Discover How to Design a Xilinx PCI Express Solution with DMA Engine
Agenda

• Introduction
• Xilinx FPGA supporting PCI Express
• Design with DMA Engine
• Xilinx design aids
• Summary
Introduction

- PCIe adoption has been extremely rapid
 - Est. PCI Express will replace 80% of all existing PCI ports by the end of 2007
- All current new server designs use PCIe
- Only PCIe expected to be the dominant protocol of choice
PCI Express Technology

- Differential low voltage
- Point-to-point dual simplex
- Packetized split transaction
- Embedded clock (8B10B)
- PIPE (Phy Interface PCI Express)
 - Gen 1 2.5GB
 - 250MHz 8bit interface
PCIe Topology

Can be open or closed system

Virtex-5 PCIe Endpoint Block Applications

AVNET®
Xilinx PCI Leadership

- Industry’s First PCI core for FPGAs
- Industry’s First 64-bit, 133MHz PCI-X Solution
- Industry’s First PCIe Solution
- Industry’s first FPGA with Integrated block for PCI Express – Virtex-5
- Award winning Customer support expertise
Xilinx FPGAs supporting PCIe

- **Virtex™-5 FPGAs**
 - *Built-in Hard IP for PCIe*
 - Integrated transceivers
 - High performance
 - Low power
 - 1, 2, 4, 8 lane

- **Spartan™-3 FPGAs**
 - 1 lane
 - External PHY
 - Low cost
PCIe Reference Designs

PCIe Reference Designs from Xilinx

<table>
<thead>
<tr>
<th>Designs</th>
<th>XAPP</th>
<th>Contents (Board)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2P bridge using PCIe block</td>
<td>XAPP 869</td>
<td>ML505</td>
</tr>
<tr>
<td>PCIe to DDR2 Reference Design</td>
<td>XAPP 859</td>
<td>Jungo WinDriver ML555</td>
</tr>
<tr>
<td>PCIe “BMD” Reference Design</td>
<td>XAPP 1052</td>
<td>Microsoft SDK Performance Demo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ML555</td>
</tr>
</tbody>
</table>

PCIe Reference Designs from Alliance Partners

<table>
<thead>
<tr>
<th>Designs</th>
<th>Partner</th>
<th>Board/Device Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO control demo</td>
<td>Avnet</td>
<td>Spartan3 S3 PCIe SK:</td>
</tr>
<tr>
<td>PCIe to DMA</td>
<td>Northwest Logic</td>
<td>ML555: V5LXT</td>
</tr>
<tr>
<td>PCIe to GE</td>
<td>CG CoreEl</td>
<td>ML505: V5LXT</td>
</tr>
<tr>
<td>PCIe to SDI/HDSDI</td>
<td>Image Proc Tech</td>
<td>IPT: V5LXT</td>
</tr>
</tbody>
</table>
PCI-SIG Compliance

• Virtex-5 - First FPGA solution to pass 1.1 compliance
 – x1, x4 & x8 modes

• Added to Integrators list
 – www.pcisig.com/developers/compliance_program/integrators_list/pcie/
 • Virtex-5 PCI Express Endpoint block passed the 3 SIG Gold suites (Electrical, Configuration and Protocol)
 • Passed interoperability

• FPGAs – Virtex-5 LXT, Virtex-5 SXT

• Boards – ML555, ML505, ML506, ML523
Smaller Device = Lower Cost

Area required to implement typical design including x8 lane PCIe endpoint

<table>
<thead>
<tr>
<th>Device</th>
<th>Area (LUTs)</th>
<th>User Logic</th>
<th>Wrapper to interface to integrated PCIe endpoint block</th>
<th>PCIe soft core</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V LX30T</td>
<td>25,100</td>
<td>25,000 LUTs</td>
<td>100 LUTs</td>
<td>9,600 LUTs</td>
</tr>
<tr>
<td>2SGX60D</td>
<td>34,600</td>
<td>25,000 LUTs</td>
<td>100 LUTs</td>
<td>9,600 LUTs</td>
</tr>
</tbody>
</table>

Virtex-5 LXT FPGAs (65nm)
- User logic: 25,000 LUTs
- Wrapper to interface to integrated PCIe endpoint block: 100 LUTs
- Area consumed to implement PCIe soft core: 9,600 LUTs

Nearest Competitor (90nm)
- User logic: 25,000 LUTs
- Area consumed to implement PCIe soft core: 9,600 LUTs

Conditions:
- Target Frequency = 200 MHz; Worst-case process; Tj=85° C
- Design: 25K LUTs, 17K Flip-Flops; 1 Mbit On-Chip RAM; 64 DSP Blocks, 128 2.5V I/Os
- Tools: Based on Xilinx tool v8.2 and competitor tool v6.0.1

Choose a smaller, less-expensive device
Virtex-5 Built-in Endpoint Block for PCIe

• Improve time-to-market
 – Pre-verified highly complex IP
 – Complete solution
 – Included on PCI-SIG’s PCI Express Integrators List

• Logic area saving
 – >90% area savings compared to the nearest competitor
 – Easier timing closure

• High Performance
 – Scalable solutions from x1 up to x8

• Low power solution
 – >60% power savings compared to the nearest competitor
Design a Virtex-5 PCI Express Application with DMA Engine

After this seminar, you can download a complete DMA design example including ALL software source code and FPGA logic source code as a freeware.
Programmable I/O vs. Bus Mastering Endpoint DMA

Programmable I/O
- Memory Read
- Memory Write
- Completions

Bus Mastering Endpoint DMA
- Memory Read
- Memory Write
- Completions

User application initiates bus mastering DMA, Memory Read Request followed by a Host sending Completion
DMA Engine for High Throughput Applications

- DMA engine is a key element to achieve high bandwidth utilization for a PCI Express application
 - DMA can be optimized to best use bandwidth for specific application.
 - As an example, using DMA engine in a PCI x1 link standard PC platform can increase bandwidth by 2x~100x.
 - DMA engine frees up CPU resources from data streaming, it helps to improve the overall system performance.

- Typically, there are two types of DMA engines*
 - “Common-buffer DMA”, also known as “continuous DMA”
 - “Scatter/gather DMA”
 - Many other DMA engine implementations derive from “Common-buffer DMA” and “Scatter/gather DMA”

Design Process

- System Architecture
- GUI in CoreGen
- Modelsim and ISE 9.1i
- Validation platform
 - ML505/506/555 Evaluation board
 - PCI scan software (e.g. pcitree)
 - Driver software development suit (e.g. Jungo, or WDF)

Understand System Requirements

Configure PCIe® Endpoint

Verify, Simulate & Implement

In System Validation

- Board level initial test
- Software Driver and Software application
Requirements for the DMA
Example design

- **System Requirements**
 - Bandwidth: x1
 - Power - < 1.0W for PCIe function
 - QoS: 1VC
 - Inter-operability
 - Hot-plug: yes for card slot

- **Hardware Requirements**
 - MPS: ASUS P5B-VM mother board with Intel 965 chipset
 (or DELL GX280 with Intel 915 chipset)
 - Card Slot: default pre-emphasis and RX eq
 - BAR: 1 BAR (1MByte memory space)
 - Clocking:
 - Ref clock: 100MHz SSC comes over the slot
 - user clock: for x1 62.5MHz
 - Class Code: co-processor 0x0B400000

- **DMA:**
 - Common-buffer DMA
 - Support bus master read/write DMA operation

- **Software Requirements**
 - OS: Windows Driver
 - Simulation tools
Virtex-5 PCI Express Solution
PCIe Layers Integrated into the Virtex5 LXT/SXT

- Layers including Transaction, Data Link and Physical, were integrated into PCIe block.
- In PC system, users mainly focus on endpoint software/DMA engine design, as well as software and driver design at root complex.
Design Process

- System Architecture
- GUI in CoreGen
- Modelsim and ISE 9.1i
- Validation platform
 - ML505/506/555 Evaluation board
 - PCI scan software (e.g. pcitree)
 - Driver software development suit (e.g. Jungo, or WDF)
CoreGen Tool

• Supports all interfaces: PCIe-to-GTP & PCIe-to-BRAM
 – Instantiates components
 – Connects pins, and sets attributes
 – Supports all user requirements

• GTP transceiver interface
 – Choice of lane width: x1, x2, x4, x8
 – Coregen hides GTP configuration complexities from the user

• BRAM interface
 – Coregen instantiates the right number of BRAMs for each buffer
 • Pipeline registers in the fabric must be added manually
 • ECC support must be added manually
PCIe LogicCore in CoreGen

- Step by Step CoreGen flow can be found at Xilinx.com
 - www.xilinx.com/products/boards/ml505/docs/ml505_pcie_x1_plus_design_creation.pdf
CoreGen Deliverables

- Parameterized Core Net-list
- Programmed Input Output (PIO) example design
- Customer Simulation Demonstration Test bench
 - Verilog HDL simulation flow supported for PIO (VHDL planned)
 - Includes complete Downstream PCIe port models (1 and 4 Lane)
 - May be used to verify complex customer Endpoint designs
- Customer Implementation Demonstration
 - Example UCFs delivered targeting ML555 board
 - Complete implementation scripts delivered for PIO design

After CoreGen, you can build DMA engine on top of the PIO example design
DMA Freeware example design

• How to get DMA Freeware example:
 http://www.token2000.com/DMA_Freeware_v1.2.zip
 – DMA Freeware can be downloaded from a Chinese BBS forum
 http://www.edacn.net/bbs/forum-14-1.html

• After download
 – You can compare the differences between “DMA engine example design” with the coregen result which generated from step-by-step guidance of
 ml505_pcie_x1_plus_design_creation.pdf
 – Read related documents to understand the DMA design code, on top of PIO design.
Requirements for the DMA
Example design

• **System Requirements**
 - Bandwidth: x1
 - Power - < 1.0W for PCIe function
 - QoS: 1VC
 - Inter-operability
 - Hot-plug: yes for card slot

• **Hardware Requirements**
 - MPS: ASUS P5B-VM mother board with Intel 965 chipset
 (or DELL GX280 with Intel 915 chipset)
 - Card Slot: default pre-emphasis and RX eq
 - BAR: 1 BAR (1MByte memory space)
 - Clocking:
 - Ref clock: 100MHz SSC comes over the slot
 - user clock: for x1 62.5MHz
 - Class Code: co-processor 0x0B400000

• **DMA:**
 - Common-buffer DMA
 - Support bus master read/write DMA operation

• **Software Requirements**
 - OS: Windows Driver
 - Simulation tools
Design Process

- **Understand System Requirements**
- **Configure PCIe® Endpoint**
- **Verify, Simulate & Implement**

In System Validation
- Board level initial test
- Software Driver and Software application

- **System Architecture**
- **GUI in CoreGen**
- **Modelsim and ISE 9.1i**
- **Validation platform**
 - ML505/506/555 Evaluation board
 - PCI scan software (e.g. pcitree)
 - Driver software development suit (e.g. Jungo, or WDF)
Virtex-5 PCIe Simulation

- SmartModel available for simulation with
 - Cadence “NC Verilog”
 - Mentor “ModelSim”
 - Synopsys “VCS”
- More details in UG341 User Guide document

LogiCORE™ Endpoint Block Plus v1.5 for PCI Express®

Available in ISE9.1i SP3 IP3 or later
Config Space Simulation

- Note: Model pcie_internal_1_1_swift: Model Vendor: `Xilinx'.
- # Running test {sample_smoke_test0}......
- # [0] : System Reset Asserted...
- # [4995000] : System Reset De-asserted...
- # [8522100] : Transaction Reset Is De-asserted...
- # [80250100] : Transaction Link Is Up...
- # [80250100] : Expected Device/Vendor ID = 100010ee
- # [80250100] : Reading from PCI/PCI-Express Configuration Register 0x00
- # [80274000] : TSK_PARSE_FRAME on Transmit
- # [81994000] : TSK_PARSE_FRAME on Receive
- # [82674000] : TEST PASSED --- Device/Vendor ID 100010ee successfully received
- #** Note: $finish : ../tests/sample_tests1.v(30)
- # Time: 82674 ns Iteration: 9 Instance: /boardx04/xilinx_pci_exp_4_lane_downstream_port/tx_usrapp
- #
DMA Simulation

[0] : System Reset Asserted...
[4995000] : System Reset De-asserted...
[8522100] : Transaction Reset Is De-asserted...
[80186100] : Transaction Link Is Up...
[80186100] : Inspecting Core Configuration Space...
[80282000] : TSK_PARSE_FRAME on Transmit
[83578000] : TSK_PARSE_FRAME on Transmit
#
[122714000] : TSK_PARSE_FRAME on Receive
[123130000] : TSK_PARSE_FRAME on Transmit
[125978000] : TSK_PARSE_FRAME on Receive
[126330000] : PCI EXPRESS BAR MEMORY/IO MAPPING PROCESS BEGUN...
BAR 0: VALUE = 10000000 RANGE = fff00000 TYPE = MEM32 MAPPED
BAR 1: VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED
BAR 2: VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED
BAR 3: VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED
BAR 4: VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED
BAR 5: VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED
EROM: VALUE = 10100001 RANGE = fff00001 TYPE = MEM32 MAPPED
[126330000] : Setting Core Configuration Space...
[126426000] : TSK_PARSE_FRAME on Transmit
[129306000] : TSK_PARSE_FRAME on Receive
#
[155706000] : TSK_PARSE_FRAME on Receive
[184794000] : Set up for a Write DMA operation.
[184794000] : Write the Write DMA starting address.
[184794000] : TSK_PARSE_FRAME on Transmit
[184800000] : Write the Write DMA length.
[184986000] : TSK_PARSE_FRAME on Transmit
[184986000] : Write the Write DMA TLP count.
[185082000] : TSK_PARSE_FRAME on Transmit
[185082000] : Write the Write DMA Data Pattern.
[185178000] : TSK_PARSE_FRAME on Transmit
[185178000] : Set up for a Read DMA operation.
[185178000] : Write the Read DMA starting address.
[185274000] : TSK_PARSE_FRAME on Transmit
[185274000] : Write the Read DMA length.
[185370000] : TSK_PARSE_FRAME on Transmit
[185370000] : Write the Write DMA TLP count.
[185466000] : TSK_PARSE_FRAME on Transmit
[185466000] : Start the memory read and write DMA operation simultaneously.
[185562000] : TSK_PARSE_FRAME on Transmit
[185682000] : TSK_PARSE_FRAME on Transmit
[185786000] : TSK_PARSE_FRAME on Receive
[185786000] : Received Message with no Data --- Tag 0x00, message_type 0x4
[185786000] : Interrupt received as expected. type[0x4], code[0x20]
[202586000] : TSK_PARSE_FRAME on Receive
[202586000] : Received Message with no Data --- Tag 0x00, message_type 0x4
[202586000] : ... Data --- Tag 0x00, message_type 0x4
[202586000] : Interrupt received as expected. type[0x4], code[0x24]
** Note: $finish : ../tests/BMD_rd_wr_tests.v(258)
Time: 214138 ns Iteration: 10 Instance: /boardx01/xilinx_pci_exp_1_lane_downstream_port/bx_usrapp
Design Process

- System Architecture
- GUI in Coregen
- Modelsim and ISE 9.1i
- Validation platform
 - ML505/506/555 Evaluation board
 - PCI scan software (e.g. pcitree)
 - Driver software development suit (e.g. Jungo, or WDF)
Board level initial test

- Requires a complete Endpoint solution
 - ML505/506/555 demo board
 - DMA logic download files
 - Software Utilities for PCI scan and register read/write (e.g. PCI tree)

- Desktop, Workstation, Server, Bridge and Switch equipment HW for testing
 - List some model of PC platform
 - Dell SC430, Dell 1900, Dell GX280
 - ASUS P5B-VM, ASUS M2N-E
 - Intel E7520

ML505/ML506/ML555 – Virtex-5 PCIe Development Platform
Use PCI Tree for Initial Test

- With PCI tree, you can try register read/write without software driver.
- You can also work with software engineer, to physically allocate memory blocks, and then trigger DMA operation by register read/write.
Design Process

- System Architecture
- GUI in CoreGen
- Modelsim and ISE 9.1i
- Validation platform
 - ML505/506/555 Evaluation board
 - PCI scan software (e.g. pcitree)
 - Driver software development suit (e.g. Jungo, or WDF)
Try out DMA Example Software

- In system test with the DMA example software
- All driver and application software source codes and executables are provided as is.
- As a freeware, you can modify by yourself or contact the designer for more details.
Performance Example (1)
ML505 PCIe x1 on Intel 915G Mainstream PC

- **Read**
 - 128DW * 2000 Reads test, the performance is 172MBps

- **Write**
 - In 32DW * 2000 writes test, the performance is 212MBps

Typically, PCI32bit @ 33Mhz about 80MBps, PCI64bit @ 66Mhz about 250MBps in commercial products.

PCle x1 show better typical performance than PCI32bit @ 33Mhz, also close to PCI64bit @ 66Mhz.
Performance Example(2)
ML555 PCIe x4 on Dell Precision 690 workstation

• Read
 – 128DW*2000 Reads test, the performance is 738MBps

• Write
 – In 32DW*2000 writes test, the performance is 842MBps

Typically, 100Mhz PCI-X may reach 350MBps in commercial products.

PCle x4 show better typical performance than 100Mhz PCI-X.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Size(Bytes)</th>
<th>Perf(ns)</th>
<th>DrvTs...</th>
<th>App (ns)</th>
<th>Bps(Perf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>1024000</td>
<td>1386088</td>
<td>1396096</td>
<td>1441245</td>
<td>738.77MBps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>Size(Bytes)</th>
<th>Perf(ns)</th>
<th>DrvTs...</th>
<th>App (ns)</th>
<th>Bps(Perf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write</td>
<td>256000</td>
<td>303863</td>
<td>313019</td>
<td>344526</td>
<td>842.47MBps</td>
</tr>
</tbody>
</table>
System Considerations

- **Power:** <100mW per GTP lane, < 450 mW for PCIe Block
- **Latency:** 400ns
- **Bandwidth:** effective BW is system dependent (RC & OS)
- **SI:** TX pre-emphasis and RX eq
- **Drivers:** Jungo Linux and Window
- **Compliance & Interoperability:** PCI-SIG integrators list
Requirements for the DMA Example design

System Requirements
- Bandwidth: x1
- Power: < 1.0W for PCIe function
- QoS: 1VC
- Inter-operability
- Hot-plug: yes for card slot

Hardware Requirements
- MPS: ASUS P5B-VM mother board with Intel 965 chipset

 (or DELL GX280 with Intel 915 chipset)
- Card Slot: default pre-emphasis and RX eq
- BAR: 1 BAR (1MByte memory space)
- Clocking:
 - Ref clock: 100MHz SSC comes over the slot
 - user clock: for x1 62.5MHz
- Class Code: co-processor 0x0B400000

DMA:
- Common-buffer DMA
- Support bus master read/write DMA operation

Software Requirements
- OS: Windows Driver
- Simulation tools
Xilinx Development Kits for PCI Express

PCI Express Development Kit for Virtex-5

- Development Kits include:
 - **Hardware**: ML555 board & download cable
 - ISE Foundation eval DVD
 - Reference Designs
 - Documentation
 - Quick Start Guide

Available now - $2200

PCI Express Development Kit for Spartan-3

- Development Kits include:
 - Spartan 3 Board for PCI Express
 - Soft PCie IP & external Philips PIPE PHY
 - Design resources
 - Application Notes
 - Software design tools
 - Interoperability list

Available now - $349
PCI Express Integrators List

Last Updated: April 9, 2007 as a result of Compliance Workshop #54 and additional submitted Compliance Checklists

Note: Red text indicates newly posted products.

Components

<table>
<thead>
<tr>
<th>Company</th>
<th>Product</th>
<th>Identifier</th>
<th>Rev</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5</td>
<td>LXT</td>
<td>PCIe 1.0a</td>
<td>Endpoint Controller</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5</td>
<td>LXT</td>
<td>PCIe 1.1</td>
<td>Endpoint Controller</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5</td>
<td>SXT</td>
<td>PCIe 1.1</td>
<td>Endpoint Controller</td>
</tr>
</tbody>
</table>

Add-In Cards

<table>
<thead>
<tr>
<th>Company</th>
<th>Product</th>
<th>Identifier</th>
<th>Rev</th>
<th>Maximum Lane Width</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5 LXT</td>
<td>ML523</td>
<td>PCIe 1.0a</td>
<td></td>
<td>Reference Board</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5 LXT</td>
<td>ML525</td>
<td>PCIe 1.1</td>
<td>x1</td>
<td>Reference Board</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5 LXT</td>
<td>ML505</td>
<td>PCIe 1.0a</td>
<td></td>
<td>Reference Board</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5 SXT</td>
<td>ML506</td>
<td>PCIe 1.1</td>
<td>x1</td>
<td>Reference Board</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5 LXT</td>
<td>ML555 x4</td>
<td>PCIe 1.0a</td>
<td></td>
<td>Reference Board</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5 LXT</td>
<td>ML555 x8</td>
<td>PCIe 1.1</td>
<td></td>
<td>Reference Board</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5 LXT</td>
<td>ML505</td>
<td>PCIe 1.1</td>
<td>x1</td>
<td>Reference Board</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5 LXT</td>
<td>ML523</td>
<td>PCIe 1.1</td>
<td>x1</td>
<td>Reference Board</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5 LXT</td>
<td>ML555 x4</td>
<td>PCIe 1.1</td>
<td>x4</td>
<td>Reference Board</td>
</tr>
<tr>
<td>Xilinx, Inc.</td>
<td>Virtex-5 LXT</td>
<td>ML555 x8</td>
<td>PCIe 1.1</td>
<td>x8</td>
<td>Reference Board</td>
</tr>
</tbody>
</table>
Summary

• PCIe is becoming the interconnect of choice

• Xilinx offers PCIe solutions requirements for high-performance and low-cost

• Xilinx offers complete kits to accelerate development for PCIe

• A complete DMA engine design including HDL source code, Windows driver and application software can be downloaded as an example.
Getting Started

- http://www.xilinx.com/cn/pciexpress
- Design Resources
 - Technical Documentation & Application Notes
 - IP LogiCOREs & Design guidelines
 - Characterization reports
 - Xilinx courses
 - Software tools
 - Design Services
- Evaluate Xilinx PCI express build-in IPcore, use the DMA Freeware example as a reference
- Contact Xilinx Distributor FAE or Xilinx FAE for more support
Thank You
Description of DMA

Completer:
- Step 2: Root Complex (completer) receives MRd
- Step 3: Root Complex returns Completion with data (CplID)

Requester:
- Step 1: Endpoint (requester) initiates Memory Read Request (MRd)
- Step 4: Endpoint receives CplID
V5 LXT Bus Mastering DMA

- **Northwest Logic** DMA Reference Design and Driver IP
 - Simulation evaluation available
 - Support for [Xilinx V5LXT Development Kit for PCIe](http://www.xilinx.com/member/pci_exp_kit_ref/index.htm)
 - V5 LXT BLK+ x1, x4 and x8 deliverables
 - DDR2, SRAM Controller, source code,
 - Device Drivers (Windows / Linux)
 - Design services

[AVNET®](http://www.xilinx.com/member/pci_exp_kit_ref/index.htm)

[XILINX®](http://www.xilinx.com/member/pci_exp_kit_ref/index.htm)
DMA Reference Design from Northwest Logic

Product Highlights
- Provides a complete PCI Express reference design
- Includes x1, x4 and x8 PCI Express Complete Cores and DDR2/1 SDRAM Controller Cores
- Provided as binary with Northwest Logic’s PCI Express Development Boards
- Provided as source code with the PCI Express Complete Core
- Customization and Integration services available

Block Diagram

![Block Diagram](http://www.nwlogic.com/docs/PCI_Express_Reference_Design.pdf)
Driver Development Kit

WinDriver – from Jungo, Inc

- Complete PCIe Design Kit for Xilinx FPGAs, enables
 - Rapid creation of applications
 - Faster device driver code-development
 - Reduce development time by providing
 - Kernel mode performance
 - Higher level of abstraction

http://www.xilinx.com/member/pci_exp_kit_ref/index.htm