www.pudn.com > libpmk.rar > svm.h, change:2007-05-27,size:3440b


#ifndef _LIBSVM_H
#define _LIBSVM_H

#ifdef __cplusplus
extern "C" {
#endif

struct svm_node
{
	int index;
	double value;
};

struct svm_problem
{
	int l;
	double *y;
	struct svm_node **x;
	//int nr_class;
	int nr_binary;
	//int *label;
	//int *count;
	//int *index;
	int **I;
};

enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };	/* svm_type */
enum { LINEAR, POLY, RBF, SIGMOID, MATRIX };	/* kernel_type */
enum {ONE_ONE, ONE_ALL, DENSE, SPARSE}; /* multiclass type*/



struct svm_parameter
{
	int svm_type;
	int kernel_type;
	double degree;	/* for poly */
	double gamma;	/* for poly/rbf/sigmoid */
	double coef0;	/* for poly/sigmoid */

	/* these are for training only */
	double cache_size; /* in MB */
	double eps;	/* stopping criteria */
	double C;	/* for C_SVC, EPSILON_SVR and NU_SVR */
	int nr_weight;		/* for C_SVC */
	int *weight_label;	/* for C_SVC */
	double* weight;		/* for C_SVC */
	int multiclass_type;
	double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */
	double p;	/* for EPSILON_SVR */
	int shrinking;	/* use the shrinking heuristics */
	int probability; /* do probability estimates */
};

//
// svm_model
//
struct svm_model
{
	svm_parameter param;	// parameter
	int nr_class;		// number of classes, = 2 in regression/one class svm
	int nr_binary;		// number of binary SVMs
	int **I;                // I matrix for different multiclass types
	int l;			// total #SV
	svm_node **SV;		// SVs (SV[l])
	double **sv_coef;	// coefficients for SVs in decision functions
	int **sv_ind;	        // index of SVs
	double *rho;		// constants in decision functions (rho[n*(n-1)/2])
	double *probA;          // pariwise probability information
	double *probB;

	
	// for classification only

	int *label;		// label of each class (label[n])
	int *nSV;		// number of SVs for each class (nSV[n])
				// nSV[0] + nSV[1] + ... + nSV[n-1] = l
	int *nSV_binary;		// number of SVs for each binary SVM
	// XXX
	int free_sv;		// 1 if svm_model is created by svm_load_model
				// 0 if svm_model is created by svm_train
};

struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);

int svm_save_model(const char *model_file_name, const struct svm_model *model);
struct svm_model *svm_load_model(const char *model_file_name);

int svm_get_svm_type(const struct svm_model *model);
int svm_get_nr_class(const struct svm_model *model);
void svm_get_labels(const struct svm_model *model, int *label);
double svm_get_svr_probability(const struct svm_model *model);

void svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
double svm_predict(const struct svm_model *model, const struct svm_node *x);
double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);

void svm_destroy_model(struct svm_model *model);
void svm_destroy_param(struct svm_parameter *param);

const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
int svm_check_probability_model(const struct svm_model *model);
int model_test(svm_model *model);
int svm_find_nr_class(const svm_problem *prob);
int error_correcting_code(int multiclass_type, int nr_class, int**& I);

int kernel_type_matrix(struct svm_model *model);

#ifdef __cplusplus
}
#endif

#endif /* _LIBSVM_H */