Dynamic order statistics

OS-SELECT(i, S): returns the i th smallest element in the dynamic set S.

OS-RANK(x, S): returns the rank of x ∈ S in the sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep subtree sizes in the nodes.

Notation for nodes:

```
key
size
```
Example of an OS-tree

\[\text{size}[x] = \text{size}[\text{left}[x]] + \text{size}[\text{right}[x]] + 1 \]
Selection

Implementation trick: Use a *sentinel* (dummy record) for **NIL** such that \(\text{size}[\text{NIL}] = 0 \).

\[
\text{OS-SELECT}(x, i) \triangleright i\text{th smallest element in the subtree rooted at } x
\]

\[
k \leftarrow \text{size}[\text{left}[x]] + 1 \quad \triangleright k = \text{rank}(x)
\]

if \(i = k \) then return \(x \)

if \(i < k \)

then return \(\text{OS-SELECT}(\text{left}[x], i) \)

else return \(\text{OS-SELECT}(\text{right}[x], i - k) \)

(OS-RANK is in the textbook.)
Example

$\text{OS-SELECT}(\text{root, 5})$

Running time = $O(h) = O(\lg n)$ for red-black trees.
Data structure maintenance

Q. Why not keep the ranks themselves in the nodes instead of subtree sizes?

A. They are hard to maintain when the red-black tree is modified.

Modifying operations: INSERT and DELETE.

Strategy: Update subtree sizes when inserting or deleting.
Example of insertion

\textsc{Insert("K")}
Handling rebalancing

Don’t forget that RB-INSERT and RB-DELETE may also need to modify the red-black tree in order to maintain balance.

• *Recolorings*: no effect on subtree sizes.
• *Rotations*: fix up subtree sizes in $O(1)$ time.

Example:

![Diagram showing rebalancing](image)

∴ RB-INSERT and RB-DELETE still run in $O(\lg n)$ time.
Data-structure augmentation

Methodology: (e.g., order-statistics trees)

1. Choose an underlying data structure (red-black trees).
2. Determine additional information to be stored in the data structure (subtree sizes).
3. Verify that this information can be maintained for modifying operations (RB-INSERT, RB-DELETE — don’t forget rotations).
4. Develop new dynamic-set operations that use the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.
Interval trees

Goal: To maintain a dynamic set of intervals, such as time intervals.

\[
i = [7, 10]
\]

\[
low[i] = 7 \quad 10 = high[i]
\]

Query: For a given query interval \(i \), find an interval in the set that overlaps \(i \).
Following the methodology

1. Choose an underlying data structure.
 • Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be stored in the data structure.
 • Store in each node x the largest value $m[x]$ in the subtree rooted at x, as well as the interval $int[x]$ corresponding to the key.
Example interval tree

\[m[x] = \max \left\{ \text{high}[\text{int}[x]], \text{m}[\text{left}[x]], \text{m}[\text{right}[x]] \right\} \]
Modifying operations

3. Verify that this information can be maintained for modifying operations.
 • **INSERT**: Fix m’s on the way down.
 • **Rotations — Fixup** = $O(1)$ time per rotation:

```
                     11,15
                    /   \
    6,20           30
      /  \
  30    30

                     6,20
                    /   \
    30           19
      /  \
  14    19
```

Total **INSERT** time = $O(lg n)$; **DELETE** similar.
New operations

4. Develop new dynamic-set operations that use the information.

INTERVAL-SEARCH(i)

\[x \leftarrow \text{root} \]

while \(x \neq \text{NIL} \) and (\(\text{low}[i] > \text{high}[\text{int}[x]] \) \nor \(\text{low}[\text{int}[x]] > \text{high}[i] \))

\[\text{do } i \text{ and int}[x] \text{ don’t overlap} \]

if \(\text{left}[x] \neq \text{NIL} \) and \(\text{low}[i] \leq m[\text{left}[x]] \)

then \(x \leftarrow \text{left}[x] \)

else \(x \leftarrow \text{right}[x] \)

return \(x \)
Example 1: \textsc{Interval-Search}([14,16])

\[x \leftarrow \text{root} \]

[14,16] and [17,19] don’t overlap

\[14 \leq 18 \Rightarrow x \leftarrow \text{left}[x] \]
Example 1: \textsc{Interval-Search}([14,16])

\begin{itemize}
 \item [14,16] and [5,11] don't overlap
 \item 14 > 8 \implies x \leftarrow \text{right}[x]
\end{itemize}
Example 1: \texttt{INTERVAL-SEARCH}([14,16])

\begin{itemize}
 \item [4,8] \rightarrow \text{8}
 \item [5,11] \rightarrow \text{18}
 \item [7,10] \rightarrow \text{10}
 \item [15,18] \rightarrow \text{18}
 \item [22,23] \rightarrow \text{23}
 \item [17,19] \rightarrow \text{23}
\end{itemize}

[14,16] and [15,18] overlap

\textbf{return} [15,18]
Example 2: $\text{INTERVAL-SEARCH}([12,14])$

$[12,14]$ and $[17,19]$ don’t overlap

$12 \leq 18 \Rightarrow x \leftarrow \text{left}[x]$
Example 2: \texttt{INTERVAL-SEARCH}([12,14])

[12,14] and [5,11] don’t overlap

12 > 8 \Rightarrow x \leftarrow right[x]
Example 2: \textsc{Interval-Search}([12,14])

[12,14] and [15,18] don’t overlap

12 > 10 ⇒ \(x \leftarrow \text{right}[x] \)
Example 2: \textsc{interval-search}([12,14])

\begin{itemize}
 \item \textbf{INTERVAL-SEARCH}([12,14])
 \item \text{17,19}
 \item \text{23}
 \item \text{17,19}
 \item \text{23}
 \item \text{5,11}
 \item \text{18}
 \item \text{5,11}
 \item \text{18}
 \item \text{4,8}
 \item \text{8}
 \item \text{4,8}
 \item \text{8}
 \item \text{15,18}
 \item \text{18}
 \item \text{15,18}
 \item \text{18}
 \item \text{7,10}
 \item \text{10}
 \item \text{7,10}
 \item \text{10}
 \item \text{22,23}
 \item \text{23}
 \item \text{22,23}
 \item \text{23}
 \item \text{x}
 \item \text{x = NIL} \implies \text{no interval that overlaps [12,14] exists}
\end{itemize}
Analysis

Time = $O(h) = O(\lg n)$, since INTERVAL-SEARCH does constant work at each level as it follows a simple path down the tree.

List all overlapping intervals:
- Search, list, delete, repeat.
- Insert them all again at the end.

Time = $O(k \lg n)$, where k is the total number of overlapping intervals.

This is an output-sensitive bound.

Best algorithm to date: $O(k + \lg n)$.
Correctness

Theorem. Let L be the set of intervals in the left subtree of node x, and let R be the set of intervals in x’s right subtree.

- If the search goes right, then
 \[\{ i' \in L : i' \text{ overlaps } i \} = \emptyset. \]
- If the search goes left, then
 \[\{ i' \in L : i' \text{ overlaps } i \} = \emptyset \implies \{ i' \in R : i' \text{ overlaps } i \} = \emptyset. \]

In other words, it’s always safe to take only 1 of the 2 children: we’ll either find something, or nothing was to be found.
Correctness proof

Proof. Suppose first that the search goes right.

- If $\text{left}[x] = \text{NIL}$, then we’re done, since $L = \emptyset$.
- Otherwise, the code dictates that we must have $\text{low}[i] > \text{m}[\text{left}[x]]$. The value $\text{m}[\text{left}[x]]$ corresponds to the right endpoint of some interval $j \in L$, and no other interval in L can have a larger right endpoint than $\text{high}(j)$.

\[\text{high}(j) = \text{m}[\text{left}[x]] \]

\[\text{low}(i) \]

- Therefore, $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$.

Proof (continued)

Suppose that the search goes left, and assume that \(\{i' \in L : i' \text{ overlaps } i \} = \emptyset \).

• Then, the code dictates that \(\text{low}[i] \leq \text{m}[\text{left}[x]] = \text{high}[j] \) for some \(j \in L \).
• Since \(j \in L \), it does not overlap \(i \), and hence \(\text{high}[i] < \text{low}[j] \).
• But, the binary-search-tree property implies that for all \(i' \in R \), we have \(\text{low}[j] \leq \text{low}[i'] \).
• But then \(\{i' \in R : i' \text{ overlaps } i \} = \emptyset \).

\[
\begin{align*}
&i & \quad j \\
&\quad i' & \quad \ldots
\end{align*}
\]