Balanced search trees

Balanced search tree: A search-tree data structure for which a height of $O(\lg n)$ is guaranteed when implementing a dynamic set of n items.

Examples:
- AVL trees
- 2-3 trees
- 2-3-4 trees
- B-trees
- Red-black trees
Red-black trees

This data structure requires an extra one-bit color field in each node.

Red-black properties:

1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a descendant leaf have the same number of black nodes $= \text{black-height}(x)$.
Example of a red-black tree

$h = 4$

© 2001 by Charles E. Leiserson
Introduction to Algorithms
Example of a red-black tree

1. Every node is either red or black.
Example of a red-black tree

2. The root and leaves (NIL’s) are black.
Example of a red-black tree

3. If a node is red, then its parent is black.
Example of a red-black tree

4. All simple paths from any node x to a descendant leaf have the same number of black nodes = \textit{black-height}(x).
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \log(n + 1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \log(n + 1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \lg(n + 1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height

\[h \leq 2 \log_2(n + 1). \]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \lg(n + 1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height \(h \leq 2 \log(n + 1) \).

Proof. (The book uses induction. Read carefully.)

Intuition:

- Merge red nodes into their black parents.
- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth \(h' \) of leaves.
Proof (continued)

- We have $h' \geq h/2$, since at most half the leaves on any path are red.
- The number of leaves in each tree is $n + 1$
 $\Rightarrow n + 1 \geq 2^{h'}$
 $\Rightarrow \lg(n + 1) \geq h' \geq h/2$
 $\Rightarrow h \leq 2 \lg(n + 1)$.
Query operations

Corollary. The queries `SEARCH`, `MIN`, `MAX`, `SUCCESSOR`, and `PREDECESSOR` all run in $O(lg\ n)$ time on a red-black tree with n nodes.
Modifying operations

The operations \texttt{INSERT} and \texttt{DELETE} cause modifications to the red-black tree:

- the operation itself,
- color changes,
- restructuring the links of the tree via "rotations".
Rotations maintain the inorder ordering of keys:
• \(a \in \alpha, \ b \in \beta, \ c \in \gamma \Rightarrow a \leq A \leq b \leq B \leq c. \)

A rotation can be performed in \(O(1) \) time.
Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

```
  7
 / \
3   18
   / \
  10 22
   / \
  8   11
   / \
  26
```
Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **RIGHT-ROTATE(18).**
Insertion into a red-black tree

IDEA: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **RIGHT-ROTATE(18).**
- **LEFT-ROTATE(7) and recolor.**
Insertion into a red-black tree

IDEA: Insert \(x \) in tree. Color \(x \) red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert \(x = 15 \).
- Recolor, moving the violation up the tree.
- **RIGHT-ROTATE(18).**
- **LEFT-ROTATE(7)** and recolor.
Pseudocode

\[\text{RB-INSERT}(T, x) \]
\[\text{TREE-INSERT}(T, x) \]
\[\text{color}[x] \leftarrow \text{RED} \quad \triangleright \text{only RB property 3 can be violated} \]
\[\text{while } x \neq \text{root}[T] \text{ and } \text{color}[p[x]] = \text{RED} \]
\[\quad \text{do if } p[x] = \text{left}[p[p[x]]] \]
\[\quad \quad \text{then } y \leftarrow \text{right}[p[p[x]]] \quad \triangleright y = \text{aunt/uncle of } x \]
\[\quad \quad \text{if } \text{color}[y] = \text{RED} \]
\[\quad \quad \quad \text{then } \langle \text{Case 1} \rangle \]
\[\quad \text{else if } x = \text{right}[p[x]] \]
\[\quad \quad \quad \text{then } \langle \text{Case 2} \rangle \quad \triangleright \text{Case 2 falls into Case 3} \]
\[\quad \text{\langle Case 3 \rangle} \]
\[\quad \text{else } \langle \text{“then” clause with “left” and “right” swapped} \rangle \]
\[\text{color[root[T]]} \leftarrow \text{BLACK} \]
Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.
Case 1

Recolor

(Or, children of A are swapped.)

Push C’s black onto A and D, and recurse, since C’s parent may be red.
Case 2

\[
\text{LEFT-ROTATE}(A)
\]

Transform to Case 3.
Case 3

\[
\text{RIGHT-ROTATE}(C)
\]

Done! No more violations of RB property 3 are possible.
Analysis

• Go up the tree performing Case 1, which only recolors nodes.
• If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(lg\ n)$ with $O(1)$ rotations.

RB-DELETE — same asymptotic running time and number of rotations as RB-INSERT (see textbook).