Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 12
Prof. Erik Demaine
Computational geometry

Algorithms for solving “geometric problems” in 2D and higher.

Fundamental objects:
- point
- line segment
- line

Basic structures:
- point set
- polygon
Computational geometry

Algorithms for solving “geometric problems” in 2D and higher.

Fundamental objects:
- point
- line segment
- line

Basic structures:
- triangulation
- convex hull
Orthogonal range searching

Input: \(n \) points in \(d \) dimensions

- E.g., representing a database of \(n \) records each with \(d \) numeric fields

Query: Axis-aligned *box* (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.
Orthogonal range searching

Input: n points in d dimensions

Query: Axis-aligned box (in 2D, a rectangle)
- Report on the points inside the box

Goal: Preprocess points into a data structure to support fast queries
- Primary goal: *Static data structure*
- In 1D, we will also obtain a dynamic data structure supporting insert and delete
1D range searching

In 1D, the query is an interval:

First solution using ideas we know:
- Interval trees
 - Represent each point \(x \) by the interval \([x, x]\).
 - Obtain a dynamic structure that can list \(k \) answers in a query in \(O(k \log n) \) time.
1D range searching

In 1D, the query is an interval:

Second solution using ideas we know:
- Sort the points and store them in an array
- Solve query by binary search on endpoints.
- Obtain a static structure that can list k answers in a query in $O(k + \lg n)$ time.

Goal: Obtain a dynamic structure that can list k answers in a query in $O(k + \lg n)$ time.
1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
- New organization principle:
 Store points in the *leaves* of the tree.
- Internal nodes store copies of the leaves
to satisfy binary search property:
 - Node x stores in $key[x]$ the maximum
 key of any leaf in the left subtree of x.

© 2001 by Erik D. Demaine
Example of a 1D range tree

© 2001 by Erik D. Demaine

Introduction to Algorithms
Example of a 1D range tree
Example of a 1D range query

\[\text{RANGE-QUERY}([7, 41])\]
General 1D range query

root

split node
Pseudocode, part 1: Find the split node

1D-RANGE-QUERY\((T, [x_1, x_2])\)

\[w \leftarrow \text{root}[T] \]

\textbf{while} \(w \) is not a leaf \textbf{and} \((x_2 \leq \text{key}[w] \text{ or } \text{key}[w] < x_1)\)

\textbf{do if} \(x_2 \leq \text{key}[w] \)

\hspace{1em} \textbf{then} \(w \leftarrow \text{left}[w] \)

\hspace{1em} \textbf{else} \(w \leftarrow \text{right}[w] \)

\hspace{1em} \triangleright w \text{ is now the split node}

\[\text{[traverse left and right from } w \text{ and report relevant subtrees]} \]
Pseudocode, part 2: Traverse left and right from split node

1D-RANGE-QUERY($T, [x_1, x_2]$)

[find the split node]
▷ w is now the split node
if w is a leaf
 then output the leaf w if $x_1 \leq \text{key}[w] \leq x_2$
else $v \leftarrow \text{left}[w]$
 ▷ Left traversal
 while v is not a leaf
 do if $x_1 \leq \text{key}[v]$
 then output the subtree rooted at $\text{right}[v]$
 $v \leftarrow \text{left}[v]$
 else $v \leftarrow \text{right}[v]$
 output the leaf v if $x_1 \leq \text{key}[v] \leq x_2$
[symmetrically for right traversal]
Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented by $O(lg n)$ subtrees found in $O(lg n)$ time. Thus:

- Can test for points in interval in $O(lg n)$ time.
- Can count points in interval in $O(lg n)$ time if we augment the tree with subtree sizes.
- Can report the first k points in interval in $O(k + lg n)$ time.

Space: $O(n)$

Preprocessing time: $O(n lg n)$
2D range trees

Store a primary 1D range tree for all the points based on x-coordinate.
Thus in $O(lg n)$ time we can find $O(lg n)$ subtrees representing the points with proper x-coordinate. How to restrict to points with proper y-coordinate?
2D range trees

Idea: In primary 1D range tree of x-coordinate, every node stores a secondary 1D range tree based on y-coordinate for all points in the subtree of the node. Recursively search within each.
Analysis of 2D range trees

Query time: In $O(lg^2 n) = O((lg n)^2)$ time, we can represent answer to range query by $O(lg^2 n)$ subtrees. Total cost for reporting k points: $O(k + (lg n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n lg n)$.

Preprocessing time: $O(n lg n)$
d-dimensional range trees

Each node of the secondary y-structure stores a tertiary z-structure representing the points in the subtree rooted at the node, etc.

Query time: $O(k + \lg^d n)$ to report k points.
Space: $O(n \lg^{d-1} n)$
Preprocessing time: $O(n \lg^{d-1} n)$

Best data structure to date:
Query time: $O(k + \lg^{d-1} n)$ to report k points.
Space: $O(n (\lg n / \lg \lg n)^{d-1})$
Preprocessing time: $O(n \lg^{d-1} n)$
Primitive operations: Crossproduct

Given two vectors $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$, is their counterclockwise angle θ

- **convex** ($< 180^\circ$),
- **reflex** ($> 180^\circ$), or
- **borderline** (0 or 180°)?

Crossproduct $v_1 \times v_2 = x_1 y_2 - y_1 x_2$

$$= |v_1| |v_2| \sin \theta.$$

Thus, $\text{sign}(v_1 \times v_2) = \text{sign}(\sin \theta)$

- > 0 if θ convex,
- < 0 if θ reflex,
- $= 0$ if θ borderline.
Primitive operations: Orientation test

Given three points p_1, p_2, p_3 are they
- in \textit{clockwise (cw) order},
- in \textit{counterclockwise (ccw) order}, or
- \textit{collinear}?

\[(p_2 - p_1) \times (p_3 - p_1)\]
\[
> 0 \text{ if ccw} \\
< 0 \text{ if cw} \\
= 0 \text{ if collinear}
\]
Primitive operations: Sidedness test

Given three points p_1, p_2, p_3 are they
- in *clockwise (cw) order*,
- in *counterclockwise (ccw) order*, or
- *collinear*?

Let L be the oriented line from p_1 to p_2. Equivalently, is the point p_3
- *right* of L,
- *left* of L, or
- *on* L?
Line-segment intersection

Given \(n \) line segments, does any pair intersect?

Obvious algorithm: \(O(n^2) \).

![Diagram of line segments](image)
Sweep-line algorithm

• Sweep a vertical line from left to right (conceptually replacing x-coordinate with time).
• Maintain dynamic set S of segments that intersect the sweep line, ordered (tentatively) by y-coordinate of intersection.
• Order changes when
 • new segment is encountered,
 • existing segment finishes, or
 • two segments cross
• Key *event points* are therefore segment endpoints.
Sweep-line algorithm

Process event points in order by sorting segment endpoints by x-coordinate and looping through:

- For a left endpoint of segment s:
 - Add segment s to dynamic set S.
 - Check for intersection between s and its neighbors in S.
- For a right endpoint of segment s:
 - Remove segment s from dynamic set S.
 - Check for intersection between the neighbors of s in S.
Analysis

Use red-black tree to store dynamic set S.
Total running time: $O(n \lg n)$.
Correctness

Theorem: If there is an intersection, the algorithm finds it.

Proof: Let X be the leftmost intersection point. Assume for simplicity that
- only two segments s_1, s_2 pass through X, and
- no two points have the same x-coordinate.

At some point before we reach X, s_1 and s_2 become consecutive in the order of S. Either initially consecutive when s_1 or s_2 inserted, or became consecutive when another deleted.