Disjoint-set data structure
(Union-Find)

Problem: Maintain a dynamic collection of
pairwise-disjoint sets $S = \{S_1, S_2, \ldots, S_r\}$. Each set S_i has one element distinguished as the representative element, $\text{rep}[S_i]$.

Must support 3 operations:

- **MAKE-SET(x):** adds new set $\{x\}$ to S with $\text{rep}[\{x\}] = x$ (for any $x \notin S_i$ for all i).
- **UNION(x, y):** replaces sets S_x, S_y with $S_x \cup S_y$ in S for any x, y in distinct sets S_x, S_y.
- **FIND-SET(x):** returns representative $\text{rep}[S_x]$ of set S_x containing element x.
Simple linked-list solution

Store each set \(S_i = \{x_1, x_2, \ldots, x_k\} \) as an (unordered) doubly linked list. Define representative element \(\text{rep}[S_i] \) to be the front of the list, \(x_1 \).

- **MAKE-SET(\(x \))** initializes \(x \) as a lone node. \(\Theta(1) \)
- **FIND-SET(\(x \))** walks left in the list containing \(x \) until it reaches the front of the list. \(\Theta(n) \)
- **UNION(\(x, y \))** concatenates the lists containing \(x \) and \(y \), leaving rep. as FIND-SET[\(x \)]. \(\Theta(n) \)
Simple balanced-tree solution

Store each set $S_i = \{x_1, x_2, \ldots, x_k\}$ as a balanced tree (ignoring keys). Define representative element $rep[S_i]$ to be the root of the tree.

- **MAKE-SET(x)** initializes x as a lone node. $\Theta(1)$
- **FIND-SET(x)** walks up the tree containing x until it reaches the root. $\Theta(\lg n)$
- **UNION(x, y)** concatenates the trees containing x and y, changing rep. $\Theta(\lg n)$
Plan of attack

We will build a simple disjoint-union data structure that, in an amortized sense, performs significantly better than $\Theta(lg \ n)$ per op., even better than $\Theta(lg \ lg \ n)$, $\Theta(lg \ lg \ lg \ n)$, etc., but not quite $\Theta(1)$.

To reach this goal, we will introduce two key tricks. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(lg \ n)$ amortized solution. Together, the two tricks yield a much better solution.

First trick arises in an augmented linked list. Second trick arises in a tree structure.
Augmented linked-list solution

Store set \(S_i = \{x_1, x_2, \ldots, x_k\} \) as unordered doubly linked list. Define \(rep[S_i] \) to be front of list, \(x_1 \). Each element \(x_j \) also stores pointer \(rep[x_j] \) to \(rep[S_i] \).

- \textbf{FIND-SET}(x) returns \(rep[x] \). \(-\Theta(1)\)
- \textbf{UNION}(x, y) concatenates the lists containing \(x \) and \(y \), and updates the \(rep \) pointers for all elements in the list containing \(y \). \(-\Theta(n)\)
Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$.

$\text{UNION}(x, y)$
- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.
Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$.

$\text{UNION}(x, y)$

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.

$S_x \cup S_y$:

```
rep
rep[S_x]
```

```
x_1
x_2
```

```
rep
rep[S_y]
```

```
y_1
y_2
y_3
```
Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$.

$\text{UNION}(x, y)$

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.

$S_x \cup S_y$:
Alternative concatenation

\textsc{Union}(x, y) could instead

- concatenate the lists containing \(y\) and \(x\), and
- update the \textit{rep} pointers for all elements in the list containing \(x\).

\begin{itemize}
 \item \(S_y: y_1 \rightarrow y_2 \rightarrow y_3 \rightarrow \text{rep}[S_y]\)
 \item \(S_x: x_1 \rightarrow x_2 \rightarrow \text{rep}[S_x]\)
 \item \(\text{rep}: S_x \rightarrow \text{rep}[S_x]\)
\end{itemize}
Alternative concatenation

$\text{UNION}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the rep pointers for all elements in the
 list containing x.

$S_x \cup S_y$:

- $rep[S_y]$
- $rep[S_x]$
Alternative concatenation

\textsc{Union}(x, y) could instead
\begin{itemize}
\item concatenate the lists containing \(y \) and \(x \), and
\item update the \textit{rep} pointers for all elements in the list containing \(x \).
\end{itemize}
Trick 1: Smaller into larger

To save work, concatenate smaller list onto the end of the larger list. Cost = Θ(length of smaller list). Augment list to store its weight (# elements).

Let n denote the overall number of elements (equivalently, the number of MAKE-SET operations). Let m denote the total number of operations. Let f denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s is $O(n \lg n)$.

Corollary: Total cost is $O(m + n \lg n)$.
Analysis of Trick 1

To save work, concatenate smaller list onto the end of the larger list. Cost = $\Theta(1 + \text{length of smaller list})$.

Theorem: Total cost of UNION’s is $O(n \lg n)$.

Proof. Monitor an element x and set S_x containing it. After initial MAKE-SET(x), $\text{weight}[S_x] = 1$. Each time S_x is united with set S_y, $\text{weight}[S_y] \geq \text{weight}[S_x]$, pay 1 to update $\text{rep}[x]$, and $\text{weight}[S_x]$ at least doubles (increasing by $\text{weight}[S_y]$). Each time S_y is united with smaller set S_y, pay nothing, and $\text{weight}[S_x]$ only increases. Thus pay $\leq \lg n$ for x. □
Representing sets as trees

Store each set \(S_i = \{x_1, x_2, \ldots, x_k\} \) as an unordered, potentially unbalanced, not necessarily binary tree, storing only \textit{parent} pointers. \(\text{rep}[S_i] \) is the tree root.

- **MAKE-SET(x)** initializes \(x \) as a lone node. \(-\Theta(1)\)
- **FIND-SET(x)** walks up the tree containing \(x \) until it reaches the root. \(-\Theta(\text{depth}[x])\)
- **UNION(x, y)** concatenates the trees containing \(x \) and \(y \)…
Trick 1 adapted to trees

`UNION(x, y)` can use a simple concatenation strategy: Make root `FIND-SET(y)` a child of root `FIND-SET(x)`.
⇒ `FIND-SET(y) = FIND-SET(x)`.

We can adapt Trick 1 to this context also: Merge tree with smaller weight into tree with larger weight.

Height of tree increases only when its size doubles, so height is logarithmic in weight. Thus total cost is $O(m + f \lg n)$.
Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of $\text{FIND-SET}(x)$ is still $\Theta(\text{depth}[x])$.

FIND-SET(y_2)
Trick 2: Path compression

When we execute a `FIND-SET` operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of `FIND-SET(x)` is still $\Theta(\text{depth}[x])$.

```
FIND-SET(y_2)
```
Trick 2: Path compression

When we execute a `FIND-SET` operation and walk up a path \(p \) to the root, we know the representative for all the nodes on path \(p \).

Path compression makes all of those nodes direct children of the root.

Cost of `FIND-SET(x)` is still \(\Theta(\text{depth}[x]) \).

`FIND-SET(y_2)`
Analysis of Trick 2 alone

Theorem: Total cost of `FIND-SET`’s is $O(m \lg n)$.

Proof: Amortization by potential function.

The *weight* of a node x is \# nodes in its subtree.

Define $\phi(x_1, \ldots, x_n) = \sum_i \lg \text{weight}[x_i]$.

`UNION(x_i, x_j)` increases potential of root `FIND-SET(x_i)` by at most $\lg \text{weight}[\text{root FIND-SET}(x_j)] \leq \lg n$.

Each step down $p \rightarrow c$ made by `FIND-SET(x_i)`, except the first, moves c’s subtree out of p’s subtree. Thus if $\text{weight}[c] \geq \frac{1}{2} \text{weight}[p]$, ϕ decreases by ≥ 1, paying for the step down. There can be at most $\lg n$ steps $p \rightarrow c$ for which $\text{weight}[c] < \frac{1}{2} \text{weight}[p]$.

© 2001 by Erik D. Demaine

Introduction to Algorithms
Analysis of Trick 2 alone

Theorem: If all **UNION** operations occur before all **FIND-SET** operations, then total cost is $O(m)$.

Proof: If a **FIND-SET** operation traverses a path with k nodes, costing $O(k)$ time, then $k - 2$ nodes are made new children of the root. This change can happen only once for each of the n elements, so the total cost of **FIND-SET** is $O(f + n)$. □
Ackermann’s function \(A \)

Define \(A_k(j) = \begin{cases}
 j + 1 & \text{if } k = 0, \\
 A_{k-1}^{(j+1)}(j) & \text{if } k \geq 1.
\end{cases} \) – iterate \(j+1 \) times

\[
A_0(j) = j + 1
\]
\[
A_1(j) \sim 2^j
\]
\[
A_2(j) \sim 2^j 2^{2^j} > 2^j
\]
\[
A_3(j) > 2^{2^\ldots^{2^j}}
\]
\[
A_4(j) \text{ is a lot bigger.}
\]

Define \(\alpha(n) = \min \{ k : A_k(1) \geq n \} \leq 4 \) for practical \(n \).
Analysis of Tricks 1 + 2

Theorem: In general, total cost is $O(m \alpha(n))$.

(_long, tricky proof – see Section 21.4 of CLRS_)
Suppose a graph is given to us incrementally by

- \textsc{Add-Vertex}(v)
- \textsc{Add-Edge}(u, v)

and we want to support connectivity queries:

- \textsc{Connected}(u, v):

 Are \(u \) and \(v \) in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.
Application: Dynamic connectivity

Sets of vertices represent connected components. Suppose a graph is given to us incrementally by

- **ADD-VERTEX**\((v) \) – **MAKE-SET**\((v) \)
- **ADD-EDGE**\((u, v) \) – if not \(\text{CONNECTED}(u, v) \) then \(\text{UNION}(v, w) \)

and we want to support connectivity queries:

- **CONNECTED**\((u, v) \): – \(\text{FIND-SET}(u) = \text{FIND-SET}(v) \)

Are \(u \) and \(v \) in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.