Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 6
Prof. Erik Demaine
Order statistics

Select the ith smallest of n elements (the element with rank i).

- $i = 1$: minimum;
- $i = n$: maximum;
- $i = \lceil (n+1)/2 \rceil$ or $\lceil (n+1)/2 \rceil$: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = $\Theta(n \lg n) + \Theta(1)$

= $\Theta(n \lg n)$,

using merge sort or heapsort (not quicksort).

© 2001 by Charles E. Leiserson
Randomized divide-and-conquer algorithm

RAND-SELECT\((A, p, q, i) \) \(\triangleright \) \(i \)th smallest of \(A[p \ldots q] \)

- if \(p = q \) then return \(A[p] \)
- \(r \leftarrow \text{RAND-PARTITION}(A, p, q) \)
- \(k \leftarrow r - p + 1 \) \(\triangleright \) \(k = \text{rank}(A[r]) \)
- if \(i = k \) then return \(A[r] \)
- if \(i < k \)
 - then return **RAND-SELECT**\((A, p, r - 1, i) \)
 - else return **RAND-SELECT**\((A, r + 1, q, i - k) \)

\(\leq A[r] \) \(\geq A[r] \)
Example

Select the $i = 7$th smallest:

$$\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array}$$

Pivot

Partition:

$$\begin{array}{cccccccc}
2 & 5 & 3 & 6 & 8 & 13 & 10 & 11 \\
\end{array}$$

Select the $7 - 4 = 3$rd smallest recursively.
Intuition for analysis

(All our analyses today assume that all elements are distinct.)

Lucky:

\[T(n) = T(9n/10) + \Theta(n) \]
\[= \Theta(n) \]

Unlucky:

\[T(n) = T(n - 1) + \Theta(n) \]
\[= \Theta(n^2) \]

\textit{Worse than sorting!}
Analysis of expected time

The analysis follows that of randomized quicksort, but it’s a little different.

Let $T(n)$ = the random variable for the running time of RAND-SELECT on an input of size n, assuming random numbers are independent.

For $k = 0, 1, \ldots, n-1$, define the indicator random variable

$$X_k = \begin{cases}
1 & \text{if PARTITION generates a } k : n-k-1 \text{ split,} \\
0 & \text{otherwise.}
\end{cases}$$
Analysis (continued)

To obtain an upper bound, assume that the ith element always falls in the larger side of the partition:

$$T(n) = \begin{cases}
T(\max\{0, n-1\}) + \Theta(n) & \text{if } 0 : n-1 \text{ split,} \\
T(\max\{1, n-2\}) + \Theta(n) & \text{if } 1 : n-2 \text{ split,} \\
& \vdots \\
T(\max\{n-1, 0\}) + \Theta(n) & \text{if } n-1 : 0 \text{ split,}
\end{cases}$$

$$= \sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + \Theta(n)).$$
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right) \right]
\]

Take expectations of both sides.
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k (T(\max\{k, n-k-1\}) + \Theta(n))]
\]

Linearity of expectation.
Calculating expectation

\[
E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k \left(T(\max\{k, n-k-1\}) + \Theta(n) \right)]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\}) + \Theta(n)]
\]

Independence of \(X_k\) from other random choices.
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] (T(\max\{k, n-k-1\}) + \Theta(n))
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(\max\{k, n-k-1\})] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

Linearity of expectation; \(E[X_k] = 1/n \).
Calculating expectation

\[
E[T(n)] = \mathbb{E} \left[\sum_{k=0}^{n-1} X_k (T(\max \{k, n - k - 1\}) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} \mathbb{E}[X_k (T(\max \{k, n - k - 1\}) + \Theta(n))]
\]

\[
= \sum_{k=0}^{n-1} \mathbb{E}[X_k] \cdot \mathbb{E}[T(\max \{k, n - k - 1\}) + \Theta(n)]
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{E}[T(\max \{k, n - k - 1\})] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

\[
\leq \frac{2}{n} \sum_{k=\lceil n/2 \rceil}^{n-1} \mathbb{E}[T(k)] + \Theta(n)
\]

Upper terms appear twice.
Hairy recurrence

(But not quite as hairy as the quicksort one.)

\[E[T(n)] = \frac{2}{n} \sum_{k=\lceil n/2 \rceil}^{n-1} E[T(k)] + \Theta(n) \]

Prove: \(E[T(n)] \leq cn \) for constant \(c > 0 \).

• The constant \(c \) can be chosen large enough so that \(E[T(n)] \leq cn \) for the base cases.

Use fact: \(\sum_{k=\lceil n/2 \rceil}^{n-1} k \leq \frac{3}{8} n^2 \) (exercise).
Substitution method

\[
E[T(n)] \leq 2^{\left\lfloor \frac{n}{2} \right\rfloor} \sum_{k=\left\lfloor \frac{n}{2} \right\rfloor}^{n-1} c_k + \Theta(n)
\]

Substitute inductive hypothesis.
Substitution method

\[E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c_k + \Theta(n) \]

\[\leq \frac{2c}{n} \left(\frac{3}{8} n^2 \right) + \Theta(n) \]

Use fact.
Substitution method

\[E[T(n)] \leq 2^{\left\lfloor \frac{n}{2} \right\rfloor} \sum_{k=\left\lfloor \frac{n}{2} \right\rfloor}^{n-1} c_k + \Theta(n) \]

\[\leq \frac{2c}{n} \left(\frac{3}{8} n^2 \right) + \Theta(n) \]

\[= cn - \left(\frac{cn}{4} - \Theta(n) \right) \]

Express as \textit{desired} – \textit{residual}.
Substitution method

\[E[T(n)] \leq 2 \sum_{k=\lfloor n/2 \rfloor}^{n-1} c k + \Theta(n) \]

\[\leq \frac{2c}{n} \left(\frac{3}{8} n^2 \right) + \Theta(n) \]

\[= cn - \left(\frac{cn}{4} - \Theta(n) \right) \]

\[\leq cn, \]

if \(c \) is chosen large enough so that \(cn/4 \) dominates the \(\Theta(n) \).
Summary of randomized order-statistic selection

• Works fast: linear expected time.
• Excellent algorithm in practice.
• But, the worst case is very bad: $\Theta(n^2)$.

Q. Is there an algorithm that runs in linear time in the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

IDEA: Generate a good pivot recursively.
Worst-case linear-time order statistics

\textbf{Select}(i, n)

1. Divide the \(n\) elements into groups of 5. Find the median of each 5-element group by rote.

2. Recursively \textbf{Select} the median \(x\) of the \(\lfloor n/5 \rfloor\) group medians to be the pivot.

3. Partition around the pivot \(x\). Let \(k = \text{rank}(x)\).

4. \textbf{if} \(i = k\) \textbf{then return} \(x\)
 \textbf{elseif} \(i < k\)
 \hspace{1em} \textbf{then} recursively \textbf{Select} the \(i\)th smallest element in the lower part
 \hspace{1em} \textbf{else} recursively \textbf{Select} the \((i-k)\)th smallest element in the upper part

Same as \textbf{Rand-Select}
Choosing the pivot
Choosing the pivot

1. Divide the n elements into groups of 5.
Choosing the pivot

1. Divide the \(n \) elements into groups of 5. Find the median of each 5-element group by rote.

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 9 L6.22
Choosing the pivot

1. Divide the n elements into groups of 5. Find the median of each 5-element group by rote.
2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.
Analysis

At least half the group medians are $\leq x$, which is at least $\lceil \lfloor n/5 \rfloor / 2 \rceil = \lfloor n/10 \rfloor$ group medians.
Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\left\lfloor \frac{n}{5} \right\rfloor / 2 = \left\lfloor \frac{n}{10} \right\rfloor$ group medians.

- Therefore, at least $3 \left\lfloor \frac{n}{10} \right\rfloor$ elements are $\leq x$.
Analysis (Assume all elements are distinct.)

At least half the group medians are \(\leq x \), which is at least \(\left\lfloor \frac{n}{5} \right\rfloor / 2 = \left\lfloor \frac{n}{10} \right\rfloor \) group medians.

- Therefore, at least \(3 \left\lfloor \frac{n}{10} \right\rfloor \) elements are \(\leq x \).
- Similarly, at least \(3 \left\lfloor \frac{n}{10} \right\rfloor \) elements are \(\geq x \).
Minor simplification

- For \(n \geq 50 \), we have \(3\lfloor n/10 \rfloor \geq n/4 \).
- Therefore, for \(n \geq 50 \) the recursive call to \textsc{Select} in Step 4 is executed recursively on \(\leq 3n/4 \) elements.
- Thus, the recurrence for running time can assume that Step 4 takes time \(T(3n/4) \) in the worst case.
- For \(n < 50 \), we know that the worst-case time is \(T(n) = \Theta(1) \).
Developing the recurrence

\[T(n) \]

SELECT \((i, \ n) \)

\[\Theta(n) \]

1. Divide the \(n \) elements into groups of 5. Find the median of each 5-element group by rote.

\[T(\lceil n/5 \rceil) \]

2. Recursively **SELECT** the median \(x \) of the \(\lceil n/5 \rceil \) group medians to be the pivot.

\[\Theta(n) \]

3. Partition around the pivot \(x \). Let \(k = \text{rank}(x) \).

\[T(3n/4) \]

4. \quad \textbf{if} \quad i = k \quad \textbf{then return} \quad x \\
\quad \textbf{elseif} \quad i < k \\
\quad \quad \textbf{then} \quad \text{recursively **SELECT** the } i \text{th smallest element in the lower part} \\
\quad \textbf{else} \quad \text{recursively **SELECT** the } (i-k) \text{th smallest element in the upper part}
Solving the recurrence

\[T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{3}{4}n\right) + \Theta(n) \]

Substitution:

\[T(n) \leq \frac{1}{5}cn + \frac{3}{4}cn + \Theta(n) \]

\[= \frac{19}{20}cn + \Theta(n) \]

\[= cn - \left(\frac{1}{20}cn - \Theta(n)\right) \]

\[\leq cn \]

if \(c \) is chosen large enough to handle both the \(\Theta(n) \) and the initial conditions.
Conclusions

- Since the work at each level of recursion is a constant fraction (19/20) smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly, because the constant in front of n is large.
- The randomized algorithm is far more practical.

Exercise: Why not divide into groups of 3?