接收端的接收矩阵为：

\[r_{MFSL} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} b + \begin{bmatrix} N_1 \\ N_2 \end{bmatrix} = Ab + N \tag{5.15} \]

5.3 VSF 方法

在 VSF 情况下，不同速率的用户采用相同的带宽和子载波数，但是高速率用户的处理增益比低速率用户的要低，这样在一个给定的时间内，高速率用户可以发送更多的信息。其原理如图 5.3。

![图 5.3 用户 k 在第 i 个天线上的频域扩频](image)

设第 g 组中第 k 个用户为 k，1 个 OFDM 符号传送 \(L_g/2 \) 个用户信息比特，扩频因子是 \(SF_g = SF_f / (L_g / 2) \)（\(SF_f = N \））。则在第 m 个时间间隔中第 i 根天线上发送的信息比特为

\[b_{ki}(m) = [b_{ki1}(m), b_{ki2}(m), ..., b_{ki(L_g/2)}(m)]^T \]

为了方便，省略 m 即 b_{ki}。用户 k 的第 l_g 个比特的扩频序列为

\[c^k = [c^k_0, c^k_1, ..., c^k_{SF_f-1}]^T, \quad l_g = 1, 2, ..., L_g / 2 \]

用户的信息比特经过串并变换、频域扩频后在第 i 个天线所得的信息序列为

\[S_{ki}^* = [S_{ki0}^*, S_{ki1}^*, ..., S_{k(SF_f-1)}^*]^T \]

这里

\[S_{ki}^* = b_{ki}^* e^{j 2 \pi f_{ki}^* t} \]

\[f_{ki}^* = f_0 + n / T_1 \]

不考虑循环前缀情况下，用户 k 在在第 i 个天线发送的信息为：

\[x^k_i(t) = \sum_{n=0}^{N-1} S_{ki}^* e^{j 2 \pi f_{ki}^* t} \]

5.16
与 MFSL 方案中的同一情况相比较，唯一的不同是 $S_{n_i}^k$, $i=1,2$, $n=0,1,\cdots,N-1$。

因此在 MFSL 方案中的推导过程可以照搬过来。则所有用户信息通过上述的瑞利衰落信道后，在第 j 个接收天线接收的总信息为：

$$y_j(t) = \sum_{g=1}^{G} \sum_{k=1}^{K} \left(\sum_{n=0}^{N-1} \sum_{l=0}^{L} S_{n_i}^k h_{g,k}^{i-1} e^{j2\pi f_r^g t (l-T_c)} + \sum_{n=0}^{N-1} \sum_{l=0}^{L} S_{n_i}^k h_{g,k}^{i-1} e^{j2\pi f_r^g t (l-T_c)} + \eta_j^k(t) \right), j=1,2$$

5.17

该信息经过码片匹配滤波（如果考虑循环前缀就要移除它）、抽样后，再经过 N 点的 DFT 变换后，获得的第 j 个接收天线的接收矩阵为：

$$r_j = \begin{bmatrix}
 r_j(0) \\
 r_j(1) \\
 \vdots \\
 r_j(N-1)
\end{bmatrix} = \begin{bmatrix}
 \sum_{g=1}^{G} \sum_{k=1}^{K} (S_{1,0}^k h_{g,k}^{0,0} + S_{2,0}^k h_{g,k}^{0,0}) \\
 \sum_{g=1}^{G} \sum_{k=1}^{K} (S_{1,0}^k h_{g,k}^{0,1} + S_{2,0}^k h_{g,k}^{0,1}) \\
 \vdots \\
 \sum_{g=1}^{G} \sum_{k=1}^{K} (S_{1,N-1}^k h_{g,k}^{N-1,0} + S_{2,N-1}^k h_{g,k}^{N-1,0})
\end{bmatrix} + \begin{bmatrix}
 N_j(0) \\
 N_j(1) \\
 \vdots \\
 N_j(N-1)
\end{bmatrix}$$

5.18

同样令 $r_j^k = \begin{bmatrix}
 S_{1,0}^k h_{1,j}^{0,0} + S_{2,0}^k h_{2,j}^{0,0} \\
 S_{1,0}^k h_{1,j}^{0,1} + S_{2,0}^k h_{2,j}^{0,1} \\
 \vdots \\
 S_{1,N-1}^k h_{1,j}^{N-1,0} + S_{2,N-1}^k h_{2,j}^{N-1,0}
\end{bmatrix}$

$$= \begin{bmatrix}
 c_0 b_{1,j}^k H_{1,j}^{k,0} + c_0 b_{2,j}^k H_{2,j}^{k,0} \\
 c_0 b_{1,j}^k H_{1,j}^{k,1} + c_0 b_{2,j}^k H_{2,j}^{k,1} \\
 \vdots \\
 c_0 b_{1,j}^k H_{1,j}^{k,N-1} + c_0 b_{2,j}^k H_{2,j}^{k,N-1}
\end{bmatrix}$$
最终，按照 MFSL 中的推导过程可以获得 VSF 方案接收端的接收矩阵为:

\[
\mathbf{r}_{\text{VSF}} = \begin{bmatrix}
\mathbf{r}_1 \\
\mathbf{r}_2
\end{bmatrix} = \begin{bmatrix}
\mathbf{A}_f \\
\mathbf{A}_b
\end{bmatrix} \mathbf{b} + \begin{bmatrix}
\mathbf{N}_1 \\
\mathbf{N}_2
\end{bmatrix} = \mathbf{A} \mathbf{b} + \mathbf{N}
\]

5.4 交织的 VSF 方法

上述的 VSF 方案中可以看到，高速率用户的一个 OFDM 符号中可以同时发送多个数据码元，并且相同的数据码元位于相邻的子载波上。那么我们可以采用不同的子载波分配方案来获得交织的 VSF。与通常的 VSF 方案相比，新方案只是在频域扩频和 IFFT 间加了一个子载波交织器，利用这个交织器获得不同的子载波分配。

假设一个 OFDM 符号发送四个数据码元，那么可以利用三种不同的交织方案，即：频率区分为（1）**Δf**，（2）2**Δf**，（3）4**Δf**。如图 5.4 所示。

![图 5.4 子载波交织方案的例子](image)

我们采用第三种交织方法，则如同 VSF 方案一样，第 `g` 组中第 `k` 个用户 `k_x` 的信息比特经过串并变换、频域扩频后在第 `i` 个天线所得的信息序列为