Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 15
Prof. Charles E. Leiserson
Dynamic programming

Design technique, like divide-and-conquer.

Example: *Longest Common Subsequence (LCS)*
- Given two sequences \(x[1\ldots m] \) and \(y[1\ldots n] \), find a longest subsequence common to them both.

```
x: A B C B D A B
y: B D C A B A
```

\(\text{BCBA} = \text{LCS}(x, y) \)

“a” not “the”

functional notation, but not a function
Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

• Checking = $O(n)$ time per subsequence.
• 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).

Worst-case running time = $O(n2^m)$
 = exponential time.
Towards a better algorithm

Simplification:
1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.
• Define $c[i, j] = |\text{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
• Then, $c[m, n] = |\text{LCS}(x, y)|$.
Recursive formulation

Theorem.

\[
c[i,j] = \begin{cases}
 c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\
 \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise}.
\end{cases}
\]

Proof. Case \(x[i] = y[j] \):

Let \(z[1 \ldots k] = \text{LCS}(x[1 \ldots i], y[1 \ldots j]) \), where \(c[i,j] = k \). Then, \(z[k] = x[i] \), or else \(z \) could be extended. Thus, \(z[1 \ldots k-1] \) is CS of \(x[1 \ldots i-1] \) and \(y[1 \ldots j-1] \).
Claim: $z[1 \ldots k-1] = \text{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$.
Suppose w is a longer CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$, that is, $|w| > k-1$. Then, **cut and paste**: $w || z[k]$ (w concatenated with $z[k]$) is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w || z[k]| > k$. Contradiction, proving the claim.
Thus, $c[i-1, j-1] = k-1$, which implies that $c[i, j] = c[i-1, j-1] + 1$.

Other cases are similar. ☐
Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If \(z = \text{LCS}(x, y) \), then any prefix of \(z \) is an LCS of a prefix of \(x \) and a prefix of \(y \).
Recursive algorithm for LCS

LCS\((x, y, i, j)\)

if \(x[i] = y[j]\)

then \(c[i, j] ← LCS(x, y, i–1, j–1) + 1\)

else \(c[i, j] ← \max\{LCS(x, y, i–1, j), LCS(x, y, i, j–1)\}\)

Worst-case: \(x[i] \neq y[j]\), in which case the algorithm evaluates two subproblems, each with only one parameter decremented.
Recursion tree

$m = 3, n = 4$:

Height = $m + n \Rightarrow$ work potentially exponential, but we’re solving subproblems already solved!
Dynamic-programming hallmark #2

Overlapping subproblems
A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y, i, j)
\]

\[
\text{if } c[i, j] = \text{NIL}
\]

\[
\text{then if } x[i] = y[j]
\]

\[
\text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1
\]

\[
\text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \}
\]

Time = \(\Theta(mn)\) = constant work per table entry.

Space = \(\Theta(mn)\).
Dynamic-programming algorithm

IDEA:
Compute the table bottom-up.

Time = $\Theta(mn)$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Dynamic-programming algorithm

IDEA:
Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

Space = $\Theta(mn)$.

Exercise: $O(\min\{m, n\})$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>