Interactive Remote-Sensing Image Retrieval Using Active Relevance Feedback

Marin Ferecatu and Nozha Boujemaa

Abstract—As the resolution of remote-sensing imagery increases, the full complexity of the scenes becomes increasingly difficult to approach. User-defined classes in large image databases are often composed of several groups of images and span very different scales in the space of low-level visual descriptors. The interactive retrieval of such image classes is then very difficult. To address this challenge, we evaluate here, in the context of satellite image retrieval, two general improvements for relevance feedback using support vector machines (SVMs). First, to optimize the transfer of information between the user and the system, we focus on the criterion employed by the system for selecting the images presented to the user at every feedback round. We put forward an active-learning selection criterion that minimizes redundancy between the candidate images shown to the user. Second, for image classes spanning very different scales in the low-level description space, we find that a high sensitivity of the SVM to the scale of the data brings about a low retrieval performance. We argue that the insensitivity to scale is desirable in this context, and we show how to obtain it by the use of specific kernel functions. Experimental evaluation of both ranking and classification performance on a ground-truth database of satellite images confirms the effectiveness of our approach.

Index Terms—Active learning, image retrieval, kernel function, reduction of redundancy, sample selection.

I. INTRODUCTION

EVERY day, large quantities of information are becoming available in remote-sensing data repositories, bringing with them an increasing need for intelligent data access. Recently, the problem of retrieval from large unstructured remote-sensing image databases has begun to be studied, boosted by the need to access relevant information in an understandable and directly usable form and to provide friendly interfaces for information query and browsing [1].

Remote-sensing databases are operated by specialists from widely varying fields, and the data access by time of acquisition, geographical position, or type of sensor is often less important than the content of the scene, e.g., structures and objects. The needs of the user are thus precise and complex yet very different from one application to another. Interesting applications involve complicated spatial and structural relationships among image objects [2]: high-level elements such as buildings, bridges, human activity, and so on are better characterized by their interrelations than by their individual characteristics.

Thus, an important topic in satellite image content extraction and classification is building retrieval systems that automatically learn high-level semantic interpretations from images, possibly under the direct supervision of the user. Traditional methods use local pixel characteristics to create a link between the low-level features of the images and the high-level descriptions needed by the users. For example, Schroder et al. [3] propose a system that uses Bayesian classifiers to represent high-level land-cover labels for pixels using their low-level spectral and textural attributes. The classifiers are used to retrieve images from remote-sensing archives by approximating the probabilities of images belonging to different classes using pixel-level probabilities. Tusk et al. [4] use a hierarchical set of image segmentations and present a relevance-feedback (RF) method that allow for automatic selection of features for region and tile similarity searches. Aksoy et al. [5] introduce a Bayesian framework for a visual grammar that aims to reduce the semantic gap by modeling image pixels using automatic fusion of their spectral, textural, and other attributes. Parulekar et al. [6] use semantic categorization done by a learning approach involving the 2-D multiresolution hidden Markov model. User’s feedback may also be used to automatically update the weights of the low-level features, in an effort to isolate regions of the description space that can be associated with high-level concepts [7].

In this paper, we introduce two improvements of the SVM-based RF scheme and evaluate them on a database of satellite images. We use global image descriptors based on the statistical description of the most important visual characteristics (color, texture, and shape), and we present several search examples, which show that RF can provide very effective results on remote-sensing databases.

The concept of “semantic gap” has been extensively used to express the discrepancy between the low-level features that can be readily extracted from the images and the high-level descriptions that are meaningful to the users of a search engine. An effective solution for reducing the semantic gap is to cut the search session into several consecutive retrieval rounds and let the user provide feedback regarding the results of every retrieval round, e.g., by qualifying images returned as either “relevant” or “irrelevant” (RF). From this feedback, the engine progressively learns the visual features of the images that the user is looking for in the current search session (the “target” of the user).

The RF method embodied in a search engine should operate in real time and should maximize the ratio between the quality (or relevance) of the results and the amount of interaction between the user and the system. An RF method [8] is usually defined by two components: a learner and a selector. At
every feedback round, the learner uses the images marked as “relevant” or “irrelevant” by the user to reestimate the target of the user. Given the current estimation of the target, the selector chooses the images for which the user is asked to provide feedback during the next round. Much recent work is based on support-vector machines [9], [10], because they avoid too restrictive assumptions regarding the data (e.g., that classes should have an elliptic shape), are very flexible (can be tuned by kernel engineering), and allow fast learning and evaluation for medium-sized databases.

The task of the learner is very difficult in the context of RF [8], [11], since training examples are scarce (their number is usually lower than the number of dimensions of the description space), the training set is heavily imbalanced (there are often many more “irrelevant” examples than “relevant” ones), and both training and evaluation must be performed in real time.

We would like to emphasize the fact that RF is usually applied to two important scenarios of different nature. The first and most common one is finding images in a specific target set: the focus is on ranking most of the “relevant” images before the “irrelevant” ones. The second use of RF is for defining a class of images for later use: In this case, the focus is on identifying a good frontier between the class of interest and the other images.

In much of the work on RF, the images for which the user is asked to provide feedback at the next round were simply those that were currently considered by the learner as the most relevant; also, in some cases, these images are randomly selected. An important step ahead was the introduction in [12] and [13] of an active-learning framework for RF using SVMs. We put forward here an improvement of this framework, consisting of a selection criterion that reduces the redundancy between the images for which the user is asked to provide feedback; our criterion encourages the selection of images that are far from each other in the space of low-level visual descriptors and, thus, allows for a better exploration of the current frontier.

The image classes (that is, the potential targets of the users of an RF system) can have various shapes and span very different scales in the space of low-level visual descriptors. Learners that are strongly dependent on a scale parameter will then be unable to find, for this parameter, a value that is adequate for all the classes in a database; with very few training examples, the scale parameter is difficult to tune online to suit the current class. We argue that a low sensitivity of the learner to scale of the data is then an important desirable feature in an RF context, and we propose to use specific kernel functions that let SVMs achieve this.

This paper is organized as follows. In Section II, we describe our active selection criterion with reduction of redundancy; in Section III, we discuss the issue of the insensitivity of the SVM to the scale of the data; and in Section IV, we present experimental evidence that our RF mechanism can be applied with excellent results for querying remote-sensing image databases.

II. REDUCTION OF THE REDUNDANCY

In order to maximize the ratio between the quality (or relevance) of the results and the amount of interaction between the user and the system, the selection of images for which the user is asked to provide feedback at the next round must be carefully studied.

Interesting ideas were introduced in [14] and [15], where the problem under focus is the iterative search for one specific image in a database (target search): at every round, the user is required to choose between the two images presented by the engine, the one that is closest to the target image. The selection criterion put forward, in this case, attempts to identify at every round the most informative binary selections, i.e., those that are expected to maximize the transfer of information between the user and the engine (or remove a maximal amount of uncertainty regarding the target). We consider that this criterion translates into two complementary conditions for the images in the selection: each image must be ambiguous given the current estimation of the target, and the redundancy between the different images has to be low.

Unfortunately, the entropic criterion employed in [14] and [15] does not scale well to the search of images in a larger set (category search) and to the selection of more than two images. Computational optimizations must be found, relying on the use of specific learners and, possibly, specific search contexts.

Based on the definition of active learning [16], the selection of examples for training SVMs to perform general-classification tasks is studied in [17]. When the classification error increases with the distance between the misclassified examples and the frontier (a “soft margin” is used for the SVM), the authors interestingly distinguish two cases: early and late stages of learning.

In the early stages, the classification of new examples is likely to be wrong, so the fastest reduction in the generalization error can be achieved by selecting the example that is farthest from the current estimation of the frontier. During late stages of learning, the classification of new examples is likely to be right, but the margin may be suboptimal, so the fastest reduction in error can be achieved by selecting the example that is closest to the current estimation of the frontier. Note that, according to the classical formulation of active learning, the authors only consider the selection of a single example for labeling (for addition to the training set) at every round.

For SVM learners, several selection criteria are presented in [12] and applied to content-based text retrieval with RF. The simplest of these criteria consists of selecting the document that is closest to the hyperplane currently defined by the SVM. We call this criterion the selection of the “most ambiguous” (MA) candidate. This selection criterion is motivated by the need to choose query instances that split the current version space into two equal parts as much as possible. In this case, the version space is the set of parameters of the hyperplanes in feature space that are compatible with the already labeled examples. This result assumes that the version space is not empty and that, in the feature space associated to the kernel, all the images of vectors in the input space have constant norm. These assumptions hold with appropriate choices for the kernel and for the upper bound C on the Lagrange multipliers of the SVM’s decision function. The MA criterion relies on the assumption that the version space is fairly symmetric, which is not always the case, but it has the big advantage of being fast. This is an important factor for image retrieval, since the RF should return answers in real time for fairly large databases.
In [13], the MA selection criterion is applied to content-based image retrieval (CBIR) with RF and shown to produce a faster identification of the target images than the selection of random images for labeling. In order to minimize the number of learning rounds, the user is asked to label several examples at every round and all these examples are selected according to the MA criterion.

While the MA criterion provides a computationally effective solution to the selection of the MA images, when used for the selection of more than one candidate image it does not remove the redundancies between the candidates.

We propose here to introduce the following additional condition of low redundancy. If \(x_i \) and \(x_j \) are the input space representations of two candidate images, then we require a low value for \(K(x_i, x_j) \), which is the value taken by the kernel for this pair of images. If the kernel \(K \) is inducing a Hilbert structure on the feature space, if \(\phi(x_i) \) and \(\phi(x_j) \) are the images of \(x_i \) and \(x_j \) in this feature space and if all the images of vectors in the input space have constant norm, then this additional condition corresponds to a requirement of (quasi-) orthogonality between \(\phi(x_i) \) and \(\phi(x_j) \) (since \(K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle \)). We shall call this criterion the selection of the “most ambiguous and orthogonal” (MAO) candidates.

We note that the MAO criterion can be extended to reduce redundancies between the examples selected during subsequent RF rounds. This additional constraint may be important in situations where the number of labeled examples is much lower than the dimension of the input space and the classes are restricted in most directions.

The MAO criterion has a simple intuitive explanation for kernels \(K(x_i, x_j) \) that decrease with an increase of the distance \(d(x_i, x_j) \), which is the case for most common kernels: it encourages the selection of unlabeled examples that are far from each other in the input space, allowing to better explore the current frontier.

To implement this criterion, we first perform an MA selection of a larger set of unlabeled examples. Then, we build from it a MAO selection by iteratively choosing as a new example the vector \(x_j \) that minimizes the highest of the values taken by \(K(x_i, x_j) \) for all the \(x_i \) examples already included in the current MAO selection. This can be written as

\[
 x_j = \arg \min_{x \in S} \max_{i \leq n} K(x, x_i)
\]

where \(S \) is the set of images not yet included in the current MAO selection and \(x_i, i = 1, \ldots, n \) are the already chosen candidates.

This condition is justified by reference to the version-space account suggested in [12]: diversity is maximized when the hyperplanes associated to the individual examples are orthogonal and are, thus, complementary to each other in halving the version space.

In a general classification context, Brinker [18] proposed the use of a tradeoff between choosing nonredundant candidates and choosing candidates that are close enough to the hyperplane boundary. However, this criterion is computationally expensive and does not scale well to large image databases. Since most of the images are situated far away from the SVM frontier, it is not necessary to optimize the low redundancy condition over a large set of images. Choosing candidates from a small preselection around the frontier, as we propose here, is much faster and does not have a significant impact on the results. Our criterion is as fast as the MA [13] while eliminating the redundancy between the selected samples: the overhead imposed is \(O(\text{constant}) \), independent of the size of the database, and unlike the algorithm proposed in [18].

We note that the MA criterion in [12] and [13] is the same as the one put forward in [17] for the late stages of learning. This clarifies the fact that the MA criterion relies on two important further assumptions: first, the prior on the version space is rather uniform; second, the solution found by the SVM is close to the center of gravity of the version space. The second assumption can be relieved by using Bayes point machines [19] instead of SVMs or the more sophisticated criteria put forward in [12], albeit at a higher computational cost.

III. Sensitivity to Scale

During the study of several ground-truth databases, we found that, in the space of visual descriptors, the size of the various image classes often covers an important range of different scales (1–7 in our tests). We expect yet more significant changes in scale to occur from one database to another, from one user-defined class to another within a large real-world image database, and even between parts of the frontier of some classes. A too strong sensitivity of the learner to the scale of the data could then strongly limit its applicability in an RF context.

For SVM classifiers, sensitivity to scale has two sources: The scale parameter of the kernel and the upper bound \(C \) on the Lagrange coefficients of the SVM. We focus here on the first source of sensitivity, the second one being usually less constraining (the bound \(C \) can be set in our retrieval context to some high value without significantly affecting performance).

The first kernel we consider is the Gaussian one, \(K(x_i, x_j) = \exp(-\gamma \|x_i - x_j\|^2) \). This kernel is highly sensitive to the scale parameter \(\gamma \) (the inverse of the variance of the Gaussian).

The use of the Laplace (or exponential) kernel, \(K(x_i, x_j) = \exp(-\gamma \|x_i - x_j\|) \), was advocated in [20] for histogram-based image descriptors. In [21], this kernel was found to work better than the Gaussian kernel for CBIR with RF.

The hyperbolic kernel, \(K(x_i, x_j) = 1/(\varepsilon + \gamma\|x_i - x_j\|) \), can be computed fast, and we have already used it for RF with good results. The scale parameter is \(\gamma \) again; \(\varepsilon \) translates into a multiplicative constant plus a change in \(\gamma \) and is only used to avoid numerical problems (we set it to 0.001).

All the three kernels we mentioned are positive definite kernels. The triangular kernel \(K(x_i, x_j) = -\|x_i - x_j\| \) was introduced in [22] as a conditionally positive definite kernel, but the convergence of SVMs remains guaranteed with this kernel [23]. In [24], the triangular kernel was shown to have a very interesting property: it makes the frontier found by SVMs invariant to the scale of the data.

Although particularly important for RF, the scale issue has rarely been mentioned explicitly in the literature. We suggest here that kernels inducing a low sensitivity of the learner to the scale of the data, such as the triangular kernel presented above, should be preferred with RF. Since the user-defined classes are not known a priori, the scale-invariance obtained by the use of
the triangular kernel becomes a highly desirable feature and, according to the experimental evidence (see Section IV), make this kernel an excellent choice.

Since the triangular kernel is not positive definite but only conditionally positive definite, the account provided in [12] and [18] for the MA selection criterion does not hold for this kernel. For the same reason, the triangular kernel does not induce a Hilbert structure on the feature space, so in this case, one should not speak of the “orthogonality” of vectors in the feature space. However, since the value of $K(x_i, x_j)$ decreases with an increase of the distance $d(x_i, x_j)$, our justification for the MAO criterion holds, as well as the justification of the MA criterion in [17].

IV. EXPERIMENTAL EVALUATION

In this section, we present experimental evidence using a ground-truth database of satellite images that confirms the effectiveness of our propositions. We also present some sample retrieval screenshots both in a query by example context and with RF, and we argue that RF can be a very effective solution for mining large remote-sensing image databases.

A. Ground-Truth Database and Image Descriptors

A specific RF method can be developed and evaluated on a particular application, with a well-defined scenario and a well-identified group of users. Knowing the specific assumptions concerning the application, the scenario, and the users may help in optimizing the RF method. It is nevertheless important to find improvements to the RF methods that are relatively general and apply to many contexts. Evaluating such improvements by experimenting with human users is very difficult to set up, since it would require the cooperation of many different groups of people in various contexts. The common alternative is to use image databases, for which a ground-truth is available; this ground-truth usually corresponds to the definition of a set of mutually exclusive image classes, covering the entire database.

Ground-Truth Database. We use a ground-truth database of satellite images built by hand at TSI ENST Paris for the QuerySat Project, from a large satellite image database kindly provided by the Institut Géographique National, France. The ground-truth database has 3600 images in six classes, each class having 600 images. Each class contains typical satellite images illustrating a category that is likely to be searched for by a real user: “city,” “cloud,” “desert,” “field,” “forest,” and “sea.” As an illustration, Figs. 1 and 2 show some sample images from the classes “city” and “clouds,” respectively.

Image Descriptors. To describe the visual content of the images, we employ weighted histograms described in [25] and [26] using the Laplacian and the local probability of color as pixel weighting functions. Weighting functions bring additional information into the histograms (e.g., local shape or texture), which is an important principle in building reliable image descriptors. The resulting integrated image descriptors generally perform better than a combination of classical single-aspect features. Moreover, weighted histograms work equally well for color images and for gray level images, such as those in our test database of satellite images.

To describe the shape content of an image, we use a histogram based on the Hough transform, which gives the global pixel behavior along straight lines in different directions. Texture feature vectors are based on the Fourier transform, yielding a distribution of the spectral power density along the frequency axes. This image descriptor performs well on texture images and, used in conjunction with other image descriptors, can significantly improve the overall behavior (for a detailed presentation of the image features, see [26] and [27]). The resulting joint feature vector has more than 600 dimensions.

2http://www.ign.fr.
Dimensionality Reduction. The very high number of dimensions of the joint feature vector can make RF impractical even for medium-size databases. Also, the higher the dimension of the description space, the more difficult is the task of the learner. In order to reduce the dimension of the feature vectors, we use linear principal-component analysis (PCA), applied separately to each of the image features previously described (see Fig. 3).

We expected kernel PCA (KPCA) [10] to better focus on relevant nonlinear “dimensions”; this should indeed be the case when the manifold spanned by the images is very low-dimensional but significantly nonlinear. However, when comparing KPCA to linear PCA, we noticed that the first did not perform so well on the image database we are using, suggesting that the previous assumption is wrong in this case.

A good criterion for choosing the number of dimensions to keep after the PCA is, for example, that the energy of eliminated dimensions is less that 1% of the total energy in all dimensions

$$\sum_{i=k+1}^{N} \lambda_i \leq 0.01$$

where N is the number of dimensions before the PCA and λ_i are the eigenvalues of the covariance matrix.

If all the classes were known a priori, then other methods such as discriminant analysis would be more appropriate for reducing the dimension of the description space. Such an assumption cannot be made in real situations where the classes are defined interactively by the users, so we also avoided making it here for the ground-truth database we used in our evaluation.

B. Evaluation of the Various Selection Strategies

In the early stages of an RF session, the frontier will usually be very unreliable. Depending on the initialization of the search and on the characteristics of the image classes, the frontier may be much larger than the target class. In such cases, selecting those unlabeled examples that are currently considered by the learner as (potentially) the most relevant can sometimes produce a faster convergence of the frontier during the first few rounds of RF.

For this reason, we added to our comparisons the following criteria. Select the “most positive” unlabeled examples according to the current decision function of the SVM (denoted as MP criterion) and select the “most positive and orthogonal” unlabeled examples (denoted as MPO). The MPO criterion adds to the MP the condition of low redundancy previously described. When comparing the MP criterion to the suggestion in [17] for the early stages of learning, we see that we only focus on the examples for which the values taken by the decision function of the SVM are maximal and completely ignore the examples for which these values are minimal; this is because of the asymmetry of the retrieval context: in general, the number of relevant items is expected to be much lower than the number of irrelevant items. In Table I, we present a comparative view of the selection criteria evaluated in this section.

We performed several comparisons between the four selection criteria on the ground-truth database. At every feedback round, the emulated user must label as “relevant” or “irrelevant” all the images in a window of size $w = 9$. A search session is initialized by considering one “relevant” example and $w-1$ “irrelevant” examples. Every image in every class serves as the initial “relevant” example for a different RF session, while the associated initial $w-1$ “irrelevant” examples are randomly selected. For reasons that will become apparent later, we use, for the comparisons presented here, the triangular kernel.

We began by evaluating the different selection criteria on the first type of scenario mentioned in the introduction: finding items in a specific target set, by focusing on ranking most of the “relevant” images before the “irrelevant” ones rather than on finding a frontier between the class of interest and the other images. Since the only information available concerns class membership, we do not consider important here the precise ranking of the “relevant” or of the “irrelevant” images.

In order to evaluate the speed of improvement of this ranking, we must use a measure that does not give a prior advantage to one selection criterion. For example, by taking into account already labeled images plus those selected for being labeled during the current round, we should obviously favor the MP and MPO criteria over MA and MAO. We decided to use instead the following precision measure: at every RF round, we count the number of “relevant” images found in the N images considered as most positive by the current decision function of the SVM (N being the number of images in each class).

The evolution of the mean precision during the successive RF iterations on the ground-truth database is presented in Fig. 4. The precision value shown is obtained as the mean value over all feedback rounds, each image in the database being used to initiate a new feedback round as described above. Clearly, the

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>Most Ambiguous</td>
</tr>
<tr>
<td></td>
<td>1. Select the closest N candidates to the SVM frontier</td>
</tr>
<tr>
<td>MAO</td>
<td>Most Ambiguous and Orthogonal</td>
</tr>
<tr>
<td></td>
<td>1. Select the set S of the closest w candidates to the SVM frontier</td>
</tr>
<tr>
<td></td>
<td>2. Using Eq. 1 choose the N most orthogonal items from S</td>
</tr>
<tr>
<td>MP</td>
<td>Most Positives</td>
</tr>
<tr>
<td></td>
<td>1. Select the most positive N candidates according to the SVM decision function</td>
</tr>
<tr>
<td></td>
<td>2. Using Eq. 1 choose the N most orthogonal items from S</td>
</tr>
<tr>
<td>MPO</td>
<td>Most Positive and Orthogonal</td>
</tr>
<tr>
<td></td>
<td>1. Select the set S of the most positive w candidates according to the SVM decision function</td>
</tr>
<tr>
<td></td>
<td>2. Using Eq. 1 choose the N most orthogonal items from S</td>
</tr>
</tbody>
</table>

Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on March 18, 2009 at 09:02 from IEEE Xplore. Restrictions apply.
reduction of the redundancy between the images selected for labeling improves the results, both for MAO with respect to MA and for MPO with respect to MP. Also, active-learning selection criteria (MAO and MA) provide much better results compared to the MP and MPO criteria.

The second type of scenario mentioned in the introduction consists of finding a frontier between “relevant” and “irrelevant” images, which can be important for extending the text annotation of some images in the “relevant” class to the others or for mass annotation of images. In this case, we have to evaluate the speed of improvement of the classification. The classification error is defined here as \(p/N + n/N \), where \(N \) is the class size, \(p \) is the number of false positives, and \(n \) is the number of false negatives. In Fig. 5, we can see the evolution of the classification error for the different selection criteria. As expected, the convergence is fastest for the MAO selection criterion and followed by the MA criterion. Again, active-learning selection criteria (MAO and MA) improve greatly the results compared to the MP and MPO criteria. The evolution of the rate of false positive is showed in Fig. 6. We see that the convergence is significantly faster for the MAO and MA criteria, which can be explained by the fact that the MP and the MPO do not focus on the frontier.

These results suggest that the MAO selection criterion should be preferred not only whenever RF is used for finding a reliable frontier between “relevant” and “irrelevant” images or interactively learning new “visual concepts” but also for the task of ranking “relevant” images before the rest of the database.

As a final remark, we recall that the MAO criterion is as fast as MA while eliminating the redundancy between the selected samples. The overhead imposed over MA is \(O(\text{constant}) \), independent of the size of the database. Since in all our experimental evaluations, MAO performed consistently better than MA at all feedback iterations (although not always by a very large margin, depending on the query target), it can be preferred to the MA criterion because it does not impose any computation penalty.

C. Insensitivity to Scale

In this paper, for all the kernels, we used the L1 norm because, experimentally, we found it to provide better results than L2. A few other dissimilarity measures (some of which do not have the properties of a metric) were presented in the literature instead of \(\| x_i - x_j \| \), mainly with the Gaussian kernel and sometimes for variable-length representations of the images. Some of these measures do not guarantee the convergence of the SVM, and we preferred not to use them here.

The sensitivity of the Gaussian and triangular kernel to the scale parameter \(\gamma \) with the MP criterion is shown in Fig. 7 (the base of the logarithm is ten). In this figure, the “mean precision” value shown is obtained as the mean over all RF sessions started from each image in the database, as described previously, and over the first 25 feedback iterations. Also, comparisons between these kernels using the MP selection criterion are shown in Fig. 8; for the Gaussian kernels, the scale parameters was set to the overall best value for the database.

From these results, we can see that the Gaussian kernel is the one who produces the highest sensitivity to scale for the SVM. Since the classes present in a database often have
significantly different scales, any value for the scale parameter will be inadequate for many classes, so the results obtained with this kernel cannot be very good.

Comparatively, the use of the triangular kernel reduces the sensitivity of the SVM to the scale of the data. For real-world applications, the scales of the user-defined classes cannot be known \textit{a priori} and the scale parameter of the kernel cannot be easily adjusted online, thus important variations between classes can be expected for the performance of RF-based retrieval if kernels such as the RBF one are employed. The scale invariance obtained by the use of the triangular kernel becomes then a highly desirable feature and, as experimental evidence shows, makes this kernel a very good alternative.

D. Search Examples

To illustrate the effectiveness of our approach for the interactive querying of satellite image databases using SVM-based RF, we present here some screenshots obtained with our CBIR system\footnote{http://www-rocx.inria.fr/imedia/cbir-demo.html} [26] on a database of satellite images.

In Fig. 9, we present a typical sample of a query by visual example (QBE): searching for “agricultural areas.” The query example is the top-left image, and the results are ordered from left to right, top to bottom by decreasing visual similarity to the query image. In this example, the results are promising, but there are situations where QBE does not offer satisfactory answers, as we shall see in the following examples.

Fig. 10 presents the results of a search for urban coast areas using QBE. The query image is the top-left one. As one can see, the results provided by the QBE approach are not very good. Fig. 11 presents the results obtained using RF. When the system returns this screen of results, the user has marked five images as “relevant” and eight images as “irrelevant.” In this case, the system can use the supplementary information provided by the user to estimate the target class, and the quality of the returned images improves considerably as compared to the QBE case.

In the example presented in Figs. 12 and 13, the user is searching for urban infrastructures (e.g., highways, bridges, etc.). The QBE approach does not provide satisfactory results, but RF, after four positive examples and six negative examples, returns a much better selection of images to the user.

V. CONCLUSION AND FURTHER WORK

In this paper, we argue that the RF method—successfully used for querying generic image databases—can be employed with very good results with remote-sensing databases, and we evaluate in this context two improvements of the SVM-based RF mechanism.

First, to optimize the transfer of information between the user and the system, we put forward an active-learning selection criterion that minimizes redundancy between the candidate images.
Fig. 11. Search with RF. Looking for urban coast areas (results returned after marking five images as “relevant” and eight images as “irrelevant”). Compared to the QBE case (see Fig. 10), the results proposed by RF are much closer to the target class.

Fig. 12. Query by visual example. Looking for urban infrastructures. Due to the complex nature of the query target, the results are strongly affected by the semantic gap.

Several interesting directions are available to improve these results. First, in the early stages of the learning, due to the small number of training samples, the frontier may be quite unreliable. Using active learning at this stage may prove suboptimal. A promising strategy would be to start the RF session by several MP rounds and then, when the frontier becomes more reliable, continue with MAO. This poses an interesting problem: when to switch from one strategy to another? One idea is to check the evolution of the SVM learner: When the number of support vectors does not change sufficiently from one RF round to the next, the learner is exploring only the inside region delimited by the frontier of the SVM, and thus, it may be a good moment to switch to an active-learning selection strategy.

Invariance to scale is a very important issue in image retrieval with RF. Using multiple kernels with different scale parameters, as suggested in [28], is a promising direction to further investigate this subject.

Other directions for improving the RF mechanism presented here include using RF to create profiles for different query targets that may be used later by the user to define more complex queries and the evaluation of the RF with real users.

ACKNOWLEDGMENT

The satellite image database used for the evaluation in this paper was kindly provided by the Institut Géographique National France. The authors would like to thank M. Crucianu, a Professor at CNAM Paris, for many suggestions and fruitful discussions.

REFERENCES

Marin Ferecatu received the Ph.D. degree in computer science from the University of Versailles, France, in 2005.

He is currently a Research Scientist with the IMEDIA Research Group, INRIA Rocquencourt, Le Chesnay Cedex, France. His research focuses on active relevance feedback for interactive image retrieval using multiple sources of information, e.g., visual descriptors and text annotations. His scientific interests include machine learning, pattern recognition, content-based image retrieval, relevance feedback, and mining large image databases. He is the author of many papers published in international journals and conferences.

Nozha Boujemaa received the Ph.D. degree in computer science from the University Paris V, France, and the “Habilitation a Diriger des Recherches” in computer science from the University of Versailles, France, in 1993 and 2000, respectively.

She is currently the Director of Research with the INRIA (Rocquencourt), and the Leader of the IMEDIA Research Group, Le Chesnay Cedex, France. Her fields of interest are pattern recognition, image analysis, and content-based image retrieval. She has authored over 70 publications and has supervised over 30 graduate students at the Master and Ph.D. levels.

Dr. Boujemaa took part in various program committees in international conferences WWW Multimedia, ACM Multimedia, International Conference on Pattern Recognition, IEEE Fuzzy Systems, International Conference on Multimedia & Expo (ICME) in the area of visual-information retrieval and pattern recognition. She cochaired the “8th ACM SIGMM MIR” in conjunction with the ACM Multimedia 2006 and cochaired the MMCBIR’01 joint NSF–IBM–BERKLEY–INRIA workshop. She was invited as Plenary Speaker for four conferences WWW Multimedia, ACM Multimedia, International Conference on Pattern Recognition, IEEE Fuzzy Systems, International Conference on Multimedia & Expo (ICME) in the area of visual-information retrieval and pattern recognition. She cochaired the “8th ACM SIGMM MIR” in conjunction with the ACM Multimedia 2006 and cochaired the MMCBIR’01 joint NSF–IBM–BERKLEY–INRIA workshop. She was invited as Plenary Speaker for four international conferences and has organized many special sessions in the topic of machine learning and multimedia retrieval. She is involved in European and national projects covering application areas such as audio–visual archives, photo stocks agency, biodiversity, satellite images, and security. She has served and national projects covering application areas such as audio–visual archives, photo stocks agency, biodiversity, satellite images, and security. She has served and has supervised over 30 graduate students at the Master and Ph.D. levels.