | k F_{tk}|k - \dot{\xi}_k | k + W_k
\]

(37)

where \(F_{tk}|k - \dot{\xi}_k | k \Xi_k | k F_{tk}|k - \dot{\xi}_k | k \) is defined the same as above. Then the transformation of the resulting \(\sigma \)-points by (35) and the calculation of their mean and covariance straightforwardly follows.

IV. A DIFFERENT METHOD TO HANDLE THE IMPLICIT CONSTRAINTS

One can always propose the following heuristic model for the unknown variables

\[
x_{tk} - \Delta_k = f_{tk} - \Delta_k, x_{tk-1} - \Delta_k, \ldots, (x_{tk-1} - \Delta_k) + w_{tk}, w_{tk-1}, w_{tk-1} - \Delta_k
\]

(38)

\[
\Delta_k = \Delta_k - \delta_t, x_{tk-1} - \Delta_k, (x_{tk-1} - \Delta_k)
\]

(39)

which uses the implicit assumption that \(\Delta_k \) is close to \(\Delta_k-1 \). This model is still a non-standard one since in (38), both sides contain \(\Delta_k \). However, one can design a two step prediction process described as follows.

- First, predict \(\Delta_k \) using (39) to obtain \(\Delta_k | k-1 \).
- Predict \(x_{tk} - \Delta_k \) by using \(f_{tk} - \Delta_k, x_{tk-1} - \Delta_k, \ldots, (x_{tk-1} - \Delta_k) \) instead of \(f_{tk} - \Delta_k, x_{tk-1} - \Delta_k, \ldots, (x_{tk-1} - \Delta_k) \) in (38).

This type of prediction enables one to obtain an approximation to the density function \(p(x_{tk} - \Delta_k, \Delta_k | y_{0:k-1}, 0, k-1) \). Therefore, in the prediction step, the constraint information is still not added into the density although it is already known. Therefore one has to add this missing information in the measurement update by defining the augmented measurement \(\hat{y}_k \) as

\[
\hat{y}_k = \frac{h_k(x_{tk} - \Delta_k) + v_k}{d_k(x_{tk} - \Delta_k, t_k) - \Delta_k + \tau_k}.
\]

(40)

This measurement update can be done in a standard way utilizing the EKF or UKF approaches as proposed in Section III-B. The method also requires a final estimate calculation like the one given in Section III-C.

V. SIMULATION STUDY

In this section, the performance of our deterministic sampling based method is going to be compared on a simulated target tracking scenario with other possible approaches which include:

- Heuristic approach of Section IV.
- An EKF which totally neglects that there is a delay in sensing.
- An EKF which tries to compensate for the delay by using its state estimate.

We consider a two-dimensional bearing only tracking problem with a single maneuvering sensor. The single target in the scenario makes a clockwise coordinated turn of radius 500m with a speed about 200km/h beginning in y-direction with the initial position \([-500m, 800m]\) for 4secs. The tracking sensor called \(S_1 \) acquires bearing data of the target corrupted by a Gaussian measurement noise with zero mean and standard deviation of \(0.001 \text{rads} \) with sampling period \(T = 1 \text{sec} \) beginning at \(t_0 = 4 \text{secs} \). The sensor, therefore, gets a total number of 42 measurements in the interval \([4\text{secs}, 45\text{secs}]\). The sensor trajectory is selected to lie on the curve \(y = -100 \sin(\frac{\pi}{200m} x) \) when \(x \) ranges in the interval \([-200m, 200m]\) beginning at \(x = -200m \) at time \(t_0 = 4 \text{secs} \) with constant \(x \)-speed.

The true target trajectory and the sensor positions used in the example are illustrated in Figure 2. The target motion is modeled in the filters with a discretized coordinated turn model with unknown constant turn rate (i.e., the turn rate is also a state variable) and with Cartesian velocity. Therefore, the state of the target is given as \(\dot{x} = [p_x, p_y, v_x, v_y] \) where \(p, v \) and \(\omega \) variables denote the position, velocity and turn rate respectively. In all simulations, we selected the standard deviations for the turn rate and speed as \(\sigma_\omega = 0.01 \text{rad/sect}^2 \) and \(\sigma_v = 1 \text{m/sect}^2 \) respectively. The delay expression used in the simulations is given by (7) with \(v_s \approx 344 \text{m/sec} \) and the mean and the variance of \(\tau_t \) has been taken as 0, i.e., \(\tau_t = 0 \).

Four different algorithms are tested with the following brief descriptions (and abbreviations).

- EKF: Standard EKF algorithm which uses the measurement equation

\[
y_k = h_k(x_{tk}) + v_k.
\]

(41)

This algorithm does not take into account that there is a delay in sensing and ignores it completely. In other words it thinks that the measurement time is equal to the target time.
- **EKFD1**: Our deterministic sampling based method as explained in Section III. Except the prediction step which uses deterministic sampling with $\gamma = 10^{-6}$, all the other steps of the algorithm uses EKF type procedure as described in Section III. In the prediction step, the recursions of Theorem 1 are applied to σ-points with a stopping rule $|\Delta_k^{(i)}(m) - \Delta_k^{(i)}(m-1)| < 10^{-10sec}$. In order to apply the Theorem 1 with convergence, we need to satisfy the condition $|\nabla_x d_f^2(x,t_k)f(x)| < 1$. It is easy to show that this is satisfied if $v_k < v_k$ i.e., if the estimated target velocity is smaller than the speed of sound. In some rare cases where the filter diverges, this constraint can be violated. When this happens, instead of applying Theorem 1, we apply a standard prediction update by keeping the estimated delay constant. This algorithm takes care of both the constraint (7) and the dynamics of Δ_k implied by (7) using the sampling based prediction step.

- **EKFD2**: The heuristic algorithm described in Section IV. All parts of the algorithm uses EKF type procedures. The standard deviation of the zero-mean noise σ_{x_k,t_k-1} of (39) driving the random walk model of Δ_k has been taken to be 0.5secs. Although taking care of the constraint, the algorithm neglects the dynamics of Δ_k since it incorporates the constraint in the measurement update.

- **EKFD3**: This algorithm is similar to EKF but it knows that what it estimates is $x_{tk} - \Delta_k$. Therefore, it calculates a delay estimate Δ_k from (7) and its estimate of $x_{tk} - \Delta_k$. Then it extrapolates its estimate by Δ_k to form its output estimate. This is the most straightforward estimation algorithm used in practice but it ignores the dynamics of Δ_k and therefore its estimate of $x_{tk} - \Delta_k$ is wrong which can cause unpredictable errors.

All the filters to be run have been initialized with the state value $x_4 = [-550, 900, 10, 10, -0.1]^T$ and an initial covariance $P_4 = \text{diag}(100^2, 200^2, 50^2, 50^2, 0.1^2)$. The initial position estimate and covariance are illustrated in Figure 2 with an asterisk sign and a dotted curve respectively.

A total number of 1000 Monte-Carlo runs have been made by changing the realization of the measurement noise in each one. The filters have been assumed to have diverged if, at some time instant, the estimated target position differs from the true target position by more than 1km. With this divergence criterion, the algorithms EKF, EKFD1, EKFD2 and EKFD3 have diverged in 97, 51, 41 and 98 of the MC runs respectively. The RMS position and velocity errors, which have been calculated using the non-divergent runs, are shown along with the corresponding clairvoyant parametric Cramer-Rao lower bounds (PCRLBs) (calculated with known delays) in Figures 3 and 4 respectively. It is immediately recognizable from...
the figures that EKF algorithm neglecting all delay constraint information gets the worst results. While it cannot be said that the position and velocity errors of EKFD1 are lower than the others all the time, it is evident that it is, in the overall, the algorithm showing the best performance. Especially, its performance in and after the time interval \([20 \text{ secs}, 30 \text{ secs}]\) when \(\Delta_k\) changes most rapidly (since the target begins to come closer to the sensor) illustrates improvement over other algorithms that neglect the dynamics of the delay sequence. This robust behavior of EKFD1 also enables it to get the closest results to the PCRLBs at later sampling periods where EKFD2 and EKFD3 behave even worse than EKF.

As a final result, we compared the percentage of MC runs for which the maximum position estimation error (MPEE) of the algorithms are below a threshold in Figure 5. Here in the figure, we change the threshold from \(10m\) to \(10^7m\) and we find the percentage of MC runs (out of 1000) where each algorithm’s MPEE is below the threshold is shown.

VI: CONCLUSIONS

This paper has presented a new approach to handle non-uniform and dynamically changing delays in measurements using a deterministic sampling based approach in the prediction step of EKF and UKF like filters. The presented transformation approach based on the implicit property of the delay constraint can be applied in particle filters as well. The simulation results show that the resulting filter is much more stable than some other applicable alternatives and obtains better estimation performance in most of the cases due to its following distinguishing properties:

- It does not neglect the dynamics of \(\Delta_k\) implied by the constraint.
- It includes the constraint information in the estimation cycle as early as possible in the prediction step.

ACKNOWLEDGMENTS

The strategic motivation and practical relevance for this contribution stem from the Vinnova, SSF (Swedish Foundation for Strategic Research) and KKS Institute Excellence Centre for Advanced Sensors, Multisensors and Sensor Networks (FOCUS). The authors gratefully acknowledge funding from SSF Strategic Research Center MOVIII and the Vinnova/FMV TAIS project ARCUS.

REFERENCES