10. Reference Guide

Formats and Conventions

The manual for the PLS_Toolbox uses a format consistent with that used for MATLAB. For additional information on usage see the above Functions section. The following format is used in the Reference section:

- **Purpose**: Provides short concise descriptions of a PLS_Toolbox command or function.
- **Synopsis**: Shows the input/output format of the command or function.
- **Description**: Describes what the command or function does and any rules or restrictions that apply.
- **Examples**: Provides examples of how the command or function can be used.
- **Options**: Describes advanced options of the command or function.
- **Algorithm**: Describes algorithms and routines used within the command or function.
- **See Also**: Refers to other related commands or functions in the PLS_Toolbox.

and the following conventions:

- **Monospace**: Commands, function names, and screen displays; for example, \texttt{pca}.
- **Italics**: Book titles, names of sections in this book, MATLAB toolbox names, and for introduction of new terms; for example, \textit{Chemometrics}.
- **Monospace**: Optional input variables from PLS_Toolbox functions.

Routines in the PLS_Toolbox follow the convention of having samples in rows and variables in columns.
alignmat

Purpose

Alignment of matrices and N-way arrays

Synopsis

```matlab
[bi,itst] = alignmat(amodel,b);
[bi,itst] = alignmat(a,b,ncomp);
```

Description

In some cases, data arrays require alignment to aid the performance of the three-way (e.g. GRAM, or PARAFAC) or unfold models such as MPCA. For example, sometimes GC peaks or data from batch operations can be shifted on a sample-to-sample basis (each sample is a M_b by N matrix). In these cases, it is advantageous to choose a sub-matrix of a single matrix A as a standard and find the sub-matrix of subsequent samples B that best align or match the standard matrix. It is also possible to use a model of one or more standard matrices A_{model} and find the sub-matrix of subsequent samples B that best align or match the model. In the latter case, it is also possible to find the sub-array of B that best aligns with the model of a N-way data set (A_{model}). This can be performed along multiple modes using ALIGNMAT.

ALIGNMAT finds the subarray of b, bi, that most matches a using two different algorithms. For input:

```matlab
[bi,itst] = alignmat(amodel,b);
```

the sub-array bi is found using a projection method. In this case, bi is the sub-array of b that has the lowest residuals on a model of a called $amodel$. Models for $amodel$ are standard model structures from PCA, PCR, GRAM, TLD, or PARAFAC. Input b can be class "double" or "dataset" and must have the same number of modes/dimensions as a with each element of $size(b) \geq size(a)$. Alignment is performed for modes with $size(b) > size(a)$.

For input:

```matlab
[bi,itst] = alignmat(a,b,ncomp);
```

both a and b can be class "double" or "dataset", but both are two-way arrays (matrices). For a M by N then b must be M_b by N where $M_b \geq M$ (when $M_b = M$ no alignment is performed). The output bi is the sub-array of b that best matches the matrix a. Optional input $ncomp$ is a scalar of the number of components to use in the decomposition {default: $ncomp = 1$}.

Output bi is an array of class "double", $itst$ is a cell array containing the indices of b that match bi. Note that since interpolation is used the indices in $itst$ are not in general integers.
Algorithm

For the projection method, A_{model} is a model of array A. This can be a model from PCA, GRAM, TLD, or PARAFAC. For example, if A is a M by N matrix then the PCA model of A is $A = TP^T + E$ where T is M by K and P is N by K. Alignmat finds the submatrix of B, B_i, that has the lowest residuals on the model of A i.e. $B_i = \min \left(\sum_{m=1}^{M} \sum_{j=1}^{N} \left[B_{i,j} \left(I - PP^T \right) \right]^2 \right)$. This can be used to find the data “cube” within N-way arrays.

In the figure, this is represented as having each of the M by N sub-matrices of B projected onto the model of the M by N model of A. Note that in the figure that the size of B is M_b by N_b with $M_b>M$ and $N_b>N$.

The projection method was presented in Gallagher, N.B. and Wise, B.M., “Standardization for Three-Way Analysis”, TRICAP 2000: Three-way Methods in Chemistry and Psychology, Hvedholm Castle, Faaborg, Denmark, July (2000). In that study, it was found that the projection method was faster and more robust than the SVD-based algorithm discussed below.

In the SVD method, the standard matrix A and a sub-matrix of B, B_i, are augmented and a singular value decomposition of the result is performed such that $[u,s,v] = \text{svd}(A_{MxN} | B_{iMxNb})$. The sub-matrix is incremented and the SVD is performed again. The sub-matrix that minimizes the rank is selected as matching best. The objective function is $R = \left(\sum_{j=ncomp+1}^{\min(M,N+N_b)} s_j \right)^{-1} \left(\sum_{j=1}^{ncomp} s_j \right)^{-1}$.

See Also

analysis, gram, parafac, pca, tld
als

Purpose

Alternating Least Squares computational engine for multivariate curve resolution (MCR).

Synopsis

 [c,s] = als(x,c0,options);

Description

ALS decomposes a matrix X as CS such that X = CS + E where E is minimized in a least squares sense.

Inputs are the matrix to be decomposed x (size \(m \times n\)), and the initial guess \(c0\). If \(c0\) is size \(m \times k\), where \(k\) is the number of factors, then it is assumed to be the initial guess for C. If \(c0\) is size \(k \times n\) then it is assumed to be the initial guess for S (If \(m=n\) then, \(c0\) is assumed to be the initial guess for C).

An optional input options is described below.

The outputs are the estimated matrix \(c\) (\(m \times k\)) and \(s\) (\(k \times n\)). Usually \(c\) is a matrix of concentrations and \(s\) is a matrix of spectra. The function

 \[c, s = \text{als}(x, c0) \]

will decompose \(x\) using an non-negatively constrained alternating least squares calculation. To include other constraints, use the options described below.

Note that if no non-zero equality constraints are imposed on a factor the spectra are normalized to unit length. This can lead to significant scaling differences between factors that have non-zero equality constraints and those that do not.

Options

- **name**: 'options', name indicating that this is an options structure,
- **display**: ['off' | {'on'}] governs level of display to command window,
- **plots**: ['none' | {'final'}] governs level of plotting,
- **ccon**: ['none' | 'reset' | {'fastnnls'}] non-negativity on concentrations,
 (fastnnls = true least-squares solution)
- **scon**: ['none' | 'reset' | {'fastnnls'}] non-negativity on spectra,
 (fastnnls = true least-squares solution)
- **cc**: [] concentration equality constraints, MxK matrix with NaN where equality constraints are not applied and real value of the constraint where they are applied,
ccwts: [inf] weighting for equality constraints. Use inf for hard equality constraints and values < inf for soft equality constraints. Soft constraints weightings are given a fraction of the total sum-squared signal in X. If a scalar value is supplied, this value is used as the weighting for all factors. Otherwise, a vector K elements in length specifies the specific weighting to be used on each factor and may be a mix of hard (inf) and soft (<inf) constraints.

sc: [] spectral equality constraints, KxN matrix with NaN where equality constraints are not applied and real value of the constraint where they are applied,

scwts: [inf] weighting for spectral equality constraints (see ccwts)

sclc: [] concentration scale axis, vector with M elements otherwise 1:M is used,

scls: [] spectra scale axis, vector with N elements otherwise 1:N is used,

tolc: [{1e-5}] tolerance on non-negativity for concentrations,

tols: [{1e-5}] tolerance on non-negativity for spectra,

ittol: [{1e-8}] convergence tolerance,

itmax: [{100}] maximum number of iterations,

timemax: [{3600}] maximum time for iterations,

rankfail: ['drop'|'reset'|'random'|'fail'] how are rank deficiencies handled:
 drop - drop deficient components from model
 reset - reset deficient components to initial guess
 random - replace deficient components with random vector
 fail - stop analysis, give error

Examples

To decompose a matrix x without non-negativity constraints use:

```matlab
options = als('options');
options.ccon = 'none';
options.scon = 'none';
[c,s] = als(x,c0,options);
```

The following shows an example of using soft-constraints on the second spectral component of a three-component solution assuming that the variable softs contains the spectrum to which component two should be constrained.

```matlab
[m,n] = size(x);
options = als('options');
options.sc = NaN*ones(3,n);  %all 3 unconstrained
options.sc(2,:) = softs;     %constrain component 2
options.scwts = 0.5;         %consider as ½ of total signal in X
[c,s] = als(x,c0,options);
```

See Also
pca, parafac
analysis

Purpose

Graphical user interface for data analysis.

Synopsis

- analysis

Description

Performs various analysis methods including PCA, MCR, PARAFAC, Cluster, PLS, PCR, PLSDA, and SIMCA using a graphical user interface. Typical operations for file manipulation, preprocessing, and Analysis selection can be found in the menu items of the figure. Once data has been loaded and an Analysis selected, the Toolbar will populate with appropriate buttons for the Analysis. Plots created by the Toolbar buttons will bring up a plot figure window as well as a plot controls window. Use the plot controls window to manipulate the plot figure.

Note: For more information see Chapter 5 of the PLS_Toolbox Manual.

See Also

- browse, cluster, mcr, parafac, pca, pcr, pls
anova1w

Purpose

One way analysis of variance.

Synopsis

`anova1w(dat, alpha)`

Description

Calculates one way ANOVA table and tests significance of between factors variation (it is assumed that each column of the data represents a different treatment). Inputs are the data table `dat` and the desired confidence level `alpha`, expressed as a fraction (`e.g. 0.95, 0.99, etc.`). The output is an ANOVA table written to the command window.

See Also

`anova2w, ftest, statdemo`
anova2w

Purpose

Two way analysis of variance.

Synopsis

`anova2w(dat, alpha)`

Description

Calculates two way ANOVA table and tests significance of between factors variation (it is assumed that each column of the data represents a different treatment) and between blocks variation (it is assumed that each row represents a block). Inputs are the data table `dat` and the desired confidence level `alpha`, expressed as a fraction (e.g. 0.95, 0.99, etc.). The output is an ANOVA table written to the command window.

See Also

`anova1w`, `ftest`, `statdemo`
areadr

Purpose

Reads ASCII text file into workspace and strips off header.

Synopsis

\[
\text{out} = \text{areadr1(file, nline, nvar, flag)}
\]

Description

Inputs are (file) an ASCII string containing the file name to be read, (nline) the number of rows to skip before reading, (nvar) the number of rows or columns in the matrix to be read, and (flag) which indicates whether (nvar) is the number of rows (flag=1) or the number of columns (flag=2) in the matrix.

AREADR can be incorporated into other routines to read data directly from groups of files. For example, to read the file mydata.txt with a 5 line header and 8 columns in the data into the matrix mymatrix:

\[
\text{mymatrix} = \text{areadr('mydata.txt', 5, 8, 2)}
\]

See Also

spcreadr, xclreadr
auto

Purpose

Autoscales a matrix to mean zero and unit variance.

Synopsis

\[[ax,mx,stdx,msg] = \text{auto}(x,options) \]
\[[ax,mx,stdx,msg] = \text{auto}(x,offset) \]
\[\text{options} = \text{auto('options')} \]

Description

\[[ax,mx,stdx] = \text{auto}(x) \] autoscales a matrix \(x \) and returns the resulting matrix \(ax \) that has columns with mean zero and unit variance. Output \(mx \) is a vector of means, and \(stdx \) is a vector of standard deviations. \(mx \) and \(stdx \) can be used to scale new data (see SCALE).

Options

\(\text{options} = \) a structure array with the following fields:
- \text{name} \: \text{'options'}, name indicating that this is an options structure,
- \text{offset} \: \text{scaling can use standard deviation plus an offset} \{\text{default = 0}\},
- \text{display} \: [\{\text{'off'}\} | \text{'on'} \] governs level of display to the command window,
- \text{matrix_threshold} \: \text{fraction of missing data allowed based on entire matrix} \(x \) \{\text{default = 0.15}\}, and
- \text{column_threshold} \: \text{fraction of missing data allowed based on a single column} \{\text{default = 0.25}\}.

The optional input \text{offset} is added to the standard deviations before scaling and can be used to suppress low-level variables that would otherwise have standard deviations near zero.

The default options can be retrieved using: \text{options} = \text{auto('options');}.

See Also

\text{mncn, normaliz, scale, rescale}
autocor

Purpose
Calculates the autocorrelation function of a time series.

Synopsis

 acor = autocor(x,n,period,plots)

Description

 acor = autocor(x,n) returns the autocorrelation function acor of a time series x for a maximum time shift of n sample periods.

 acor = autocor(x,n,period) uses the sampling period period to scale the x-axis on the output plot. period can be empty [].

The optional input plots suppresses plotting if set to 0.

See Also

corrmap, crosscor
baseline

Purpose

Subtracts a baseline offset from spectra.

Synopsis

\[
\text{[newspec,b]} = \text{baseline}(\text{spec},freqs,\text{range},\text{options});
\]
\[
\text{spec} = \text{baseline}(\text{newspec},freqs,b,\text{options});
\]

Description

This function baselines spectra with a polynomial baseline function. The baseline function is fit to user-specified regions (regions free of peaks), which is then subtracted from the original spectra.

Inputs are \text{spec} class “double” or “dataset” containing the spectra, \text{freqs} the wavenumber or frequency axis vector, and \text{range} which specifies the baselining regions (see below). If \text{freqs} is omitted and \text{spec} is a dataset, the axissscale from the dataset will be used; otherwise a linear vector will be used.

\text{range} can be either an \text{m} by 2 matrix which specifies \text{m} baselining regions or a logical vector equal in length to the spectra with a 1 (one) at each point to be used as baseline and 0 (zero) elsewhere.

The output \text{newspec} contains the baselined spectra and \text{b} the polynomial coefficients.

If \text{b} is input instead of \text{range} with baselined spectra \text{newspec} then the output \text{spec} is a matrix original “unbaselined” spectra.

Options

\text{options} = \quad \text{a structure array with the following fields:}

\begin{align*}
\text{name: 'options'}, & \quad \text{name indicating that this is an options structure}, \\
\text{plots: [{'none'} | 'final']}, & \quad \text{governs plotting of results, and} \\
\text{order: positive integer for polynomial order (default = 1)}. \\
\end{align*}

The default options can be retrieved using: \text{options} = \text{baseline('options')};

See Also

lamsel, normaliz, savgol, specedit
baselinew

Purpose
Baseline using windowed polynomial filter.

Synopsis

```
[y_b,b_b] = baselinew(y,x,width,order,res,options)
```

Description

`BASELINEW` recursively calls `LSQ2TOP` to fit polynomials to the bottom (or top) of a curve e.g. a spectrum. It uses a windowed approach and can be considered a filter or baseline (low frequency) removal algorithm. The window depends on the frequency of the low frequency component (baseline) and wide windows and low order polynomials are often used. See `LSQ2TOP`.

The curve(s) to be fit (dependent variable) y, the axis to fit against (the independent variable) x [e.g. $y = P(x)$], the window width `width` (an odd integer), the polynomial order `order`, and an approximate noise level in the curve `res`. Note that y can be $M \times N$ where x is $I \times N$. The optional input `options` is discussed below.

Output y_b is a $M \times N$ matrix of ROW vectors that have had the baselines removed, and output b_b is a matrix of baselines. Therefore, y_b is the high frequency component and b_b is the low frequency component.

Examples

If y is a 5 by 100 matrix then

```
y_b = baselinew(y,[],25,3,0.01);
```

gives a 5 by 100 matrix y_b of row vectors that have had the baseline removed using a 25-point cubic polynomial fit of each row of y.

If y is a 2 by 100 matrix then

```
y_b = baselinew(y,x,51,3,0.01);
```

gives a 2 by 100 matrix y_b of row vectors that have had the baseline removed using a 51-point second order polynomial fit of each row of y to x.

Options

```
options = structure array with the following fields:
display: ['off' | 'on'] governs level of display to command window.
trbflag: ['top' | 'bottom'] top or bottom flag, tells algorithm to fit the polynomials, $y = P(x)$, to the top or bottom of the data cloud.
```
tsqlim: \([0.99]\) limit that governs whether a data point is significantly outside the fit residual defined by input res.

stopcrit: \([1e-4 \ 1e-4 \ 1000 \ 360]\) stopping criteria, iteration is continued until one of the stopping criterion is met: \([(\text{relative tolerance}) \ (\text{absolute tolerance}) \ (\text{maximum number of iterations}) \ (\text{maximum time [seconds]})]\).

See Also

baseline, lamsel, lsq2top, mscorr, savgol, stdfir
browse

Purpose

PLS_Toolbox Toolbar and Workspace browser.

Synopsis

browse

Description

BROWSE provides a graphical interface for tools, variables and figures used by PLS_Toolbox. The default mode will display only tools (e.g. DataSet Editor, Decompose and Getting Started).

See Also

analysis, editds, helppls
calibsel

Purpose

Stepwise variable selection (user contributed).

Synopsis

```
channel = calibsel(x,y,alpha,flag)
```

Description

Inputs are the calibration spectra x and concentrations y, significance level for chi-square test α, and a variable flag that allows the user to modify how the routine iterates. The output channel is a vector of indices corresponding to selected channels/wavelengths in y.

See Also

fullsearch, gaselctr, genalg
cellne

Purpose

Element by element comparison of two cells for inequality.

Synopsis

 out = cellne(c1,c2)

Description

CELLNE compares the two cell inputs, c1 and c2, for inequality. If the cell arrays are the same size, the corresponding cell elements are compared and a similarly sized array of logical (boolean) values, out, is returned. The array out contains a one if the two cell elements were not equal (different variable type or contents) and a zero if the two cell elements were equal.

If the cell sizes do not match, the function returns a single logical value of 1.

See Also
chilimit

Purpose

Chi-squared confidence limits from sum-of-squares residuals.

Synopsis

[lim,scl,dof] = chilimit(ssqr,cl)
lim = chilimit(scl,dof,cl)

Description

CHILIMIT determines a confidence limit for sum-of-squares residuals, ssqr, by fitting the residuals to the Chi-squared distribution. If the sum-squared residuals are reasonably approximated by a Chi-squared distribution this gives a very good estimate of the confidence level. However, it has been observed that outliers can significantly bias the estimate.

The standard call to CHILIMIT uses the sum of squares residuals ssqr, and the optional fractional confidence level requested, cl {default = 0.95}. Outputs are the calculated limit lim, the scaling determined from the residuals scl, and the degrees of freedom determined from the residuals dof.

The scaling, scl, and number of degrees of freedom, dof, returned from a previous call to CHILIMIT can be used in subsequent calls to CHILIMIT to obtain new limits without the original residuals.

See Also

jmlimit, pca, pcr, pls, residuallimit
choosencomp

Purpose

GUI to select number of components from a PCA sum-of-squares captured table.

Synopsis

\[ncomp = \text{choosencomp}(\text{model}) \]

Description

The input model can be a standard PCA model structure or just a sum-of-squares (SSQ) captured table from a PCA model. CHOOSECOMP creates a GUI that displays the SSQ table and allows the user to select the number of principal components (ncomp) from the list.

The returned value, ncomp, is the number of selected components or an empty value [] if the user selected Cancel in the GUI.

See Also

analysis, pca, pcaengine, simca
class2logical

Purpose
Create a PLSDA logical block from class assignments.

Synopsis

\[[y,\text{nonzero}] = \text{class2logical}(\text{class},\text{groups}) \]

Description
Given a list of sample classes or a DataSet object with class assignments for samples (mode 1), class2logical creates a logical array in which each column of \(y \) contains the logical class membership (i.e. 1 or 0) for each class. This logical block can be used as the input \(y \) in PLS or PCR to perform discriminate analysis. Similarly, the output can be used with crossval to perform PLSDA cross-validation. Classes can optionally be grouped together by providing class groupings.

Inputs are:
- class: a list of class assignments, or a dataset with classes for first mode, and
- groups: an optional input containing either:
 - [1 2 3 …] a vector of classes to model OR
 - {[1 2] [3 4] …} a cell array containing groups of classes to consider as one class. Each cell element will be one class (see e.g. below)

Any classes in class which are not listed in groups are considered part of no group and will be assigned zero for all columns in the output.

Outputs are:
- \(y \) a logical array in which each column represents one of the classes in the input class list or one of the groups in groups and \(\text{nonzero} \) the indices of samples with non-zero class assignment.

Examples

(A) Given DataSet "arch" with classes 0-5, the following creates a logical block with two columns consisting of "true" only for class 3 in the first column and "true" only for class 2 in the second column.

\[y = \text{class2logical}(\text{arch},[3 2]) \]

(B) Given DataSet "arch" with classes 0-5, the following creates a logical block with two columns consisting of "true" only for classes 0 and 1 in the first column and "true" only for classes 2 and 4 in the second column.

\[y = \text{class2logical}(\text{arch},[[1 0] [2 4]]) \]
See Also

crossval, plsda, plsdthres
cluster

Purpose

Synopsis

\[
\text{cluster(data,labels,options)} \\
\text{cluster(data,options)} \\
\text{options = cluster('options')} \\
\]

Description

\text{cluster(data)} performs a cluster analysis on data matrix \text{data} using K-means or K-nearest neighbor clustering and plots a dendrogram showing distances between the samples. \text{data} can be class “double” or “dataset”.

Optional input \text{labels} can be used to put labels on the dendrogram plots. For data \(M \) by \(N \) then \text{labels} must be a character array with \(M \) rows. When \text{labels} is not specified and \text{data} is class “double”, the dendrogram is plotted using sample numbers. When \text{labels} is not specified and \text{data} is class “dataset”, the dendrogram is plotted using sample labels. If the \text{labels} field is empty it will use sample numbers.

The output is a dendrogram showing the sample distances.

Note: Calling \text{cluster} with no inputs starts the graphical user interface (GUI) for this analysis method.

Options

\text{options} = \text{a structure array with the following fields:}

- \text{name: 'options', name indicating that this is an options structure,}
- \text{algorithm: [{ 'knn' } \| 'kmeans'] clustering algorithm,}
- \text{preprocessing: \{ [] \} Preprocessing structure or keyword (see PREPROCESS),}
- \text{pca: [{ 'false' } \| 'true'] if 'true' then CLUSTER performs PCA first and clustering on the scores,}
- \text{ncomp: [] number of PCA factors to use \{default = []\}, the user is prompted to select the number of factors from the SSQ table\}, and
- \text{mahalanobis: [{ 'false' } \| 'true'] if 'true' then a Mahalanobis distance on the scores is used.}

The default options can be retrieved using: \text{options = cluster('options')}.

See Also

gcluster
coadd

Purpose

Reduce resolution through combination of adjacent variables or samples.

Synopsis

databin = coadd(data,bins,options)

Description

COADD is used to combine ("bin") adjacent variables, samples, or slabs of a matrix. Inputs include the original array data, the number of elements to combine together bins {default: 2}, and an optional options structure options.

Unpaired values at the end of the matrix are padded with the least biased value to complete the bin. Output is the co-added data. Unlike DERESOLV, COADD reduces the size of the data matrix by a factor of 1/bins for the dimension.

Example

Given a matrix, data, size 300 by 1000, the following would coadd variables in groups of three:

databin = coadd(data,3);

and the following would coadd samples in groups of two:

options.dim = 1;
databin = coadd(data,2,options);

The following is equivalent to the previous two lines.

databin = coadd(data,2,struct(‘dim’,1));

Options

- **dim**: Dimension in which to do combination {default = 2},

Algorithm

The three modes, sum, mean and prod behave according to the following (described in terms of variables):

SUM: groups of variables are added together and stored. The resulting values will be larger in magnitude than the original values by a factor equal to the number of variables binned.
MEAN: groups of variables are added together and that sum is divided by the number of variables binned. The resulting values will be similar in magnitude to the original values.

PROD: groups of variables are multiplied together.

See Also
deresolv
coda_dw

Purpose

Variable selection method for hyphenated methods with a mass spectrometer as a detector. The variables (mass chromatograms) are selected on the basis of smoothness.

Synopsis

\[[\text{dw_value}, \text{dw_index}] = \text{coda_dw}(\text{data}, \text{level}); \]

Description

CODA_DW the Durbin Watson values of the first derivative of the chromatograms in data. The optional argument level defines the limitit of Durbin Watson value used for a plot of the results. If level is an integer it is used to plot the best level chromatograms. Low values for Durbin Watson indicate good quality chromatograms. The Durbin Watson values (\text{dw_values}) as well as their ranking indices (\text{dw_index}) (low to high, so good to low quality). For more information the Durbin Watson method see the function DURBIN_WATSON.

data can be a matrix with the data or a datasetobject

Examples

Plotting the chromatograms with a Durbin Watson value less than 2.2.

coda_dw(data, 2.2);

Plotting the best 40 chromatograms.

coda_dw(data, 40);

Algorithm

The algorithm calculates the Durbin Watson values of the first derivative of the mass chromatograms.

See Also

durbin_watson
comparelcms_sim_interactive

Purpose
Select variables that are different between related data sets, e.g. mass chromatograms from LC/MS data of different batches.

Synopsis
```
comparelcms_sim_interactive
```

Description

`COMPARELCMS_SIM_INTERACTIVE` performs the variable (mass chromatogram) selection using `comparelcms_simengine`, but with added interactivity.

See Also
`comparelcms_simengine`
comparelcms_simengine

Purpose

Select variables that are different between related data sets, e.g. mass chromatograms from LC/MS data of different batches.

Synopsis

```matlab
y=comparelcms_simengine(data,filter_width)
```

Description

`COMPARELCMS_SIMENGINE` determines which variables are different between different data sets. For example, after applying `coda_dw` to LC/MS data sets of highly related samples, such as the data of a good and a bad batch, the results will be very similar. `comparelcms_engine` takes the next step and extracts the mass chromatograms that are different. This function is normally not called by itself but by the function `comparelcms_sim_interactive`. The input argument `data` is a data cube with mode 1 the number of samples, mode two the number of spectra and mode 3 the number of variables. The optional input argument `filter_width` is used to smooth the columns of the data set in order to minimize the effect of small shifts. The output argument `y` contains the similarity indices of the variables. Variables with a low similarity index show the differences between the data sets.

Examples

Determination of similarity indices with a filter of 7 data points.

```matlab
y=comparelcms_simengine(data,7)
```

Algorithm

The calculations are based on a similarity index of the minimum of the chromatograms (across the samples) and the maximum of the chromatograms.

See Also

`comparelcms_sim_interactive`
compressmodel

Purpose

Remove references to unused variables from a model.

Synopsis

\[
[cmodel, msg] = \text{compressmodel}(\text{model})
\]

Description

COMPRESSMODEL will remove any references in a model to excluded variables. This permits the application of the model to new data in which unused variables have been hard-excluded (i.e. previously removed or not collected). Input is model the model to compress. Outputs are cmodel the compressed model and msg any warning messages reported during compression. Although compression will work on most models, some preprocessing methods and some model types may not compress correctly. In these cases, a warning will be given and reported in the output msg.

See Also

pca, pcr, pls, plsda
contrastmod

Purpose

Increase the contrast in Image PCA models.

Synopsis

\[cmod = \text{contrastmod}(\text{mod}, \text{data}, \text{thresh}) \]

Description

CONTRASTMOD is used to increase the contrast in image PCA models by trimming off scores that are far from the mean.

Inputs are the model from IMGPCA mod, and the original data used to build the model data.

Optional threshold in standard deviations thresh gives the cutoff point for the scores \{default thresh = 2.5\}.

See Also

imagegui, imgselct, imgpca, imgsimca, isimcapr
copydsfields

Purpose
Copies informational fields between datasets and/or model structures.

Synopsis

to = copydsfields(from,to,modes,block)

Description
Copies all informational fields from one dataset to another, one model structure to another, or between datasets and models. This function copies the fields: label, class, title, axisscale, and includ as well as the "<field>name" associated with each (e.g. classname). If copying to or from a model structure, the fields to be copied from/to are subfields of the detail field.

Inputs are: from the dataset or model from which fields should be copied, and to the dataset or model to which fields should be copied. Optional input modes, are the modes (dimensions) which should be copied {default: all modes}. modes can also be a cell of {{to_modes} [from_modes]} to allow cross-mode copying. Optional input block is the data block of model from/to which information should be copied. For datasets, block refers to the field set {default: block/set 1}. block can also be a cell of {{to_block} [from_block]} to allow cross-block/set copying.

Output is: to, the updated dataset or model.

Examples

mydataset2 = copydsfields(mydataset1, mydataset2);
copies all fields for all modes of mydataset1 into mydataset2 (copies set 1 only).

mydataset2 = copydsfields(modl, mydataset2, {2 1});
copies all fields from mode 2 (variables) of modl into mode 1 of mydataset2.

modl = copydsfields(mydataset,modl,1,{1 2});
copies all fields for mode 1 (samples) from set 1 of mydataset into block 2 (e.g. y-block) of modl.

See Also
dataset/dataset, modelstruct, pca, pcr, pls
corcondia

Purpose
Evaluate consistency of PARAFAC model.

Synopsis
CoreConsist = corcondia(X,loads,Weights,plots);

Description
PARAFAC can be written as a special Tucker3 model where the core is superdiagonal with ones on the diagonal. This special way of writing the model can be used to check the adequacy of a PARAFAC model by estimating what Tucker3 core is found if estimated unconstrained from the PARAFAC loadings. The core consistency is given as the percentage of variation in this core array consistent with the theoretical superdiagonal array. The maximum core consistency is thus 100%. Consistencies well below 70-90% indicate that either too many components are used or the model is otherwise mis-specified. The consistency can also become negative which means that the model is not reasonable. Note that core consistency is an ad hoc method. It often works well on real data, but not as well with simulated data. CORCONDIA does not provide proof of dimensionality, but it can give a good indication.

Inputs are the multi-way array X and loads which can be a) a cell array with PARAFAC model loadings or b) a PARAFAC model structure.

Optional inputs are Weights which can be used to update the core in a weighted least squares sense and plots which suppress plotting of the results when set to zero (0).

See Also
corecalc, parafac, tucker
coreanal

Purpose

Evaluate, display, and rotate core from a Tucker model.

Synopsis

result = coreanal(core, action, param)

Description

Performs an analysis of the input core array of a Tucker model core. Results are returned in the output result.

Optional input action is a text string used to customize the analysis.

When action = 'list', the output result contains text describing the main properties of the core. If coreanal is called without outputs, the text is printed to the command window. If optional input param is included, the number of core entries shown can be controlled.

When action = 'plot', the core array is plotted and output result is not assigned. If action = 'maxvar', the core is rotated to maximum variance. The output result is a structure array containing the rotated core in the field core and the rotation matrices to achieve this rotation in the field transformation.

The loadings of the Tucker model should also be rotated correspondingly which can also be done using coreanal.

Examples

result = coreanal(model,'list');
result = coreanal(model.core,'list');

will list information on the core-entries (explained variance etc).

result = coreanal(model.core,'list',10);
coreanal(model.core,'list',10);

will do the same but only for the ten most significant core-entries with the second version (with no output) printing the information to the command window.

result = coreanal(model,'plot');

will make a plot of the core where the size of each core-entry shows the variance explained. If the core is of higher order than three, it is first rearranged to a three-way array.

rotatedcore = coreanal(model,'maxvar');
will rotate the core to maximal variance.

\[
\text{rotatedmodel} = \text{coreanal}(\text{oldmodel}, \text{rotatedcore});
\]

where the input \text{oldmodel} is the original Tucker model structure and \text{rotatedcore} is the output from above. The rotation can be achieved in one step using:

\[
\text{rotatedmodel} = \text{coreanal}(\text{oldmodel}, \text{coreanal}(\text{oldmodel}, 'maxvar'));
\]

See Also

corecalc, tucker
corecalc

Purpose
Calculates the Tucker3 core array given the data array and loadings

Synopsis

```matlab
Core = corecalc(X,loads,orth,Weights,OldCore);
```

Description
Calculates the core array given the data \(X \) and the loadings \(loads \) (component matrices) which are held in a cell (see TUCKER).

Optional input \(orth \) is set to 0 to tell CORECALC that the loadings are NOT orthogonal.

Optional input \(Weights \) allows a weighted least squares solution to be sought.

Optional input \(OldCore \) provides a prior estimate of the core to speed up calculations.

The output \(Core \) is the Tucker3 core.

See Also
corcondia, coreanal, parafac, tucker
corrmap

Purpose
Correlation map with variable regrouping.

Synopsis
```
order = corrmap(data,labels,reord)
order = corrmap(data,reord)
```

Description
CORRMAP produces a pseudocolor map that shows the correlation between variables (columns) in a data set. The function will reorder the variables by KNN clustering if desired.

The input is the data `data` class "double" or "dataset".

Optional input `labels` contains the variable labels when the data is class "double".

Optional input `reord` will cause CORRMAP to keep the original ordering of the variables if set to 0.

The output `order` is a vector of indices with the variable ordering.

`corrmap(data,labels)` produces a psuedocolor correlation map with variable reordering.

`corrmap(data,labels,0)` produces a psuedocolor correlation map without variable reordering.

See Also
`autocor`, `crosscor`
Purpose

Continuum regression for multivariate y.

Synopsis

\[b = \text{cr}(x, y, lv, \text{powers}) \]

Description

CR develops continuum regression models for a matrix of predictor variables (x-block) \(x \), and vector or matrix of predicted variables (y-block) \(y \). Models are calculated for 1 to \(lv \) latent variables for each value of the continuum parameter specified in the row vector \(\text{powers} \). The output is the matrix of regression vectors \(b \).

For a \(y \)-block with \(ny \) variables, \(x \)-block with \(nx \) variables, and \(np \) powers (size of \(\text{powers} \) is 1 by \(np \)) \(b \) is size \((lv*ny*np) \) by \(nx \). The first block in \(b \) corresponds to the first power in \(\text{powers} \) and is \((lv*ny) \) by \(nx \) with the first row corresponding to a 1 latent variable model for the first \(y \) variable.

CR uses the de Jong, Wise & Ricker method for continuum regression (S. de Jong, B. M. Wise and N. L. Ricker, "Canonical Partial Least Squares and Continuum Power Regression," *J. Chemo.*, 15, 85-100, 2001). It is a drastically faster implementation of the Wise and Ricker method used in the previous \text{powerpls}. Note that results are identical for both methods for the univariate \(y \) case but not for the multivariate \(y \), where the results from CR are typically slightly better.

The algorithm used here is usually stable up to a continuum parameter of about 6-8, sometimes as high as 10 depending upon the problem. At powers this high, however, the models have essentially converged to the PCR solution. No instabilities at small powers have been noted.

See Also

\text{crvcvnd}, \text{pcr}, \text{pls}
crcvrnd

Purpose

Cross-validation for continuum regression models using SDEP.

Synopsis

```
[pres, fiterr, mlvp, b] = crcvrnd(x, y, split, itr, lv, pwr, ss, mc)
```

Description

crcvrnd is used to cross-validate continuum regression models given a matrix of predictor variables (x-block) \(x \), matrix or vector of predicted variables (y-block) \(y \), the number of divisions into which to split the data \(split \), the number of iterations of the cross-validation procedure using different re-orderings of the data set \(itr \), maximum number of latent variables \(lv \) and the row vector of continuum regression parameters to consider \(pwr \).

The outputs are the predictive residual error sum of squares (PRESS) matrix \(press \) where each element of the matrix represents the PRESS for a given combination of LVs and continuum parameter, the corresponding fit error \(fiterr \), the number of LVs and power at minimum PRESS \(mlvp \) and the final regression vector or matrix \(b \).

The optional input \(ss \) causes the routine to choose contiguous blocks of data during cross-validation when set to 1. If the optional input \(mc \) is set to 0 the subsets are not mean-centered during cross-validation.

A good smooth PRESS surface can usually be obtained by calculating about 20 models spaced logarithmically between 4 and 1/4 and using 10 to 30 iterations of the cross-validation. A good rule of thumb for dividing the data is to use either the square root of the number of samples or 10, which ever is smaller.

See Also

cr, pcr, pls
crosscor

Purpose
Calculates the crosscorrelation function of two time series.

Synopsis

crcor = crosscor(x,y,n,period,flag,plots)

Description

crcor = crosscor(x,y,n) returns the crosscorrelation function crcor of two time series x and y for a maximum time shift of n sample periods.

crcor = crosscor(x,y,n,period) uses the sampling period period to scale the x-axis on the output plot.

crcor = crosscor(x,y,n,period,flag) with flag set to 1 changes the routine from cross correlation to cross covariance.

Optional input plots suppresses plotting when set to 0.

See Also

autocor, corrmap, wrtpulse
crossval

Purpose

Cross-validation for PCA, PLS, MLR, and PCR.

Synopsis

```matlab
[pres,s,rmsec,rms,h,cm] =
crossval(x,y,rm,cvi,ncomp,out,pre)
```

Description

CROSSVAL performs cross-validation for linear regression (PCR, PLS, MLR) and principal components analysis (PCA). Inputs are the predictor variable matrix `x`, predicted variable `y` (`y` is empty [] for `rm = 'pca'`), regression method `rm`, cross-validation method `cvi`, and maximum number of latent variables / components `ncomp`.

- `rm = 'pca'` performs cross-validation for PCA,
- `rm = 'mlr'` performs cross-validation for MLR,
- `rm = 'pcr'` performs cross-validation for PCR,
- `rm = 'nip'` performs cross-validation for PLS using NIPALS,
- `rm = 'sim'` performs cross-validation for PLS using SIMPLS, and
- `rm = 'lwr'` performs cross-validation for LWR.

`cvi` can be 1) a cell containing one of the cross-validation methods below with the appropriate parameters `{cvm splits iter}`, or 2) a vector representing user-defined cross-validation groups.

```matlab
x = {'loo'}; leave-one-out cross-validation,
x = {'vet' splits}; venetian blinds, or
x = {'con' splits}; contiguous blocks, and
x = {'rnd' splits iter}; random subsets.
```

Except for leave-one-out, all methods require the number of data splits `splits` to be provided. Random data subsets (`'rnd'`) also requires number of iterations `iter`.

For user-defined cross-validation, `cvi` is a vector with the same number of elements as `x` has rows (i.e. `length(cvi) = size(x,1);` when `x` is class “double”, or `length(cvi) = size(x.data,1);` when `x` is class “dataset”) with integer elements, defining test subsets. Each `cvi(i)` is defined as:

- `cvi(i) = -2` the sample is always in the test set,
- `cvi(i) = -1` the sample is always in the calibration set,
- `cvi(i) = 0` the sample is always never used, and
- `cvi(i) = 1,2,3...` defines each subset.

294
Optional variable `out` suppresses plotting of the results when set to 0 {default = 1}. Optional variable `pre` is a cell defining preprocessing to be used on the x- and y-block respectively: `{ppx ppy}` where ppx and ppy are preprocessing structures (For more information see PREPROCESS). `pre` can also be a mean-centering flag; If `pre` is 0 then no preprocessing is done, if `pre` is 1, then mean centering is done on both blocks.

Outputs are the predictive residual error sum of squares (PRESS) `press` for each subset, the cumulative PRESS `cumpress`, the root mean square error of cross validation RMSECV `rmsecv`, the root mean square error of calibration RMSEC `rmsec`, the cross-validated predictions for the y-block (if any) `cvpred`, and the fractional misclassifications `misclassed`. Misclassifications are only reported if the y-block is a logical (ie. discrete classes) vector. When `out` is not 0 the routine also plots both RMSECV and RMSEC.

Examples

```matlab
[press,cumpress] = crossval(x,y,'nip',{'loo'},10);
[press,cumpress] = crossval(x,y,'pcr',{'vet',3},10);
[press,cumpress] = crossval(x,y,'nip',{'con',5},10);
[press,cumpress] = crossval(x,y,'sim',{'rnd',3,20},10);

pre = {preprocess('autoscale') preprocess('autoscale')};
[press,cumpress] = crossval(x,y,'sim',{'rnd',3,20},10,0,pre);

[press,cumpress] = crossval(x,[],'pca',{'loo'},10);
[press,cumpress] = crossval(x,[],'pca',{'vet',3},10);
[press,cumpress] = crossval(x,[],'pca',{'con',5},10);
```

See Also

pca, pcr, pls, preprocess
datahat

Purpose
Calculates the model estimate and residuals of the data.

Synopsis

```matlab
xhat = datahat(model);
[xhat,resids] = datahat(model,data);
```

Description
Given a standard model structure `model` `DATAHAT` computes the model estimate of the data `xhat`. For example, if `model` is a PCA model of a matrix `X_{cal}` such that \(X_{cal} = TP^T + E \), then \(X_{hat} = TP^T \) (i.e. \(X_{cal} = TP^T + E = X_{hat} + E \)).

If optional input `data` is supplied then `DATAHAT` computes the model estimate of `data` that is output in `xhat`. For the PCA model of matrix `X_{cal}`, and `data` is a data matrix `X_{new}` then \(X_{hat} = X_{new}PP^T = T_{new}P^T \). The output `resids` is a matrix with the corresponding residuals `E` \(E = X_{new} - X_{new}PP^T = X_{new}(I-PP^T) \). If `data` is `X_{cal}` then \(X_{hat} = TP^T \) and `resids` is \(E = X_{cal}(I-PP^T) \).

Note that preprocessing in `model` will be performed before the residuals are calculated. If `data` is not provided, only `xhat` is available.

Note that `DATAHAT` works with almost all standard model structures.

See Also

`analysis`, `parafac`
datasetdemo

Purpose

Demonstrates use of the dataset object.

Synopsis

datasetdemo

Description

This demonstration illustrates the creation and manipulation of dataset objects. Functions that are demonstrated include: DATASET, GET, SET, ISA, and EXPLODE.

For more information see help on DATASET, DATASET/SET, DATASET/GET, and DATASET/EXPLODE.

See Also

editds, plotgui
delsamps

Purpose
Delete samples (rows) from data matrices.

Synopsis

 eddata = delsamps(data,samps)
 eddata = delsamps(data',vars)'

Description

eodata = delsamps(data,samps) deletes samps row numbers (samples) from a data matrix data and saves the edited results to data matrix eddata.

eodata = delsamps(data',vars)' deletes vars column numbers (variables) from a data matrix data and saves the edited results to data matrix eddata.

See Also

shuffle, specedit
demos

Purpose

Demo list for the PLS_Toolbox.

Synopsis

demos

Description

DEMOS brings up the Matlab help browser with a list of functions that have demonstration scripts. Clicking on a listed function will display a brief description and information about the function. Along with the description are highlighted text that, when clicked, will run the demo, connect to related information, or open the function in the mfile editor.

See Also

helppls
deresolv

Purpose
Changes high resolution spectra to low resolution.

Synopsis
\[\text{lrspec} = \text{deresolv}(\text{hrs pec}, a) \]

Description
DERESOLV uses a FFT to convolve spectra with a resolution function to make it appear as if it had been taken on a lower resolution instrument. Inputs are the high resolution spectra to be de-resolved \(\text{hrs pec} \) and the number of channels to convolve them over \(a \).

The output is the estimate of the lower resolution spectra \(\text{lrspec} \).

deresolv is useful for standardizing two instruments of different resolution. It can also be used to smooth spectra.

See Also
baseline, savgol, stdfir, stdgen
discrimprob

Purpose

Calculate discriminate probabilities of discrete classes for continuous predicted values.

Synopsis

```matlab
[prob,classes] = discrimprob(y,ypred,prior)
```

Description

DISCRIMPROB examines the predictions of a PLS-D model (PLS-D models are trained on a standard x-block but with a y-block containing discrete class assignments for each sample). The predicted y-value from the PLS-D model will be a continuous variable that can be interpreted as a class similarity index. DISCRIMPROB uses the actual class assignments and the model y-value predictions to create a probability table that indicates, for a given predicted y-value, the probability that the given value belongs to each of the original classes.

Inputs are `y` the original logical classes for each sample, `ypred` the observed continuous predicted values for those samples and `prior` an optional input of the prior probabilities for each class. `prior` should be a vector representing the probability of observing each class in the entire population. Default prior probabilities is 1.

Output `prob` is a lookup matrix consisting of an index of observed y-values in the first column, and the probability of that value being of each class in the subsequent columns. The second output `classes` is the discrete classes observed in y, corresponding to the additional columns of `prob`.

To predict a probability that the observed value `ypred` is in class `classes(n)` use:

```matlab
classprob = interp1(prob(:,1),prob(:,n+1),ypred)
```

See Also

`pls`, `plsdthres`, `simca`
distslct

Purpose

Select samples on the exterior of a data space based on a Euclidean distance.

Synopsis

\[\text{isel} = \text{distslct}(x, \text{nosamps}, \text{flag}) \]

Description

DISTSLCT first identifies a sample in the \(M \) by \(N \) data set \(x \) furthest from the data set mean. Subsequent samples are selected to be simultaneously the furthest from the mean and the selected samples for a total of \(\text{nosamps} \) selected samples. DISTSLCT calls STDSSLCT to find the number of samples up to the rank of the data and uses a distance measure to find additional samples if \(\text{nosamps} \rangle \text{rank}(x) \).

Optional input tells DISTSLCT how many samples STDSSLCT should estimate when \(\text{nosamps} \rangle N \):

1 = STDSSLCT selects \(N-1 \), or
2 = STDSSLCT selects \(N \) \{default\}.

Output \(\text{isel} \) is a vector of length \(\text{nosamps} \) containing the indices of the selected samples.

This routine is used to initialize the selection of samples in the DOPTIMAL function. Although it does not satisfy the d-optimality condition, it is an alternative to doptimal that does not require an inverse or calculation of a determinant.

See Also

doptimal, stdsslct
doptimal

Purpose
Selects samples from a candidate matrix that satisfy the d-optimal condition.

Synopsis

\[\text{isel} = \text{doptimal}(x, \text{nosamps}, \text{iint}, \text{tol}) \]

Description

DOPTIMAL selects a number (nosamps) of samples from a candidate matrix \(x \) that maximizes the determinant of \(\text{det}(x(\text{isel},:)\cdot\cdot\cdot x(\text{isel},:)) \) where \(\text{isel} \) is a vector of indices of the selected samples.

The optional input \(\text{iint} \) is a vector of indices to initialize the optimization algorithm. If \(\text{iint} \) is not input the algorithm is initialized using samples identified as on the exterior of the data set using the DISTSLCT function. This is in contrast to initializing with a random subset used in many algorithms. The reason is that the routine is based on Fedorov's algorithm (de Aguiar, P.F., Bourguignon, B., Khots, M.S., Massart, D.L., and Phan-Than-Luu, R., “D-optimal designs”, Chemo. Intell. Lab. Sys., 30, 199–210, 1995) which requires calculating \(\text{inv}(x(\text{isel},:)\cdot\cdot\cdot x(\text{isel},:)) \), and it is possible that the inverse of a random set will not exist. The routine then exchanges the 'least informative' sample in the selected set with a 'more informative' sample in the candidate set. The optional input \(\text{tol} \) sets the tolerance for minimum increase in the determinant \{default = 1x10^{-4}\}.

Note that \(\text{nosamps} \) must be \(\geq \text{rank}(x) \) (it is necessary but not sufficient that \(\text{nosamps} \geq \text{size}(x,2) \)) for a good solution to be found. This is required so that a good estimate of \(\text{inv}(x(\text{isel},:)\cdot\cdot\cdot x(\text{isel},:)) \) can be obtained. When \(\text{nosamps} < \text{size}(x,2) \) the scores from PCA or PLS can be used where \(\text{nosamps} \geq \) than the number of factors (principal components or latent variables) used. Also, note that the solution can depend on the initial guess and that \(\text{isel} \) does not necessarily represent a global optimum.

Examples

For an input matrix \(x \) that is m by 5

\[
\text{isel5} = \text{doptimal}(x,5);
\text{isel6} = \text{doptimal}(x,6);
\]

See Also

distslct, stdsslct
dp

Purpose

Adds a diagonal line at 45 degrees (slope of 1) to the current plot

Synopsis

 h = dp(lc, flag)

Description

DP can be used to add a line of perfect prediction to plots of actual versus predicted values. Optional input lc can be used to change the line style as in normal plotting (e.g. lc = 'b'). Returns handle of line object.

See Also

ellps, hline, plttern, vline, zline
durbin_watson

Purpose

Criterion for measure of continuity.

Synopsis

\[y = \text{durbin_watson}(x) \]

Description

The durbin watson criteria for the columns of \(x \) are calculated as the ratio of the sum of the first derivative of a vector to the sum of the vector itself. Low values means correlation in variables, high values indicates randomness. Input \(x \) is a column vector or array in which each column represents a vector of interest. Output \(y \) is a scalar or vector of Durbin Watson measures.

See Also

* coda_dw
editds

Purpose
Editor for DataSet Objects.

Synopsis

```latex
editds(dataset)  
editds(command,fig,auxdata)
```

Description

EDITDS is a graphical user interface (GUI) for creating and editing dataset objects. Typing `editds` at the command line with no inputs will display the GUI. To create a new dataset, select New… from the File menu. Calling it with a dataset will display that dataset in a new GUI.

Use menu items to perform common tasks such as Saving and Including/Excluding data. Many of these tasks can also be performed graphically by clicking on the appropriate tab and editing the given control. Most heading controls have mouse-over tool tips to further help identify a particular control or column.

Data can also be plotted from the dataset editor via the View > Plot menu item or using the plot icon on the left side of the Info tab. Data can be edited directly via the Data tab and Variable labels and information can be manipulated via their respective tabs.

See Also

`plotgui`
ellps

Purpose

Plots an ellipse on an existing figure.

Synopsis

ellps(cnt,a,lc,ang,pax,zh)

Description

ELLPS plots an ellipse on an existing figure e.g. an ellipse of constant Hotelling's T^2. The inputs are a 2 element vector containing the ellipse center cnt, and a 2 element vector containing the ellipse axes sizes a. Optional inputs are lc which defines the line color (e.g. '-g'), and ang which defines the angle of rotation from the x-axis {default: ang = 0 radians}.

ellps([4 5],[3 1.5],':g') plots a dotted green ellipse with center (4,5), semimajor axis 3 parallel to the x-axis and semiminor 1.5 parallel to the y-axis.

Optional inputs pax and zh are used when plotting in a 3D figure. pax defines the axis perpendicular to the plane of the ellipse [1 = x-axis, 2 = y-axis, 3 = z-axis], and zh defines the distance along the pax axis to plot the ellipse.

ellps([2 3],[4 1.5],'b',pi/4,3,2) plots an ellipse in a plane perpendicular to the z-axis at a height of $z = 2$.

See Also

dp, hline, vline, zline
evolvfa

Purpose

Perform forward and reverse evolving factor analysis.

Synopsis

\[
[\text{egf}, \text{egr}] = \text{evolvfa}(x\text{dat}, \text{plot}, t\text{dat})
\]

Description

\[[\text{egf}, \text{egr}] = \text{evolvfa}(x\text{dat}) \]
calculates eigenvalues of sub-matrices of \text{xdat} and returns results of the forward analysis in \text{egf} and reverse analysis in \text{egr}.

\[[\text{egf}, \text{egr}] = \text{evolvfa}(x\text{dat}, \text{plot}) \]
allows the user to control plotting options. When \text{plot} is set to 0 the plot of the results is suppressed. Setting \text{plot} equal to 1 \{default\} plots the results.

\[[\text{egf}, \text{egr}] = \text{evolvfa}(x\text{dat}, \text{plot}, t\text{dat}) \]
gives the routine an optional vector \text{tdat} to plot results against.

See Also

ewfa, pca, wtfa
evridebug

Purpose

Checks the PLS_Toolbox installation for problems.

Synopsis

problems = evridebug

Description

EVRIDEBUG runs various tests on the PLS_Toolbox installation to assure that all necessary files are present and not "shadowed" by other functions of the same name. This utility should be run if you experience problems with the PLS_Toolbox.

EVRIDEBUG tests for:

* Missing PLS_Toolbox folders in path,
* Multiple versions of PLS_Toolbox,
* "Shadowed" files (duplicate named files), and
* Duplicate definitions of Dataset object.

The single output problems is a cell containing the text of the problems encountered. If no problems are encountered, problems will be empty.

Examples

>> evridebug

No PLS_Toolbox installation problems were identified.

See Also

evriinstall, evriupdate
evriinstall

Purpose

Install and verify PLS_Toolbox

Synopsis

evriinstall

Description

EVRIINSTALL automates the installation and verification of the PLS_Toolbox. To run evriinstall:

1. Unzip PLS_Toolbox to a local directory (typically C:\MATLAB7\toolbox\).
2. Open Matlab and navigate to the directory created above in the Current Directory window.
3. Type evriinstall at the command line and press Enter.

Installation involves first setting the Matlab Path to include the PLS_Toolbox directory and its subdirectories. The script then runs evridebug to check for potential problems after installation.

See Also

evridebug, evriupdate
evriupdate

Purpose

Check the Eigenvector Research web site for PLS_Toolbox updates.

Synopsis

 outofdate = evriupdate(quiet)

Description

EVRIUPDATE checks the Eigenvector Research web site for the version number of the most up-to-date PLS_Toolbox version. This is compared to the currently installed PLS_Toolbox version and gives a dialog message whether or not a newer version is available.

The optional input quiet is a flag which, when set to 1 (one) will limit evriupdate to reporting only if there is a more current PLS_Toolbox version available (i.e. no message is given if the installed version is up-to-date). When quiet is set to 2 (two), no messages will be reported.

The optional output outofdate will be 0 (zero) if the installed version is up-to-date, 1 (one) if the installed version is out-of-date and -1 if the most current version number could not be determined (usually due to a problem accessing the web site).

See Also

evridebug, evriinstall
ewfa

Purpose

Evolving window factor analysis.

Synopsis

[eigs, skl] = ewfa(dat, window, plots, scl)

Description

The inputs are the data matrix dat and the window width window. The output eigs is the
eigenvalues for each window. The windowed eigenvalues vs. sample number is also plotted.
Note that the eigenvalues on the ends of the record (less than the half width of the window)
are plotted as dashed lines. The output skl is a scale that can be used to plot eigs against.

Optional input plots can be used to suppress plotting when set to 0 {default plots = 1}.
Optional input scl is a scale to plot against. It is also used to construct a new skl.

See Also

evolvfa, pca, wtfa
explode

Purpose

Extracts variables from a structure array.

Synopsis

```plaintext
explode(sdat,mod,txt,out)
options = explode('options')
```

Description

EXPLODE writes the fields of the input structure sdat to variables in the workspace with the same variable names as the field names. If sdat is a standard model structure, only selected information is written to the workspace.

Optional string input `txt` appends a string to the variable output names.

Options

```plaintext
options = a structure array with the following fields:
    name: 'options', name indicating that this is an options structure,
    model: [ 'no' | {'yes'} ] interpret sdat as model if possible, and
    display: [ 'off' | {'on'} ]} display model information.
```

The default options can be retrieved using: `options = explode('options');`.

Examples

For the structure array `x`

```plaintext
>> x.field1 = 2;
>> x.field2 = 3;
>> explode(x)
Input (sdat) is not a recognized model. Exploding as regular structure
>> whos
Name       Size              Bytes  Class          Attributes
field1     1x1              8 double array
field2     1x1              8 double array
x          1x1              264 struct array
```

the variables `field1` and `field2` have been written to the base workspace.

See Also

analysis, modelstruct
factdes

Purpose

Output a full factorial design matrix.

Synopsis

\[\text{desgn} = \text{factdes}(\text{fact}, \text{levl}) \]

Description

The input \text{fact} is the number of factors in the design and the output \text{desgn} is the experimental design matrix.

\text{desgn} = \text{factdes}(\text{fact}); \text{ provides a full factorial two level design.}

Optional input \text{levl} allows for multiple level designs.

\text{desgn} = \text{factdes}(\text{fact}, \text{levl}); \text{ provides a full factorial levl level design \{default levl = 2\}.}

See Also

distslct, doptimal, ffacdes1, stdsslct
fastnnls

Purpose

Fast non-negative least squares.

Synopsis

\[
[b, xi] = fastnnls(x, y, tol, b0, const, xi);
\]

Description

Inputs are the matrix of predictor variables \(x \), vector of predicted variable \(y \), and optional inputs \(tol \) the tolerance on the size of a regression coefficient that is considered zero (if \(tol = 0 \) the default is used \(tol = \max(\text{size}(x)) * \text{norm}(x, 1) * \text{eps} \)), and an initial guess for the regression vector \(b0 \). The output is the non-negatively constrained least squares solution \(b \).

FASTNNLS is fastest when a good estimate of the regression vector \(b0 \) is input. This eliminates much of the computation involved in determining which coefficients will be nonzero in the final regression vector. This makes it very useful in alternating least squares routines. Note that the input \(b0 \) must be a feasible (i.e. nonnegative) solution.

See Also

mcr, parafac
ffacdes1

Purpose

Output a fractional factorial design matrix.

Synopsis

 desgn = ffacdes1(k,p)

Description

FFACDES1 outputs a $2^{(k-p)}$ fractional factorial design of experiments. The design is constructed such that the highest order interaction term is confounded. This is one way to select a fractional factorial. Input k is the total number of factors in the design and p is the number of confounded factors (default: $p = 1$). Note that it is required that $p < k$. Output desgn is the experimental design matrix.

See Also

distslct, doptimal, factdes, stdsslct
figmerit

Purpose

Analytical figures of merit for multivariate calibration.

Synopsis

\[
[nas, nnas, sens, sel] = figmerit(x, y, b);
\]

Description

Calculates analytical figures of merit for PLS and PCR standard model structures. Inputs are the preprocessed (usually centered and scaled) spectral data \(x\), the preprocessed analyte data \(y\), and the regression vector, \(b\). Note that for standard PLS and PCR structures \(b = \text{model.reg}\).

The outputs are the matrix of net analyte signals \(nas\) for each row of \(x\), the norm of the net analyte signal for each row \(nnas\) (this is corrected to include the sign of the prediction), the matrix of sensitivities for each sample \(sens\), and the vector of selectivities for each sample \(sel\) (\(sel\) is always non-negative).

Note that the "noise-filtered" estimate present in previous versions is no longer used because an improved method for calculating the net analyte vector makes it redundant.

Examples

Given the 7 LV PLS model:

\[
\text{modl} = \text{pls}(x, y, 7);
\text{Rhat} = \text{modl.loads}(1,1) * \text{modl.loads}(2,1)';
[nas, nnas, sens, sel, nfnas] = \text{figmerit}(x, y, Rhat);
\]

Given the 5 PC PCR model:

\[
\text{modl} = \text{pcr}(\text{auto}(x), \text{auto}(y), 5);
\text{Rhat} = \text{modl.loads}(1,1) * \text{modl.loads}(2,1)';
[nas, nnas, sens, sel, nfnas] = \text{figmerit}(\text{auto}(x), \text{auto}(y), Rhat);
\]

See Also

pcr, pls
fir2ss

Purpose
Convert a finite impulse response model into an equivalent state-space model.

Synopsis

```
[phi, gamma, c, d] = fir2ss(b)
```

Description

`[phi, gamma, c, d] = fir2ss(b)` takes a vector of FIR coefficients `b` and outputs the `phi`, `gamma`, `c` and `d` matrices for an equivalent discrete state-space model.

See Also

`autocor`, `crosscor`, `plspulsm`, `wrtpulse`
frpcr

Purpose

Full-ratio PCR calibration and prediction.

Synopsis

```
model = frpcr(x,y,ncomp,options)    %calibration
pred  = frpcr(x,model,options)      %prediction
valid = frpcr(x,y,model,options)    %validation
options = frpcr('options')
```

Description

FRPCR calculates a single full-ratio PCR model using the given number of components `ncomp` to predict `y` from measurements `x`. Random multiplicative scaling of each sample can be used to aid model stability. Full-Ratio PCR models are based on the simultaneous regression for both `y`-block prediction and scaling variations (such as those due to pathlength and collection efficiency variations). The resulting PCR model is insensitive to absolute scaling errors.

NOTE: For best results, the x-block should not be mean-centered.

Inputs are `x` the predictor block (2-way array or DataSet Object), `y` the predicted block (2-way array or DataSet Object), `ncomp` the number of components to to be calculated (positive integer scalar) and the optional options structure, `options`.

The output of the function is a standard model structure `model`. In prediction and validation modes, the same model structure is used but predictions are provided in the `model.detail.pred` field.

Although the full-ratio method uses a different method for determination of the regression vector, the fundamental idea is very similar to the optimized scaling 2 method as described in:

Options

```
options = a structure with the following fields:
    name: 'options', name indicating that this is an options structure,
    pathvar: [ {0.5} ] standard deviation for random multiplicative scaling. A value of zero will disable the random sample scaling but may increase model sensitivity to scaling errors,
    useoffset: [ {'off'} | 'on' ] flag determining use of offset term in regression equations (may be necessary for mean-centered x-block),
```
display: [{'off'} | 'on'] governs level of display to command window,
plots: [{'none'} | 'intermediate' | 'final'] governs level of plotting,
preprocessing: {[] []} cell of two preprocessing structures (see PREPROCESS)
 defining preprocessing for the x- and y-blocks.
algorithm: [{'direct'} | 'empirical'] governs solution algorithm. Direct
 solution is fastest and most stable. Only empirical will work on single-
 factor models when useoffset is 'on', and
blockdetails: [{'standard'} | 'all'] extent of predictions and raw residuals
 included in model. 'standard' only uses y-block, and 'all' uses x-
 and y-blocks.

The default options can be retrieved using: options = frpcr('options');

See Also

frpcrengine, mscorr, pcr
frpcrengine

Purpose

Engine for full-ratio PCR; also known as optimized scaling 2 PCR.

Synopsis

\[
[b, ssq, u, sampscales, msg, options] = frpcrengine(x, y, ncomp, options); \] %calibration
\[
[yhat] = frpcrengine(x, b); \] %prediction

Description

Calculates a single full-ratio, FR, PCR model using the given number of components \(n\text{comp} \) to predict \(y \) from measurements \(x \). Random multiplicative scaling of each sample can be used to aid model stability. Full-Ratio PCR models are based on the simultaneous regression for both \(y \)-block prediction and scaling variations (such as those due to pathlength and collection efficiency variations). The resulting PCR model is insensitive to scaling errors.

NOTE: For best results, the \(x \)-block should not be mean-centered.

Although the full-ratio method uses a different method for determination of the regression vector, the fundamental idea is very similar to the optimized scaling 2 method as described in:

For calibration mode, inputs include the \(x \)-block data, \(x \), \(y \)-block data, \(y \), and number of components \(n\text{comp} \). The optional input \(options \) is described below. Calibration mode outputs include:

\[
\begin{align*}
 b &= \text{the full-ratio regression vector for a SINGLE MODEL at the given number of PCs}, \\
 ssq &= \text{PCA variance information,} \\
 u &= \text{the } x \text{-block loadings,} \\
 sampscales &= \text{random scaling used on the samples,} \\
 msg &= \text{warning messages, and} \\
 options &= \text{the modified options structure.}
\end{align*}
\]

For prediction mode, inputs are the \(x \)-block data, \(x \), and the full-rational regression vectors, \(b \). The one output is the predicted \(y \), \(yhat \).

Options

\[
options = \text{a structure with the following fields:}
\]

name: 'options', name indicating that this is an options structure,
pathvar: [{0.5}] standard deviation for random multiplicative scaling. A value of zero will disable the random sample scaling but may increase model sensitivity to scaling errors.

useoffset: [{'off'} | 'on'] flag determining use of offset term in regression equations (may be necessary for mean-centered x-block),

display: ['off' | {'on'}] governs level of display to command window,

plots: [{'off'} | 'intermediate'] governs level of plotting,

algorithm: [{'direct'} | 'empirical'] governs solution algorithm. Direct solution is fastest and most stable. Only empirical will work on single-factor models when useoffset is 'on', and

tolerance: [{5e-5}] extent of predictions and raw residuals included in model. 'standard' only uses y-block, and 'all' uses x- and y-blocks, and

maxiter: [{100}] maximum number of iterations.

The default options can be retrieved using: options = frpcrengine('options');

See Also

frpcr, mscorr, pcr
fstat

Purpose
Inverse F test and F test.

Synopsis

\[fstat = \text{fstat}(p,n,d,flag) \]

Description

\(fstat = \text{ftest}(p,n,d) \) or \(fstat = \text{ftest}(p,n,d,1) \) calculates the F statistic \(fstat \) given the probability point \(p \) and the number of degrees of freedom in the numerator \(n \) and denominator \(d \).

\(fstat = \text{ftest}(p,n,d,2) \) calculates the probability point \(fstat \) given the F statistic \(p \) and the number of degrees of freedom in the numerator \(n \) and denominator \(d \).

Examples

\(a = \text{ftest}(0.05,5,8); \) returns the value 3.6875 for \(a \), and

\(a = \text{ftest}(3.6875,5,8,2); \) returns the value 0.050 for \(a \).

See Also

chilimit, statdemo, ttestp
fullsearch

Purpose
Exhaustive Search Algorithm.

Synopsis

[desgn,fval] = fullsearch(fun,X,Nx_sub,P1,P2, ...);

Description

Fullsearch selects the Nx_sub variables in the M by Nx matrix X that minimizes fun. This can be used for variable selection. The algorithm should only be used for small problems because calculation time increases significantly with the size of the problem. fun is the name of the function (defined as a character string of an inline object) to be minimized. The function is called with the FEVAL function as follows: $feval(fun,X,P1,P2,....)$, where X is the first argument for fun and $P1, P2, ...$ the additional arguments of fun.

The output $desgn$ is a matrix (class “logical”) with the same size as X (M by Nx) with 1’s where the variables where selected and 0’s otherwise. Output $fval$ has the M corresponding values of the objective function sorted in ascending order.

Examples

find which 2 of 3 variables minimizes the inline function g:

$$x = \begin{bmatrix} 0:10 \end{bmatrix};$$
$$x = \begin{bmatrix} x & x.^2 & \text{randn}(11,1)*10 \end{bmatrix};$$
$$y = x*[1 1 0];$$
$$g = \text{inline(’sum((y-x*(x\y)).^2)’);}$$
$$[d,fv] = \text{fullsearch}(g,x,2,y);$$

find the 2 variables that minimize the cross-validation error for PCR, noting that the output from CROSSVAL is a vector and g should return a scalar

load plsdatad
$$x = \text{xblock1.data};$$
$$y = \text{yblock1.data};$$
$$g = \text{inline(’min(sum(crossval(x,y,’pcr’),{’con’ 3});1,0))))’};’x’,’y’);$$
$$[d,fv] = \text{fullsearch}(g,x,2,y); \%\text{takes a while if Nx_sub is > 2}$$

See Also

calibsel, crossval, genalg
gaselctr

Purpose

Genetic algorithm for variable selection with PLS.

Synopsis

\[
\text{model} = \text{gaselctr}(x, y, \text{options})
\]
\[
[\text{fit}, \text{pop}, \text{avefit}, \text{bstfit}] = \text{gaselctr}(x, y, \text{options})
\]
\[
\text{options} = \text{gaselctr}('\text{options}')
\]

Description

GASELCTR uses a genetic algorithm optimization to minimize cross validation error for variable selection.

INPUTS:

- \(x\) = the predictor block (x-block), and
- \(y\) = the predicted block (y-block) (note that all scaling should be done prior to running GASELCTR).

Options

\[\text{options} = \text{a structure array with the following fields:}\]
- \text{name: 'options', name indicating that this is an options structure,}
- \text{popsize: \{64\} the population size (16\(\leq\)np\(\leq\)256 and np must be divisible by 4),}
- \text{maxgenerations: \{100\} the maximum number of generations (25\(\leq\)mg\(\leq\)500),}
- \text{mutationrate: \{0.005\} the mutation rate (typically 0.001\(\leq\)mt\(\leq\)0.01),}
- \text{windowwidth: \{1\} the number of variables in a window (integer window width),}
- \text{convergence: \{50\} percent of population the same at convergence (typically cn=80),}
- \text{initialterms: \{30\} percent terms included at initiation (10\(\leq\)bf\(\leq\)50),}
- \text{crossover: \{2\} breeding cross-over rule (cr = 1: single cross-over; cr = 2: double cross-over),}
- \text{algorithm: \['mlr' \ | \{ 'pls' \} \]} regression algorithm,
- \text{ncomp: \{10\} maximum number of latent variables for PLS models,}
- \text{cv: \['rnd' \ | \{ 'con' \} \]} cross-validation option ('rnd': random subset cross-validation; 'con': contiguous block subset cross-validation),
- \text{split: \{5\} number of subets to divide data into for cross-validation,}
- \text{iter: \{1\} number of iterations for cross-validation at each generation,}
- \text{preprocessing: \{[] []\} a cell containing standard preprocessing structures for the X- and Y-blocks respectively (see PREPROCESS),}
- \text{reps: \{1\} the number of replicate runs to perform,}
target: a two element vector \([target_min\ target_max]\) describing the target range for number of variables/terms included in a model \(n\). Outside of this range, the penalty slope option is applied by multiplying the fitness for each member of the population by:
\[
penalty_slope*(target_min-n) \quad \text{when } n<target_min, \quad \text{or}
penalty_slope*(n-target_max) \quad \text{when } n>target_max.
\]

Field \(target\) is used to bias models towards a given range of included variables (see \(penalty_slope\) below),

\(target_pct\): \{1\} flag indicating if values in field \(target\) are given in percent of variables (1) or in absolute number of variables (0), and

\(penalty_slope\): \{0\} the slope of the penalty function (see \(target\) above).

The default options can be retrieved using: \(options = gaslctr('options');\)

OUTPUT:

- \(model =\) a standard GENALG model structure with the following fields:
 - \(model_type\): 'GENALG' This field will always have this value,
 - \(datasource\): \{[1x1 struct] [1x1 struct]\}, structures defining where the X- and Y-blocks came from
 - \(date\): date stamp for when \(GASELCTR\) was run,
 - \(time\): time stamp for when \(GASELCTR\) was run,
 - \(info\): 'Fit results in "rmsecv", population included variables in "icol"', information field describing where the fitness results for each member of the population are contained,
 - \(rmsecv\): fitness results for each member of the population, for \(XMxN\) and \(Mp\) unique populations at convergence then \(rmsecv\) will be \(1xMp\),
 - \(icol\): each row of \(icol\) corresponds to the variables used for that member of the population (a 1 [one] means that variable was used and a 0 [zero] means that it was not), for \(XMxN\) and \(Mp\) unique populations at convergence then \(icol\) will be \(Mp\times N\), and
 - \(detail\): \{[1x1 struct]\}, a structure array containing model details including the following fields:
 - \(avefit\): the average fitness at each generation,
 - \(bestfit\): the best fitness at each generation, and
 - \(options\): a structure corresponding to the options discussed above.

Examples

To use mean centering outside the genetic algorithm (no additional centering will be performed within the algorithm) do the following:

\[
x2 = mncn(x);
y2 = mncn(y);
[fit, pop] = gaslctr(x2, y2);
\]
To use mean centering inside the genetic algorithm (centering will be performed for each cross-validation subset) do the following:

```matlab
options = gaselctr('options');
options.preprocessing{1} = preprocess('default', 'mean center');
options.preprocessing{2} = preprocess('default', 'mean center');
[fit, pop] = gaselctr(x2, y2, options);
```

See Also

calibsel, fullsearch, genalg, genalgplot
gcluster

Purpose

Synopsis

\[\text{gcluster}(\text{data}, \text{labels}) \]

Description
gcluster(\text{data}) performs a cluster analysis on the data matrix \text{data} using K-means or K-nearest neighbor clustering and plots a dendrogram showing distances between the samples. gcluster is a graphical user interface that calls the function cluster. The user can choose cluster method (K-means or KNN), and data scaling options. PCA can also be used on the data with distances based on raw scores or on a Mahalanobis distance measure.

gcluster(\text{data}, \text{labels}) plots on the dendrogram sample names contained in the matrix of text \text{labels}. \text{labels} can be entered as a matrix where each row is a label in single quotes and each label has the same number of characters.

Note: Calling gcluster with no inputs starts the graphical user interface (GUI) for this analysis method.

See Also
cluster, simca
genalg

Purpose

Genetic algorithm for variable selection to optimize model predictive ability with graphical user interface.

Synopsis

\[
\text{genalg}(\text{xdat}, \text{ydat})
\]

Description

GENALG performs variable selection using a genetic algorithm. The function creates a graphical user interface that allows the user to load data from the workspace and select all of the GA algorithm optional parameters (GASELCTR is a command-line version). A wide range of GA settings can be selected from the GUI. Please see GASELCTR for a description of each option.

Optional inputs are the training data consisting of a matrix of predictor variables \(\text{xdat} \) and column vector of predicted variable \(\text{ydat} \). (The number of rows in \(\text{xdat} \) and \(\text{ydat} \) must be the same). If GENALG is called with no inputs, \(\text{xdat} \) and \(\text{ydat} \) can be loaded using the File menu.

In addition to various plots, the GUI can produce and save the results in a model structure that is the same as that returned by GASELCTR. Please see GASELCTR for a description of the model. Also, if “settings” are saved from GENALG this is the same as the options structure discussed in GASELCTR.

Examples

\[
\begin{align*}
\text{x2} &= \text{mncn}(\text{x}); \\
\text{y2} &= \text{mncn}(\text{y}); \\
\text{genalg}(\text{x2}, \text{y2})
\end{align*}
\]

See Also

calibsel, fullsearch, gaseLctr, genalgplot
genalgplot

Purpose

Selected variable plot, color-coded by RMSECV for GA results.

Synopsis

```
indices = genalgplot(fit, pop, spectrum, xaxis, xtitle)
indices = genalgplot(results, spectrum, xaxis, xtitle)
```

Description

An interactive plotting routine which displays the results of a genetic algorithm (GA) analysis. GENALGPLOT can aid in identifying patterns of variables that improve model prediction (as estimated by RMSECV). The results of GA analysis include the final unique "population" which is a $M \times N$ matrix where M is the number of members in the population and N is the number of original variables in the predictor block. Each row (member) of the population corresponds to a regression model where a column with a “1” indicates that variable was included in the model and a “0” indicates that the variable was not included. The RMSECV for each model characterized its prediction performance.

The user selects a subset of the population from a plot of RMSECV versus the total number of included variables for each member of the population. The selected results are displayed in a plot that shows which variables were included for each member in the subset and its corresponding RMSECV. The plot is sorted with the best-performing individuals at the bottom of the plot and the worst at the top.

GENALGPLOT is most useful when many replicate GA runs have been performed (see GENALG and GASELCTR) with low settings on the maximum number of generations (maxgenerations) or % at convergence (convergence).

Required inputs are `fit`, the RMSECV fit results from GASELCTR (or `rmsecv` from a GENALG results structure), and `pop`, the logical matrix of included variables for all individuals in the final population (or `icol` from a GENALG results structure). Optional inputs include `spectrum`, a spectrum to plot on the final "included variables" plot for reference, `xaxis`, the variable axis scale, and `xtitle`, the x-axis label for the final plot (e.g. xaxis units).

The one output is the indicies of the selected individuals (rows of `pop`).

Examples

Given the GENALG results structure `gamodel`, the following would plot the results:

```
genalgplot(gamodel.rmsecv, gamodel.icol)
```

See Also
genalg, gaselctr
getdatasource

Purpose

Extract summary information about a DataSet.

Synopsis

\[\text{[out1, out2,...]} = \text{getdatasource(dataset1, dataset2,...)} \]

Description

The input(s) \(\text{dataset1, dataset2,...} \) are dataset objects. GETDATASOURCE returns structures containing useful summary information about each DataSet including the contents of the DataSet fields: name, author, date, and moddate. Also returned in the structure is the size of the data field.

See Also

dataset/dataset, dataset/subsref, modelstruct
glsw

Purpose

Calculate or apply Generalized Least Squares weighting.

Synopsis

\[\text{modl} = \text{glsw}(x,a) \]; \hspace{1cm} \%GLS on matrix
\[\text{modl} = \text{glsw}(x1,x2,a) \]; \hspace{1cm} \%GLS between two data sets
\[\text{modl} = \text{glsw}(x,y,a) \]; \hspace{1cm} \%GLS on matrix in groups based on y
\[xt = \text{glsw}(\text{newx},\text{modl},\text{options}) \]; \hspace{1cm} \%apply correction

Description

Uses Generalized Least Squares to down-weight variable features identified from the singular value decomposition of a data matrix. The input data usually represents measured populations which should otherwise be the same (e.g. the same samples measured on two different analyzers or using two different solvents) and can be input in one of several forms, as explained below.

If the SVD of the input matrix \(x \) is \(X=USV^T \) then the deweighting matrix is estimated with the following pseudo-inverse \(W= U \text{diag}(\sqrt{1/(\text{diag}(S)/a^2+1)}))V^T \), where the center term defines \(S_{\text{inv}} \). The adjustable parameter \(a \) is used to scale the singular values prior to calculating their inverse. As \(a \) gets larger, the extent of deweighting decreases (because \(S_{\text{inv}} \) approaches 1). As \(a \) gets smaller (e.g. 0.1 to 0.001) the extent of deweighting increases (because \(S_{\text{inv}} \) approaches 0) and the deweighting includes increasing amounts of the the directions represented by smaller singular values.

A good initial guess for \(a \) is \(1 \times 10^{-2} \) but will vary depending on the covariance structure of \(X \) and the specific application.

For calibration, inputs can be provided by one of three methods:

1) \(x = \) data matrix containing features to be downweighted, and
 \(a = \) scalar parameter limiting downweighting \(\{\text{default} = 1 \times 10^{-2}\} \).

2) \(x1 = \) a \(M \times N \) data matrix and
 \(x2 = \) a \(M \times N \) data matrix.
 The row-by-row differences between \(x1 \) and \(x2 \) will be used to estimate the downweighting.
 \(a = \) scalar parameter limiting downweighting \(\{\text{default} = 1 \times 10^{-2}\} \).

3) \(x = \) a \(M \times N \) data matrix,
 \(y = \) column vector with \(M \) rows which specifies sample groups in \(x \) within which differences should be downweighted, and
 \(a = \) scalar parameter limiting downweighting \(\{\text{default} = 1 \times 10^{-2}\} \).
When applying a GLSW model the inputs are \(\text{newx} \), the x-block to be deweighted, and \(\text{modl} \), a GLSW model structure.

Outputs are \(\text{modl} \), a GLSW model structure, and \(\text{xt} \), the deweighted x-block.

See Also

`pca`, `pls`, `preprocess`, `osccalc`
gram

Purpose

Generalized rank anihilation method.

Synopsis

[ord1,ord2,ssq,aeigs,beigs] = gram(a,b,tol,scl1,scl2,out)

Description

GRAM determines the joint invariant subspaces common to the two input matrices a and b, the ratio of their magnitudes ssq, and the response in both modes/orders ord1 and ord2. GRAM assumes that the input matrices a and b are bilinear, i.e. are the summation over outer products.

Inputs are the two response matrices a and b, and the number of factors to calculate or tolerance on the ratio of smallest to largest singular value tol. Optional inputs scl1 and scl2 are scales to plot against when producing plots of the response in each mode/order. Optional input out suppresses plotting and printing of results to the command window when set to 0 {default out = 1}.

Outputs are the pure component responses in each mode ord1 and ord2, the table of eigenvalues and their ratios ssq, and the eigenvalues for each matrix aeigs and beigs.

See Also

mpca, parafac, parafac2, tld
gscale

Purpose

Performs group, or block, scaling of submatrices of a single matrix as in MPCA.

Synopsis

\[
\text{[gxs,mxs,stdxs] = gscale(xin,numblocks)}
\]

Description

GSSCALE scales an input matrix \(xin\) such that the columns have mean zero, and variance in each block/sub-matrix relative to the total variance in \(xin\) equal to one. The purpose is to provide equal sum-of-squares weighting to each block in \(xin\).

Inputs are a matrix \(xin\) (class "double") and the number of sub-matrices or blocks \(numblocks\). Note that \(\text{size(xin,2)/numblocks}\) must be an integer. If \(numblocks\) is not included, it is assumed to 1 i.e. the matrix \(xin\) is treated as a single block.

Outputs are the scaled matrix (\(gxs\)), a rowvector of means (\(mxs\)), and a row vector of "block standard deviations" \(stdxs\).

Examples

Scale a matrix \(a\) that has two blocks augmented together:

\[
>> a = \begin{bmatrix} 1 & 2 & 3 & 11 & 12 & 13 \\ 4 & 5 & 6 & 14 & 15 & 16 \\ 7 & 8 & 9 & 17 & 18 & 19 \end{bmatrix}
\]

\[
>> [gxs,mxs,stdxs] = gscale(a,2);
\]

\[
>> gxs
\]

\[
-0.5774 -0.5774 -0.5774 -0.5774 -0.5774 -0.5774 \\
0 0 0 0 0 0 \\
0.5774 0.5774 0.5774 0.5774 0.5774 0.5774
\]

\[
>> mxs
\]

\[
4 5 6 14 15 16
\]

\[
>> stdxs
\]

\[
3 3 3 3 3 3
\]

See Also

auto, gscaler, mncn, m pca, scale, unfoldm
gscaler

Purpose

GSCALER Applies group/block scaling to submatrices of a single matrix.

Synopsis

\[gys = \text{gscaler}(yin,\text{numblocks},mxs,stdxs) \]

Description

Inputs are a matrix \(yin \) (class "double"), the number of sub-matrices or blocks \(\text{numblocks} \), an offset vector \(mxs \), and a scale vector \(stdxs \). See GSCALE for descriptions of \(mxs \) and \(stdxs \). Note that \(\text{size}(yin,2)/\text{numblocks} \) must be an integer and will most often have the same value as input \(\text{numblocks} \) in the call to GSCALE that returned \(mxs \) and \(stdxs \).

Examples

Scale a matrix \(a \) that has two blocks augmented together using GSCALE:

\[
\begin{bmatrix}
1 & 2 & 3; 4 & 5 & 6; 7 & 8 & 9
\end{bmatrix}
\begin{bmatrix}
11 & 12 & 13; 14 & 15 & 16; 17 & 18 & 19
\end{bmatrix}
\]

\[
\begin{bmatrix}
gxs & mxs & stdxs
\end{bmatrix}
\]

Now scale a new matrix \(b \) that has two blocks augmented together:

\[
\begin{bmatrix}
2 & 3 & 4; 4 & 5 & 6; 6 & 7 & 8
\end{bmatrix}
\begin{bmatrix}
10 & 11 & 12; 14 & 15 & 16; 18 & 19 & 20
\end{bmatrix}
\]

\[
\begin{bmatrix}
gys & \text{mxs} & \text{stdxs}
\end{bmatrix}
\]

See Also
auto, gscale, mncn, m pca, scale, unfoldm
gselect

Purpose

Selects subset of plotted line object points using a variety of interactive graphical modes.

Synopsis

```plaintext
selected = gselect(mode, TargetHandle, modalwindow)
[x,y]    = gselect(mode, TargetHandle, modalwindow)
```

Description

GSELECT is a general utility which allows user-selection of plotted objects (points, line segments, areas of images, etc.). A variety of selection modes can be used on various types of plots. Each mode allows the user to select an area or range of the current axes. After selection is complete, the function returns a cell array that contains one cell for each line or image object on the axes. These cells contain a binary (true/false) array representing the selected points of each object.

The input `mode` is a string representing the selection mode. This governs how GSELECT selects objects in a figure. `mode` can be one of the following strings {default = 'rbbox'}:

- `'x'`: select a single x-axis position (snaps-to line x-data),
- `'y'`: select a single y-axis position (snaps-to line y-data),
- `'xs'`: select range of x-axis positions (snaps-to line x-data),
- `'ys'`: select range of y-axis positions (snaps-to line y-data),
- `'rbbox'`: select points inside a standard rubber-band box {default },
- `'polygon'`: select points inside a polygon (user selects corners),
- `'paint'`: drag a broad line across points for selection,
- `'nearest'`: select single nearest point,
- `'all'`: selects all points (no user interaction required), and
- `'none'`: selects no points (no user interaction required).

Optional input `TargetHandle` is the handle or handles of objects to test for selection. The default is all lines, patches, surfaces, and images. The optional input `modalwindow` is a flag which, when set to 1, indicates that the figure should be made "modal" during selection (a modal window can not be interrupted by other actions) {default = 0}.

The output is a cell array selection. Each cell in selection will be equal in length to the data used to create the corresponding object. For example, if a vector containing 30 points was plotted, the resulting cell will be a vector of 30 binary values. Each selected point on that object will be represented by a value of 1 (one) in the cell, unselected objects by a value of 0 (zero).
If two outputs \([x, y]\) are requested, GSELECT does not test objects for selection and simply returns the \(x\) and \(y\) points defining the selected area.

Examples

Example 1. Plot a vector of 10 random values and let the user select from these points using the standard rubber-band box.

```matlab
plot(randn(10,3), randn(10,3), '.'); slct = gselect('rbbox')
```

The output will be something like:

```matlab
slct = 
1x10 uint8
>> slct{1}
ans =
0 0 0 0 1 1 0 1 0 0
>> find(slct{1})
ans =
5 6 8
```

indicating that points 5, 6 and 8 were selected by the user.

Example 2. Plot a small image and let the user select a sub-range using the polygon tool.

```matlab
imagesc(randn(6,6)); slct = gselect('polygon')
```

The output will be something like:

```matlab
slct =
6x6 uint8
>> slct{1}
ans =
0 0 0 0 0 0
0 1 0 0 0 0
0 1 1 1 0 0
0 1 1 1 0 0
0 1 0 1 1 0
0 1 0 1 0 0
```

indicating the "n" shaped region selected by the user.

See Also

plotgui
helppls

Purpose

Starts the MATLAB help browser with PLS_Toolbox topics.

Synopsis

```
helppls
```

Description

HELPPLS brings up the MATLAB help browser with a list of topics for installing and using the PLS_Toolbox. To access a particular topic simply click on its text.

Use the arrow buttons in the upper left corner of the window to navigate forward and backward (similar to a web browser). Some of the Topics may link you to a Documentation page about a particular function in the PLS_Toolbox. From here you can navigate to related topics by clicking on See Also items or to the next topic (in alphabetical order) by clicking its text in the yellow highlighted header/footer section.

See Also

`readme`
hline

Purpose

Place a horizontal line in an existing figure.

Synopsis

```matlab
hline(y,lc)
```

```matlab
h = hline(y,lc)
```

Description

HLINE draws a horizontal line on an existing figure from the left axis to the right axis at a height, or heights, defined by y which can be a scalar or vector. If no input is used for y the default value is zero. The optional input variable lc can be used to define the line style and color as in normal plotting.

Examples

```matlab
hline(1.4,'--b')
```

plots a horizontal dashed blue line at y = 1.4.

See Also

dp, ellps, plot, plttern, vline, zline
imagegui

Purpose

Interface for Exploring Image PCA Scores.

Synopsis

 imagegui

Description

Models created by IMGPCA can be explored using IMAGEGUI. The function creates a set of linked score density plots along with a pseudocolor image based on the scores on the first 3 PCs. Users can select areas on any of the plots, and the pixels selected will be highlighted in the other plots.

IMAGEGUI can also be used to select data from the model as the original pixel indices of the data associated with selected areas can be saved to the workspace. Indices are saved as a cell array with each successive selection being the next cell in the array.

See Also

contrastmod, imread, imgselct, imgpca, imgsima, simcapr
imgpca

Purpose

Principal Components Analysis of Multivariate Images.

Synopsis

```matlab
model = imgpca(mwa,scaling,nocomp)
newmod = imgpca(mwa,model,plots)
```

Description

IMGPCA uses principal components analysis to make pseudocolor maps of multivariate images. The input is the multivariate image `mwa`.

Optional inputs are `scaling` the scaling to be used,
```
    scaling = 'auto', uses autoscaling {default},
    scaling = 'mncn', uses mean centering, and
    scaling = 'none', uses no scaling.
```

and the number of PCs to calculate `nocomp`.

It is assumed that the image (mwa) is a 3 dimensional \((MxNxP)\) array where each image is \(MxN\) pixels and there are \(P\) images. IMGPCA presents each scores, residual, and \(T^2\) matrix as a pseudocolor image. If 3 or more PCs are selected (\(nocomp\geq3\)), a composite of the first three PCs is shown as an rgb image, with red for the first PC, green for the second, and blue for the third.

The output `model` is a structure with the following fields:
```
xname: input data name,
name: type of model, always 'IPCA',
date: date of model creation,
time: time of model creation,
size: dimensions of input data,
nocomp: number of PCs in model,
scale: type of scaling used,
means: mean vector for PCA model,
stds: standard deviation vector for PCA model,
ssq: variance captured table data,
scores: PCA scores stored as \(MxNx\text{nocomp}\) array (uint8),
range: original range of PCA scores before mapping to uint8,
loads: PCA loadings,
res: PCA residuals stored as \(m x n\) array (uint8),
```
reslim: Q limit,
 tsq: PCA T^2 values stored as $M \times N$ array (unit8), and
 tsqlim: T^2 limit.

Note that the scores, residuals and T^2 matrices are stored as unsigned 8 bit integers (uint8) scaled so their range is 0 to 255. These can be viewed with the IMAGE function, but be sure the current colormap has 256 colors. For example, to view the scores on the second PC using the jet colormap:

 image(model.scores(:,:,2)), colormap(jet(256)), colorbar

See Also

contrastmod, imagegui, imread, imgselct, imgsimca, isimcapr
imgselct

Purpose
Select an area on an image and return the pixel indices.

Synopsis

```matlab
[xinds,yinds] = imgselct
```

Description
When invoked, IMGSELCT allows the user to draw a polygon on an image using the mouse. To close the polygon a "return" is used. The x indices xinds and y indices yinds are returned.

See Also
contrastmod, imagegui, imread, imgpca, imgsimca, isimcapr
imgsimca

Purpose

SIMCA Classification for Multivariate Images.

Synopsis

```matlab
model = imgsimca(img,data)
newmod = imgsimca(data,model)
```

Description

This function allows the user to build SIMCA class models by outlining areas on a reference image `img` that correspond to areas on a multivariate image `data`. This image must be the same size (pixels by pixels) as the multivariate image data but can have a different depth (possibly due to having preprocessed the original data with `IMGPCA`).

The output is a structure array `model` which may be applied to new images with `ISIMCAPR` or `IMGSIMCA`. The fields of `model` are:

- `imgname`: name of original image variable,
- `mwaname`: name of original multivariate image data,
- `name`: model type, always 'IMGSIMCA',
- `date`: date stamp,
- `time`: time stamp,
- `size`: size of the image data,
- `simcamod`: simca model parameters (see SIMCA),
- `in_class`: array which gives pixels within 95% Q limits for each class,
- `closest_class`: array which gives closest class for each pixel,
- `rqmat`: reduced Q values for all classes for all pixels, and
- `rtsqmat`: reduced T² values for all classes for all pixels.

Examples

To construct an image simca (IMGSIMCA) model

```matlab
model = imgsimca(img,data);
```

To make class predictions on a new multivariate image `data` use the model developed in IMGSIMCA and then call IMGSIMCA as

```matlab
newmod = imgsimca(data,model);
```

See Also
contrastmod, imagegui, imread, imgselect, imgpca, isimcapr
isimcapr

Purpose

Applies IMGSIMCA models to new images.

Synopsis

```
newmod = isimcapr(data,model)
```

Description

IMGSIMCA uses a model developed with the IMGSIMCA function `model` to classify areas on a new multivariate image `data`. Note that the new image can be of different size (i.e. it can have a different number of pixels than the original multivariate image used to construct the IMGSIMCA model `model`), but it must have the same depth.

The output is a structure array `newmod` which contains the new classifications. The fields of the structure are:

- `mwaname`: name of original multivariate image data,
- `modelname`: name of the original SIMCA model from IMGSIMCA,
- `name`: model type, always 'ISIMCAPR',
- `date`: date stamp,
- `time`: time stamp,
- `size`: size of the image data,
- `in_class`: array which gives pixels within 95% Q limits for each class,
- `closest_class`: array which gives closest class for each pixel,
- `rqmat`: reduced Q values for all classes for all pixels, and
- `rtsqmat`: reduced T^2 values for all classes for all pixels.

See Also

`contrastmod`, `imagegui`, `imread`, `imgselct`, `imgpca`, `imgsimca`
jmlimit

Purpose

Confidence limits for Q residuals via Jackson-Mudholkar.

Synopsis

```matlab
rescl = jmlimit(pc,s,cl)
```

Description

Inputs are the number of PCs used `pc`, the vector of eigenvalues `s`, and the confidence limit `cl` expressed as a fraction (e.g. 0.95). Note that for a PCA model structure, `model`, that the eigenvalues can be found in `model.detail.ssq(:,2)`.

The output `rescl` is the confidence limit based on the method of Jackson and Mudholkar. See CHILIMIT for an alternate method of residual limit calculation based on chi squared.

Examples

```matlab
rescl = jmlimit(2,ssq(:,2),0.95);
```

For a PCA model contained in the structure `model`:

```matlab
rescl = jmlimit(4,model.detail.ssq(:,2),0.99);
```

See Also

chilimit, analysis, pca, residuallimit
lamsel

Purpose

Determine indices of wavelength axes in specified ranges.

Synopsis

inds = lamsel(freqs,ranges,out)

Description

LAMSEL determines the indices of the elements of a wavelength or wavenumber axis within the ranges specified. Inputs are the wavelength or wavenumber axis freqs and an m by 2 matrix defining the wavelength ranges to select ranges.

An optional input out suppresses displaying information to the command window when set to 0.

The output inds is a vector of indices of channels in the specified range(s) inclusive.

Examples

inds = lamsel(lamda,[840 860; 1380 1400]);

outputs the indices of the elements of lamda between 840 and 860 and between 1380 and 1400.

See Also

baseline, savgol, specedit
lddlgpls

Purpose

Provide an “load” dialog box for use with GUIs.

Synopsis

[value, name, source] = lddlgpls(klass, message)

Description

LDDLPLS creates a dialog box that allows a function to load variables from the workspace or a MATLAB "mat" file into the function workspace. The location of the file to load from can be selected from the folders listed in the file list and from the "Look in" menu at the top of the dialog box. Optional input klass allows the user to select the workspace variable of class to load. Valid values for klass are:

'double': loads 2-way DOUBLE variable {default},
'cell': loads CELL variable,
'char': loads 2-way CHAR variable,
'struct': loads a STRUCT variable,
'dataset': loads a DATASET object,
'doubdataset': loads a 2-way DOUBLE or DATASET, or
'*': loads any class and size variable.

Optional text input message places a message in the load dialog box.

Outputs include value the value of the selected variable, name the original name of the variable, and location the filename from which the variable was loaded (will be empty if loaded from the base workspace).

See Also

erdlgpls, svdlgpls
leverag

Purpose

Calculates sample leverage.

Synopsis

\[\text{lev} = \text{leverag}(x, rinv) \]

Description

LEVERAG calculates the sample leverage according to

\[\text{lev}(i, 1) = x(i,:)*\text{inv}(x'*x)*x(i,:)' \].

Note that the leverage calculation should include a term for calculation of the offset (e.g. see Draper, N. and Smith, H., “Applied Regression Analysis, Second Edition”, John Wiley & Sons, New York, N.Y., 1981), but the above formula contains the salient information. This, in effect, assumes that the data have been mean centered and the constant term related to estimating the offset has been ignored. If \(x'*x \) is replaced by \(x'*x/(m-1) \) where \(m \) is the number of rows of \(x \), and \(x \) has been mean centered then this is the equation for Hotelling's \(T^2 \) statistic.

Note that if \(x \) is not of full rank then \(\text{inv}(x'*x) \) won't exist, or if \(x \) is nearly rank deficient then calculation of the inverse will be unstable. In these cases, the scores from principal components analysis can be used.

If the optional input \(rinv \) is supplied then the leverage is calculated as

\[\text{lev}(i, 1) = x(i,:)*rinv*x(i,:)' \].

See Also

doptimal, figmerit, pls, pcr
lsq2top

Purpose

LSQ2TOP Fits a polynomial to the top/(bottom) of data.

Synopsis

\[[b,\text{resnorm},\text{residual}] = \text{lsq2top}(x,y,\text{order},\text{res},\text{options}) \]

Description

LSQ2TOP is an iterative least squares fitting algorithm. It is based on a weighted least squares approach where the weights are determined at each step. At initialization the weights are all 1, then a polynomial is fit through the data cloud using least squares. When fitting to the top of a data cloud, data points with a residual significantly below a defined limit (i.e. the points below the polynomial fit line) are given a small weighting. Therefore, on subsequent iterations these data points are weighted less in the fit, and the fit line moves to fit to the top of the data cloud.

Input x is the independent variable e.g. a $M \times 1$ vector corresponding to a frequency or wavelength axis. Input y is the dependent variable e.g. a $M \times 1$ vector corresponding to a measured spectrum. Input order is a scalar defining the order of polynomial to be fit e.g. $y = P(x)$, and res is a scalar approximation of the fit residual e.g. noise level. Input options is discussed below. Note that the function can be used to fit to the top or bottom of a data cloud by changing trbflag in options.

The outputs are b, the regression coefficients [highest order term corresponds to $b(1)$ and the intercept corresponds to $b(\text{end})$], resnorm is the squared 2-norm of the residual, and residual is the fit residuals $= y - P(x)$.

Options

\begin{itemize}
 \item \textbf{options} = structure array with the following fields:
 \begin{itemize}
 \item \textbf{display}: \{'off' | \{'on'\} \} governs level of display to command window.
 \item \textbf{trbflag}: \{'top' | \{'bottom'\} \} top or bottom flag, tells algorithm to fit the polynomials, $y = P(x)$, to the top or bottom of the data cloud.
 \item \textbf{tsqlim}: \[[0.99] \} limit that governs whether a data point is significantly outside the fit residual defined by input res.
 \item \textbf{stopcrit}: \[[1\times10^{-4} 1\times10^{-4} 1000 360] \} stopping criteria, iteration is continued until one of the stopping criterion is met: [(relative tolerance) (absolute tolerance) (maximum number of iterations) (maximum time [seconds])].
 \end{itemize}
\end{itemize}
Algorithm

For order = 1 and fitting to the top of a data cloud, LSQ2TOP finds the vector $\mathbf{b} = [b_1 \ b_2]$ that minimizes $(\mathbf{y} - \mathbf{x}b_1 - \mathbf{1}b_2)^T \mathbf{W} (\mathbf{y} - \mathbf{x}b_1 - \mathbf{1}b_2)$ where \mathbf{W} is a diagonal weighting matrix whose elements are initially 1 and then are modified on each subsequent iteration.

The weighting is determined by first estimating the residuals for each data point j as $\text{residual}_j = y_j - x_j b_1 - b_2$ and defining $t_j = \text{residual}_j / \text{res}$ where res is the input res. A corresponding t-statistic from a t-table is estimated using the following:

$$\text{tsqst} = \text{ttestp}(1-\text{options.tsqlim},5000,2);$$

where t_{table} is tsqst. The elements of \mathbf{W} are then given by $w_j = 1/(0.5 + t_j / t_{\text{table}})$ for data points with $t_j < t_{\text{table}}$, and is a 1 otherwise. Therefore, the weighting is smaller for points far below the fit line.

The procedure can be modified to fit to the bottom of a data cloud by changing options.trbflag.

See Also

baseine, baselinew, fastnnls
lwrpred

Purpose
Predictions based on locally weighted regression models.

Synopsis

\[
ypred = \text{lwrpred}(x\text{new}, x\text{old}, y\text{old}, lvs, npts, out)
\]

Description
LWRPRED makes new sample predictions \(y\text{pred} \) for a new matrix of independent variables \(x\text{new} \) based on an existing data set of independent variables \(x\text{old} \), and a vector of dependent variables \(y\text{old} \). Predictions are made using a locally weighted regression model defined by the number principal components used to model the independent variables \(lvs \) and the number of points defined as local \(npts \).

Optional input \(out \) suppresses printing of the results when set to 0 \{default = 1\}.

Note: Be sure to use the same scaling on new and old samples \(i.e. \) \(x\text{new} \) must be scaled the same as \(x\text{old} \!\).

See Also
lwrxy, pls, polypls
lwrxy

Purpose

Predictions based on locally weighted regression with y-distance weighting.

Synopsis

\[y_{\text{pred}} = \text{lwrxy}(x_{\text{new}}, x_{\text{old}}, y_{\text{old}}, lvs, npts, \alpha, \text{iter}, \text{out}) \]

Description

LWRXY makes new sample predictions \(y_{\text{pred}} \) for a new matrix of independent variables \(x_{\text{new}} \) based on an existing data set of independent variables \(x_{\text{old}} \), and a vector of dependent variables \(y_{\text{old}} \). Predictions are made using a locally weighted regression model defined by the number principal components used to model the independent variables \(lvs \), the number of points defined as local \(npts \), the weighting given to the distance in \(y \) \(\alpha \), and the number of iterations to use \(\text{iter} \).

Optional input \(\text{out} \) suppresses printing of the results when set to 0 \{default = 1\}.

Note: Be sure to use the same scaling on new and old samples \textit{i.e.} \(x_{\text{new}} \) must be scaled the same as \(x_{\text{old}} \)!

See Also

lwpred, pls, polypls
mcr

Purpose

Multivariate curve resolution with constraints.

Synopsis

\[[c,s] = \text{mcr}(x,c0,options) \]
\[\text{options} = \text{mcr('options')} \]

Description

MCR decomposes a matrix \(X \) as \(CS \) such that \(X = CS + E \) where \(E \) is minimized in a least squares sense. Inputs are the matrix to be decomposed \(x \) (size \(m \) by \(n \)), and the initial guess \(c0 \). If \(c0 \) is size \(m \) by \(k \), where \(k \) is the number of factors, then it is assumed to be the initial guess for \(C \). If \(c0 \) is size \(k \) by \(n \) then it is assumed to be the initial guess for \(S \). If \(m=n \) then, \(c0 \) is assumed to be the initial guess for \(C \). Optional input \(\text{options} \) is described below.

The outputs are the estimated matrix \(c \) (size \(m \) by \(k \)) and \(s \) (size \(k \) by \(n \)). Usually \(c \) is a matrix of concentrations and \(s \) is a matrix of spectra. The function

\[[c,s] = \text{mcr}(x,c0) \]

will decompose \(x \) using an unconstrained alternating least squares calculation. This tends to lead to rotational ambiguities so it is common to include constraints. To include constraints use the \(\text{options} \) described below.

Note that if no non-zero equality constraints are imposed on a factor the spectra is normalized to unit length. This can lead to significant scaling differences between factors that have non-zero equality constraints and those that do not.

Options

\(\text{options} = \) a structure array with the following fields:

- name: 'options', name indicating that this is an options structure,
- display: ['off' | 'on'], governs level of display to the command window,
- plots: ['none' | 'final'], governs level of plotting,
- ccon: ['none' | 'nonneg'], non-negativity on concentrations,
- scon: ['none' | 'nonneg'], non-negativity on spectra,
- cc: [], concentration equality constraints \(m \) by \(k \) matrix with NaN where equality contraints are not applied and real value of the constraint where they are applied,
- sc: [], spectra equality constraints \(k \) by \(n \) matrix with NaN where equality contraints are not applied and real value of the constraint where they are applied,
sclc: [], concentration scale axis vector with \(m \) elements otherwise 1: \(m \) is used (used in plotting),
scls: [], spectra scale axis vector with \(n \) elements otherwise 1: \(n \) is used (used in plotting),
tolc: [{1e-5}], tolerance on non-negativity for concentrations,
tols: [{1e-5}], tolerance on non-negativity for spectra,
it tol: [{100}], convergence criteria,
 if \(0 < \text{ittol} < 1 \) then this is convergence tolerance {default = 1e-8}, and
 if \(\text{ittol} \geq 1 \) and integer, this is maximum number of iterations.

The default options can be retrieved using: \texttt{options = mcr('options');}.

\textbf{See Also}

\texttt{pca, parafac}
mdcheck

Purpose

Missing Data Checker and infiller.

Synopsis

[flag,missmap,infilled] = mdcheck(data,options)
options = mdcheck('options')

Description

This function checks for missing data and infills it using a PCA model if desired. The input is the data to be checked data. Optional input options is described below.

Outputs are the fraction of missing data flag, a map of the locations of the missing data as an unint8 variable missmap, and the data with the missing values filled in infilled.

Options

options = a structure array with the following fields:

- name: 'options', name indicating that this is an options structure,
- options.frac_ssq: [{0.95}] desired fraction between 0 and 1 of variance to be captured by the PCA model,
- options.max_pcs: [{5}] maximum number of PCs in the model, if 0, then it uses the mean,
- options.meancenter: ['no' | {'yes'}], tells whether to use mean centering in the algorithm,
- options.display: [{'off'} | 'on'], governs level of display,
- options.tolerance: [{1e-6 100}] convergence criteria, the first element is the minimum change and the second is the maximum number of iterations,
- options.max_missing: [{0.4}] maximum fraction of missing data with which MDCHECK will operate, and
- options.algorithm: [{'svd'} | 'nipals'] specified the missing data algorithm to use, NIPALS typically used for large amounts of missing data or large multi-way arrays.

Note: MDCHECK captures up to options.frac_ssq of the variance using options.max_pcs or fewer PCA components.

The default options can be retrieved using: options = mdcheck('options');

See Also

parafac, pca
medcn

Purpose
Median center scales matrix to median zero.

Synopsis

\[[mcx,mx,msg] = medcn(x,options) \]

Description
MEDCN centers a matrix \(x \) to it’s median and returns a matrix \(mcx \) with median zero columns and a vector of medians \(mx \) used to center the data. Optional input \(options \) is discussed below.

The output \(msg \) returns any warning messages.

Options
\[
\begin{align*}
\text{options} & = \text{a structure array with the following fields.} \\
\text{display:} & = \{ \text{'off'} | \text{'on'} \} \text{ Governs screen display.} \\
\text{matrix_threshold:} & = \{ .15 \} \text{ Error threshold based on fraction of missing data in whole matrix.} \\
\text{column_threshold:} & = \{ .25 \} \text{ Error threshold based on fraction of missing data in single column.}
\end{align*}
\]

See Also
auto, mncn, rescale, scale
mlpca

Purpose

Maximum likelihood principal components analysis (user contributed).

Synopsis

$$[U, S, V, SOBJ, ErrFlag] = mlpca(x, stdx, p)$$

Description

MLPCA performs maximum likelihood principal components analysis assuming uncorrelated measurement errors. This is a method that attempts to provide an optimal estimation of the $$p$$-dimensional subspace containing the data by taking into account uncertainties in the measurements, thereby dealing with those cases that cannot be treated by simple scaling. Inputs are $$x$$ ($$m$$ by $$n$$) the data matrix to be decomposed, $$stdx$$ ($$m$$ by $$n$$) matrix of standard deviations corresponding to the observations in $$x$$, and the number of factors into which the data is decomposed $$p$$. The outputs are $$U$$ ($$m$$ by $$p$$) orthonormal, $$S$$ ($$p$$ by $$p$$) diagonal, and $$V$$ ($$n$$ by $$p$$) orthonormal. The ML scores are given by $$U*S$$. Additional output $$SOBJ$$ is the value of the objective function for the best model. For exact uncertainty estimates, this should follow a chi-squared distribution with $$(m-p)*(n-p)$$ degrees of freedom. Additional output $$ErrFlag$$ indicates the termination conditions of the function:

$$ErrFlag = 0$$: normal termination (convergence), or
$$ErrFlag = 1$$: maximum number of iterations exceeded.

Also see:

See Also

analysis, mcr, parafac, pca
mncn

Purpose
Mean center data matrices.

Synopsis

\[\text{[mcx,mx]} = \text{mncn}(x,\text{options}) \]

Description

MNCN mean centers a matrix \(x \) and returns a matrix \(\text{mcx} \) with mean zero columns and a vector of means \(\text{mx} \) used to center the data.

See Also

`auto`, `rescale`, `scale`
modelstruct

Purpose

Constructs an empty model structure.

Synopsis

 model = modelstruct(modeltype,pred)

Description

The output of many of the PLS_Toolbox functions is a single model structure in which the results of the analysis are contained. A structure is an organized group of variables all stored as "fields" of a single containing variable. The purpose of MODELSTRUCT is to create the empty model structures used by the various modeling routines. The type of structure requested is passed as the single string input modeltype and should be one of: 'pca', 'pcr', (for PCA or PCR models) 'nip', 'sim' (PLS models), or 'parafac' (PARAFAC model).

Once the structures created by MODELSTRUCT are filled-in by the appropriate function (e.g. PLS, PCR, PCA), they contain all the results of the analysis and can be used as a single object for making further predictions or plots from the modeling results. In many cases, these models can be passed whole to another function. For example:

 opts.plots = 'none'; % turn off plots for PCA (see PCA)
 modl = pca(x, 3, opts); % create a PCA model from data X
 modlrder(modl); % display relevent model information
 plotscores(modl); % plot scores from model

Although the individual fields (contents) of each model vary between modeltypes, most contain at least these fields:

- modeltype: name of model,
- datasource: structure array with information about input data,
 - date: date of creation,
 - time: time of creation,
 - info: additional model information,
- loads: cell array with model loadings for each mode/dimension,
- pred: cell array with model predictions for input data block (the first cell is empty if options.blockdetail = 'normal'),
- tsqs: cell array with T² values for each mode,
- ssqresiduals: cell array with sum of squares residuals for each mode,
- description: cell array with text description of model, and
- detail: sub-structure with additional model details and results.
Note that fields such as \texttt{loads}, \texttt{tsqs} and \texttt{ssqresiduals} are cell arrays of size \([\text{modes, blocks}]\) where \text{modes} is the dimensionality of the data (e.g. for an array, \text{modes} = 2) and \text{blocks} is the number of blocks used by the analysis method (e.g. for PCA, \text{blocks} = 1, for PLS, \text{blocks} = 2). Thus, for a standard PCA model, \texttt{loads} will be a 2x1 cell containing "scores" in \texttt{modl.loads{1,1}} and traditional "loadings" in \texttt{modl.loads{2,1}}.

Because the models are standard MATLAB structures, they can be examined using standard structure notation:

\begin{verbatim}
>> modl.modeltype
ans =
 PCA
>> modl.loads
ans =
 [30x4 double]
 [10x4 double]
\end{verbatim}

Additionally, the individual components of a model can be "exploded" into individual variables using the \texttt{EXPLODE} function.

\textbf{See Also}

\texttt{analysis, explode, parafac, pca, pcr, pls}
modelviewer

Purpose

Visualization of multi-way models.

Synopsis

 model = modelviewer(model,x);

Description

MODELVIEWER provides a graphical view of a model by enabling overview of scores, loadings, residuals etc. in one overall figure. Individual modes can be assessed by clicking plots and enlarged figures created by right-clicking plots.

INPUTS:

 model = PARAFAC, Tucker, or NPLS model, and
 x = X-block: predictor block (2-way array or DataSet Object).

OUTPUT:

 model = standard model structure (See MODELSTRUCT).

See Also

plotgui, plotloads, plotscores
modlpred

Purpose

Predictions based on models created by ANALYSIS.

Synopsis

\[\text{[yprdn, resn, tsqn, scoresn]} = \text{modlpred(newx, modl, plots)} \]
\[\text{[yprdn, resn, scoresn]} = \text{modlpred(newx, bin, p, q, w, lv, plots)}; \]

Description

MODLPRED makes Y-block predictions based on an X-block and an existing regression model created using ANALYSIS.

Inputs are the new X-block data newx in the units of the original data, the structure variable that contains the regression model modl, and an optional variable plots which suppresses the plots when set to 0 \{default = 1\}.

Outputs are the Y-block predictions yprdn, residuals resn, \(T^2 \) values tsqn, and scores scoresn.

MODLPRED can also make predictions based on an existing PLS model constructed with the NIPALS algorithm from the PLS function. Inputs are the matrix of predictor variables newx, the PLS model inner-relation coefficients bin, the x-block loadings p, the y-block loadings q, the x-block weights w, the number of latent variables to use in prediction lv, and an optional variable plots which suppresses the plots when set to 0 \{default = 1\}.

Outputs are the Y-block predictions yprdn, residuals resn, and the scores scoresn. Note that \(T^2 \) are not calculated.

See Also

analysis, explode, modlrder, pca, pcapro, pcr, pls
modlrder

Purpose

Prints model information for standard model structures.

Synopsis

```matlab
modlrder(modl)
```

Description

MODLRDER reads information contained in a standard model structure variable `modl` and prints the information to the command window. It can be used with models created by the following functions: ANALYSIS, NPLS, PARAFAC, PCA, PCR, PLS, ANALYSIS.

Information includes date and time created and methods used to construct the model. There is no assignable output.

See Also

analysis, explode, modlpred, pcapro, ssqtable
mpca

Purpose

Multi-way principal components analysis.

Synopsis

 model = mpca(mwa,ncomp,options)
 pred = mpca(mwa,model,options)
 options = mpca('options')

Description

Principal Components Analysis of multi-way data using unfolding to a 2-way matrix followed by conventional PCA.

Inputs to MPCA are the multi-way array mwa (class “double” or “dataset”) and the number of components to use in the model ncomp. To make predictions with new data the inputs are the multi-way array mwa and the MPCA model model. Optional input options is discussed below.

The output model is a structure array with the following fields:

- modeltype: 'MPCA',
- datasource: structure array with information about the x-block,
 - date: date of creation,
 - time: time of creation,
 - info: additional model information,
- loads: 1 by 2 cell array with model loadings for each mode/dimension,
- pred: cell array with model predictions for each input data block (this is empty if options.blockdetail = 'normal'),
- tsqs: cell array with T^2 values for each mode,
- ssqresiduals: cell array with sum of squares residuals for each mode,
- description: cell array with text description of model, and
- detail: sub-structure with additional model details and results.

Options

 options = a structure array with the following fields.
 - name: 'options', name indicating that this is an options structure,
 - display: ['off' | {'on'}] governs level of display to command window,
 - plots: ['none' | {'final'}] governs level of plotting,
 - outputversion: [2 | {3}] governs output format,
preprocessing: { [] } preprocessing structure, {default is mean centering i.e. options.preprocessing = preprocess('default', 'mean center')}
(see PREPROCESS),
blockdetails: ['compact' | { 'standard' } | 'all'] extent of detail in predictions and residuals included in model structure ('standard' results in sum of squared residuals, and 'all' gives all x-block residuals), and
samplemode: [{3}] mode (dimension) to use as the sample mode e.g. if it is 3 then it is assumed that mode 3 is the sample/object dimension i.e. if mwa is 7x9x10 then the scores model.loads{1} will have 10 rows (it will be 10xncomp).

The default options can be retrieved using: options = m pca('options');

To use the defaults options and change the preprocessing, (options) can be input as a string with the following values:

'none': no scaling,
:auto': unfolds array then applies autoscaling,
:mncn': unfolds array then applies mean centering, or
:grps': {default} unfolds array then group/block scales each variable, i.e. the same variance scaling is used for each variable along its time trajectory (see GSCALE).

MPCA will work with arrays of order 3 and higher. For higher order arrays, the last order is assumed to be the sample order, i.e. for an array of order n with the dimension of order n being m, the unfolded matrix will have m samples. For arrays of higher order the group scaling option will group together all data with the same order 2 index, for multiway array mwa, each mwa(:,j,:, ... ,:) will be scaled as a group.

See Also
gram, parafac, parafac2, pca, tld
mplot

Purpose

Automatic creation of subplots and plotting.

Synopsis

\[
\begin{align*}
[\text{rows},\text{cols}] &= \text{mplot}(n,\text{options}) \\
[\text{rows},\text{cols}] &= \text{mplot}([\text{rows} \ \text{cols}],\text{options}) \\
[\text{rows},\text{cols}] &= \text{mplot}(y,\text{options}) \\
[\text{rows},\text{cols}] &= \text{mplot}(x,y,\text{options})
\end{align*}
\]

Description

Inputs can be one of three forms:

(1) the number of subplots requested \(n \), “best fit” onto the figure

(2) the number of rows and columns for the subplot array \([\text{rows} \ \text{cols}]\)

(3) or data to plot \(y \) with or without reference data for the x-axis \(x \). Each column of \(y \) is plotted in a single subplot on the figure.

Outputs are the number of rows \(\text{rows} \) and columns \(\text{cols} \) used for the subplots.

Examples

Example 1. To automatically create a “best fit” of four empty subplots

\[\text{mplot}(4) \]

Example 2. To automatically create four subplots in a 4 x 1 arrangement

\[\text{mplot}([4 \ 1]) \]

Example 3. To automatically plot three random columns, each in its own subplot

\[\text{mplot}(\text{rand}(100,3)) \]

Options

center: \[[\text{'no'}] | \text{'yes'} \] governs centering of "left-over" plots at bottom of figure (when an uneven number of plots are to be fit onto the screen,

axismode: \[[\text{""}] | \text{'tight'} \] governs axis settings
Algorithm

When mplot is doing the “best fit”, it attempts to keep the number of rows and columns as close as possible in size (Except for \(n=3 \) which is done as a 3x1 figure). Thus, the plot progression is: 1x1, 2x1, 3x1, 2x2, 3x2, 3x3, 4x3, etc.

See Also

plotgui, subplot
mscorr

Purpose

Multiplicative scatter correction (MSC).

Synopsis

\[
[sx, \alpha, \beta, xref] = mscorr(x, xref, mc, win, specmode)
\]

Description

MSCORR performs multiplicative scatter correction (a.k.a. multiplicative signal correction) on an input matrix of spectra \(x\) (class “double”) regressed against a reference spectra \(x_{ref}\) (class “double”).

If the optional input \(mc\) is 1 {default} then an intercept is used. If \(mc\) is set to 0 (zero) then a force fit through zero is used.

Optional input \(win\) is a \(NK\) element cell array of indices corresponding to windows to perform MSC, i.e. MSC is performed in each window \(\text{win}\{i\}\) for \(i=1:NK\). In this case, \((\alpha\) and \(\beta\) are not assigned).

Outputs are the corrected spectra \(sx\), the intercepts/offsets \(\alpha\) and the multiplicative scatter factor/slope \(\beta\).

Algorithm

For input spectra \(x\) (1x\(N\)) and reference spectra \(x_{ref}\) (1x\(N\)) the model is:

\[
x^T \beta + \alpha = x_{T ref}^T.
\]

and the corrected spectra \(x_s\) (1x\(N\)) is given by:

\[
x_s = (x_{ref} - \alpha) / \beta.
\]

See Also

stdfir, stdgen, frpcr
ncrossval

Purpose

Cross-validation for multilinear PLS (NPLS).

Synopsis

\[
[p\text{ress},c\text{umpress},r\text{mse}c, r\text{mse}c, c\text{vpred}, m\text{isclassed}] = n\text{crossval}(x,y, r\text{m}, c\text{vi}, n\text{comp}, o\text{ut}, p\text{re})
\]

Description

Performs cross-validation of NPLS. If two-way unfold-PLS is desired convert input \(x\) to two-way \(x\). By default, the data are centered across the first mode, but no scaling is applied. This can be changed by using additional input arguments.

INPUTS:

\[
\begin{align*}
 x &= \text{X-block unfolded/matricized to two-way matrix}, \\
 y &= \text{Y-block unfolded/matricized to two-way matrix}, \\
 r\text{m} &= \text{regression method (must be \text{'npl'})}, \\
 c\text{vi} &= \text{see CROSSVAL}, \\
 n\text{comp} &= \text{maximum number of factors}, \\
 o\text{ut} &= \text{see CROSSVAL}, \\
 p\text{re} &= \text{see CROSSVAL}
\end{align*}
\]

OUTPUT:

See CROSSVAL

See Also

crossval, npls
nippls

Purpose

NIPALS Partial Least Squares computational engine.

Synopsis

\[
\begin{align*}
[\text{reg, ssq, xlds, ylds, wts, xscrs, yscrs, bin}] &= \text{nippls} (x, y, \text{ncomp, options}) \\
\text{options} &= \text{nippls} (\text{'options'})
\end{align*}
\]

Description

Performs PLS regression using NIPALS algorithm.

INPUTS:

- \(x \) = X-block \((M \times Nx)\) and
- \(y \) = Y-block \((M \times Ny)\).

OPTIONAL INPUTS:

- \(\text{nocomp} \) = number of components \{default = rank of X-block\}, and
- \(\text{options} \) = discussed below.

The default options can be retrieved using: \(\text{options} = \text{nippls} (\text{'options'}) \);

OUTPUTS:

- \(\text{reg} \) = matrix of regression vectors,
- \(\text{ssq} \) = the sum of squares captured \((\text{ssq})\),
- \(\text{xlds} \) = X-block loadings,
- \(\text{ylds} \) = Y-block loadings,
- \(\text{wts} \) = X-block weights,
- \(\text{xscrs} \) = X-block scores,
- \(\text{yscrs} \) = Y-block scores, and
- \(\text{bin} \) = the inner relation coefficients.

Note: The regression matrices are ordered in \(\text{reg} \) such that each \(Ny \) (number of y variables) rows correspond to the regression matrix for that particular number of latent variables.

Options

- \(\text{options} \) = a structure containing the fields:
 - \(\text{name} \): \(\text{'options'} \), name indicating that this is an options structure, and
 - \(\text{display} \)\:[\{\text{'off'}|\{\text{'on'}\} \}], governs display to command window.

See Also
pls, analysis, simpls
normaliz

Purpose

Normalizes rows of matrix to unit vectors.

Synopsis

\[
\text{[ndat,norms]} = \text{normaliz(dat)}
\]
\[
\text{[ndat,norms]} = \text{normaliz(dat, out, normtype)}
\]

Description

NORMALIZ can be used for pattern normalization, which is useful for preprocessing in some pattern recognition applications.

The input is the data matrix \(\text{dat} \). Optional input \(\text{out} \) suppresses warnings when set to 0 (zero) \{default = 1\} (warnings are given if the norm of a vector is zero). Optional input \(\text{normtype} \) can be used to specify the type of norm \{default = 2\}. If \(\text{normtype} \) is specified then \(\text{out} \) must be included, \(\text{out} \) can be empty [].

The output is the matrix of normalized data \(\text{ndat} \) where the rows have been normalized, and the vector of norms used in the normalization \(\text{norms} \). Warnings are given for any vectors with zero norm.

Algorithm

For a 1 by \(N \) vector \(\text{x} \), the norm \(n_x \) is given by
\[
\|x\|_p = \left(\sum_{j=1}^{N} |x_j|^p \right)^{1/p}
\]
where \(p \) is \(\text{normtype} \). The normalized 1 by \(N \) vector \(\text{x}_n \) is given by \(\text{x}/n_x \).

See Also

auto, baseline, mncn, mscorr
npls

Purpose

Multilinear-PLS (N-PLS) for true multi-way regression.

Synopsis

```matlab
model = npls(x,y,ncomp,options)
pred  = npls(x,ncomp,model,options)
options = npls('options')
```

Description

NPLS fits a multilinear PLS1 or PLS2 regression model to \(x \) and \(y \) [R. Bro, J. Chemom., 1996, 10(1), 47-62]. The NPLS function also can be used for calibration and prediction.

INPUTS:

- \(x \) = X-block,
- \(y \) = Y-block, and
- \(ncomp \) = the number of factors to compute, or
- \(model \) = in prediction mode, this is a structure containing a NPLS model.

OPTIONAL INPUTS:

- \(options \) = discussed below.

OUTPUT:

- \(model \) = standard model structure (see: MODELSTRUCT) with the following fields:
 - modeltype: 'NPLS',
 - datasource: structure array with information about input data,
 - date: date of creation,
 - time: time of creation,
 - info: additional model information,
 - reg: cell array with regression coefficients,
 - loads: cell array with model loadings for each mode/dimension,
 - core: cell array with the NPLS core,
 - pred: cell array with model predictions for each input data block,
 - tsqs: cell array with \(T^2 \) values for each mode,
 - ssqresiduals: cell array with sum of squares residuals for each mode,
 - description: cell array with text description of model, and
 - detail: sub-structure with additional model details and results.

Options
options = options structure containing the fields:
 name: 'options', name indicating that this is an options structure,
 display: ['off' | {'on'}], governs level of display to command window,
 plots: ['none' | {'final'}], governs level of plotting,
 outputregrescoef: if this is set to 0 no regressions coefficients associated with the X-block
directly are calculated (relevant for large arrays), and
 blockdetails: [{'standard'} | 'all'], level of detail included in the model forpredictions and residuals.

See Also
datahat, explode, gram, m pca, outerm, parafac, pls, tld, unfold m
npreprocess

Purpose

Preprocessing of multi-way arrays.

Synopsis

\[
\text{[prex,prepar]} = \text{npreprocess}(x,\text{prepar},\text{undo},\text{options}) \\
\text{prex} = \text{npreprocess}(x,\text{setting}) \\
\text{prex} = \text{npreprocess}(x,\text{prepar}, 1) \\
\text{options} = \text{npreprocess}('\text{options}')
\]

Description

NPREPROCESS is used for three different purposes:

1) for centering and scaling multi-way arrays in which case the parameters (offsets and scales) are first calculated and then applied to the data,

2) for preprocessing another data set according to (1), and

3) for transforming preprocessed data back (undo preprocessing).

INPUTS:

\[
x = \text{data array}, \text{and} \\
\text{settings} = \text{a two-row matrix (class "double") indicating which modes to center and scale. The matrix is: settings} = [\text{cent}; \text{scal}]. \text{E.g.} \\
\text{settings}(1,:) = [1 \ 0 \ 1] \Rightarrow \text{center across mode one and three, and} \\
\text{settings}(2,:) = [1 \ 1 \ 0] \Rightarrow \text{scale to unit variance within mode one and two.}
\]

OPTIONAL INPUTS:

\[
\text{prepar} = \text{contains earlier defined mean and scale parameters, this data is required for applying or undoing preprocessing.} \\
\text{undo} = \text{when set to 1 this flag tells to undo/transform back, and} \\
\text{options} = \text{discussed below.}
\]

OUTPUTS:

\[
\text{prex} = \text{the preprocessed data, and} \\
\text{prepar} = \text{a structure containing the necessary parameters to pre- and post-process other arrays.}
\]

Options

\[
\text{options} = \text{a structure array with the following fields:}
\]
name: 'options', identifies the structure as an options structure,

display: [{'on'} | 'off'], governs level of display,

iterproc: ['on' | {'off'}], allows iterative preprocessing which is necessary
for some combinations of centering and scaling (see User Manual),

scalefirst: [{'on'} | 'off'], defines that scaling is done before centering
which may have implications in complex combinations of preprocessing
(see User Manual), and

usemse: [{'on'} | 'off'], defines that mean square scaling is used instead
of scaling by standard deviations as is common in two-way analysis.

Examples

To apply preprocessing with options:

 [prex,prepar] = npreprocess(x,settings,[],0,options);

See Also

auto, mncn, preprocess, rescale, scale
oscapp

Purpose

Applies orthogonal signal correction model to new data.

Synopsis

\[\text{newx} = \text{oscapp}(x, nw, np, nofact) \]

Description

Inputs are the new data matrix \(x\), weights from the OSC model \(nw\), and loadings from the OSC \(np\).

Optional input \(nofact\) can be used to restrict the correction to a smaller of factors than originally calculated.

The output is the corrected data matrix \(\text{newx}\).

Note: input data \(x\) must be centered and scaled like the original data!

See Also

crossval, osccalc
osccalc

Purpose
Calculates orthogonal signal correction.

Synopsis

\[[nx,nw,np,nt] = osccalc(x,y,nocomp,iter,tol) \]

Description
Inputs are the matrix of scaled predictor variables \(x \), scaled predicted variable(s) \(y \), and the number of OSC components \(nocomp \).

Optional inputs are the maximum number of iterations used in attempting to maximize the variance captured by orthogonal components \(iter \) \{default = 0\}, and the tolerance on percent of \(x \) variance to consider when forming the final \(w \) vector \(tol \) \{default = 99.9\}.

Outputs are the OSC corrected predictor matrix \(nx \), and the \(x \)-block weights \(nw \), loads \(np \), and scores \(nt \) that were used in making the correction.

Once the calibration is done, new (scaled) \(X \) data can be corrected by \(\text{newx} = x - x* nw* \text{inv}(np'*nw)*np' \). See OSCAPP.

See Also
crossval, oscapp
outerm

Purpose

Computes the outer product of any number of vectors with multiple factors.

Synopsis

\[
mwa = \text{outerm}(\text{facts},lo,vect)\]

Description

The input to outer is a 1 by \(N \) cell array \text{facts}, where each cell contains a matrix of factors for one of the modes (a.k.a. ways, dimensions, or orders), with each factor being a column in the matrix.

Optional inputs are \(lo \) the number of a mode to leave out in the formation of the outer product, and a flag \(vect \) which causes the function to not sum and reshape the final factors when set to 1. (This option is used in the alternating least squares steps in PARAFAC.)

The output is the multiway array resulting from multiplying the factors together \(mwa \), or the strung out individual factors.

Examples:

\[
a = \begin{bmatrix}1:7' & 2 4 1 3 5 7 6'\end{bmatrix}; \quad \% \ 7x2
b = \begin{bmatrix}\sin([1:.5:5]') & \cos([1:.5:5]')\end{bmatrix}; \quad \% \ 9x2
c = \begin{bmatrix}[1:8 0 0]', & [0 0 1:8]'\end{bmatrix}; \quad \% \ 10x2
x = \text{outerm}([a,b,c]); \quad \% \ 7x9x10
\]

See Also

gram, m pca, parafac, tld
parafac

Purpose

PARAFAC (PARAllel FACtor analysis) for multi-way arrays

Synopsis

```matlab
model = parafac(X,ncomp,initval,options)
pred  = parafac(Xnew,model)
options = parafac('options')
```

Description

PARAFAC will decompose array of order \(N \) (where \(N \geq 3 \)) into the summation over the outer product of \(N \) vectors (a low-rank model). E.g. if \(N=3 \) then the array is size \(I \) by \(J \) by \(K \). An example of three-way fluorescence data is shown below. Missing values must be NaN or Inf.

For example, twenty-seven samples containing different amounts of dissolved hydroquinone, tryptophan, phenylalanine, and dopa are measured spectrofluorometrically using 233 emission wavelengths (250-482 nm) and 24 excitation wavelengths (200-315 nm each 5 nm). A typical sample is also shown.

![Three-way fluorescence data](image)

A four-component PARAFAC model of these data will give four factors, each corresponding to one of the chemical analytes. This is illustrated graphically below. The first mode scores (loadings in mode 1) in the matrix \(A \) (27×4) contain estimated relative concentrations of the four analytes in the 27 samples. The second mode loadings \(B \) (233×4) are estimated emission loadings and the third mode loadings \(C \) (24×4) are estimated excitation loadings.
In the PARAFAC algorithm, any missing values must be set to NaN or Inf and are then automatically handled by expectation maximization. This routine employs an alternating least squares (ALS) in combination with a line search every fifth iteration. For 3-way data, the initial estimate of the loadings is obtained from the tri-linear decomposition (TLD).

INPUTS:

- \(x \) = the multiway array to be decomposed, and
- \(ncomp \) = the number of factors (components) to use, or
- \(\text{model} \) = a PARAFAC model structure (new data are fit to the model i.e. sample mode scores are calculated).

OPTIONAL INPUTS:

- \(\text{initval} \) = cell array of initial values (initial guess) for the loadings (e.g. \(\text{model.loads} \) from a previous fit). If not used it can be 0 or [], and
- \(\text{options} \) = discussed below.

OUTPUTS:

The output \(\text{model} \) is a structure array with the following fields:

- \(\text{modeltype} \): 'PARAFAC',
- \(\text{datasource} \): structure array with information about input data,
- \(\text{date} \): date of creation,
- \(\text{time} \): time of creation,
- \(\text{info} \): additional model information,
- \(\text{loads} \): 1 by \(K \) cell array with model loadings for each mode/dimension,
- \(\text{pred} \): cell array with model predictions for each input data block,
- \(\text{tsqs} \): cell array with \(T^2 \) values for each mode,
- \(\text{ssqresiduals} \): cell array with sum of squares residuals for each mode,
- \(\text{description} \): cell array with text description of model, and
- \(\text{detail} \): sub-structure with additional model details and results.
The output `pred` is a structure array, similar to `model`, that contains prediction results for new data fit to the PARAFAC model.

Options

```matlab
options = a structure array with the following fields:
    name: 'options', name indicating that this is an options structure,
    display: [ {'on'} | 'off' ], governs level of display,
    plots: [ {'final'} | 'all' | 'none' ], governs level of plotting,
    weights: [], used for fitting a weighted loss function (discussed below),
    stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative
tolerance) (absolute tolerance) (maximum number of iterations)
(maximum time in seconds)],
    init: [ 0 ], defines how parameters are initialized (discussed below),
    line: [ 0 | {1} ] defines whether to use the line search {default uses it},
    algo: [ {'ALS'} | 'tld' | 'swatld' ] governs algorithm used,
    blockdetails: 'standard'
    missdat: this option is not yet active,
    samplemode: [1], defines which mode should be considered the sample or object
mode,
    constraints: {3x1 cell}, defines constraints on parameters (discussed below), and
    coreconsist: [ {'on'} | 'off' ], governs calculation of core consistency (turning
off may save time with large data sets and many components).
```

The default options can be retrieved using: `options = parafac('options');`.

WEIGHTS

Through the use of the `options` field `weights` it is possible to fit a PARAFAC model in a
weighted least squares sense. The input is an array of the same size as the input data `X` holding
individual weights for each element. The PARAFAC model is then fit in a weighted least
squares sense. Instead of minimizing the frobenius norm `||x-M||^2` where `M` is the PARAFAC
model, the norm `||(x-M).*weights||^2` is minimized. The algorithm used for weighted
regression is based on a majorization step according to Kiers, *Psychometrika*, **62**, 251-266,
1997 which has the advantage of being computationally inexpensive.

INIT

The `options` field `init` is used to govern how the initial guess for the loadings is obtained.
If optional input `initval` is input then `options.init` is not used. The following choices for
`init` are available.

Generally, `options.init = 0`, will do for well-behaved data whereas `options.init = 10`,
will be suitable for difficult models. Difficult models are typically those with many
components, with very correlated loadings, or models where there are indications that local
minima are present.
init = 0, PARAFAC chooses initialization {default},
init = 1, uses TLD (unless there are missing values then random is used),
init = 2, initializes loadings with random values,
init = 3, based on orthogonalization of random values (preferred over 2),
init = 4, based on singular value decomposition, and
init > 4, based on best fit of many (the value options.init) small runs.

CONSTRAINTS

The options field constraints is used to employ constraints on the parameters. It is a cell array with number of elements equal to the number of modes of the input data X. Each cell contains a structure array with the following fields:

- **nonnegativity:** [{0} | 1], a 1 imposes non-negativity.
- **unimodality:** [{0} | 1], a 1 imposes unimodality (1 local maxima).
- **orthogonal:** [{0} | 1], constrain factors in this mode to be orthogonal.
- **orthonormal:** [{0} | 1], constrain factors in this mode to be orthonormal.
- **exponential:** [{0} | 1], a 1 fits an exponential function to the factors in this mode.
- **biexponential:** [{0} | 1], a 1 fits two weighted exponential functions to the factors in this mode.
- **equalweightbiexponential:** [{0} | 1], same as biexponential except the weights on the two exponential functions are the same.
- **triexponential:** [{0} | 1], a 1 fits three weighted exponential functions to the factors in this mode.
- **smoothness.weight:** [0 to 1], imposes smoothness using B-splines, values near 1 impose high smoothness and values close to 0, impose less smoothness.
- **fixed.position:** [], a matrix containing 1's and 0's of the same size as the corresponding loading matrix, with a 1 indicating where parameters are fixed.
- **fixed.value:** [], a vector containing the fixed values. Thus, if B is the loading matrix, then we seek B(find(fixed.position)) = fixed.value. Therefore, fixed.value must be a vector of the same length as the number of non-zero elements in fixed.position.
- **fixed.weight:** [], a scalar (0 ≤ fixed.weight ≤ 1) indicating how strongly the fixed.value is imposed. A value of 0 (zero) does not impose the constraint at all, whereas a value of 1 (one) fixes the constraint.
- **ridge.weight:** [], a scalar value between 0 and 1 that introduces a ridging in the update of the loading matrix. It is a penalty on the size of the estimated loadings. The closer to 1, the higher the ridge. Ridging is useful when a problem is difficult to fit.
- **equality.G:** [], matrix with N columns, where N is the number of factors, used with equality.H. If A is the loadings for this mode then the constraint is
imposed such that $\mathbf{G} \mathbf{A}^T = \mathbf{H}$. For example, if \mathbf{G} is a row vector of ones and \mathbf{H} is a vector of ones (1’s), this would impose closure.

- **equality.H:** [], matrix of size consistent with the constraint imposed by equality.G.

- **equality.weight:** [], a scalar ($0 \leq \text{equality.weight} \leq 1$) indicating how strongly the equality.H and equality.G is imposed. A value of 0 (zero) does not impose the constraint at all, whereas a value of 1 (one) fixes the constraint.

- **leftprod:** [0], If the loading matrix, \mathbf{B} is of size JxR, the leftprod is a matrix \mathbf{G} of size JxM. The loading \mathbf{B} is then constrained to be of the form $\mathbf{B} = \mathbf{G} \mathbf{H}$, where only \mathbf{H} is updated. For example, \mathbf{G} may be a certain JxJ subspace, if the loadings are to be within a certain subspace.

- **rightprod:** [0], If the loading matrix, \mathbf{B} is of size JxR, the rightprod is a matrix \mathbf{G} of size MxR. The loading \mathbf{B} is then constrained to be of the form $\mathbf{B} = \mathbf{H} \mathbf{G}$, where only \mathbf{H} is updated. For example, if rightprod is $[1 \ 1 \ 0; 0 \ 0 \ 1]$, then the first two components in \mathbf{B} are forced to be the same.

- **iterate_to_conv:** [0], Usually the constraints are imposed within an iterative algorithm. Some of the constraints use iterative algorithms themselves. Setting iterate_to_conv to one, will force the iterative constraint algorithms to continue until convergence.

- **timeaxis:** [], This field (if supplied) is used as the time axis when fitting loadings to a function (e.g. see exponential). Therefore, it must have the same number of elements as one of the loading vectors for this mode.

- **description:** [1x1592 char],

If the constraint in a mode is set as fixed, then the loadings of that mode will not be updated, hence the initial loadings stay fixed.

Examples

parafac demo gives a demonstration of the use of the PARAFAC algorithm.

model = parafac(X,5) fits a five-component PARAFAC model to the array X using default settings.

pred = parafac(Z,model) fits a parafac model to new data Z. The scores will be taken to be in the first mode, but you can change this by setting options.samplemodex to the mode which is the sample mode. Note, that the sample-mode dimension may be different for the old model and the new data, but all other dimensions must be the same.

options = parafac('options'); generates a set of default settings for PARAFAC.

options.plots = 0; sets the plotting off.

options.init = 3; sets the initialization of PARAFAC to orthogonalized random numbers.

options.samplemodex = 2; Defines the second mode to be the sample-mode. Useful, for example, when fitting an existing model to new data.
model = parafac(X,2,[],options); fits a two-component PARAFAC model with the settings defined in options.

parafac io shows the I/O of the algorithm.

parafac '<string>' shows the extended help on selected subjects in <string>. Possible string values: 'initval', 'options', 'constraints', 'weights', 'init'.

See Also

datahat, explode, gram, m pca, outerm, parafac2, tld, tucker, unfoldm
parafac2

Purpose

PARAFAC2 (PARAllel FACtor analysis2) for multi-way arrays

Synopsis

```matlab
model = parafac2(X,ncomp); %decomposition
model = parafac2(X,ncomp,initval);
model = parafac2(X,ncomp,initval,options);
pred  = parafac2(Xnew,model); %application
options = parafac2('options');
```

Description

The three-way PARAFAC2 model is best perceived as a model close to the ordinary PARAFAC model. The major difference is that strict trilinearity is no longer required, so PARAFAC2 can sometimes handle elution time shifts, varying batch trajectories etc. The ordinary PARAFAC model is also sometimes called the PARAFAC1 model to distinguish it from the PARAFAC2 model.

In the PARAFAC1 model, one loading matrix is found for each mode. That implies that this loading matrix is the same across all levels for the other modes. For example, in a PARAFAC1 model of a data set with chromatographic spectrally detected experiments, the PARAFAC1 model ideally provides a loading matrix for e.g. the chromatographic mode which holds the true elution profiles of the chemical analytes. Thus, the PARAFAC1 model assumes that these elution profiles do not change shape in different experiments (only their magnitude). Such an assumption may be too strict and invalid. A little model error is seldom problematic, but if the structure of the data deviates considerably from the assumptions of the model, it can be impossible to fit a reasonable model. In the PARAFAC2 model, this trilinearity assumption is relaxed in one mode. A PARAFAC1 model of a three-way array is given by \mathbf{A}, \mathbf{B} and \mathbf{C} (loading matrices in first, second and third mode). In PARAFAC2, the loadings in one mode can change from level to level. That is, assume that the third mode (\mathbf{C}) of dimension K holds different samples (it is common practice, to have samples in the last mode for PARAFAC2). Instead of having a fixed first mode loading \mathbf{A} for all samples, \mathbf{A} may now vary from sample to sample. Thus for each sample k, there is an individual \mathbf{A}_k. The only restriction on \mathbf{A}_k is that the cross-product $\mathbf{A}_k^T \mathbf{A}_k$ remains constant. This is in contrast to PARAFAC1 where \mathbf{A} is simply the same for all k.

Another way of imposing this constraint ($\mathbf{A}_k^T \mathbf{A}_k$ constant) is to say that each \mathbf{A}_k is modeled as $\mathbf{P}_k \mathbf{H}$ where \mathbf{P}_k is an orthogonal matrix of the same size as \mathbf{A}_k and where \mathbf{H} is a small quadratic matrix with dimension equal to the number of components. This different interpretation of the concept shows that the individual components \mathbf{A}_k only differ up to a rotation. Hence, the latent variables are the same for all samples but may manifest themselves through different rotations.
The situations in which the PARAFAC2 model is valid can be difficult to understand because the flexibility compared to the PARAFAC1 model is somewhat abstract. However, one simple way to see the applicability of the PARAFAC2 model is that PARAFAC2 is worth considering in situations in which PARAFAC1 should ideally be valid, but where practical applications show that it is not. For example, it is often observed that the differences in elution profiles from experiment to experiment in chromatography makes the PARAFAC1 model difficult to fit. Many times PARAFAC2 can still handle such deviations even when the shifts in retention times are quite severe.

It is possible to fit both the PARAFAC1 and the PARAFAC2 model. If both models give the same results (approximately), then PARAFAC1 is likely valid and then PARAFAC1 is preferred because it uses fewer degrees of freedom. If there are large deviations, PARAFAC2 may be preferred. Note, though, that the K matrices A_k may have a larger variability than the corresponding A from the PARAFAC1 model because of the smaller amount of data that it is estimated from. This does not imply inadequacy but simply that there are differences in the way that the parameters are estimated.

Another interesting type of application of PARAFAC2 follows from the insight that the constraint that $A_k^T A_k$ is constant. This directly implies that the individual slabs, X_k, of the array can have different lengths, hence different size A_k, yet still fulfill the constraint that $A_k^T A_k$ is constant. Thus, PARAFAC2 can also handle e.g. batch data where the data from each batch are obtained at different sampling rates or different sampling duration. This is a very powerful feature of the PARAFAC2 model compared to the PARAFAC1 model.

The three-way PARAFAC2 model is given

$$X_k = A_k D_k B^T + E_k = P_k H D_k B^T + E_k, k = 1, \ldots, K$$

X_k is a slab of data $(I \times J)$ in which I may actually vary with K. K is the number of slabs and A_k $(I \times ncomp)$ are the first-mode loadings for the kth sample. D_k is a diagonal matrix that holds the kth row of C in its diagonal. C $(K \times ncomp)$ is the third mode loadings, H is an $(ncomp \times ncomp)$ matrix, and P_k is an $(I \times ncomp)$ orthogonal matrix. The output P is given as a cell array of length K where the kth cell element holds the $(I \times ncomp)$ matrix P_k. Thus, to get e.g. the second sample P, write $P\{2\}$, and to get the estimate of the first mode loadings, A_k, at this second frontal slab ($k = 2$), write $P\{2\}^* H$.

The model can also be fitted to more than three-way data. It is important then to be aware which mode is supposed to be fitted by separate loadings for each sample. The convention is that the first mode is the mode that has individual loadings and that these are defined across the last (the sample) mode. For example, chromatographic data with spectral detection can be arranged as the first mode being elution, the second spectral and the third mode being different experiments. Then different elution profiles (mode one) are found for each experiment (mode three). For multivariate batch process data, the array is typically arranged as time \times variables \times batches, meaning that the time trajectories (mode one) can vary from batch to batch (mode three).

INPUTS:

$x =$ the multiway array to be decomposed,
If all slabs have similar size, \(x\) is an array. For example, for three-way data where the matrix of measurements for sample one is held in \(x1\), for sample 2 in \(x2\) etc. then \(X(:,:,1) = X1; X(:,:,2) = X2; \) etc. If the slabs have different size, \(X\) is a cell array (type \(<\text{help cell}>\) for more info on cells). Then \(X\{1\} = X1; X\{2\} = X2; \) etc., and

\[
\text{ncomp} = \text{the number of factors (components) to use, or}
\]

\[
\text{model} = \text{a PARAFAC model structure (new data are fit to the model i.e. sample mode scores are calculated).}
\]

OPTIONAL INPUTS:

\[
\text{initial} = \text{cell array of initial values (initial guess) for the loadings (e.g. model.loads from a previous fit). If not used it can be 0 or [], and}
\]

\[
\text{options} = \text{discussed below.}
\]

OUTPUTS:

Data that are input as a cell-array in PARAFAC2 are converted to an array by zero-padding each samples first mode dimension in case of different first mode dimensions for different samples. Residuals etc. are also output as arrays. The output \(\text{model}\) is a structure array with the following fields:

\[
\text{modeltype}: \text{'PARAFAC2',}
\]

\[
\text{datasource}: \text{structure array with information about input data,}
\]

\[
\text{date}: \text{date of creation,}
\]

\[
\text{time}: \text{time of creation,}
\]

\[
\text{info}: \text{additional model information,}
\]

\[
\text{loads}: \text{1 by }K\text{ cell array with model loadings for each mode/dimension,}
\]

\[
\text{pred}: \text{cell array with model predictions for each input data block,}
\]

\[
\text{tsqs}: \text{cell array with }T^2\text{ values for each mode,}
\]

\[
\text{ssqresiduals}: \text{cell array with sum of squares residuals for each mode,}
\]

\[
\text{description}: \text{cell array with text description of model, and}
\]

\[
\text{detail}: \text{sub-structure with additional model details and results.}
\]

The output \(\text{pred}\) is a structure array, similar to \(\text{model}\), that contains prediction results for new data fit to the PARAFAC model.

Options

\[
\text{options} = \text{a structure array with the following fields:}
\]

\[
\text{name}: \text{'options', name indicating that this is an options structure,}
\]

\[
\text{display}: \text{['{on}' | 'off'], governs level of display,}
\]

\[
\text{plots}: \text{['{final}' | 'all' | 'none'], governs level of plotting,}
\]

\[
\text{weights}: \text{[], used for fitting a weighted loss function (discussed below),}
\]

393
stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative tolerance) (absolute tolerance) (maximum number of iterations) (maximum time in seconds)],

init: [0], defines how parameters are initialized (discussed below),

line: [0 | {1}] defines whether to use the line search {default uses it},

algo: [{'ALS'} | 'tld' | 'swatld'] governs algorithm used,

blockdetails: 'standard'

missdat: this option is not yet active,

samplemode: [3], defines which mode should be considered the sample or object mode,

constraints: {3x1 cell}, defines constraints on parameters (see PARAFAC), and

coreconsist: [{'on'} | 'off'], governs calculation of core consistency (turning off may save time with large data sets and many components).

The default options can be retrieved using: options = parafac('options');.

Note that samplemode should not be altered in PARAFAC2.

WEIGHTS

See help on PARAFAC for help on the use of weights for PARAFAC2

CONSTRAINTS

See help on PARAFAC for help on the use of constraints for PARAFAC2. One important difference from PARAFAC is that constraints in the first mode do not apply to the estimated profiles, A_k, themselves but only to H. It is generally advised not to use constraints in the first mode.

Examples

parafac2 demo for a demonstration of the use of the PARAFAC2 algorithm.

model = parafac2(X,5) fits a five-component PARAFAC2 model to the array X using default settings.

options = parafac2('options'); generates a set of default settings for PARAFAC2.

options.plots = 0; sets the plotting off.

options.init = 3; sets the initialization of PARAFAC2 to orthogonalized random numbers.

model = parafac2(X,2,options); fits a two-component PARAFAC2 model with the settings defined in options.

parafac2 io shows the I/O of the algorithm.
See Also

datahat, explode, gram, m pca, outerm, parafac, tld, tucker, unfoldm
pca

Purpose

Perform principal components analysis.

Synopsis

```matlab
model = pca(data,ncomp,options); %decomposition
pred  = pca(newdata,model,options); %application
options = pca('options')
```

Description

Performs a principal component analysis decomposition of the input array `data` returning `ncomp` principal components. E.g. for an M by N matrix `X` the PCA model is $X = TP^T + E$, where the scores matrix `T` is M by K, the loadings matrix `P` is N by K, the residuals matrix `E` is M by N, and K is the number of factors or principal components `ncomp`. The output `model` is a PCA model structure. This model can be applied to new data by passing the model structure to `PCA` along with new data `newdata` or by using `PCAPRO`. The output of `PCA` is a model structure with the following fields (see `MODELSTRUCT` for additional information):

- `modeltype`: 'PCA',
- `datasource`: structure array with information about input data,
 - `date`: date of creation,
 - `time`: time of creation,
 - `info`: additional model information,
- `loads`: cell array with model loadings for each mode/dimension,
- `pred`: cell array with model predictions for the input block (when `blockdetail='normal'` x-block predictions are not saved and this will be an empty array)
- `tsqs`: cell array with T^2 values for each mode,
- `ssqresiduals`: cell array with sum of squares residuals for each mode,
- `description`: cell array with text description of model, and
- `detail`: sub-structure with additional model details and results.

If the inputs are a M_{new} by N matrix `newdata` and a PCA model `model`, then `PCA` applies the model to the new data. Preprocessing included in `model` will be applied to `newdata`. The output `pred` is structure, similar to `model`, that contains the new scores, and other predictions for `newdata`.

Note: Calling `pca` with no inputs starts the graphical user interface (GUI) for this analysis method.

Options
options = a structure array with the following fields:

- name: 'options', name indicating that this is an options structure,
- display: ['off' | {'on'}], governs level of display to command window,
- plots: ['none' | {'final'}], governs level of plotting,
- outputversion: [2 | {3}], governs output format (discussed below),
- preprocessing: {[]}, cell array containing a preprocessing structure (see PREPROCESS) defining preprocessing to use on the data (discussed below),
- blockdetails: [{'standard'} | 'all'], level of detail included in the model for predictions and residuals.

The default options can be retrieved using: options = pca('options');

OUTPUTVERSION

By default (options.outputversion = 3) the output of the function is a standard model structure model. If options.outputversion = 2, the output format is:

\[\text{[scores, loads, ssq, res, reslm, tsqlm, tsq]} = \text{pca(xblock1,2,options)};\]

where the outputs are
- \(\text{scores}\) = x-block scores,
- \(\text{loads}\) = x-block loadings
- \(\text{ssq}\) = the sum of squares information,
- \(\text{res}\) = the Q residuals,
- \(\text{reslim}\) = the estimated 95% limit line for Q residuals,
- \(\text{tsqlim}\) = the estimated 95% limit line for T^2, and
- \(\text{tsq}\) = the Hotelling’s T^2 values.

PREPROCESSING

The preprocessing field can be empty [] (indicating that no preprocessing of the data should be used), or it can contain a preprocessing structure output from the PREPROCESS function. For example options.preprocessing = {preprocess('default', 'autoscale')}. This information is echoed in the output model in the model.detail.preprocessing field and is used when applying the PCA model to new data.

See Also

analysis, evolvfa, ewfa, explode, parafac, plotloads, plotscores, preprocess, ssqtable
pcaengine

Purpose

Principal components analysis computational engine.

Synopsis

```matlab
[ssq, datarank, loads, scores, msg] = pcaengine(data, ncomp, options)
options = pcaengine('options')
```

Description

This function is intended primarily for use as the engine behind other more full featured PCA programs. The only required input is the data matrix `data`.

Optional inputs include the number of principal components desired in the output `ncomp`, and a structure containing optional inputs `options`. If the number of components `ncomp` is not specified, the routine will return components up to the rank of the data `datarank`.

The outputs are the variance or sum-of-squares captured table `ssq`, mathematical rank of the data `datarank`, principal component loadings `loads`, principal component scores `scores`, and a text variable containing any warning messages `msg`.

To enhance speed, the routine is written so that only the specified outputs are computed.

Options

```matlab
options = a structure array with the following fields:
name: 'options', name indicating that this is an options structure,
display: [ 'off' | {'on'} ], governs level of display to command window,
algorithm: [ {'regular'} | 'big' | 'auto' ], tells which algorithm to use,
    'regular', uses an SVD and calculates all eigenvectors and eigenvalues,
    'big', calculates the “economy size” SVD, and
    'auto', checks the size of the data matrix and automatically chooses
    between 'regular' and 'big'
```

The default options can be retrieved using: `options = pcaengine('options');`.

See Also

`analysis`, `evolvfa`, `ewfa`, `explode`, `parafac`, `pca`, `ssqtable`
pcapro

Purpose

Project new data onto an existing principal components model.

Synopsis

\[
\text{[scoresn, resn, tsqn] = pcapro(newdata, loads, ssq, reslm, tsqlm, plots)} \\
\text{[scoresn, resn, tsqn] = pcapro(newdata, pcamod, plots)}
\]

Description

Inputs can be in two forms: 1) as a list of input variables, or 2) as a single model structure variable returned by ANALYSIS or PCA.

1) If a list of input variables is used the inputs are the new data \texttt{newdata} scaled the same as the original data used to construct the model, the model loadings \texttt{loads}, the model variance info \texttt{ssq}, the limit for Q \texttt{reslm}, the limit for T2 \texttt{tsqlm}, and an optional variable \texttt{plots} which suppresses plotting when set to 0 (default \texttt{plots} = 1).

WARNING: Scaling for \texttt{newdata} should be the same as original data used to create the PCA model!

The I/O format is:

\[
\text{[scoresn, resn, tsqn] = pcapro(newdata, loads, ssq, q, tsq, plots)}
\]

2) If the PCA model is input as the single model structure variable returned by ANALYSIS or PCA then the inputs are the new data \texttt{newdata} in the units of the original data, the structure variable that contains the PCA model \texttt{pcamod}, and an optional variable \texttt{plots} which suppresses the plots when set to 0 (default \texttt{plots} = 1).

NOTE: \texttt{newdata} will be preprocessed in PCAPRO using information stored in \texttt{pcamod} (\texttt{pcamod.detail.preprocessing}).

The I/O format is:

\[
\text{[scoresn, resn, tsqn] = pcapro(newdata, pcamod, plots)}
\]

Outputs are the new scores \texttt{scoresn}, residuals \texttt{resn}, and T2 values \texttt{tsqn}. These are plotted if \texttt{plots} = 1 (default).

See Also

datahat, analysis, explode, modlpred, pca, simca, tsqmtx
pcolormap

Purpose

Produces a pseudocolor map with labels.

Synopsis

```
pcolormap(data,maxdat,mindat)
pcolormap(data,xlbl,ylbl,maxdat,mindat)
```

Description

PCOLORMAP produces a pseudocolor map of the M by N input matrix `data`.

If `data` is class “double” the I/O format is:

```
pcolormap(data,xlbl,ylbl,maxdat,mindat)
```

If `data` is class “dataset” the I/O format is:

```
pcolormap(data,maxdat,mindat)
```

Optional inputs are `xlbl` a character array with M rows of labels for mode 1 {default = `int2str([1:m]')`}, `ylbl` a character array with N rows of labels for mode 2 {default = `int2str([1:n]')`}, `maxdat` a user defined maximum {default = `max(max(data)')`}, and `mindat` a user defined minimum {default = `min(min(data)')`}.

See Also

corrmap, pcolor, rwb
Principal components regression: multivariate inverse least squares regression.

Synopsis

```matlab
model = pcr(x,y,ncomp,options)    %calibration
pred  = pcr(x,model,options)      %prediction
valid = pcr(x,y,model,options)    %validation
options = pcr('options')
```

Description

PCR calculates a single principal components regression model using the given number of components \(n\text{comp} \) to predict \(y \) from measurements \(x \).

To construct a PCR model, the inputs are \(x \) the predictor \(x \)-block (2-way array class “double” or “dataset”), \(y \) the predicted \(y \)-block (2-way array class “double” or “dataset”), \(n\text{comp} \) the number of components to be calculated (positive integer scalar) and the optional structure, \(options \). The output is a standard model structure \(model \) with the following fields (see MODELSTRUCT):

- `modeltype`: 'PCR',
- `datasource`: structure array with information about input data,
 - `date`: date of creation,
 - `time`: time of creation,
 - `info`: additional model information,
- `reg`: regression vector,
- `loads`: cell array with model loadings for each mode/dimension,
- `pred`: 2 element cell array with model predictions for each input block (when `options.blockdetail='normal'` \(x \)-block predictions are not saved and this will be an empty array) and the \(y \)-block predictions.
- `tsqs`: cell array with \(T^2 \) values for each mode,
- `ssqresiduals`: cell array with sum of squares residuals for each mode,
- `description`: cell array with text description of model, and
- `detail`: sub-structure with additional model details and results.

To make predictions the inputs are \(x \) the new predictor \(x \)-block (2-way array class “double” or “dataset”), and \(model \) the PCR model. The output \(pred \) is a structure, similar to \(model \), that contains scores, predictions, etc. for the new data.

If new \(y \)-block measurements are also available then the inputs are \(x \) the new predictor \(x \)-block (2-way array class “double” or “dataset”), \(y \) the new predicted block (2-way array class “double” or “dataset”), and \(model \) the PCR model. The output \(valid \) is a structure, similar to
model, that contains scores, predictions, and additional y-block statistics etc. for the new data.

In prediction and validation modes, the same model structure is used but predictions are provided in the model.detail.pred field.

Note: Calling pcr with no inputs starts the graphical user interface (GUI) for this analysis method.

Options

```plaintext
options = a structure array with the following fields:

name: 'options', name indicating that this is an options structure,

display: [ 'off' | {'on'} ], governs level of display to command window,

plots [ 'none' | {'final'} ], governs level of plotting,

outputversion: [ 2 | {3} ], governs output format (discussed below),

preprocessing: {[ ]}, two element cell array containing preprocessing structures (see PREPROCESS) defining preprocessing to use on the x- and y-blocks (first and second elements respectively), and

blockdetails: [ {'standard'} | 'all' ], extent of predictions and residuals included in model, 'standard' = only y-block, 'all' x- and y-blocks.
```

The default options can be retrieved using: `options = pcr('options');`.

OUTPUTVERSION

By default (options.outputversion = 3) the output of the function is a standard model structure model. If options.outputversion = 2, the output format is:

```plaintext
[b,ssq,t,p] = pcr(x,y,ncomp,options)
```

where the outputs are

- `b` = matrix of regression vectors or matrices for each number of principal components up to ncomp,
- `ssq` = the sum of squares information,
- `t` = x-block scores, and
- `p` = x-block loadings.

Note: The regression matrices are ordered in `b` such that each Ny (number of y-block variables) rows correspond to the regression matrix for that particular number of principal components.

See Also

crossval, frpcr, modelstruct, pca, pls, preprocess, analysis, ridge
pcrengine

Purpose

Principal components regression computational engine.

Synopsis

\[
\begin{align*}
[\text{reg}, \text{ssq}, \text{loads}, \text{scores}, \text{pcassq}] &= \text{pcrengine}(x, y, ncomp, \text{options}) \\
\text{options} &= \text{pcrengine}('\text{options}')
\end{align*}
\]

Description

PCRENGINE calculates the basic elements of a PCR model (see PCR).

Inputs are \(x\) the predictor x-block, and \(y\) the predicted y-block.

Optional input \(ncomp\) is the number of components to be calculated (positive integer scalar). If the number of components \(ncomp\) is not specified, the routine will return components up to the rank of the x-block. Optional input \(\text{options}\) is discussed below.

Outputs are the matrix of regression vectors \(\text{reg}\), the sum of squares captured \(\text{ssq}\), x-block loadings \(\text{loads}\), and x-block scores \(\text{scores}\).

Note: The regression matrices are ordered in such that each \(Ny\) (number of y-block variables) rows correspond to the regression matrix for that particular number of principal components.

Options

\[\text{options} = \text{a structure array with the following fields:}\]
\[\begin{align*}
\text{name: 'options'}, & \text{name indicating that this is an options structure, and} \\
\text{display: ['off' | {'on'}]}, & \text{governs level of display to command window.}
\end{align*}\]

The default options can be retrieved using: \(\text{options} = \text{pcrengine}('\text{options}')\).

See Also

cpr, pls, analysis
percentile

Purpose

Finds percentile point (similar to MEDIAN).

Synopsis

\[s = \text{percentile}(x,y) \]

Description

PERCENTILE finds the point in the data \(x \) where the fraction \(y \) has lower values. Input \(x \) is a \(M \times N \) data array, and \(y \) is a percentile where \(0<y<1 \).

The output is a \(1 \) by \(N \) vector \(s \) of percentile points (PERCENTILE works on the columns of \(x \)).

See Also

median
ploteigen

Purpose

Extracts information from a model needed to construct a dataset object for PLOTGUI.

Synopsis

a = ploteigen(modl, options)

Description

Extracts the variance captured, eigenvalue, and RMSE (root-mean-squared error) information from a model structure for viewing using PLOTGUI. The inputs are a standard model structure, modl, and an optional options structure, options, described below. The output, a, is a DataSet object which can be passed to PLOTGUI for viewing.

Options

plots: ['none' | 'final' | {'auto'}] governs plotting behavior,
 'auto' makes plots if no output is requested {default}.
figure: ['off' | {'on'}] governs level of display to command window.

See Also

analysis, modelstruct, pca, pcr, plotgui, plotloads, pls
plotgui

Purpose

Interactive data viewer.

Synopsis

```matlab
fig = plotgui(data)
fig = plotgui(data,'PropertyName',PropertyValue,...)
fig = plotgui('update','PropertyName',PropertyValue,...)
```

Description

Plots input data `dat` and provides a control toolbar in the **Plot Controls** window to select portions of the data to view. The toolbar allows interactive selection, exclusion, and classing of rows or columns of data. The PLOTGUI command has various display options that are given as `'PropertyName', PropertyValue` pairs or as a single keyword. Properties and Keywords are discussed below. To modify options for an existing PLOTGUI figure without providing new data, use the 'update' keyword.

PLOTGUI returns the handle of the figure in which the data is displayed (`fig`).

Input `dat` can be class “double” or “dataset”. The description given below is generally listed for two-way data arrays. Options specific to data that are three-way or image are noted explicitly. PLOTGUI uses the dataset labels, classes, etc. when `dat` is class “dataset”.

Plot Controls Toolbar

The toolbar consists of 1) a menu bar with **File**, **Edit**, and **View** menus, 2) a figure selection dropdown menu, 3) three axis menus (labeled **x**, **y**, and **z**), 4) plot update controls **Plot** button and **auto-update** checkbox, and **Select** button.

Each figure in the figure selection dropdown menu menu can be modified by the PLOTGUI controls. Selecting a figure from this menu will bring that figure into view and indicate the selected axis menu settings. A "+" or a "*" next to a figure's name indicates that it is linked with another figure (see Duplicate Figure below).

The axis menus (labeled **x**, **y**, and **z**) select what parts of the data should be used for the plot. Each column or row selected in the y-axis menu will be plotted against the column, row or index selected in the x-axis menu. If any selection is made on the z-axis menu, then each y-axis selection is also plotted against the column or row selected in the z-axis menu to make a three-dimensional plot.
If the input `dat` is three-way it is assumed to be a multivariate image, and the y-axis is slice or slab and the figure default is `imagesc(dat(:,:,1))`. This is also true if `dat` is class "dataset" with the type field set to 'image' or 'image'.

If the **auto-update** checkbox is selected, figures are updated automatically when new axis-menu selections are made. Otherwise, the **Plot** button must be pressed before any changes are reflected in the figure.

View Menu

Various options associated with the viewed data are contained in the **View** menu. The specific options depend on the data being plotted. The **View** menu options are listed below.

- **Table**: Opens a **Plotted Data** window that lists the numerical values of the plotted data.
- **Numbers**: Displays the index number next to each plotted point.
- **Labels**: Displays available labels next to each plotted point. If no labels are available this option is greyed out.
- **Classes**: Uses available class information to give each plotted point a different symbol. If no class information is available this option is greyed out.
- **Excluded Data**: Shows any points which have been “excluded” from the data set.
- **Axis Lines**: Places lines through the origin.
- **Auto Contrast**: Contrast enhancement for a slice/slab for multivariate images (only available when the data are 3-way).
- **Interpolated Color**: Interpolates colors for a slice/slab for multivariate images (only available when the data are 3-way).
- **Data Summary**: Plots all the data, the mean, the standard deviation, or the mean ± the standard deviation. For Variables (columns) or Samples (rows) depending on what is selected in the x-axis.
- **Rows**: Plots the data across rows.
- **Columns**: Plots the data down the columns.
- **Slabs**: Uses `IMAGESC` to view a slice/slab of a 3-way array (only available when the data are 3-way).
- **Duplicate Figure**: Creates a duplicate copy of the current figure that is linked to the current figure i.e. if one figure is modified the other automatically changes to reflect the modification. The parent figure will have a "+" next to its name in the figure selection dropdown menu and the child figure will have an "*".
- **Spawn Figure**: Creates a duplicate copy of the current figure that is not controled by the **Plot Controls** toolbar. This is a simple MATLAB figure.
- **Dock Controls**: When checked, the **Plot Controls** toolbar are “docked” next to the controled figure.
- **Settings**: Allows the user to modify other view settings.
Selection using the Select button

The Select button allows the user to select plotted points in the current figure. After clicking Select, the current figure will be brought to the front and points are selected using the current selection tool (see Edit menu below). To extend a selection (i.e. add new points to the already selected points), use the shift-key while pressing the mouse button. To remove points from the selection, use the control-key while pressing the mouse button. To keep from making any selection, press "Esc" or "Escape".

Edit Menu

The Edit menu contains various actions relating to selections. The specific actions available depends on the current selection and PLOTGUI mode. The Edit menu options are listed below.

- **Select All**: Selects all plotted points.
- **Deselect All**: Deselects all plotted points.
- **Selection Mode**: Menu used to choose selection mode from the following:
 - **Box**: Click and drag a rubber band box around points,
 - **Polygon**: Click to mark the corners of a polygon around points and "Enter" to close the polygon,
 - **Paintbrush**: Click and drag to "paint" a selection onto points,
 - **Single X**: Click to select a single point on the x-axis,
 - **Single Y**: Click to select a single point on the y-axis,
 - **X Range**: Click and drag to select a range of points on the x-axis,
 - **Y Range**: Click and drag to select a range of points on the y-axis, and
 - **Nearest**: Click to select the nearest point.
- **Exclude Selection**: Excludes (soft deletes) the selected points from the data set. See View/Excluded Data.
- **Include Selection**: Includes the selected points in the data set. See View/Excluded Data.
- **Exclude Unselected**: Exclude all unselected points from the data set i.e. keep only the selected points.
- **Info on Selection**: Get information on selected point (only available when a single point is selected).
- **Set Class**: Set the class of the selected points.

File Menu

The File menu contains various actions relating to files. The File menu options are listed below.

- **Load Data**: Creates an interface for the user to load data into PLOTGUI from the base workspace or a file.
- **Save Data**: Creates an interface for the user to save data from PLOTGUI to the base workspace or a file.

Properties and Keywords
The following is a list of available properties. Each should be included as a
'PropertyName', PropertyValue pair in an initial PLOTGUI call or a PLOTGUI 'update'
call. Note that calls to PLOTGUI for 'PropertyName' and PropertyValue are case
insensitive.

The current value of almost all properties can be retrieved using the getappdata function on
the PLOTGUI figure and requesting the property of interest. Note that calls to GETAPPDATA are
case sensitive and 'PropertyName' must be in all lower-case. The I/O format is:

 currentValue = getappdata(fig,'propertyname')

where fig is the handle of the PLOTGUI figure. If 'propertyname' is not included
getappdata(fig) will list all the properties and their current values. Properties and their
possible values follow:

AxisMenuValues: {{x} {y} {z}}, Two or three element cell containing indices or
strings indicating which item, or items, to select in each of the three
axis pull down menus. In [x] or [y] a value of 0 (zero) means to
select index number. In [z] a value of 'none' means to not use the
z-axis.

AxisMenuDefaults: Axis menu defaults are axis menu values used if the axis menu
values can not be restored. The input format is the same as
axismenuvalues.

Figure: [scalar integer], Figure on which data should be plotted
{default is current figure}.

New: Key word – no associated PropertyValue. Creates a new figure for
display of data. This is equivalent to an initial PLOTGUI call.

PlotBy: [scalar integer], Dimension (mode) for the axis menu selections: 0 =
data summary, 1 = rows, 2 = columns, etc. (see View menu). The
default is 2 or the number of modes in the data if larger than 2-way.

VSIndex: [1 1] {default}, Two element vector indicating if "Index" should
be offered on x and y axis menus. A 1 indicates that it should be
offered as a selection and a 0 indicates that it should not e.g. [1 1]
indicates that it should be offered for both the x-axis and y-axis.

The following are image specific properties:

Image: Key word – no associated PropertyValue. Unfolds a 2 or 3-way
array and displays it as an image, allowing selection, classing, and
exclusion of individual pixels.

Unfold: Key word – no associated PropertyValue. Pseudonym for “image”.

AsImage: Key word – no associated PropertyValue. Display 3-way data that
have already been unfolded as an image allowing selection, classing,
and exclusion of individual pixels.

The following are view properties:

ViewClasses: [1] {default}, Turns on View/Classes menu. A 0 (zero) turns it off.
ViewExcludedData: [1] {default}, Turns on View/Excluded Data menu. A 0 (zero) turns it off.

ViewLabels: [1] {default}, Turns on View/Labels menu. A 0 (zero) turns it off.

ViewNumbers: [1] {default}, Turns on View/Numbers menu. A 0 (zero) turns it off.

The following are plot properties:

- LineStyle: <string>, Defines line style (see PLOT).
- PlotType: <string>, String used to select plot type {default [] is automatic selection}. Other values are 'scatter', 'bar', 'none' ('none' = do no plotting).
- SelectionMarker: <string>, Defines marker style for selected points (see PLOT).

The following are selection properties:

- SelectionMode: <string>, Defines the selection mode. This can be any string listed under View/Selection Mode above. Also see GSELECT.
- BrushWidth: [scalar integer number of pixels], This defines the brush width for use when selectionmode = 'paintbrush'. See View/Selection Mode/Paintbrush.
- NoSelect: [0] {default}, When set to 0 this allows selections. When set to 1 no selection is allowed.
- NoInclud: [0] {default}, When set to 0 this allows changes to the includ field (i.e. it allows data to be excluded). When set to 1 no changes to the includ field are allowed (i.e. data can not be excluded).

The following are on-event properties:

- CloseGUICallback: Command(s) to execute when the figure is closed.
- IncludChangeCallback: Command executed when includ field of the dataset is modified.
- InfoReqCallback: Command executed when information on a selected point is requested.
- PlotCommand: Command executed after plotting (e.g. draw limits, assign ButtonDownFcns, modify axes, ...).
- SelectionChangeCallback: Command executed when a selection is made.
- SetClassCallback: Command executed when the class field of the dataset is changed.

The following are confidence limit properties:

- ConfLimits: Boolean flag to make "Conf. Limits" controls visible. 1 = show controls (PLOTGUI does nothing with these controls, thus the routine specified in 'plotcommand' must be set to use values).
- LimitsValue: Value for Conf. Limits editbox.
- ShowLimits: Value for "Conf. Limits" checkbox (1 = checked).

The following are figure linking properties (WARNING! Modifying these settings can lead to unexpected results!):

- Children: Add new child of the current PLOTGUI figure (all child figures are updated when their parent is updated and closed when their parent is
closed). Note: this property will only allow adding of additional children. Other modifications must be made using setappdata.

ControlBy: Reassign control for PLOTGUI figure.

Parent: Assign a parental link (Forces the parent figure to update if this figure is updated, also see 'Children').

TimeStamp: Time-stamp of last time this figure was updated (can be set to any string to isolate figure from updating by parents).

The following are other **miscellaneous** properties:

UIControl: Add extra uicontrol(s) to PLOTGUI control toolbar for use with current figure (buttons, sliders, etc.). The value passed to UIControl should be a cell in which each entry is the tag of a new object to create and the value of that field should contain a cell of uicontrol property / value pairs to set for that object. For example:

```matlab
myobj.mybtn = {'style', 'pushbutton', 'string', 'new fig', 'callback', 'figure'};
plotgui('update','uicontrol',myobj)
```

creates a button with the tag 'mybtn' on the controls for the current figure.

If the cell for any object does not contain a 'position' property for the object, PLOTGUI will manage the object's position.

The following are **read-only** properties. These properties can only be viewed and are only accessible through the MATLAB getappdata command.

Selection: Cell array of currently selected values. Usually the same format as "includ" field of DataSet object where each cell represents the index of selected items in each dimension {rows, columns, slabs, ...}.

When selecting elements in greater than 2-dimensional data (and without the use of the 'image' keyword), two cells of this field will be pairs of selected indices: \{x,y,\} or {\,y,z}.

FigureType: 'PlotGUI'

DataSet: DataSet used in figure (or pointer to figure with actual dataset)

Note: This is set by calling PLOTGUI with a new dataset as an input. The actual DataSet can be retrieved using the getdataset command (see below).

The following are other valid figure properties. See the MATLAB documentation on FIGURE properties for additional information.

HandleVisibility, MenuBar, Name, NumberTitle, Position, Resize, Tag, ToolBar, Units, UserData, Visible, WindowStyle

Examples

```matlab
fig = plotgui(mydata) plots mydata allowing user to select which column(s) of mydata to plot using pull-down menus. Figure number of plot is returned.
```
plotgui(mydata,'plotby',1) or plotgui(mydata,'plotby','rows') plots mydata as in first example except that rows of mydata (dimension 1) are used for pull-down menus instead of columns. Note: When a PLOTGUI property is set for a given figure, the new value will be retained until a new value for that property is provided, even if new data is plotted on the same PLOTGUI figure.

fig = plotgui(mydata,'plotby',1,'axismenuvalues',{[1] [2 3]}) plots rows of mydata; sets controls with row 1 selected for the x-axis and rows 2 and 3 selected for the y-axis. Use:

getappdata(fig,'axismenuvalues')
to retrieve current axis menu settings. axispulldown

plotgui(mydata,'viewclasses',1) plots mydata using symbols to identify the classes stored in dataset mydata. Use a value of 0 (zero) to turn off viewclasses.

plotgui('update','viewclasses',1) Turns on viewclasses property for current figure without having to pass data to plot (substitute string 'update' for data)

mydata = plotgui('getdataset',fig) Retrieves mydata from figure fig.

plotgui(myimage,'image') plots 3-way image myimage selecting slabs of the image for display. The keyword 'image' allows selection, classing and exclusion of pixels in the image.

See Also

dataset, analysis, plotloads, plotscores
plotloads

Purpose

Extract and display loadings information from model.

Synopsis

\[
a = \text{plotloads}(\text{modl}, \text{options})
\]

\[
a = \text{plotloads}(\text{loads}, \text{labels}, \text{classes})
\]

\[
\text{options} = \text{plotloads}('\text{options}')
\]

Description

Given a standard model structure, relevant loading information (e.g. labels) is collected and passed to PLOTGUI for plotting. The input is the model containing loadings to plot modl. (e.g. see MODELSTRUCT). Optional input options is discussed below.

Input loads is a \(N \times K \) loadings matrix (class “double”). Optional input labels is a character or cell array with \(N \) rows containing sample labels, and optional input classes is a vector with \(N \) integer elements of class identifiers.

If no output is requested then PLOTTLOADS initiates an interactive plotting utility to make loadings plots. If an output is requested, no plots are made, and the output \(a \) is a dataset object containing the loadings and labels, etc.

Options

The default options can be retrieved using: \(\text{options} = \text{plotloads}('\text{options}') \);

See Also

analysis, modelstruct, pca, pcr, plotgui, plotscores, pls
plotscores

Purpose
Extract and display scores information from model.

Synopsis

\[
a = \text{scoresplot}(\text{modl}, \text{options})
\]
\[
a = \text{scoresplot}(\text{modl}, \text{pred}, \text{options})
\]
\[
a = \text{plotscores}(\text{scores}, \text{labels}, \text{classes})
\]
\[
\text{options} = \text{plotscores}('\text{options}')
\]

Description
Given a standard model structure, relevant scores information (e.g. labels) is collected and passed to PLOTGUI for plotting. The input is the model containing scores to plot modl. (e.g. see MODELSTRUCT). A second input pred contains a test or validation structure (see PCA) that can be plotted with scores in modl. Optional input options is discussed below.

Input scores is a \(M\) by \(K\) scores matrix (class “double”). Optional input labels is a character or cell array with \(M\) rows containing sample labels, and optional input classes is a vector with \(M\) integer elements of class identifiers.

If no output is requested then PLOTSCORES initiates an interactive plotting utility to make scores plots. If an output is requested, no plots are made, and the output \(a\) is a dataset object containing the scores and labels, etc.

Options
\[
\text{options} = \quad \text{a structure array with the following fields:}
\]
name: 'options', name indicating that this is an options structure,
display: [{'on'} | 'off'], governs level of display,
plots: ['none' | 'final' | {'auto'} |], governs plotting behavior,
'auto' makes plots if no output is requested {default},
figure: [], governs where plots are made, when figure = [] plots are made in a new figure window {default}, this can also be a valid figure number (i.e. figure handle), and
sct: [0 | {1}], tells whether to plot cal (modl scores) with test (pred scores), sct = 1 plots original calibration data with prediction set {default}.

The default options can be retrieved using: options = plotscores('options');

See Also
analysis, modelstruct, pca, pcr, plotgui, plotloads, pls
pls

Purpose

Partial least squares regression for univariate or multivariate y-block.

Synopsis

```matlab
model = pls(x,y,ncomp,options) %calibration
pred  = pls(x,model,options)    %prediction
valid = pls(x,y,model,options)  %validation
options = pls(’options’)        
```

Description

PLS calculates a single partial least squares regression model using the given number of components `ncomp` to predict `y` from measurements `x`.

To construct a PLS model, the inputs are `x` the predictor block (2-way array class “double” or class “dataset”), `y` the predicted block (2-way array class “double” or class “dataset”), `ncomp` the number of components to to be calculated (positive integer scalar), and the optional structure, `options`. The output is a standard model structure `model` with the following fields (see MODELSTRUCT):

- `modeltype: 'PLS'`,
- `datasource: structure array with information about input data`,
 - `date: date of creation`,
 - `time: time of creation`,
 - `info: additional model information`,
 - `reg: regression vector`,
 - `loads: cell array with model loadings for each mode/dimension`,
 - `pred: 2 element cell array with model predictions for each input block (when options.blockdetail='normal' x-block predictions are not saved and this will be an empty array) and the y-block predictions.`,
 - `wts: double array with X-block weights`,
 - `tsqs: cell array with T^2 values for each mode`,
 - `ssqresiduals: cell array with sum of squares residuals for each mode`,
 - `description: cell array with text description of model`,
 - `detail: sub-structure with additional model details and results`.

To make predictions the inputs are `x` the new predictor x-block (2-way array class “double” or “dataset”), and `model` the PLS model. The output `pred` is a structure, similar to `model`, that contains scores, predictions, etc. for the new data.
If new y-block measurements are also available then the inputs are x the new predictor x-block (2-way array class “double” or “dataset”), y the new predicted block (2-way array class “double” or “dataset”), and model the PLS model. The output valid is a structure, similar to model, that contains scores, predictions, and additional y-block statistics etc. for the new data.

Note: Calling pls with no inputs starts the graphical user interface (GUI) for this analysis method.

Options

```
options = a structure array with the following fields:
    name: 'options', name indicating that this is an options structure,
    display: [ 'off' | {'on'} ], governs level of display to command window,
    plots [ 'none' | {'final'} ], governs level of plotting,
    outputversion: [ 2 | {3} ], governs output format (see below),
    preprocessing: {[] [],}, two element cell array containing preprocessing structures (see PREPROCESS) defining preprocessing to use on the x- and y-blocks (first and second elements respectively)
    algorithm: [ 'nip' | {'sim'} ], PLS algorithm to use: NIPALS or SIMPLS {default}, and
    blockdetails: [ {'standard'} | 'all' ], extent of predictions and residuals included in model, 'standard' = only y-block, 'all' x- and y-blocks.
```

The default options can be retrieved using: `options = pls('options');`.

OUTPUTVERSION

By default (options.outputversion = 3) the output of the function is a standard model structure model. If options.outputversion = 2, the output format is:

```
[b,ssq,p,q,w,t,u,bin] = pls(x,y,ncomp,options)
```

where the outputs are

- `b` = matrix of regression vectors or matrices for each number of principal components up to ncomp,
- `ssq` = the sum of squares information,
- `p` = x-block loadings,
- `q` = y-block loadings,
- `w` = x-block weights,
- `t` = x-block scores
- `u` = y-block scores, and
- `bin` = inner relation coefficients.
Note: The regression matrices are ordered in b such that each N_y (number of y-block variables) rows correspond to the regression matrix for that particular number of principal components.

Algorithm

Note that unlike previous versions of the PLS function, the default algorithm (see Options, above) is the faster SIMPLS algorithm. If the alternate NIPALS algorithm is to be used, the `options.algorithm` field should be set to 'nip'.

See Also

crossval, modelstruct, pcr, plsnipal, preprocess, analysis, ridge
plsda

Purpose

Partial least squares discriminate analysis.

Synopsis

```matlab
model = plsda(x,y,ncomp,options)
model = plsda(x,ncomp,options)
pred = plsda(x,model,options)
valid = plsda(x,y,model,options)
options = plsda('options')
```

Description

PLSDA is a multivariate inverse least squares discrimination method used to classify samples. The y-block in a PLSDA model indicates which samples are in the class(es) of interest through either:

(A) a column vector of class numbers indicating class assignments:

\[y = [1 \ 1 \ 3 \ 2]'; \]

(B) a matrix of one or more columns containing a logical zero (= not in class) or one (= in class) for each sample (row):

\[
\begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\]

NOTE: When a vector of class numbers is used (case A, above), class zero (0) is reserved for "unknown" samples and, thus, samples of class zero are never used when calibrating a PLSDA model. The model will include predictions for these samples.

The prediction from a PLSDA model is a value of nominally zero or one. A value closer to zero indicates the new sample is NOT in the modeled class; a value of one indicates a sample is in the modeled class. In practice a threshold between zero and one is determined above which a sample is in the class and below which a sample is not in the class (See, for example, PLSDTHRES). Similarly, a probability of a sample being inside or outside the class can be calculated using DISCRIMPROB. The predicted probability of each class is included in the output model structure in the field:

```matlab
model.details.predprobability
```

INPUTS

\[x = \text{X-block (predictor block) class "double" or "dataset"}, \]
\textbf{y =} Y-block - OPTIONAL if \(x\) is a dataset containing classes for sample mode (mode 1) otherwise, \(y\) is one of:

(A) column vector of sample classes for each sample in \(x\) -OPTIONAL if \(x\) is a dataset containing classes for sample mode (mode 1)

or (B) a logical array with 1 indicating class membership for each sample (rows) in one or more classes (columns)

\textbf{ncomp =} the number of latent variables to be calculated (positive integer scalar).

\textbf{OUTPUT}

\textbf{model =} standard model structure containing the PLSDA model (See MODELSTRUCT).

\textbf{pred =} structure array with predictions

\textbf{valid =} structure array with predictionsz

Note: Calling \texttt{plsda} with no inputs starts the graphical user interface (GUI) for this analysis method.

\textbf{Options}

\textbf{display:} ['off' | { 'on' }] governs level of display to command window.

\textbf{plots:} ['none' | { 'final' }] governs level of plotting.

\textbf{preprocessing:} [[]] preprocessing structures for \(x\) and \(y\) blocks (see PREPROCESS).

\textbf{algorithm:} ['nip' | { 'sim' }] PLS algorithm to use: NIPALS or SIMPLS

\textbf{blockdetails:} ['compact' | { 'standard' } | 'all'] Extent of detail included in model.

'\textit{standard} keeps only \(y\)-block, 'all' keeps both \(x\)- and \(y\)-blocks

\textbf{See Also}

class2logical, crossval, pls, plsdthres, simca
plsdaroc

Purpose

Calculate and display ROC curves for PLSDA model.

Synopsis

roc = plsdaroc(model,ycol,options)

Description

ROC curves can be used to assess the specificity and sensitivity possible with different predicted y-value thresholds for a PLSDA model. Inputs are a PLSDA model model, an optional index into the y-columns used in the model ycol [default = all columns], and an options structure. Output is a dataset with the sensitivity/specificity data roc.

Options

plots : ['none'|{final}] governs plotting on/off

See Also

discrimprob, plsda, plsdthres, simca
plsdthres

Purpose

Bayesian threshold determination for PLS Discriminate Analysis.

Synopsis

\[[\text{threshold}, \text{misclassed}, \text{prob}] = \text{plsdthres}(\text{model}, \text{options}) \]
\[[\text{threshold}, \text{misclassed}, \text{prob}] = \text{plsdthres}(\text{y,ypred,cost,prior,out}) \]

Description

PLSDTHRES uses the distribution of calibration-sample predictions obtained from a PLS model built for two or more logical classes to automatically determine a threshold value which will best split those classes with the least probability of false classifications for future predictions. It is assumed that the predicted values for each class are approximately normally distributed. The calibration can contain more than 2 classes, in which case thresholds to distinguish all classes will be determined. It is assumed that with more than 2 classes the primary misclassification threat is from the adjacent class(es).

INPUTS

\(y = \) measured Y-block values used in PLS, and
\(\text{ypred} = \) PLS predicted Y values for calibration samples.

OPTIONAL INPUTS

\(\text{cost} = \) vector of logarithmic cost biases for each class in \(y \), \(\text{cost} \) is used to bias against misclassification of a particular class or classes {default = uses all zeros i.e. equal cost}.
\(\text{prior} = \) vector of prior probabilities of observing each class. If any class prior is Inf, the frequency of observation of that class in the calibration is used as its prior probability. If all priors are Inf, this has the effect of providing the fewest incorrect predictions assuming that the probability of observing a given class in future samples is similar to the frequency that class in the calibration set. {default = \(\) uses all ones i.e. equal priors.}
\(\text{out} = \) \(\{0 \mid 1\} \), governs plotting, \(\text{out}=1 \) provide plots of thresholding, \(\text{out}=0 \) makes no plots.

OUTPUTS

\(\text{threshold} = \) vector of thresholds. If \(y \) consists of more than two classes, threshold will be a vector giving the upper bound y-value for each class.
\(\text{misclassed} = \) array containing the fraction of misclassifications for each class (rows): Column 1 = false negatives and Column 2 = false positives.
\texttt{prob} = lookup matrix of predicted \(y \) (column 1) vs. probability of each class (columns 2 to end).

See Also

crossval, discrimprob, pls, simca
plsnipal

Purpose

Calculate single latent variables for partial least squares regression.

Synopsis

\[[p,q,w,t,u] = plsnipal(x,y) \]

Description

PLSNIPAL is called by the routine pls to calculate each latent variable in a partial least squares regression.

Inputs x and y are either the x-block and y-block for calculation of the first latent variable, or the x-block and y-block residuals for calculation of subsequent latent variables.

The outputs are p the x-block latent variable loadings, q the y-block variable loadings, w the x-block latent variable weights, t the x-block latent variable scores, and u the y-block latent variable scores.

See Also

nippls, pls, analysis, simpls
plspulsm

Purpose

Builds finite impulse response (FIR) models for multi-input single (MISO) output systems using partial least squares regression.

Synopsis

\[b = \text{plspulsm}(u, y, n, \text{maxlv}, \text{split}, \text{delay}) \]

Description

plspulsm calculates a vector of FIR coefficients \(b \) using PLS regression. Inputs are a matrix of process input vectors \(u \), and a process output vector \(y \). \(n \) is a row vector with the number of FIR coefficients to use for each input, \(\text{maxlv} \) is the maximum number of latent variables to consider, \(\text{split} \) is the number of times the model is rebuilt and tested during cross-validation, and \(\text{delay} \) is a row vector containing the number of time units of delay for each input.

Note: plspulsm uses contiguous blocks of data for cross-validation.

Examples

\[b = \text{plspulsm}([u1 \ u2], y, [25 \ 15], 5, 10, [0 \ 3]) \]

This system has 2 inputs as column vectors \(u1 \) and \(u2 \) and a single output vector \(y \). The FIR model will use 25 coefficients for input variable \(u1 \) and 15 coefficients for input variable \(u2 \). For this model a maximum of 5 latent variables will be considered. The cross validation split the data into 10 subsets. The number of time units of delay for the first input variable \(u1 \) is 0 and for the second input variable \(u2 \) it is 3.

See Also

autocor, crosscor, fir2ss, wrtpulse
plsrsgcv

Purpose

Generates a matrix used to calculate residuals from a single data block using partial least squares regression models with cross validation.

Synopsis

\[\text{coeff} = \text{plsrsgcv}(\text{data}, \text{lv}, \text{cvit}, \text{cvnum}, \text{out}) \]

Description

\[\text{coeff} = \text{plsrsgncv}(\text{data}, \text{lv}, \text{cvit}, \text{cvnum}) \] calculates a matrix \(\text{coeff} \) from a single data block \(\text{data} \). \text{plsrsgncv} calculates partial least squares regression models of each variable in the matrix \(\text{data} \) using the remaining variables and cross-validation with random test data blocks. The maximum number of latent variables to consider is \(\text{lv} \), the number of test sets is \(\text{cvit} \), and the number of samples in each test set is \(\text{cvnum} \). Multiplying a new data matrix by the matrix \(\text{coeff} \) yields a matrix whose values are the difference between the new data and its prediction based on the PLS regressions created by \text{plsrsgncv}.

See Also

\text{plsrsgn}, \text{replace}
plsrsgn

Purpose

Generates a matrix used to calculate residuals from a single data block using partial least squares regression models.

Synopsis

\[\text{coeff} = \text{plsrsgn}(\text{data}, \text{lv}, \text{out}) \]

Description

\[\text{coeff} = \text{plsrsgn}(\text{data}, \text{lv}) \] calculates a matrix `coeff` from a single data block `data`. `plsrsgn` calculates partial least squares regression models of each variable in the matrix `data` using the remaining variables and the number of latent variables `lv`. Multiplying a new data matrix by the matrix `coeff` yields a matrix whose values are the difference between the new data and its prediction based on the PLS regressions created by `plsrsgn`.

See Also

`plsrsgcv`, `replace`
plttern

Purpose
Plots a 2D ternary diagram.

Synopsis

\[\text{[tdata,h]} = \text{plttern(data,linestyle,x1lab,x2lab,x3lab)} \]

Description
PLTTERN makes 2-D ternary plots of the data contained in the three column input matrix data. The columns of data correspond to concentrations (\(\geq 0 \) and real) and are normalized to fit in the range 0 to 100. Optional inputs x1lab, x2lab, x3lab are row vectors of text containing labels for the axes. The output tdata is the normalized concentration data.

See Also
dp, ellps, hline, pan, pltternf, vline, zline
pltttern

Purpose
Plots a 3D ternary diagram with frequency of occurrence.

Synopsis
\[\text{tdata} = \text{pltttern}(\text{data}, \text{x1lab}, \text{x2lab}, \text{x3lab}); \]

Description
PLTTERN makes 3-D ternary plots of the data contained in the four column input matrix data. The first three columns of data correspond to concentrations (\(\geq 0 \) and real) and are normalized to fit in the range 0 to 100. The fourth column of data corresponds to the frequency of occurrence (\(\geq 0 \) and real). Optional inputs \(x1lab, x2lab, x3lab \) are row vectors of text containing labels for the axes. The output \text{tdata} is the normalized concentration data.

See Also
dp, ellps, hline, pan, pltttern, vline, zline
polyinterp

Purpose

Polynomial interpolation, smoothing, and differentiation.

Synopsis

\[y_i = \text{polyinterp}(x, y, x_i, \text{width}, \text{order}, \text{deriv}); \]

Description

For a \(M \) by \(N \) input matrix \(y \) with corresponding 1 by \(N \) axis vector \(x \) (the points at which the \(y \) are given) \text{POLYINTERP} estimates the \(M \) by \(N \) matrix \(y_i \) which has the smoothed values of \(y \). If the points are evenly spaced use the \text{SAVGOL} function instead. Note that \(y \) is a matrix of ROW vectors to be smoothed.

Optional inputs are \(x_i \) a vector of points to interpolate to, \(\text{width} \) specifies the number of points in the filter {default = 15}, the order of the polynomial \(\text{order} \) {default = 2}, and the derivative \(\text{deriv} \) {default = 0}.

Examples

If \(y \) is a 5 by 100 matrix, \(x \) is a 1 by 100 vector, and \(x_i \) is a 1 by 91 vector then \(\text{polyinterp}(x, y, x_i, 11, 3, 1) \) gives the 5 by 91 matrix of first-derivative row vectors resulting from an 11-point cubic interpolation to the 91 points in \(x_i \).

See Also

baseline, lamsel, mscorr, savgol, stdfir
polypls

Purpose

Calculate partial least squares regression models with polynomial inner relations.

Synopsis

```
[p,q,w,t,u,ssqdif] = polypls(x,y,lv,n)
```

Description

POLYPLS creates a partial least squares regression model with polynomial fit for the inner relation. Inputs are a matrix of predictor variables (x-block) *x*, a matrix of predicted variables (y-block) *y*, the number of latent variables *lv*, and the order of the polynomial *n*.

Outputs are *p* the x-block latent variable loadings, *q* the y-block variable loadings, *w* the x-block latent variable weights, *t* the x-block latent variable scores, *u* the y-block latent variable scores, *b* a matrix of polynomial coefficients for the inner relationship, and *ssqdif* a table of x- and y-block variance captured by the PLS model.

Use POLYPRED to make predictions with new data.

See Also

lwrxy, pls, polypred
polypred

Purpose

Make predictions for partial least squares regression models with polynomial inner relations.

Synopsis

\[y_{pred} = \text{polypred}(x, b, p, q, w, lv) \]

Description

POLYPRED uses parameters created by the routine POLYPLS to make predictions from a new x-block matrix of predictor variables \(x \). Inputs are \(b \) a matrix of polynomial coefficients for the inner relationship, \(p \) the x-block latent variable loadings, \(q \) the y-block variable loadings, \(w \) the x-block latent variable weights, and the number of latent variables \(lv \).

Note: It is important that the scaling of the new data \(x \) is the same as that used to create the model parameters in POLYPLS.

See Also

lwrxy, polypls, pls
preprocess

Purpose

Selection and application of preprocessing methods.

Synopsis

\[
s = \text{preprocess}(s) \quad \text{%GUI preprocessing selection}
\]

\[
s = \text{preprocess}(\text{default}',\text{'methodname'}) \quad \text{%Non-GUI selection}
\]

\[
[\text{datap},\text{sp}] = \text{preprocess}(\text{calibrate}',s,\text{data}) \quad \text{%single block calibrate}
\]

\[
[\text{datap},\text{sp}] = \text{preprocess}(\text{calibrate}',s,\text{xblock},\text{yblock}) \quad \text{%multi-block}
\]

\[
\text{datap} = \text{preprocess}(\text{apply}',\text{sp},\text{data}) \quad \text{%apply to new data}
\]

\[
\text{data} = \text{preprocess}(\text{undo}',\text{sp},\text{datap}) \quad \text{%undo preprocessing}
\]

Description

PREPROCESS is a general tool to choose preprocessing steps and to perform these steps on data. See PREPROUSER for a description on how custom preprocessing can be added to the standard preprocessings listed below. PREPROCESS has four basic command-line forms which include:

1) SELECTION OF PREPROCESSING.

The purpose of the following calls to PREPROCESS is to generate standard structure arrays that contain the desired preprocessing steps.

\[
s = \text{preprocess};
\]

generates a GUI and allows the user to select preprocessing steps interactively. The output \(s\) is a standard preprocessing structure.

\[
s = \text{preprocess}(s);
\]

allows the user to interactively edit a previously identified preprocessing structure \(s\). The output \(s\) is the edited preprocessing structure.

\[
s = \text{preprocess}(\text{default}',\text{'methodname'});
\]

returns the default structure for method \('methodname'\). A list of strings that can be used for \'methodname\' can be viewed using the command:

\[
\text{preprocess}(\text{'keywords'})
\]

A list of standard methods \'methodname\' follow:

- \'abs\': takes the absolute value of the data (see ABS),
- \'autoscale\': centers columns to zero mean and scales to unit variance (see AUTO),
- \'detrend\': remove a linear trend (see BASELINE),
'gls weighting': generalized least squares weighting (see GLSW),
'groupscale': group/block scaling (see GSCALE),
'mean center': center columns to have zero mean (see MNCN),
'msc (mean)': multiplicative scatter correction with offset, the mean is the reference spectrum (see MSCORR),
'median center': center columns to have zero median (see MEDIAN),
'normalize': normalization of the rows (see NORMALIZ),
'osc': orthogonal signal correction (see OSCCALC and OSCAPP),
'sg': Savitsky-Golay smoothing and derivatives (see SAVGOL), and
'snv': standard normal deviate (autoscale the rows, see SNV).

The output is a standard preprocessing structure array s where each method to apply is a separate record.

2) CALIBRATE.

The objective of the following calls to PREPROCESS is to estimate preprocessing parameters, if any, from a calibration data set and perform preprocessing on the calibration data set. The I/O format is:

$$[\text{datap}, \text{sp}] = \text{preprocess}('\text{calibrate}', s, \text{data});$$

The inputs are s a standard preprocessing structure and data the calibration data. The preprocessed data is returned in datap, and preprocessing parameters are returned in a modified preprocessing structure sp. Note that sp is used as an input with the 'apply' and 'undo' commands described below.

Short cuts for each method can also be used. Examples for 'mean center' and 'autoscale' are

$$[\text{datap}, \text{sp}] = \text{preprocess}('\text{calibrate}', 'mean center', \text{data});$$
$$[\text{datap}, \text{sp}] = \text{preprocess}('\text{calibrate}', 'autoscale', \text{data});$$

Preprocessing for some multi-block methods require that the y-block be passed also. The I/O format in these cases is:

$$[\text{datap}, \text{sp}] = \text{preprocess}('\text{calibrate}', s, \text{xblock}, \text{yblock});$$

Preprocessing 'methodname' that require a y-block are:

'osc'
'gls weighting'

3) APPLY.

The objective of the following call to PREPROCESS

$$\text{datap} = \text{preprocess}('\text{apply}', \text{sp}, \text{data})$$
is to apply the calibrated preprocessing in \textit{sp} to new data. Inputs are \textit{sp} the modified preprocessing structure (See 2 above) and the data, \textit{data}, to apply the preprocessing to. The output is preprocessed data \textit{datap} that is class “dataset”.

4) UNDO.

The inverse of applying preprocessing is performed in the following call to \texttt{PREPROCESS}

\begin{verbatim}
data = preprocess('undo',sp,datap);
\end{verbatim}

Inputs are \textit{sp} the modified preprocessing structure (See 2 above) and the data, \textit{datap}, (class “double” or “dataset”) from which the preprocessing is removed. Note that for some preprocessing methods an inverse does not exist or has not been defined and an 'undo' call will cause an error to occur. For example, 'osc' and 'sg'. One reason for not defining an inverse, or undo, is because it would require a significant amount of memory storage when data sets get large.

\textbf{See Also}

crossval, pca, pcr, pls, preprouser
preprouser

Purpose
User defined items for preprocess catalog.

Synopsis
preprouser(fig)

Description
Each method available in the preprocess function has an associated 'methodname' such as those listed in the help for preprocess. Each method is defined using a preprocessing structure that contains all the necessary information to perform calculations for that method. The standard methods are defined in the preprocatalog file, which should not be edited by the user. Additional user-defined methods can be defined in the preprouser file and the following text describes how the user to add custom preprocessing methods. A few example methods already exist in the preprouser file to guide the user.

To add a custom user-defined preprocessing method, the user must 1) open the PREPROUSER.M file, 2) edit the file to create a structure with the fields described below, 3) after defining the structure add the line preprocess('addtocatalog',fig,usermethod), and 4) save and close the PREPROUSER.M file.

The line added in Step 3

 preprocess('addtocatalog',fig,usermethod)

makes the new custom method available to PREPROCESS. The input usermethod is the preprocessing structure containing the user-defined method, and fig is a figure handle passed to preprouser by preprocess.

The methods defined in the preprocatalog and preprouser files are available to all functions making use of the preprocess function.

The fields in a preprocessing structure are listed here. Detailed descriptions and examples follow this list.

description: text string containing a description for the method,
calibrate: cell containing the line(s) of code to execute during a calibration operation (see command-line form 2 of PREPROCESS),
apply: cell containing the line(s) of code to execute during an apply operation (see command-line form 3 of PREPROCESS),
undo: cell containing the line(s) of code to execute during an undo operation (see command-line form 4 of PREPROCESS),
out: cell used to hold calibration-phase results for use in apply or undo (these are the parameters estimated from the calibration data and used to preprocess new data),

settingsgui: text string containing the function name of a method-specific GUI to invoke when the Settings button is pressed in the preprocessing GUI,

settingsonadd: \[0 | \{1\}\], boolean: 1 = indicates that the settings GUI should be automatically brought up when method is "added" in the preprocessing GUI,

usesdataset: \[\{0\} | 1\], boolean: indicates if this method should be passed a dataset object (1) or an array (0) (e.g. class ‘double’ or ‘uint8’),

caloutputs: integer: number of expected items in field out after calibration has been performed. This field is set by the user to tell PREPROCESS what the length of the cell in field out will be after calibration,

keyword: text string containing the 'methodname', this string is used in the call to PREPROCESS so that it will return the custom preprocessing structure (see command-line form 1 of PREPROCESS), and

userdata: user-defined variable often used to store method options.

Detailed descriptions and examples for each field follow:

DESCRIPTION:

The description is a short (1-2 word) text string containing a description for the preprocessing method. The string will be displayed in the GUI and can also be used as a string keyword (see also keyword) to refer to this method.

example:

```plaintext
pp.description = 'Mean Center';
```

CALIBRATE, APPLY, UNDO:

Each of these “command” fields contains a single cell consisting of a command string to be executed by PREPROCESS when performing calibration, apply, or undo operations (see command-line forms 2, 3, and 4 of PREPROCESS). Calibrate actions operate on original calibration data with the output parameters stored in the out field, whereas apply actions operate on new data using parameters stored in the out field as input(s). For methods which act on a single sample at a time, the calibrate and apply operations are often identical (for example, see the normalize example below). The undo action uses parameters stored in the out field as input(s) to remove preprocessing from previously preprocessed data. However, the undo action may be undefined for certain methods. If this is the case, the undo field should be an empty cell.

To assure that all samples (rows) in the data have been appropriately preprocessed, an apply command is automatically performed following a calibrate call. Note that excluded variables are replaced with NaN.
The command strings should be one or more valid MATLAB commands, each separated by a semicolon ';' (e.g. see EVAL). Each command will be executed inside the PREPROCESS environment in which the following variables are available:

- **data**: The data field contains the data on which to operate and in which to return modified results.
 - If the field usesdataset is 1 (one) then data will be a DataSet object. In this case, it is expected that the function will calibrate using only included rows but apply and undo the preprocessing to all rows.
 - If the field usesdataset is 0 (zero) then data will be an array (e.g. class “double”). In this case, the function will calibrate using all rows and columns and will apply and undo the preprocessing to all rows and columns.

- **out**: Contents of the preprocessing structure field out (described below). Any changes will be stored in the preprocessing structure for use in subsequent apply and undo commands.

- **userdata**: Contents of the preprocessing structure field userdata (described below). Any changes will be stored in the preprocessing structure for later retrieval.

Several variables are available for use during command operations (calibrate, apply, and undo). However, these variables should not be changed by the commands and are considered “read-only”.

- **include**: When the field usesdataset = 1, the data is passed as a dataset object. In this case, include contains the contents of the original dataset object’s includ field.

- **otherdata**: Cell array of any inputs to PREPROCESS which followed the data in the input list. For example, it is used by PLS_Toolbox regression functions to pass the y-block for use in methods which require that information.

- **originaldata**: A dataset object which contains the original data unmodified by any preprocessing steps. For example, originaldata can be used to retrieve axis scale or class information even when usesdataset is 0 (zero).

Examples:

The following calibrate field performs mean-centering on data, returning both the mean-centered data as well as the mean values which are stored in out{1}:

```
pp.calibrate = { '[data,out{1}] = mncn(data);' };  
```

The following apply and undo fields use the scale and rescale functions to apply and undo the previously determined mean values (stored by the calibrate operation in out{1}) with new data:

```
pp.apply = { 'data = scale(data,out{1});' };  
pp.undo = { 'data = rescale(data,out{1});' };  
```

OUT:
The `out` field is a cell array that contains the output parameters returned during the calibration operation. For example, if the following commands are run

```matlab
load wine
s = preprocess('default','autoscale');
[dp,sp] = preprocess('calibrate',s,wine);
```

then the `out` field of `sp` is a 1 by 2 cell array with the first cell, `out{1}`, containing the means of the variables in the dataset `wine`, and the second cell, `out{2}`, contains the standard deviations. These parameters are used in subsequent apply and undo commands. See the related field `caloutputs`. Prior to the calibration operation both the `out` and `caloutputs` fields are empty.

SETTINGSGUI:

The name of a graphical user interface (GUI) function that allows the user to set options for this method. The function is expected to take as its only input a standard preprocessing structure from which it should take the current settings. The function should output the same preprocessing structure modified to meet the user's specification. Typically, these changes are made to the `userdata` field and the commands in the `calibrate`, `apply` and `undo` fields use that field's contents as input options.

The design of GUIs for selection of options is beyond the scope of this document and the user is directed to the following example files, both of which use GUIs to modify the `userdata` field of a preprocessing structure: `autoset.m` and `savgolset.m`.

Example:

```matlab
pp.settingsgui  = 'autoset';
```

SETTINGSONADD:

The `settingsonadd` field contains a boolean (1=true, 0=false) value. If it is 1=true, then when the user adds the method in the `PREPROCESS` GUI, the method's `settingsgui` will be automatically invoked. If a method requires the user to make a selection of options, `settingsonadd=1` will guarantee that the user has an opportunity to modify the options or at least choose the default settings.

Example:

```matlab
pp.settingsonadd  = 1;
```

USES DATASET:

The `usesdataset` field contains a boolean (1=true, 0=false) value.

If it is 1=true, the preprocessing method is capable of handling dataset objects and `PREPROCESS` will pass the data as a dataset. It is the responsibility of the function(s) called by the method to appropriately handle the dataset’s `includ` field.
If it is 0=false, the preprocessing method expects standard MATLAB classes (double, uint8, etc). PREPROCESS, which uses a dataset object internally to hold the data, will extract data from the dataset object prior to calling this method. It will then reinsert the preprocessed data back into the dataset object after the method has been invoked.

Although excluded columns are never extracted and excluded rows are not extracted when performing calibration operations, excluded rows are passed when performing apply and undo operations.

Example:

```matlab
pp.usesdataset = 0;
```

CALOUTPUTS:

For functions which require a calibrate operation prior to an apply or undo (see the fields: calibrate and out), this field indicates how many values are expected in the out field. For example, in the case of mean centering the mean values stored in the field out are required to apply or undo the operation. Initially, out is an empty cell ({}). Following the calibration operation for mean centering, it becomes a single-item cell (length of one). For other calibration operations out may be a cell of length greater than one.

By examining this cell’s length, PREPROCESS can determine if a preprocessing structure has already been calibrated and contains the necessary information. The caloutputs field, when greater than zero, indicates to PREPROCESS that it should test the out field prior to attempting an apply or undo.

Example: in the case of mean-centering, the length of out should be 1 (one) after calibration.

```matlab
pp.caloutputs = 1;
```

KEYWORD:

The field keyword is a string that can be used to retrieve the default preprocessing structure for this method. When retrieving a structure by keyword, PREPROCESS ignores any spaces and is case-insensitive. The keyword field (or the description string, discussed above) can be used in place of any preprocessing structure in calibrate and default calls to preprocess:

```matlab
pp = preprocess('default','meancenter');
```

Example:

```matlab
pp.keyword = 'mncn';
```

USERDATA:

The field userdata contains additional user-defined data that can be changed during a calibration operation and retrieved for use in apply and undo operations. This field is often
used to hold options for the preprocessing method which are then used by the commands in the calibrate, apply, and undo fields.

Example: in SAVGOL several input variables are defined with various method options, then they are assembled into a vector in userdata:

```
pp.userdata = [windowsize order derivative];
```

Examples

The following is the preprocessing structure used for sample normalization (see NORMALIZ). The calibrate and apply commands are identical and there is no information that is stored during the calibration phase, thus caloutputs is zero. There is no undo defined for this operation (this is because the normalization information required to undo the action is not being stored anywhere). The norm type (e.g. a 2-norm) of the normalization is set in userdata and is used in both calibrate and apply steps.

```
pp.description = 'Normalize';
pp.calibrate   = {'data = normaliz(data,0,userdata(1));'};
pp.apply       = {'data = normaliz(data,0,userdata(1));'};
pp.undo        = {};
pp.out         = {};
pp.settingsgui = 'normset';
pp.settingsonadd = 0;
pp.usesdataset = 0;
pp.caloutputs  = 0;
pp.keyword     = 'Normalize';
pp.userdata    = 2;
```

The following is the preprocessing structure used for Savitsky-Golay smoothing and derivatives (see SAVGOL). In many ways this structure is similar to the normalize structure except that SAVGOL takes a dataset object as input and, thus, usesdataset is set to 1. Also note that because of the various settings required by savgol, this method uses of the settingsonadd feature to bring up the settings GUI as soon as the method is added.

```
pp.description = 'SG Smooth/Derivative';
pp.calibrate   = {'data = savgol(data,userdata(1),userdata(2),userdata(3));'};
pp.apply       = {'data = savgol(data,userdata(1),userdata(2),userdata(3));'};
pp.undo        = {};
pp.out         = {};
pp.settingsgui = 'savgolset';
pp.settingsonadd = 1;
pp.usesdataset = 1;
pp.caloutputs  = 0;
pp.keyword     = 'sg';
pp.userdata    = [15 2 0];
```
The following example creates a preprocessing structure to invoke multiplicative scatter correction (MSC, see **MSCORR**) using the mean of the calibration data as the target spectrum. The calibrate cell here contains two separate operations. The first calculates the mean spectrum and the second performs the MSC. The third input to the **MSCORR** function is a flag indicating whether an offset should also be removed. This flag is stored in the *userdata* field so that the **settingsgui** (*mscorrset*) can change the value easily. Note that there is no *undo* defined for this function.

```plaintext
pp.description = 'MSC (mean)';
pp.calibrate   = { 'out{1}=mean(data);
       data=mscorr(data,out{1},userdata);'
   };
pp.apply       = { 'data = mscorr(data,out{1});' };
pp.undo        = {};
pp.out         = {};
pp.settingsgui = 'mscorrset';
pp.settingsonadd = 0;
pp.usesdataset  = 0;
pp.caloutputs   = 1;
pp.keyword      = 'MSC (mean)';
pp.userdata     = 1;
```

See Also

preprocess
regcon

Purpose

Converts a regression model to \(y = ax + b \) form.

Synopsis

\[
[a,b] = \text{regcon}(\text{mod})
\]
\[
[a,b] = \text{regcon}(\text{regv},\text{xmn},\text{ymn},\text{xst},\text{yst})
\]

Description

REGCON can be used to convert a model mod generated by the PCR, PLS, or ANALYSIS functions. The outputs are the regression coefficients \(a \) and the intercept \(b \) such that \(y = ax + b \). In this case the I/O syntax is:

\[
[a,b] = \text{regcon}(\text{mod})
\]

REGCON can also be used to convert the individual parts of a regression model, including the column vector of regression coefficients \(\text{regv} \), predictor variable means \(\text{xmn} \), predicted variable means \(\text{ymn} \), predictor variable scaling \(\text{xst} \), and predicted variable scaling \(\text{yst} \). If \(\text{xmn} \) or \(\text{ymn} \) is not supplied or is set equal to 0 or [], then it is assumed to be zero (i.e. no centering was used in the model). If \(\text{xst} \) or \(\text{yst} \) is not supplied or is set equal to 0 or [], then it is assumed to be one (i.e. no scaling was used in the model). In this case the I/O syntax is:

\[
[a,b] = \text{regcon}(\text{regv},\text{xmn},\text{ymn},\text{xst},\text{yst})
\]

Examples

\[
[a,b] = \text{regcon}(\text{mod}); \quad \text{using REGRESSION model}
\]
\[
[a,b] = \text{regcon}(\text{regv},\text{xmn},\text{ymn}); \quad \text{mean centered only}
\]
\[
[a,b] = \text{regcon}(\text{regv},\text{xmn},\text{ymn},\text{xst},\text{yst}); \quad \text{mean centered and scaled}
\]
\[
[a,b] = \text{regcon}(\text{regv},\text{xmn},\text{ymn},[],\text{yst}); \quad \text{x data centered but not scaled}
\]
\[
[a,b] = \text{regcon}(\text{regv},0,0,\text{xst},\text{yst}); \quad \text{x and y scaled by not centered}
\]

See Also

auto, mncn, modlpred, modlrder, pcr, pls, analysis, ridge
registerspec

Purpose

Shift spectra based on expected peak locations.

Synopsis

[adata,axaxis,foundat] = register spec(data,xaxis,peaks,options)
peaks = register spec(data,xaxis,options)

Description

REGISTERSPEC is used to correct spectra for shifts in x-axis (e.g. wavelength or frequency) registration. The alignment is based on either a polynomial or constrained-spline fit of reference peaks' observed position to their expected position. In contrast to other alignment methods (e.g. piecewise direct standardization or dynamic time warping), REGISTERSPEC may be more useful when 1) x-axis shifts are small and potentially non-linear, 2) only a few consistent reference peaks exist, and/or 3) when some of the spectral bands are expected to undergo significant shape changes in the normal range of observations.

There are two modes used to call REGISTERSPEC. The first mode is used to align new spectra given a set of reference peaks. The second mode is used to help identify peaks in a calibration set that might be useful as reference peaks:

Spectral Alignment:

[adata,axaxis,foundat] = register spec(data,xaxis,peaks,options)

When aligning new spectra to known reference peak positions, REGISTERSPEC takes as input a matrix or DataSet object containing spectra to be aligned, data, an x-axis reference for those spectra, xaxis, and a vector containing the expected positions of previously-identified reference peaks, peaks. Outputs are the spectra aligned to the reference peaks, adata, the x-axis scale for those spectra, axaxis (generally the same as xaxis, except as discussed below) and an array, foundat, of the observed shifts for each reference peak (columns) and each spectra in data (rows).

If the input xaxis is omitted and data is a DataSet object containing axisscale information for the variables (data.axisscale{2}), this axis will be used as xaxis. Otherwise, a lack of input for xaxis will cause REGISTERSPEC to assume that the spectral channels are evenly spaced starting from a value of 1.

In addition to correcting peak shifts, the sampling rate of the output spectra can be increased through cubic-spline interpolation. The options.interpolate setting (see below) controls the sampling rate of the output spectra. Generally the output axaxis is the same as the input xaxis. However, when interpolation is performed, the output axaxis will contain the x-axis values that correspond to the interpolated spectra in the input data.
Various options can be set through the optional input structure options. These are described in detail below. It is recommended that options.order, options.maxshift, and options.window be reviewed prior to use. Note that options.maxshift and options.window are input in absolute x-axis units and the desired input values will vary depending on the original x-axis interval (i.e. data-point spacing) and expected peak widths. In addition, the order of polynomial used to correct for shifts should be reviewed (options.order). It is generally best to keep the order as low as possible (<3 is preferable) to avoid over-fitting and unusual shifting at the ends of the spectrum.

Reference Peak Identification:

```
peaks = registerspec(data,xaxis,options)
```

When using REGISTERSPEC to identify reference peaks, the spectral data and x-axis information is supplied alone without a list of reference peaks. In this mode, a set of spectra (often those used for a multivariate calibration model) are searched for peaks which show relatively consistent maxima. The algorithm first locates peaks on the mean spectrum by automatically identifying positions that show a clear inflection point as a peak maximum. Peaks located in the first step are then tested on the individual spectra and must meet the following criteria:

1. For all observed spectra, the peak must contain a maximum value (i.e. the peak cannot be a shoulder without an inflection point).

2. For all observed spectra, the peak must not shift more than the value set by options.maxshift (default is 4 x-axis units) from the peak's position in the mean spectrum.

The output is a list of potential reference peaks. These should be examined carefully. There is no constraint that a peak have a signal to noise or signal to background level above that which permits the maximum to be found. Thus, very low-signal peaks could be returned as stable but not be observable in future spectra. Additionally, it may be useful to take the list of reference peaks and execute REGISTERSPEC on the calibration data itself to examine the extent and nature of shifting on the calibration data itself.

Often this routine is used as a preprocessing step for a calibration model. In these cases, REGISTERSPEC should be run both on the original calibration data (first to locate reference bands, then a second time to subject the calibration data to the shift algorithm), as well as on future data prior to prediction.

INPUTS

- `data` = matrix or DataSet of spectra
- `xaxis` = optional frequencies or energies associated with each variable in data {optional; default = use DataSet values, otherwise use 1:n}
- `peaks` = expected locations of peaks to use for shifting. If omitted, 'findpeaks' mode will be invoked and stable peaks will be found in the data (see below).
OUTUTS

adata = shifted, interpolated data
axaxis = interpolated xaxis (will be equal to xaxis if no
 interpolation is requested)
foundat = matrix of peak shifts found for each peak (columns) in each
 spectrum (rows)
peaks = (only for 'findpeaks' mode) Locations of found peaks in
 xaxis units.

Notes: If input (peaks) is omitted, the algorithm identifies peaks in the mean spectrum by
setting peaks at every variable and allowing these to drift to the nearest maximum. It then
locates the same peaks in each of the individual spectra and keeps only those peaks which
could be located in all spectra with less shift than specified in options.maxshift.

Examples

To locate stable peaks in (unshifted) calibration data
peaks = registerspec(calibrationdata);

To correct x-axis shift in new data using previously identified peaks
newdata_unshifted = registerspec(newdata,peaks);

Options

display: [{'on'} | 'off'] governs command-line output
plots: [{'none'} | 'fit' | 'final'] governs plotting options
shiftby: [[-0.1]] minimum shifting interval. A positive value is
 interpreted as being in absolute xaxis units and a
 negative value as relative to the smallest xaxis
 interval.
interpolate: [[[]]] interpolation interval for output spectra. Empty []
 does no interpolation. A positive value is interpreted
 as being in absolute xaxis units and a negative value
 as relative to the smallest xaxis interval.
maxshift: [in xaxis units, {4}] maximum allowed peak shift (peaks
 which require more shift than this will NOT be used for
 xaxis correction).
window: [in xaxis units, [[]]] size of window to search for each
 peak. Empty [] uses automatic window based on maxshift.
order: order of polynomial (only used for polynomial algorithms)
algorith: xaxis correction algorithm. One of:
 'pchip': constrained picewise spline (well behaved)
 'poly': {default} standard polynomial fit to found peaks
'iterativepoly': iterative polynomial fitting (order increased in each cycle - works better for badly shifted spectra)

'findpeaks': locate non-moving peaks in whole dataset. Triggered by omission of the (peaks) input.

Algorithm

Correction of x-axis shift in a given spectrum is achieved by first locating the maximum value nearest to the expected peak locations using localized spline interpolation nearby the expected location (within `options.maxshift` axis units from the expected position). The observed peak locations are then compared to the expected peak locations and the difference is fit with the desired function (see options). The difference is finally removed from the spectrum using interpolation back to the expected frequency or wavelength values.

Automatic peak location is achieved by attempting to locate peaks across the entire spectrum, then searching those peaks which show less than `options.maxshift` change in position throughout the set of calibration spectra.

See Also

`alignmat, coadd, deresolv, stdfir, stdgen`
replace

Purpose

Replace variables based on principal component analysis (PCA) or partial least squares (PLS) regression models.

Synopsis

```
rm = replace(model,vars)
[rm,repdata] = replace(model,vars,data)
repdata = replace(model,data)
```

Description

REPLACE replaces variables from data matrices with values most consistent with the given PCA or PLS model. Input model can be a set of loading column vectors (e.g., loads returned by the pca routine, or model.loads{2} if the output is a model structure), the PCA residual generating matrix (I-loads*loads'), or the PLS residuals generating matrix coeff returned by the plrsrsgn routine. Input vars is a row vector containing the indices of the variables (columns) to be replaced. The output is the replacement matrix rm. Multiplication of a data matrix xnew by rm will replace variables with values most consistent with the given PCA or PLS model.

Alternate method: If the inputs include a PLS or PCA model model and data data, the data is searched for non-finite values (NaN, Inf) and these are replaced. In this mode, the only output is the infilled data repdata.

Examples

A PCA model was created on a data matrix xold giving a model structure model. The loadings, a set of loadings column vectors, were extracted to a variable loads using loads = model.loads{2};. It was found that the sensor measuring variable 9 has gone “bad” and we would like to replace it in the new data matrix xnew. A replacement matrix rm is first created using replace.

```
rm = replace(loads,9);
```

The new data matrix with variable 9 replaced rxnew is then calculated by multiplying xnew by rm.

```
rxnew = xnew*rm;
```

See Also

mdcheck, pca, plrsrgcv, plrsrsgn
rescale

Purpose
Rescale a matrix.

Synopsis

\[rx = \text{rescale}(x, \text{means}, \text{stds}) \]

Description

\[rx = \text{rescale}(x, \text{means}) \]
rescales a mean centered matrix \(x \) using a vector of \(\text{means} \).

\[rx = \text{rescale}(x, \text{means}, \text{stds}) \]
rescales an autoscaled matrix \(x \) using a vector of \(\text{means} \), and vector of standard deviations \(\text{stds} \).

See Also

auto, mncn, preprocess, scale
residuallimit

Purpose

Calculates PCA confidence limits for Q residuals.

Synopsis

\[
[\text{rescl}, \text{s}] = \text{residuallimit}(\text{residuals}, \text{cl}, \text{options})
\]

\[
\text{rescl} = \text{residuallimit}(\text{s}, \text{cl}, \text{options})
\]

\[
\text{options} = \text{residuallimit}('\text{options'});
\]

Description

Inputs are a matrix of residuals \(\text{residuals} \), and the fractional confidence limit \(\text{cl} \) where \(0 < \text{cl} < 1 \) \{default = 0.95\}. For example, for a PCA model \(\mathbf{X} = \mathbf{T}\mathbf{P}^T + \mathbf{E} \), the input \(\text{residuals} \) is the matrix \(\mathbf{E} \). Optional input \(\text{options} \) is discussed below.

The output is the estimated residual limit \(\text{rescl} \). An additional output containing eigenvalues of \(\mathbf{E} \) is returned when using the Jackson-Mudholkar algorithm. To improve speed, \(\text{s} \) can be used in place of \(\text{residuals} \) in subsequent calls to \text{RESIDUALLIMIT} for the same data.

See Jackson (1991) for the details of the calculation.

Options

\(\text{options} = \) a structure array with the following fields:

name: 'options', name indicating that this is an options structure,

algorithm: [{'jm'} | 'chi2' | 'auto'], governs choice of algorithm:

'jm', uses Jackson-Mudholkar method (slower, more robust),

'chi2', uses chi-squared moment method (faster, less robust with outliers), and

The default options can be retrieved using: \(\text{options} = \text{residuallimit}('\text{options'}); \)

Examples

For a model \(\text{model} \) calculated using the PCA function

\[
\text{rescl} = \text{reslim}(\text{model.detail.ssq(:,2)},0.95);
\]

See Also

chilimit, analysis, pca
reversebytes

Purpose

Flips order of bytes in a word.

Synopsis

\[res = \text{reversebytes}(y, \text{totalbytes}, \text{base}) \]

Description

Generalized reversal of bytes. Inputs are \(y \), the value(s) to operate on, the total number of bytes to swap \(\text{totalbytes} \) \{default = 2\} in each word, and the number base to work in \(\text{base} \) \{default = \(2^8 = 256 = 1 \) hex byte\}. Note that the default is to swap 2 hex bytes in a 16 bit number.

Examples

To swap 4 BYTES in a 32 bit number:
\[
\text{reversebytes}(y, 4)
\]

To swap 2 WORDS in a 32 bit number:
\[
\text{reversebytes}(y, 2, 2^{16})
\]
Ridge

Purpose

Ridge regression by Hoerl-Kennard-Baldwin.

Synopsis

\[[b,\theta] = \text{ridge}(x,y,\text{thetamax},\text{divs},t_f) \]

Description

RIDGE creates a ridge regression model for a matrix of predictor variables (x-block) \(x \), and a vector of predicted variable (y-block) \(y \). The maximum value of the ridge parameter to consider is given by \(\text{thetamax} \) (\(\text{thetamax} > 0 \)). \(\text{divs} \) specifies the number of values of the ridge parameter between 0 and \(\text{thetamax} \) to be used for calculating the regression vector shown in the plots created by the ridge routine.

The optional variable \(t_f \) allows the user to position text on the plot when \(t_f \) is set to 1. The text identifies the optimum of the ridge parameter \(\theta \) and can be positioned with cursors or the mouse.

Outputs are \(b \) the regression column vector at optimum ridge parameter \(\theta \).

In most instances the optimum ridge parameter will be less than 0.1, often as low as 0.01. A good starting guess when working with the method is to specify \(\text{thetamax} = 0.1 \) with \(\text{divs} = 20 \).

See Also

pcr, pls, analysis, ridgecv
ridgecv

Purpose
Ridge regression with cross validation.

Synopsis

\[[b,theta,cumpress] = ridge(x,y,thetamax,divs,split) \]

Description
The function `ridgecv` uses cross-validation to create a ridge regression model for a matrix of predictor variables (x-block) `x`, and a matrix of predicted variables (y-block) `y`. The maximum value of the ridge parameter to consider is given by `thetamax` (0 < `thetamax`). `divs` specifies the number of values of the ridge parameter between 0 and `thetamax` to be used for calculating models used in the cross validation and shown in plots created by the routine, and `split` is the number of times the model is rebuilt on a different subset of samples.

Outputs are `b` the regression column vector at optimum ridge parameter `theta` as determined by cross-validation.

In most instances the optimum ridge parameter will be less than 0.1, often as low as 0.01. A good starting guess when working with the method is to specify `thetamax = 0.1` with `divs = 20`.

Note: RIDGECV uses the venetian blinds cross-validation method.

See Also
crossval, pcr, pls, analysis, ridge
rinverse

Purpose
Calculates pseudo inverse for PLS, PCR and RR models.

Synopsis

```matlab
rinv = rinverse(mod,ncomp)
rinv = rinverse(p,t,w,ncomp)
rinv = rinverse(p,t,ncomp)
rinv = rinverse(sx,theta)
```

Description
For the following I/O format:

```matlab
rinv = rinverse(mod,ncomp)
```

The input `mod` is a model structure from PCR, PLS, or ANALYSIS and `ncomp` is the number of factors in the model (number of principal components or latent variables).

For PLS models, the inputs are the loadings `p`, scores `t`, weights `w` and number of latent variables `ncomp`. For this case the I/O syntax is:

```matlab
rinv = rinverse(p,t,w,ncomp)
```

For PCR models, the inputs are the loadings `p`, scores `t`, and number of principal components `ncomp`. For this case the I/O syntax is:

```matlab
rinv = rinverse(p,t,ncomp)
```

For ridge regression (RR) models, the inputs are the scaled predictor x matrix `sx` and ridge parameter `theta`.

```matlab
rinv = rinverse(sx,theta)
```

See Also

`pcr`, `pls`, `ridge`, `stdsslct`
rmse

Purpose

Calculate root mean square error.

Synopsis

\[
\text{err} = \text{rmse}(y_1, y_2)
\]

Description

RMSE is used to calculate the Root Mean Square Error between two vectors or matrices, or the Root Mean Square of a single matrix or vector.

The input is a matrix or vector \(y_1 \). The output \(\text{err} \) will be the root mean square of the elements of \(y_1 \).

If the optional input matrix or vector \(y_2 \) is included it must be the same size as \(y_1 \) and \(\text{err} \) is the root mean square of the difference between \(y_1 \) and \(y_2 \).

If \(y_2 \) is a a column vector, it is assumed that \(y_2 \) is the reference and the RMSE is calculated between each column of \(y_1 \) and the vector \(y_2 \).

See Also

crossval
rwb

Purpose

Red-white-blue color map.

Synopsis

```
map = rwb(m)
```

Description

Creates a red to white to blue colormap, useful for plotting values that range from -1 to 1, such as those generated by `CORRMAP`. Optional input `m` specifies the length of the colormap. With no inputs, RWB returns a colormap the same length as the current colormap. The output `map` is the `m` by 3 colormap matrix.

See Also

`bone`, `colormap`, `cool`, `copper`, `corrcoef`, `corrmap`, `flag`, `gray`, `hot`, `hsv`, `pink`
savgol

Purpose
Savitsky-Golay smoothing and differentiation.

Synopsis

\[[y_{\text{hat}}, cm] = \text{savgol}(y, width, order, deriv) \]

Description
SAVGOL performs Savitsky-Golay smoothing on a matrix of row vectors \(y \). At each increment (column) a polynomial of order \(order \) is fitted to the number of points \(width \) surrounding the increment. An estimate for the value of the function (\(deriv = 0 \)) or derivative of the function (\(deriv > 0 \)) at the increment is calculated from the fit resulting in a smoothed function \(y_{\text{hat}} \).

\[[y_{\text{hat}}, cm] = \text{savgol}(y, width, order, deriv) \] allows the user to select the number of points in the filter \(width \) (default = 15), the order of the polynomial to fit to the points \(order \) (default = 2), and the order of the derivative \(deriv \) (default = 0).

Output \(cm \) allows the user to apply smoothing to additional matrices of the same size as \(y \), e.g. \(y_{\text{hat}}2 = y2*cm \) where \(y2 \) is the same size as \(y \) used to determine \(cm \).

Note: \(width \) must be \(\geq 3 \) and odd, and \(deriv \) must be \(\leq order \).

Examples
If \(y \) is 3 by 100 then

\[y_{\text{hat}} = \text{savgol}(y,11,4,2); \]

yields a 3 by 100 matrix \(y_{\text{hat}} \) that contains row vectors of the second derivative of rows of \(y \) resulting from an 11-point quartic Savitzky-Golay smooth of each row of \(y \).

See Also
baseline, lamsel, mscorr, savgolcv, stdfir
savgolcv

Purpose

Cross-validation for Savitsky-Golay smoothing and differentiation.

Synopsis

\[
\text{cumpress} = \text{savgolcv}(x,y,lv,width,order,deriv,ind,rm,cvi,pre); \quad \%\text{for x class "double"}
\]
\[
\text{cumpress} = \text{savgolcv}(x,y,lv,width,order,deriv,\[],rm,cvi,pre); \quad \%\text{for x class "dataset"}
\]

Description

SAVGOLCV performs cross-validation of Savitsky-Golay parameters: filter width, polynomial order, and derivative order.

INPUT:

- \(x \) = \(M \) by \(N \) matrix of predictor variables with ROW vectors to be smoothed (e.g. spectra), and
- \(y \) = \(M \) by \(P \) matrix of predicted variables.

OPTIONAL INPUTS:

- \(\text{ind} \) = indices of columns of \(x \) to be used for calibration {default \(\text{ind} = [1:n] \) i.e. all \(x \) columns}.

The following are optional Savitsky-Golay parameters (calls SAVGOL). By entering a vector, instead of a scalar, these variables are cross-validated.

- \(\text{width} \) = number of points in filter {default \(\text{width} = [11 \ 17 \ 23] \)}.
- \(\text{order} \) = polynomial order {default \(\text{order} = [2 \ 3] \)}.
- \(\text{deriv} \) = derivative order {default \(\text{deriv} = [0 \ 1 \ 2] \)}.

The following are optional cross-validation parameters (calls CROSSVAL).

- \(\text{lv} \) = maximum number of LVs {default \(\text{lv} = \min(\text{size}(x)) \)}.
- \(\text{rm} \) = regression method. Options are: \(\text{rm} = 'nip' \), PLS via NIPALS algorithm; \(\text{rm} = 'sim' \), PLS via SIMPLS algorithm {default}, and \(\text{rm} = 'pcr' \), uses PCR.
- \(\text{cvm} \) = cross-validation method. Options are: \(\text{cvm} = 'loo' \), leave-one-out, \(\text{cvm} = 'vet' \), venetian blinds {default}, \(\text{cvm} = 'con' \), contiguous blocks, and \(\text{cvm} = 'rnd' \), repeated random test sets.
- \(\text{split} \) = number of subsets to split the data into {default = 5} and is required for \(\text{cvm} = 'vet', 'con', \text{or 'rnd'} \).
- \(\text{iter} \) = number of iterations {default = 5} and is required for \(\text{cvm} = 'rnd' \).
- \(\text{mc} \) = 0 supresses mean centering of subsets {default \(\text{mc} = 1 \)}.
OUTPUT:

The output is a 4 dimensional array with each dimension corresponding to one of the
directions cross-validated over.

\[\text{cumpress}(i,:,:,:) = \text{derivative dimension}, \]
\[\text{cumpress}(::,j,:,:) = \text{latent variable dimension}, \]
\[\text{cumpress}(::,::,k,:) = \text{window width dimension}, \]
\[\text{cumpress}(::,::,::,l) = \text{polynomial order dimension}. \]

See Also

baseline, crossval, lamsel, mscorr, savgol, specedit, stdfir
scale

Purpose
Scales a matrix.

Synopsis

```plaintext
sx = scale(x,means,stds)
```

Description

`sx = scale(x,means)` subtracts a vector `means` from a matrix `x` and returns the result as `sx`. If `means` is the vector of means this routine mean centers `x`.

`sx = scale(x,means,stds)` subtracts a vector `means` from a matrix `x`, divides each column by the corresponding element in the vector `stds` and returns the result as `sx`. If `means` is the vector of means and `stds` is the vector of standard deviations this routine auto-scales `x` so that each column of `sx` has zero mean and unit variance.

See Also

`auto`, `mncn`, `rescale`
setpath

Purpose

Modifies and saves current directory

Synopsis

```
setpath(flag)
```

Description

`SETPATH` will modify the MATLAB path to include the current directory and all subdirectories and will save the path to the `pathdef.m` file.

If the optional input `flag` is set to 0 then only the current directory is saved

See Also
shuffle

Purpose

Randomly re-order matrix rows.

Synopsis

\[x_r = \text{shuffle}(x) \]
\[[x_r, x_{2r}, x_{3r}, x_{4r} ...] = \text{shuffle}(x, x_2, x_3, x_4 ...) \]

Description

SHUFFLE randomly re-orders the rows of the input matrix \(x \) and returns the results as \(x_r \).

All additional inputs \((x_2, x_3, ...) \) must have same number of rows as \(x \), and will have their rows re-ordered to the same random order as \(x_r \).
simca

Purpose

Create soft independent method of class analogy models for classification.

Synopsis

```matlab
model = simca(x,ncomp,options)  % creates simca model on dataset x
model = simca(x,classid,labels) % models double x with class id
pred  = simca(x,model,options); % predictions on x with model
options = simca('options');.
```

Description

The function `SIMCA` develops a SIMCA model, which is really a collection of PCA models, one for each class of data in the data set and is used for supervised pattern recognition.

SIMCA cross-validates the PCA model of each class using leave-one-out cross-validation if the number of samples in the class is <= 20. If there are more than 20 samples, the data is split into 10 contiguous blocks.

INPUTS:

- `x` = `M x N` matrix of class “dataset” where class information is extracted from `x.class{1,1}` and labels from `x.label{1,1}`, or
- `x` = `M x N` data matrix of class “double” and
- `classid` = `M x 1` vector of class identifiers where each element is an integer identifying the class number of the corresponding sample.
- `model` = when making predictions, input `model` is a SIMCA model structure.

OPTIONAL INPUTS:

- `ncomp` = integer, number of PCs to use in each model. This is rarely known *a priori*. When `ncomp=[]` {default} the user is queried for number of PCs for each class.
- `labels` = a character array with `M` rows that is used to label samples on `Q` vs. `T^2` plots, otherwise the class identifiers are used.
- `options` = a structure array discussed below.

OUTPUT:

- `model` = model structure array with the following fields:
 - `modeltype`: 'SIMCA',
 - `datasource`: structure array with information about input data,
 - `date`: date of creation,
 - `time`: time of creation,
 - `info`: additional model information,
description: cell array with text description of model,
submodel: structure array with each record containing the PCA model of each class (see PCA), and
detail: sub-structure with additional model details and results.
pred = is a structure, similar to model, that contains the SIMCA predictions. Additional, or other, fields in pred are:
 rtsq: the reduced T^2 (T^2 divided by it’s 95% confidence limit line) where each column corresponds to each class in the SIMCA model,
 rq: the reduced Q (Q divided by it’s 95% confidence limit line) where each column corresponds to each class in the SIMCA model,
 nclass: the predicted class number (class to which the sample was closest when considering T^2 and Q combined), and
submodelpred: structure array with each record containing the PCA model predictions for each class (see PCA).

Note: Calling simca with no inputs starts the graphical user interface (GUI) for this analysis method.

Options

options = a structure array with the following fields:
 name: 'options', name indicating that this is an options structure,
 display: [{'on'} | 'off'], governs level of display,
 plots: ['none' | {'final'}], governs level of plotting,
 preprocessing: { [] }, a preprocessing structure (see PREPROCESS) that is used to preprocess data in each class.

The default options can be retrieved using: options = simca('options');.

Note: with display='off', plots='none', nocomp=(>0 integer) and preprocessing specified that SIMCA can be run without command line interaction.

See Also

cluster, crossval, pca, plsdthres
simpls

Purpose

Partial Least Squares regression using the SIMPLS algorithm.

Synopsis

\[
\text{[reg,ssq,xlds,ylds,wts,xscrs,yscrs,basis] = simpls(x,y,ncomp,options);} \\
\text{options = simpls('options');.}
\]

Description

SIMPLS performs PLS regression using SIMPLS algorithm.

INPUTS:

- \(x \) = X-block (predictor block) class “double” or “dataset”, and
- \(y \) = Y-block (predicted block) class “double” or “dataset”.

OPTIONAL INPUTS:

- \(ncomp \) = integer, number of latent variables to use in \{default = rank of X-block\},
 and
- \(\text{options} \) = a structure array discussed below.

OUTPUTS:

- \(\text{reg} \) = matrix of regression vectors,
- \(\text{ssq} \) = the sum of squares captured (ssq),
- \(\text{xlds} \) = X-block loadings,
- \(\text{ylds} \) = Y-block loadings,
- \(\text{wts} \) = X-block weights,
- \(\text{xscrs} \) = X-block scores,
- \(\text{yscrs} \) = Y-block scores, and
- \(\text{basis} \) = the basis of X-block loadings.

Note: The regression matrices are ordered in \text{reg} such that each \(N_y \) (number of Y-block variables) rows correspond to the regression matrix for that particular number of latent variables.

NOTE: in previous versions of SIMPLS, the X-block scores were unit length and the X-block loadings contained the variance. As of Version 3.0, this algorithm now uses standard convention in which the X-block scores contain the variance.

Options

\(\text{options} \) = a structure array with the following fields:
name: 'options', name indicating that this is an options structure,

display: [{'on'} | 'off'], governs level of display, and

ranktest: ['none' | 'data' | 'scores' | {'auto'}], governs type of rank test to perform.

'data' = single test on X-block (faster with smaller data blocks and more components),

'scores' = test during regression on scores matrix (faster with larger data matrices),

'auto' = automatic selection, or

'none' = assumes X-block has sufficient rank.

The default options can be retrieved using: options = simpls('options');

See Also

crossval, modelstruct, pcr, plsnipal, preprocess, analysis
SNV

Purpose
Standard Normal Variate scaling.

Synopsis

```
[xcorr,mns,sds] = snv(x);          %perform snv scaling
x = snv(xcorr,mns,sds);           %undo snv
```

Description
Scales rows of the input x to be mean zero and unit standard deviation. This is the same as autoscaling the transpose of x.

INPUT:

$x = M \times N$ matrix of data to be scaled (class "double" or "dataset").

OPTIONAL INPUTS:

- **mns** = a vector of length M of means, and
- **sds** = vector of length M of standard deviations.

OUTPUTS:

- **xcorr** = the scaled data ($xcorr$ will be the same class as x),
- **mns** = vector of means for each row, and
- **sds** = vector of standard deviations for each row.

To rescale or “undo” SNV, inputs are $xcorr$, mns, and sds from a previous SNV call. The output will be the original x.

See Also

auto, normaliz, preprocess
spcreadr

Purpose

Reads a Galactic SPC file.

Synopsis

```matlab
x = spcload(filename, subs, wlrange)
[data, xaxis, auditlog] = spcload(filename, subs, wlrange)
```

Description

SPCREADR reads a Galactic SPC file.

INPUT:

- `filename =` text string with the name of the SPC file.

OPTIONAL INPUTS:

- `subs = [], scalar or vector indicating the sub-files to read, e.g. [3] reads sub-file 3, [3:9] reads sub-files 3 to 9, {default reads all sub-files} and`
- `wlrange = [], two element vector (inclusive endpoints) of the wavelength range to return {default returns the entire wavelength range}.`

OUTPUTS:

- `x =` a dataset object containing the spectrum, or
- `data =` a data array with measured intensities,
- `xaxis =` vector containing the wavelength axis, and
- `auditlog =` char array with the log from the file.

See Also

areadr, xclreadr
specedit

Purpose
GUI for selecting spectral regions on a plot.

Synopsis

`specedit(x,f)`

Description

If input variable (x) is a vector SPECEDIT plots x (e.g. spectra) versus an optional input f e.g. wavelengths. If x is a matrix of spectra then SPECEDIT plots the mean of x where the rows of x correspond to different sample spectra and the columns of x correspond to different wavelengths. Regions of x can be selected using push buttons. The edited matrix input and column indices can be saved to the workspace interactively.

See Also

`baseline`, `lamsel`
ssqtable

Purpose
Prints variance captured table to the command window.

Synopsis

ssqtable(ssq, ncomp)

Description
SSQTABLE prints the variance captured table from input ssq to the command window for the desired number of factors ncomp. If ssq is a standard model structure (e.g. from ANALYSIS), the model information is displayed along with the variance captured table (see MODLRDER). If ncomp is omitted, the entire available table is displayed.

Examples
For a standard model structure called modl (e.g. as returned by, ANALYSIS, PCA, or PLS functions)

ssqtable(modl.detail.ssq,5)

will print the variance captured table only for the first 5 factors to the command window. Alternatively,

ssqtable(modl,5)

will print both the model information and the variance captured table for first 5 factors.

See Also

analysis, modlrder, pca, pcr, pls
stdfir

Purpose

Standardization using FIR filtering.

Synopsis

\[\text{sspec} = \text{stdfir}(\text{nspec}, \text{rspec}, \text{win}, \text{mc}) \]

Description

STDFIR is a moving window multiplicative scatter correction with a fixed window size. This algorithm uses an inverse least squares regression. (Also see MSCorr.)

Inputs are nspec the new spectra to be standardized, rspec the standard spectra from the standard instrument (a row vector that is a reference spectrum), and win is the window width (must be an odd number).

If the optional input mc is 1 (default) the regression allows for an offset and a slope, if mc is set to 0 only the slope is used (no offset is used i.e. it is a force fit through zero).

The output is sspec the standardized spectra. This routine is based on the method discussed in

See Also

mscorr, stdgen
stdgen

Purpose

Piecewise and direct standardization transform generator.

Synopsis

\[[\text{stdmat}, \text{stdvect}] = \text{stdgen}(\text{spec1}, \text{spec2}, \text{win}, \text{options}) \]
\[\text{options} = \text{stdgen(}'\text{options}'\text{'}) \]

Description

STDGEN can be used to generate direct or piecewise direct standardization matrix with or without additive background correction. It can also be used to generate the transform using the “double window” method. The transform is based on spectra from two instruments, or original calibration spectra and drifted spectra from a single instrument.

INPUTS:

\[
\text{spec1} = \begin{bmatrix} M \\ N1 \end{bmatrix} \text{spectra from the standard instrument, and}
\]
\[
\text{spec2} = \begin{bmatrix} M \\ N2 \end{bmatrix} \text{spectra from the instrument to be standarized.}
\]

OPTIONAL INPUTS:

\[
\text{win} = \begin{bmatrix} \text{[]} \end{bmatrix}, \text{empty or a 1 or 2 element vector.}
\]
If win is a scalar then STDGEN uses a single window algorithm, and if win is a 2 element vector it uses a double window algorithm.
\[
\text{win(1)} = (\text{odd}) \text{is the number of channels to be used for each transform, and}
\]
\[
\text{win(2)} = (\text{odd}) \text{is the number of channels to base the transform on.}
\]
If win is not input it is set to zero and direct standardization is used.

\[
\text{options} = \begin{bmatrix} \text{a structure array discussed below.} \end{bmatrix}
\]

OUTPUTS:

\[
\text{stdmat} = \text{the transform matrix, and}
\]
\[
\text{stdvect} = \text{the additive background correction.}
\]

Note: if only one output argument is given, no background correction is used.

Options

\[
\text{options} = \begin{bmatrix} \text{a structure array with the following fields:} \end{bmatrix}
\]
\[
\text{name: 'options', name indicating that this is an options structure,}
\]
\[
\text{tol: [0.01]}, \text{tolerance used in forming local models (it equals the minimum relative size of singular values to include in each model), and}
\]
maxpc: [], specifies the maximum number of PCs to be retained for each local model {default: []}. maxpc must be \(\leq \) the number of transfer samples. If maxpc is not empty it supersedes tol.

The default options can be retrieved using: `options = stdgen('options');`.

See Also

baseline, distslct, mscorr, stdfir, stdize, stdsslct
stdize

Purpose

Standardizes new spectra using transform from STDGEN.

Synopsis

\[
\text{stdspec} = \text{stdize}(\text{nspec}, \text{stdmat}, \text{stdvect})
\]

Description

Inputs are the new spectra to be standardized \(\text{nspec}\), and the standardization matrix \(\text{stdmat}\) (output from STDGEN).

Optional input \(\text{stdvect}\) is the offset vector (output from STDGEN). Note that if \(\text{stdvect}\) was calculated when generating the transform with STDGEN, then it should be input when applying the transform with STDIZE.

The output is a matrix of the standardized spectra \(\text{stdspec}\).

See Also

\(\text{stdgen, stdsslct}\)
stdsslct

Purpose

Selects subsets of spectra for use in instrument standardization based on sample leverage.

Synopsis

 [specsub,specnos] = stdsslct(spec,nosamps,\textit{rinv})

Description

STDSSLCT selects samples for use in instrument standardization transform development based on their multivariate leverage.

The inputs are the spectra to be used in generating the transform \textit{spec}, and the number of samples to be selected for the subset \textit{nosamps}. The optional input \textit{rinv} uses the pseudo inverse from a calibration regression model to determine sample leverages.

The outputs are the subset of spectra selected \textit{specsub}, and the sample numbers (indices) of the selected spectra \textit{specnos}.

See Also

distslct, doptimal, stdgen, stdize, rinverse
svdlgpls

Purpose

Dialog to save variable to workspace or MAT file.

Synopsis

\[\text{name,location} = \text{svdlgpls(varin, message)} \]

Description

SVDLPLS creates a dialog box to save a variable to the base workspace or a MATLAB file from a function (e.g. a GUI). Input \text{varin} is the variable to be saved. The dialog box allows the user to name \text{varin} to a new variable and select between saving into the base workspace or a file. Variables can be appended onto existing files by selecting the file from the file list or written into new files by providing a new file name. The location for the file can be selected from the folders listed in the file list and from the \text{Look in} menu at the top of the dialog box. Files are always MATLAB "mat" files. The optional text variable \text{message} allows a message to be printed in the dialog box.

Optional outputs give information about the variable name \text{name} and file location \text{location} used to save the variable. Location will be empty if saved to the base workspace.

See Also

erdlgpls, lddlgpls
tld

Purpose

Trilinear decomposition.

Synopsis

\[
\text{model} = \text{tld}(\text{x}, \text{ncomp}, \text{scl}, \text{plots})
\]

Description

The trilinear decomposition can be used to decompose a 3-way array as the summation over the outer product of triads of vectors. Inputs are the 3 way array \(x\) and the number of components to estimate \(ncomp\). Optional input variables include scales for each of the array axes, \([scl1, scl2, scl3]\). These axes can be entered as \(0\) or \(\text{[]}\) placeholders. The output of TLD is a structured array (model) containing all of the model elements in the following fields:

- \(\text{xname}\): name of the original workspace input variable
- \(\text{name}\): type of model, always 'TLD'
- \(\text{date}\): model creation date stamp
- \(\text{time}\): model creation time stamp
- \(\text{size}\): size of the original input array
- \(\text{loads}\): 1 by 3 cell array of the loadings in each dimension
- \(\text{res}\): 1 by 3 cell array residuals summed over each dimension
- \(\text{scl}\): 1 by 3 cell array with scales for plotting loads

Note that the model loadings are presented as unit vectors for the first two dimensions, remaining scale information is incorporated into the final (third) dimension.

See Also

gram, outerm, parafac
tsqlim

Purpose

Calculates PCA confidence limits for Hotelling's T^2.

Synopsis

 tsqcl = tsqlim(m, pc, cl)

Description

Inputs are the number of samples m, the number of principal components used pc, and the confidence limit cl scalar ($0 < cl < 1$). The output $tsqcl$ is the confidence limit. See Jackson (1991).

Examples

 tsqcl = tsqlim(15, 2, 0.95)

See Also

analysis, pca, pcr, pls
tsqmtx

Purpose

Calculates the Hotelling's T^2 contributions for PCA.

Synopsis

```
[tsqmat,tsqs] = tsqmtx(x,model)
[tsqmat,tsqs] = tsqmtx(x,p,ssq)
```

Description

TSQMTX calculates the Hotelling's T^2 contributions for PCA.

INPUTS:

- x = data matrix (class “double” or “dataset), and
- model = model structure returned from ANALYSIS or PCA, or
- p = PCA loadings, and
- ssq = variance captured table.

If a PCA model structure model is input, the loadings and variance captured table are extracted from the model. Additionally, the preprocessing from the model is applied to the data prior to estimating the scores. However, if the loadings p and variance captured table ssq are passed as inputs then the data must be preprocessed in a manner similar to the data used to calibrate the PCA model.

OUTPUTS:

- $tsqmat$ = individual variable contributions to Hotelling's T^2, and
- $tsqs$ = Hotelling's T^2 for each sample.

ALGORITHM

If P is the loadings matrix and T is the scores matrix from the calibration data that had M samples, then S is a diagonal matrix defined as $S = T^T T / (M - 1)$. For a new sample x_{new} (row vector that has been appropriately scaled) the T^2 contribution t_{con} is calculated as $t_{\text{con}} = x_{\text{new}} S^{-1/2} P^T$.

See Also

datahat, pca, pcr, pls
ttestp

Purpose
Evaluates t-distribution and its inverse.

Synopsis

\[y = ttestp(x, a, z) \]

Description
Evaluates a t-distribution with input flag \(z \). For \(z = 1 \) the output \(y \) is the probability point for given t-statistic \(x \) with \(a \) degrees of freedom. For \(z = 2 \) the output \(y \) is the t-statistic for given probability point \(x \) with \(a \) degrees of freedom.

Examples

\[y = ttestp(1.9606, 5000, 1) \]
\[y = 0.025 \]
\[y = ttestp(0.005, 5000, 2) \]
\[y = 2.533 \]

See Also
ftest, statdemo
tucker

Purpose

TUCKER analysis for n-way arrays.

Synopsis

\[
\text{model} = \text{tucker}(x, n\text{comp}, \text{initval}, \text{options}) \quad \% \text{tucker model}
\]

\[
\text{pred} = \text{tucker}(x, \text{model}) \quad \% \text{application}
\]

\[
\text{options} = \text{tucker('options')}
\]

Description

TUCKER decomposes an array of order \(K \) (where \(K \geq 3 \)) into the summation over the outer product of \(K \) vectors. As opposed to PARAFAC every combination of factors in each mode are included (subspaces). Missing values must be NaN or Inf.

INPUTS:

\[
x = \text{the multi-way array to be decomposed and}
\]

\[
n\text{comp} = \text{the number of components to estimate, or}
\]

\[
\text{model} = \text{a TUCKER model structure.}
\]

OPTIONAL INPUTS:

\[
\text{initval} = \text{if initval is the loadings from a previous TUCKER model are then these are used as the initial starting values to estimate a final model,}
\]

\[
\text{if initval is a TUCKER model structure then mode 1 loadings (scores) are estimated from x and the loadings in the other modes (see output pred),}
\]

\[
\text{options} = \text{discussed below.}
\]

OUTPUTS:

\[
\text{model} = \text{a structure array with the following fields:}
\]

\[
\text{modeltype: 'TUCKER',}
\]

\[
\text{datasource: structure array with information about input data,}
\]

\[
\text{date: date of creation,}
\]

\[
\text{time: time of creation,}
\]

\[
\text{info: additional model information,}
\]

\[
\text{loads: 1 by } K+1 \text{ cell array with model loadings for each mode/dimension,}
\]

\[
\text{pred: cell array with model predictions for each input data block,}
\]

\[
\text{tsqs: cell array with } T^2 \text{ values for each mode,}
\]

\[
\text{ssqresiduals: cell array with sum of squares residuals for each mode,}
\]

\[
\text{description: cell array with text description of model, and}
\]

480
detail: sub-structure with additional model details and results.

pred = is a structure array, similar to model, that contains prediction results for new data fit to the TUCKER model.

Options

 options = a structure array with the following fields:
 name: 'options', name indicating that this is an options structure,
 display: [{ 'on' } | 'off'], governs level of display,
 plots: [{ 'final' } | 'all' | 'none'], governs level of plotting,
 weights: [], used for fitting a weighted loss function (discussed below),
 stopcrit: [1e-6 1e-6 10000 3600] defines the stopping criteria as [(relative tolerance) (absolute tolerance) (maximum number of iterations) (maximum time in seconds)],
 init: [0], defines how parameters are initialized (see PARAFAC),
 line: [0 | {1}] defines whether to use the line search {default uses it},
 algo: this option is not yet active,
 blockdetails: 'standard'
 missdat: this option is not yet active,
 samplemode: [1], defines which mode should be considered the sample or object mode and
 constraints: {4x1 cell}, defines constraints on parameters (see PARAFAC). The first three cells define constraints on loadings whereas the last cell defines constraints on the core.

The default options can be retrieved using: options = tucker('options');

Examples

See Also

datahat, gram, mpca, outerm, parafac, parafac2, tld, unfoldm
unfoldm

Purpose
Unfolds an augmented matrix for MPCA.

Synopsis

```plaintext
xmpca = unfoldm(xaug,nsamp)
```

Description

UNFOLDM unfolds the input matrix `xaug` to create a matrix of unfolded row vectors `xmpca` for MPCA. `xaug` contains `nsamp` matrices A_j augmented such that $[xaug] = [A_1; A_2; \ldots; A_{nsamp}]$. For example, for `xaug` of size `(nsamp*m by n)` each matrix A_j is of size m by n. For A_j each m by 1 column a_i is transposed and augmented such that $[b_j] = [a_1', a_2', \ldots, a_n']$ and $[xmpca] = [b_1; b_2; \ldots; b_{nsamp}]$. Note: the A_j should all be the same size.

Examples

```plaintext
a = [1 2 3
     4 5 6
     -1 -2 -3
     -4 -5 -6]

xmpca = unfoldm(a,2)
```

```plaintext
xmpca = [1 4 2 5 3 6
          -1 -4 -2 -5 -3 -6]
```

See Also

`gscale`, `mpca`, `pca`, `reshape`
unfoldmw

Purpose
Unfolds multiway arrays along specified order.

Synopsis

\[\text{mwauf} = \text{unfoldmw}(\text{mwa}, \text{order}) \]

Description

Inputs are the multiway array to be unfolded `mwa` (class “double” or “dataset”), and the dimension (or mode) number along which to perform the unfolding `order`.

The output is the unfolded array `mwauf` (class “double” or “dataset” depending on the input class).

When working with dataset objects, `unfoldmw` will create `label` and `includ` fields consistent with the input. This function is used in the development of PARAFAC models in the alternating least squares steps.

See Also

`mpca`, `outerm`, `parafac`, `reshape`, `tld`, `unfoldm`
updatemod

Purpose
Update model structure to be PLS_Toolbox 3.0 compatible.

Synopsis

\[
\text{umodl} = \text{updatemod}(\text{modl}, data)
\]

Description

The input \text{modl} is the PLS_Toolbox Version 2 PLS, PCR, or PCA model to be updated to Version 3.

Optional input \text{data} is required if the model was constructed using a version older than Version 2.0.1c.

The output is an updated Version 3.0 model \text{umodl}.

See Also

\text{analysis, pca, pcr, pls}
varcap

Purpose

Variance captured for each variable in PCA model.

Synopsis

\[vc = \text{varcap}(x, loads, scl, plots) \]

Description

VARCAP calculates and displays the percent variance captured for each variable and number of principal components in a PCA model.

Inputs are the properly scaled \(M \times N \) data \(x \) (i.e. scaled using the same scaling used when creating the PCA model) with associated \(N \) by \(K \) loadings matrix \(loads \).

Optional input \(scl \) (1 by \(N \)) specifies the x-axis for plotting. Optional input \(plots \) suppresses plotting when set to 0 {default = 1}.

The output is a \(K \times N \) matrix of variance captured \(vc \) for each variable and each number of PCs considered (\(vc \) is number of PCs by number of variables). A stacked bar chart of \(vc \) is also plotted. Optional input \(plots \) suppresses plotting when set to 0 {default = 1}.

See Also

analysis, pca
varimax

Purpose
Orthogonal rotation of loadings.

Synopsis

\[\text{vloads} = \text{varimax}(\text{loads}, \text{options}); \]

Description
Input \(\text{loads} \) is a \(N \) by \(K \) matrix with orthogonal columns and the output \(\text{vloads} \) is a \(N \) by \(K \) matrix with orthogonal columns rotated to maximize the "raw varimax criterion". Optional input \(\text{options} \) is discussed below.

Algorithm
Under varimax the total simplicity \(S \) is maximized where \(S = \sum_{k=1}^{K} S_k \), and the simplicity for each factor (column) is \(S_k = (\overline{a_k} - a_k)^2 \) where the overbar indicates the mean and \(a_k \) is the \(k \)th column of \(\text{vloads} \).

The algorithm is based on Kaiser's VARIMAX Method (J.R. Magnus and H. Neudecker, *Matrix Differential Calculus with Applications in Statistics and Econometrics*, Revised Ed., pp 373-376, 1999). They note that if the algorithm converges, “which is not guaranteed, then a (local) maximum … has been found.”

See Also
analysis, pca
vline

Purpose
Place a vertical line in an existing figure.

Synopsis

\[h = \text{vline}(x, lc) \]

Description

`VLINE` draws a vertical line on an existing figure from the bottom axis to the top axis at positions defined by \(x \) which can be a scalar or vector. If no input is used for \(x \) the default value is zero (default \(x = 0 \)).

Optional input \(lc \) is used to define the line style and color as in normal plotting (see `PLOT`). If not inputs are supplied, `VLINE` draws a vertical green line at 0.

Output \(h \) is the handle(s) of line(s) drawn.

Examples

`vline([2.5 3],'-r')`

plots a vertical red line at \(x = 2.5 \) and 3.

See Also

dp, ellps, hline, pan, plot, plttern
wlsbaseline

Purpose

Weighted least squares baseline function.

Synopsis

```matlab
[bldata,wts] = wlsbaseline(data,baseline,options)
[bldata,wts] = wlsbaseline(data,order,options)
```

Description

Subtracts a baseline (or other signal) from a spectrum with the constraint that residuals below zero be weighted more heavily than those above zero. This achieves a robust "non-negative" residual fit when residuals of significant amplitude (e.g. signals on a background) are present.

Inputs are `data` the spectral data, `baseline` the reference spectrum/spectra to use for baseline OR an integer value representing the order of polynomial baselining to use and `options` an optional options structure.

Outputs are the baselined data `bldata` and the weightings `wts` indicating the amount of baseline which was removed from each spectrum in `data`. (i.e. `bldata = data - wts*baseline`)

Polynomial baseline Option: If a positive scalar value is given instead of the input `baseline`, then a polynomial baseline of that order will be used. In this mode, any row of the output `wts` can be used with the `polyval` function to obtain the baseline removed from the corresponding row of `data`.

Options

- `plots`: [{'none'} | 'debug' | 'intermediate' | 'final'] governs plots
- `negw`: {1} deweighting scale of negative values (10^`negw`)
- `power`: {2} exponential amplification of residuals
- `nonneg`: ['no'|'yes'] flag to allow non-negative baseline weighting
- `delta`: [1e-4] change-of-fit convergence criterion

Examples

To swap 4 BYTES in a 32 bit number:

See Also

`baseline`, `baselinew`
wrtpulse

Purpose

Creates input and output matrices for finite impulse response (FIR) dynamic model identification and prediction.

Synopsis

[newu,newy] = wrtpulse(u,y,n,delay)

Description

WRTPULSE is used to write time series data with multiple inputs and a single output into a form to obtain finite impulse response (FIR) and ARX models. Inputs are a matrix of input vectors \(u \), and an output vector \(y \). \(n \) is a row vector with the number of coefficients to use for each input, and \(delay \) is a row vector containing the number of time units of delay for each input. The output is a matrix of lagged input variables \(newu \) and the corresponding output vector \(newy \).

See Also

autocor, crosscor, fir2ss, plspuls
wtfa

Purpose

Window target factor analysis.

Synopsis

\[
[rho, angl, q, skl] = wtfa(spec, tspec, window, p, options)
\]

Description

Inputs are a \(M \times N \) data matrix `spec`, a \(K \times N \) matrix of target spectra `tspec`, the window width `window > 1`, and the number of principal components, PCs, for modelling each window of spectra, `p`. The input `p` is used to govern the PCA model in each window:

- `p >= 1`: (integer) number PCs is a constant `p`.
- `0 < p < 1`: sets a relative criteria for selecting number of PCs in each window i.e. PCs that capture \(< p*100\%\) of the variance in the window are not used, or
- `p < 0`: sets an absolute value for number of PCs i.e. factors with singular values \(< |p|\) are not used. EWFA (see `EWFA`) can be used as a guide for setting `p` when `p<0`.

Outputs are the cosines `rho` between `tspec` and a `p` component PCA model of `spec` in each window, `angl` \(= \arccos(rho)\), and Q residuals `q`. Note that the output values near the end of the record (less than the half width of the window) are plotted as dashed lines and the window center is output in the variable `skl`.

Options

`options =` a structure array with the following fields:

- `name`: 'options', name indicating that this is an options structure,
- `plots`: ['none' | {'angle'} | 'rho' | 'q'], governs plotting,
 - 'angle', plots projection angle (default),
 - 'rho', plots direction cosine, and
 - 'q', plots Q residuals.
- `scale`: [], is a M element time scale to plot against

The default options can be retrieved using: `options = wtfa('options');`.

See Also
evolvfa, ewfa, pca
xclgetdata

Purpose

Extract a data table from an Excel spreadsheet.

Synopsis

\[
\text{xmat} = \text{xclgetdata}(\text{filename}, \text{datarange}, \text{formt})
\]

Description

XCLGETDATA extracts a data table from an Excel spreadsheet using dynamic data exchange (DDE) and writes it to the variable \text{xdat}. This function only works on a PC, the spreadsheet must be open in Office 97 or higher, and character arrays can't be extracted.

It has been observed that XCLGETDATA won’t work unless a copy of the open spreadsheet is saved to the hard drive and the name in \text{filename} is exact. Also, if the function doesn't work check the Excel menu \text{tools/options/general} and ensure that the \text{ignore other applications} check box is unchecked.

Examples

To get a table data from the range C2 to T25 from the open workbook 'book1.xls':

\[
data = \text{xclgetdata}('book1.xls','r2c3:r25c20');
\]

To get a table data from 'Sheet2' the range D4 to F16 from the open workbook 'book1.xls':

\[
data = \text{xclgetdata}('c:\book1.xls\sheet2','r4c4:r16c6');
\]

See Also

areadr, spcreadr, xclputdata, xclreadr
xclputdata

Purpose
Fill a data table in an Excel spreadsheet.

Synopsis
xclputdata(filename, datarange, xmat, format)

Description
XCLPUTDATA fills a range in an Excel spreadsheet using dynamic data exchange (DDE) with a data table contained in the variable xdat. This function only works on a PC, the spreadsheet must be open in Office 97 or higher.

If the function doesn't work check the Excel menu tools/options/general and ensure that the ignore other applications check box is unchecked.

Examples
To place a 3x5 data table contained in the workspace variable xdat into the spreadsheet 'book1.xls' in the range B2 to F4:

xclputdata('book1.xls', 'r2c2:r4c6', 'xdat');

See Also
areadr, spcreadr, xclgetdata, xclreadr
xclreadr

Purpose
Reads ASCII flat files from MS Excel and other spreadsheets.

Synopsis

 out = xclreadr(file,delim,options)

Description
XCLREADR reads tab, space, comma, semicolon or bar delimited files with names on the columns (variables) and rows (samples).

If XCLREADR is called with no input, or an empty matrix for file name file, a dialog box allows the user to select a file to read from the hard disk.

Optional input file is a text string with the file name to read.

Optional input delim can be used to specify delimiter character. Supported delimiters include:

 'tab' or sprintf('	')
 'space' or ' '
 'comma' or ','
 'semi' or ';'
 'bar' or '|'

The output out is a dataset object with date, time, info (data from cell (1,1)) the variable names (vars), sample names (samps), and data matrix (data).

See Also
areadr, spcreadr, xclgetdata
xlsreadr

Purpose

Reads ASCII flat files or .XLS files MS Excel and other spreadsheets.

Synopsis

```matlab
out = xclreadr(file,delim,options)
```

Description

This function reads Microsoft XLS files, parses the contents into a Dataset object. If called with no input a dialog box allows the user to select a file to read from the hard disk. Optional input file is a text string with the file name. Optional input sheets is a cell array containing the names of one or more sheets in XLS file to read.

Note that the primary difference between this function and the Mathworks function `xlsread` is the parsing of labels and output of a dataset object.

See Also

`areadr`, `dataset`, `xclgetdata`, `xclreadr`
yscale

Purpose

Rescale the y-axis limits on each subplot in a figure.

Synopsis

```
yscale(infscale)
```

Description

Each axes on a subplot is rescaled so that the y-scale tightly fits the maximum and minimum of the displayed data. The single input `infscale`, when set to 1 (one), also rescales each line object on each axes to tightly fit the new limits (i.e. inf-scales each line object relative to one another).
zline

Purpose

Adds vertical lines to 3D figure at specified locations.

Synopsis

\[h = \text{zline}(x,y,lc) \]

Description

ZLINE draws a vertical line on an existing 3D figure from the bottom axis to the top axis at positions defined by \(x \) and \(y \) which can be a scalar or vector. If no input is used for \(x \) and \(y \) the default value is zero \{default = 0\}.

Optional input \(lc \) is used to define the line style and color as in normal plotting (see PLOT). If not inputs are supplied, ZLINE draws a vertical green line at 0.

Output \(h \) is the handle(s) of line(s) drawn.

Examples

\[\text{zline}(2.5, 1.2,'-r') \]

plots a vertical red line at \(x = 2.5 \) and \(y = 1.2 \).

See Also

dp, ellps, hline, pan, plot, plttern, vline