GeoFrame Basic
Petrophysical Interpretation
using PrePlus and PetroView Plus

Training and Exercise Guide

Schlumberger Information Solutions
July 9, 2002
Copyright Notice

© 2002 Schlumberger. All rights reserved.

No part of this manual may be reproduced, stored in a retrieval system, or translated in any form or by any means, electronic or mechanical, including photocopying and recording, without the prior written permission of GeoQuest, 5599 San Felipe, Suite 1700, Houston, TX 77056-2722.

Disclaimer

The License Agreement governs use of this product. Schlumberger makes no warranties, express, implied, or statutory, with respect to the product described herein and disclaims without limitation any warranties of merchantability or fitness for a particular purpose. Schlumberger reserves the right to revise the information in this manual at any time without notice.

Trademark Information

GeoFrame™, StratLog™ WellPix™, WellEdit™, WellSketch™, and CPS-3™ are trademarks of Schlumberger.

SPARCstation™, Solaris™, Ultra™ and SunOS™ are trademarks of Sun Microsystems, Inc.

UNIX® is a registered trademark of X/Open Company Limited.

All other products and product names are trademarks or registered trademarks of their respective companies or organizations.
Table of Contents

Chapter 1 Basic GeoFrame Petrophysical Workflow ... 1

Chapter 2 Environmental Corrections (PrePlus) .. 3
- Loading Data ... 9
- Processing Data ... 12
- Editing parameters ... 14
- Processing Data ... 22
- Editing parameters ... 23

Chapter 3 Single Well PetroView Plus Basic Features 31
- Loading Data .. 31
- Processing Data ... 34
- Modeling Setup ... 35
- Setting the ShalySand Shale/Porosity Picks .. 40
- Setting Rw in the Pickett Plot .. 44
- Setting the Sw Computation .. 47

Chapter 4 Single Well PetroView Plus Advanced Features 49
- Loading Data .. 49
- Processing Data ... 50
- Modeling Setup ... 50
- Setting the ShalySand Shale/Porosity Picks .. 55
- Setting Rw in the Pickett Plot .. 58
- Setting the Sw Computation .. 60
- Processing Data ... 62

Chapter 5 MultiWell PetroView Plus ... 65
- Processing Data ... 65
- Setting Parameters ... 67
- Setting Zones ... 68
- Basic Functions of MultiWell CrossPlot ... 71
- Crossplot Wells By Color .. 71
- Companion Plot Interactions ... 73
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiWell Data Normalization Using MultiWell CrossPlot/Histogram</td>
<td>74</td>
</tr>
<tr>
<td>Using MultiWell Data Functioning</td>
<td>76</td>
</tr>
<tr>
<td>Building a Template</td>
<td>78</td>
</tr>
<tr>
<td>Building a presentation file for MultiWell</td>
<td>85</td>
</tr>
<tr>
<td>Processing Data</td>
<td>89</td>
</tr>
<tr>
<td>Chapter 6 Reservoir Property Summation and Mapping (ResSum & Basemap Plus)</td>
<td>93</td>
</tr>
<tr>
<td>Creating a LithoZone</td>
<td>93</td>
</tr>
<tr>
<td>Running BaseMapPlus on Your Secondary Screen</td>
<td>97</td>
</tr>
<tr>
<td>Running ResSum On Your Primary Screen</td>
<td>98</td>
</tr>
</tbody>
</table>
Overview

It is highly recommended to edit and environmentally correct logs before using them as input to a computer processed interpretation. Log editing is performed in the WellEdit module of GeoFrame and is the subject of another course.

PrePlus is a GeoFrame petrophysics application that applies environmental corrections to logs acquired by the major acquisition vendors and is covered in chapter 2. PetroView Plus provides a guided-log analysis for the generalist or specialist. The PetroView Plus program has two modes that are covered in chapters 3 through 5: Single Well and MultiWell.

The Single Well PetroView Plus program guides the user through the minimum number of operations required to do a simple petrophysical evaluation of Well log data. It offers three simple evaluation models for processing, plus user-defined functioning capabilities. It also offers interactive parameter selection in the crossplots, histograms and log displays and provides graphic presentations of input and output data.

The MultiWell PetroView Plus program provides the ability to do MultiWell zonation, MultiWell cross-section display, MultiWell crossplot display, MultiWell data normalization, MultiWell data functioning and MultiWell data Processing and interpretation based on the Single Well PetroView Plus model and session file.

The output of PetroView Plus (porosity, volume of shale, water saturation, etc.) coupled with zones created in MultiWell PetroView Plus or WellPix can be input to ResSum for average thickness and zone property calculations. The ResSum outputs can then be gridded and visualized with Basemap Plus, which is covered in chapter 6.
The typical workflow to use GeoFrame basic petrophysical interpretation:

- **Data Load**: ASCII Load
- **Well Composite Plus**: Utility Plots
 - PrePlus
 - Well Edit

Input Data

PetroViewPlus Mode

Single Well

Setup

- **Shale/Porosity**
- **Rw Picks**

No

- **Crossplot**
- **Histogram**
- **Log display**
- **Pickett Plot**

Parameter picking

Yes

- **Sw Computation**
- **Save Session Files**

Equations

Multiwell

Zoning Cross-section

- **WellPtx (Litho Zone)**
- **ResSum Properties Summation**

Processing Interpretation

- **BaseMapPlus (Mapping and Gridding)**

- **Data Functioning**

Reservoir Modeling

- **Processing**

- **Map Editing and Gridding**

- **Save Results**
Chapter 2 Environmental Corrections (PrePlus)

Overview

PrePlus applies environmental corrections and converts the information to logs for most wireline and LWD log tools. It will accept Schlumberger data as well as data from the logging tools of the other major service companies, such as Halliburton and Atlas Wireline Service.

Each environmental correction is associated with a specific wireline or LWD tool or measurement type, except GEN EC, which computes temperature, pressure, differential caliper and hole rugosity data. The transforms are used to prepare environmentally corrected acquisition data for use in advanced interpretation programs. The transforms can combine different corrected, measured data to produce values for formation properties (porosity, resistivity, conductivity, etc.)

Addition to PrePlus, GeoFrame provides another application Hisorical EC which is a product for correcting older Schlumberger logs that are not included in the PrePlus application. The tools that are corrected by this module include: Compensated Formation Density (FDC), Sidewall Neutron Porosity (SNP), Micro-Laterolog (MLL), Short Normal Resistivity (SN), Laterolog 7 (LL7) and Laterolog 8 (LL8).

The PrePlus can correct for these environmental effects:

- Hole size
- Mudcake thickness
- Mud weight
- Borehole salinity
- Standoff
- Formation pressure
- Formation temperature
- Formation salinity
- Formation thickness
- Shoulder effects
- Casing inside diameter
- Casing and cement thickness
- Special corrections for resistivity tool (Groningen effect for LLD Sleeve effect, etc…)

In order to perform accurate environmental corrections, the following data will be needed:
The PrePlus program offers two interactive modes: Express mode and Expert mode. Express mode allows you to run the program directly from the Session Builder for normal jobs, which don’t require recalibration or other expert features.

The PrePlus is run after the data are loaded and before an interpretation package (such as ELANPLus, PetroView Plus, RockCell etc.) is run. It can be run interactively or in batch operation with the session file you saved from the interactive processing.

For a detailed explanation of the features mentioned above and algorithms used in PrePlus, please refer to the online help documentation in the GeoFrame Bookshelf.

Schlumberger Tools Corrections

The supported Schlumberger tools corrections include:
- AIT: Array Induction Tool
- ALAT: DIT-D and DIT-E: Dual Induction Tool
- DLT
- EPT
- HALS (Platform Express)
- MCFL (Platform Express)
- MSFL
- SFL
- Phasor Reconstruct
- HRDD (Platform Express)
- LDT
- LDS (IPLT)
- SLDT: Slim Litho Density Tool
- CNT-A/H/G and HNGS
- CNT-C/D and SCNT: Slimhole Compensated Neutron Tool
- APS/HAPS: Accelerated Porosity /Hostile Accelerated Porosity Sonde
Schlumberger LWD Tools Corrections

The Supported Schlumberger LWD Tools Corrections include:

- AND
- ARC
- CDN
- CDR
- RAB

Atlas Wireline Service Tools Corrections

- GR
- CDL
- CN
- DLL
- MLL
- DIFL
- PROX

Halliburton Logging Service Tools Corrections

- GR
- SGR
- CNT_K
- DSNT_A
- DIL
- DILT_A
- DG
- DLL
- FORXO Transform:Rt/Rxo
- MSFL
Schlumberger Transforms

- Rt and Rxo
- Rwa
- Conductivity
- Square Root of Conductivity
- AITDIS transform
- Neutron Matrix Porosity
- Density Porosity
- Dry Clay Porosity
- Neutron Density Transform
- Sonic Density
- Neutron Sonic Transform
- Total Porosity
- Mineral M&N
- UMA transform
- Sonic Velocity
- PEQL transforms
- LWD transforms
The data flow relationship can be illustrated like this:

- **Density Porosities**
- **Neutron Matrix Porosity**
- **Neutron Density**
- **Neutron Sonic**
- **Sonic Density**
- **RT and Rxo**
- **Dry Clay Porosity**
- **Total Porosity**
- **RWA Apparent Water Resistivity**
- **Conductivity**
- **Square Root of Conductivity**
- **UMA**
PrePlus Workflow

Input Data

Data Load
ASCII Load

PrePlus

Mode?

Mud Properties
Formation Water Properties
Tool Calibration Data
Tool Specific Data

Expct

Select Logs and ERs

Set Borehole Property Parameters

Set Mandatory Parameters

Set Tool Specific Parameters

Run and Playback

Express

Set General Parameters

Set Zone Parameters

Bind Input Curves

Run and Playback

Save Session

Icons

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Management</td>
</tr>
<tr>
<td></td>
<td>Process Manager</td>
</tr>
<tr>
<td></td>
<td>Product Catalog</td>
</tr>
<tr>
<td></td>
<td>Data Focus</td>
</tr>
<tr>
<td></td>
<td>Scale</td>
</tr>
<tr>
<td></td>
<td>Picket Plot Parameters</td>
</tr>
<tr>
<td></td>
<td>Parameter Editor</td>
</tr>
</tbody>
</table>
PrePlus Express Mode

This exercise is designed to guide you how to use PrePlus Express Mode which allows you to run the program directly from the Session Builder for normal jobs and don’t require recalibration or other expert features.

Note: If you have a data loading already for the same borehole which you are going to process with PrePlus from previous application, please skip Loading Data session.

Loading Data

(If the data has been loaded into your GeoFrame database, please skip this section and go to Processing Data.)
1. In the GeoFrame Application Manager Window, click ![Image](image1.png) to open **Data Management** window.

2. In the **Data Management** Window, select **Data Load** in the **Loaders and Unloaders** folder.
3. Click **OK** or **Apply** to open the **Data Load** window.

4. In the **Data Load** window, click **Input File** to open the **Select the File(s) to Load** window.
5. In the **Filter** field, enter the directory path given by the instructor.
6. Click **Filter** button to display files from the selected directory and select `sfe4_dite.dlis`, `sfe4_lct_cnt.dlis`, and `sfe4_msfl.dlis`. Then click **OK** to close the window.
7. From the Data Load window, set the **Target**:
 a. **Field** = *Frontier*
 b. Well UWI = *SFE#4*
 c. Borehole UWI = *SFE#4*
8. Click **Run** in the **Data Load** window to start loading data.
9. Click **Exit** to close the **Data Load** window.
10. Click **OK** in all pop-up message windows that appear.

Processing Data

1. In the **GeoFrame Application Manager** window, click to open the Process Manager.
2. In the **Process Manager** window, select **File>New Activity**.
3. Click to open the **Product Catalog**.
4. In the **Product Catalog** window, click the **Petrophysics** folder and select **PrePlus**.
5. Click **OK** to close the **Product Catalog** window.
6. Click **PrePlus** and Select **Inspect** by **RMB** to open the **Data Focus Selection** window.
7. In the Data Focus Selection window, click Activity to change the Show type to Borehole and select Borehole SFE#4.

8. Click OK to open the PrePlus Session Module Selector window.

9. In the PrePlus Session Module Selector window, in the Schlumberger ECs field, verify that the following modules are switched on (red=on, gray=off):
 a. GEN
 b. CNT
 c. MSFL
 d. GR
 e. SFL
 f. DIT_E
 g. DLT

10. In the Transforms field verify that the following modules are selected:
 a. Porosity
 b. Resistivity

11. You may select or deselect any ECs or Transforms module that need or need not be executed. For this exercise we will process all those that are highlighted. Click OK to open the PrePlus Session Parameter Editor window.
Editing parameters

In the PrePlus Session Parameter Editor window, you can edit Global Parameters, Zoned Parameters or Input Bindings.

1. In the **Service Run** field, select **TOH.014**.
2. Click on **Global Parameters**.
3. Click the **General** tab and verify that **Processing Top Depth** and **Processing Bottom Depth** have the start and stop values. The default parameters appear in green. They become red if changed by the user. The following values should be set as:
 a. **Mud Type** = **Water Base Mud**
 b. **Hole Type** = **Openhole**
 c. **Compute Array Uncertainty** = **NO**
4. Click the **GEN** tab. **GEN** computes Temperature, Pressure, Differential Caliper and Hole Rugosity channels. The following values should be set as:
 a. **Surface Temperature** = **60 degrees**
 b. **Temperature Gradient** = **1**
5. Click the **GR** tab and verify that the default values for **GR Tool Type** and **GR Tool Position** are set.
6. Click the DIT_E tab and verify that the default values for DIT-E Tool Standoff and DIT-E Tool Position are set.

7. Click the SFL tab to view but this tab has no mandatory parameters.

8. Click the Resistivity tab and set the following values to:
 a. Conductivity Transform = YES
 b. Change Square Root of Conductivity Transform = YES

9. In the PrePlus Session Parameter Editor window, click Zoned Parameters.

10. Click the General tab and set the following values:
 a. Bit Size = 8.5
 b. Mud Resistivity = 0.328
 c. Mud Temperature = 85
 d. Mud Filtrate Resistivity = 0.264
 e. Mud Filtrate Temperature = 85
 f. Mud Cake Resistivity = 0.611
 g. Mud Cake Temperature = 85
h. Mud Weight = 10.5
i. Formation water resistivity = 0.11
j. Formation water temperature = 220

11. Click the GEN tab to verify that the Bottom Hole Temperature is set to 160 °F.

12. Click the GR tab and verify that the GR Tool Stand value is set to OFF (red=on, gray=off).

13. Click the DIT_E tab and verify that the SFLU value is set to Enable.

14. Click the Resistivity tab to define the Transform Parameters.

15. In the Resistivity Tornado field, click Select Chart.

16. Select 11a 11b (top)=Phasor ID-IM-SFL (Rxo>Rt).

17. In the PrePlus Session Parameter Editor window, click Input Bindings.

18. Click the General tab to verify that the following logs are set:
 a. (CALI)
 b. GR
 c. DIT_E
d. SFL

e. Resistivity

19. Click **Expert Mode**.

20. In the **PrePlus Session Manager** window, select **Edit>Service Run Selection**.

21. Move all Service Runs to the Unselected SRs field, except TOH.014 and TOH.034.

22. Click **OK** to close the window.
23. In the **PrePlus Session Manager** window, select menu **Options** and select **Express Mode**.

24. In the **PrePlus Session Module Selector** window, click **OK**.

25. In the **PrePlus Session Parameter Editor** window, in the **Service Run** field, select **TOH.034**.
26. In the PrePlus Session Parameter Editor window, click Global Parameters.

27. Click the General, GEN, GR, CNT, and Porosity tabs and verify that all values are set to default.

28. In the PrePlus Session Parameter Editor window, click Zoned Parameters.

29. Click the General tab and set the following values:

 a. Formation Water Resistivity = 0.11
 b. Formation Water Temperatures = 220

30. Click the GEN, GR, CNT, and Porosity tabs and verify that all values are set to default.

31. In the PrePlus Session Parameter Editor window, click Input Bindings.

32. Click the General, GEN, GR, CNT, and Porosity tabs and verify that all values are set to default.

33. Click Run, which will run the ECs and Transforms.

34. Click GR in ECs field.
35. Select **Playback** to display the corrected data.
36. In the **PrePlus** playback window, select **File>Close**.

37. In the **PrePlus Session Manager** window, select **File>Exit**.

PrePlus Expert Mode

The purpose of this exercise is to show you how to use the Expert Mode of PrePlus to make environmental corrections for your log data before interpretation, the Expert Mode will let you do recalibration and set other tool specific parameters or other expert processing tasks.
Processing Data

1. In the **GeoFrame Application Manager** window, click ![process manager icon] to open the **Process Manager**.

2. In the **Process Manager** window, select **File>New Activity**.

3. Click ![product catalog icon] to open the **Product Catalog**.

4. In the **Product Catalog** window, click the **Petrophysics** folder and select **PrePlus**.

5. Click **OK** to close the **Product Catalog** window.

6. Click **PrePlus** and Select **Inspect** by RMB to open the **Data Focus Selection** Window.

7. In the **Data Focus Selection** window, click **Activity** to change the **Show** type to **Borehole** and select Borehole **SFE#4**.

8. Click **OK** to open the **PrePlus Session Module Selector** window.

9. In the **PrePlus Session Module Selector** window, click **OK** to open the **PrePlus Session Parameter Editor** window.

10. In the **PrePlus Session Parameter Editor** window, click **Expert Mode**.

11. In the **PrePlus Session Manager** window, you can enlarge or reduce the **Data Focus**, **ECs** and **Transform** sections by dragging the grab lines that separate them.

12. Select **Edit>Service Run Selection**.
13. Select files TOH.014 and TOH.034. GeoFrame selects EC modules automatically for each service run in a way that preserves continuity of input data (i.e., certain modules must run before others).

14. Select Edit>EC Selection to edit the Selected ECs list or to create a new list if preferred. Unselected ECs list shows all available modules for the selected service company.

Editing parameters

In the PrePlus Session Parameter Editor window, you can edit Global Parameters, Zoned Parameters or Input Bindings.

Borehole Properties: Associated with the physical borehole and subdivided into Global and Zoned Parameters. The Borehole Properties Editor must be opened before any processing can be done.

Mandatory Parameters: The minimum parameters that must be inspected or set to run all the modules for a given Service Run. To set these a Service Run must be selected.

Tool Specific Parameters: Are parameters that affect a given tool module. To set these an EC Module must be selected.

1. Access Editing parameters by selecting Options>Editing parameters.
2. Selecting Service Run (in the Data Focus panel).
3. Selecting Tool EC (in ECs and Transforms panel) and pressing the right mouse button (MB3).
4. Select **Options>Borehole Properties**.

Note: Once a task is completed in PrePlus a * symbol is associated with it, to inform you that this menu has been viewed before. The program first searches the database to find the start/stop extent of the Service Run, and if it finds an extent, the color-coding for the depth interval is black. If it cannot find the
extent in the database, it searches for Arrays like Cable Speed, Acquisition Time, Temperature, Caliper, AMS Mud Resistivity to calculate the extent; the color for the interval depths will be green. If the extent is picked up from the History Data Focus, the color will be blue. At this stage all the necessary parameters can be entered from the Borehole Properties Editor through the individual PrePlus Multiview Zone Parameter Editors, which are available for Mud, Bit Size, Temperature, Casing and Formation parameters. Skip Zone is not available for AWS and HLS data. You can view the parameters in three different modes: Single Service Run, Single Parameter and Single Zone modes. Try all the modes to see which one you prefer.

5. In the PrePlus Borehole Property Editor window, click Mud.

6. In the Mud Parameter Editor window, set the following values for SFE#4 (if you are using Single Service Run mode, make sure that you change the parameters for both runs):
 a. RM = .328
 b. RMF = .264
 c. RMC = .611
 d. RMT = 85

7. In the PrePlus Borehole Property Editor window, click Formation.

8. In the Formation Parameter Editor window, set the following values for SFE#4 (if you are using Single Service Run mode, make sure that you change the parameters for both runs):
 a. RW = .11
 b. RWT = 220

9. In the PrePlus Borehole Property Editor window, click Temperature.
10. In the Temperature Parameter Editor window, set the following values for SFE#4 (if you are using Single Service Run mode, make sure that you change the parameters for both runs):
 c. BHT = 220
11. Click OK to close the PrePlus Borehole Property Editor window
12. Select SLB TOH.034 Ec:CNT in the PrePlus Session Manager window
13. Select menu Options>Mandatory Parameters.
14. In the CNT Mandatory Global Parameters field, change the CP Version Number to 32.4. The Mandatory Parameter Editor shows the minimum amount of data needed to run the EC chain. If you wanted to, you could run the TOH .034 EC Chain now.
15. Select the TOH.034 Ec:GEN Corrections Module.
16. Select Options>Input Arrays to verify that you have input data. GEN corrections calculate a differential caliper (CALI - BS), and a temperature gradient (it should be run before you run CNT ECs).
17. Select the TOH.034 Ec:GR Corrections Module.
18. Select Options>Tool Specific Parameters and verify the Tool Specific Parameters and Input Arrays for all of TOH .034’s correction modules.
19. In the **CNT Specific Global Parameters** section, set all of the CNT toggles (except **Formation Sigma** and **Cased Hole Casing Correction**) to **Yes**.

20. Click **Service Run** and select **TOH.034**.
21. Select **Options>Run**. Each module will run (first with a green halo and then, when it has finished, with a yellow one) without error messages. After the halo around the CNT module has turned yellow, the chain has finished.

22. Select a module and **Options>Output Arrays**, to see which arrays were created.

23. Select **Options>Playback**.
24. Click **Service Run** and select **SLB TOH.014**.

25. Select **Options>Mandatory Parameters**.

26. Select the **SLB TOH.014 Ec:GEN** Corrections Module.

27. Select **Options>Input Arrays** to verify that you have input data. **GEN** corrections calculate a differential caliper (CALI - BS), and a temperature gradient (it should be run before you run Resistivity ECs).

28. Select the **SLB TOH.014 Ec:GR** Corrections Module.
29. Select **Options>Tool Specific Parameters** and verify the **Tool Specific Parameters** and **Input Arrays** for all of SLB TOH.014's correction modules.

30. Click **Service Run** and select SLB TOH.014.

31. Select **Options>Run**. Each module will run (first with a green halo and then, when it has finished, with a yellow one) without error messages.

32. Select a module and **Options>Output Arrays**, to see which arrays were created.

33. Select **Options>Playback**, to view these arrays. Traditionally, GeoFrame distinguishes between those corrections made by applying borehole conditions to the raw arrays (EC Modules), and those that compute new arrays (such as Rt or Rxo) from other sources (Transform Modules). The distinction is no longer as solid as it once was, but the basic structure is retained.

34. Click the **Resistivity** tab.

35. Select menu **Options>Transform Specific Parameters**.

36. In the **Transform Parameter** window, set **Compute RT?** to **Compute Rt**.

37. Set **Use Std. Off Chart Logic For RT?** to **Use Chart**.

38. In the **Resistivity Tornado Chart Selection** field, select **11a 11b (top)=Phasor ID-IM-SFL (Rxo>Rt)**.

39. Click the **Porosity** tab.

40. Select **Options>Run**. The output from the Transforms can be viewed in the same way as that from the EC Modules. The Playback can be run from each EC module.
Chapter 3 Single Well PetroView Plus Basic Features

Overview

The following are some of the major features in PetroView Plus:

- **Model Zonation**: Shaly-Sand, carbonate, simple Archie and Zoned Sand/Carbonate Models are available
- **Porosity Option**: Density-Neutron, density, sonic, Neutron, external Porosity or User-defined equation
- **Water Saturation Equation**: Archie, dual water, Waxman-Smiths, indonesia, Nigeria, simandoux, user-defined equation
- **Interactive parameter selection in the**: Log Curve, crossplot, histogram
- Linear or non-linear shale volume calculation
- Bad borehole detection
- Wyllie Sonic Porosity or Hunt-Raymer equation
- Session file save and recall (Exclick mode)

For a detailed explanation of the features mentioned above and algorithms used in PetroView Plus, please refer to the online help documentation in the GeoFrame Bookshelf.

Basic Single Well Petrophysical Interpretation

Note: If you have a data loading already for the same borehole which you are going to process with PetroView Plus from previous application, please skip Loading Data session.

Loading Data

(If the data has been loaded into your GeoFrame database, please skip this section and go to Processing Data.)

1. In the **GeoFrame Application Manager** Window, click ![Image] to open the **Data Management** window.
2. In the Data Management window, select Data Load in the Loaders and Unloaders folder.
3. Click OK or Apply to open the Data Load window.

4. In the Data Load window, click Input File to open the Select the File (s) to Load window.
5. In the Filter text field, enter the directory path given by the instructor.
6. Click button Filter to display files from the selected directory and select petro_updates.dlis.
7. Click OK to close the Select the File(s) to Load window.
8. Do not assign a Field, Well, Borehole, or Producer name to the Data Load window.
9. Click Run in the Data Load window to start loading data.
10. Click Exit to close the Data Load window.
11. Click OK in all pop-up message windows that appear.

Processing Data

1. In the GeoFrame Application Manager window, click to open the Process Manager.
2. In the Process Manager window, select File>New Activity.
3. Click to open the Product Catalog.
4. In the Product Catalog window, click the Petrophysics folder and select PetroView Plus.
5. Click OK to close the Product Catalog window.

6. In the Process Manager window, click Activity and name your activity.
7. Click to open Data Focus window.

8. In the Data Focus window, change the Show menu to Borehole.

9. In the StrattonB field, highlight the WELL 8B borehole and click OK to close the Data Focus window.

10. Double click on PetroViewPlus to inspect the module.

11. In the PetroView Plus window, select menu Model>ShalySand. (ShalySand is the default.)

Modeling Setup

1. Click Setup to open the ShalySand Setup window.
2. Click **Input Equations** and set the input equations: (Click orange areas to view available options.)
 a. Main Porosity = Density-Thermal-Neutron (CNL)
 b. Badhole Porosity = **None**
 c. Water Saturation = **Dual-Water**
 d. Flushed Zone Analysis = **Off**
 e. Water Cut in the CMR = **None**
 f. Coal Detection = **OFF**
 g. Anhydrite Detection = **OFF**
 h. Halite Detection = **OFF**

3. Click **ShalySand Shale Indicators** and set the **Gamma Ray** to Linear.

4. Toggle all other shale indicator switches to **OFF**. (Combine option applies only if you have more than one indicator.)

5. Click **Badhole Indicator** and toggle all selectors to **OFF**.

6. Click **Binding Preference** to define, which arrays (log curve) **PetroView Plus** will use and where it will start looking for them when it begins binding the arrays.

7. Keep all the default settings and Click **OK** to close the **Curve Selection Preferences** window.
8. Click **Input Curves Binding** to set all necessary input channels. You should have all the input channels (M_CH and N_CH are optional parameters in the core analysis) except for the Temperature TEMP_CH, which will be calculated by PetroView Plus later in this exercise.

9. If no channels are bound or you wish to change the channel's binding:

10. Highlight the channel

11. Select the array from the database (standard DataItem selector of GeoFrame) by clicking MB3
12. Click **OK** to close the **Select Channels** window.

13. Click **Processing Interval** and set the interval in the 4580 to 7560.

14. Click **General Parameters** and set the parameters as:

 a. **RMF** = 0.264 ohm.m
 b. **MST** = 85 DegF
 c. **Rw** = 0.11 ohm.m
 d. **RWT** = 220 DegF
 e. **OBM switch** = Off
 f. **Surface Temperature** = 80 DegF
 g. **BHT** = **220 DegF @7560 ft.**
15. Click **OK** to close the **General Parameter Editor** window

16. Click **Data Preparation** to check that Input Neutron Matrix is set to Limestone. The program will now calculate a temperature channel. Then click **OK** to close this window

17. Click **Display Input Curves** to verify that the input log curves appear correctly.
18. In the Input Curves Display window, select **File>Close**.

19. Click **OK** in the **ShalySand Setup** window.

Setting the ShalySand Shale/Porosity Picks

1. Click **Shale/Porosity Picks** in the **PetroView Plus** window.
2. Click **Badhole Parameters** to verify the badhole parameters.

3. Click **OK** to close this window.

4. Click **Matrix Points**. To open the **Zone Parameter Editor** window.

5. In the **RHOBMatrix** field, click **Crossplot**.
6. Set **Density** and **Neutron** response parameters by dragging the shale points (the lower right apex of the triangle) from the interactive crossplot.

7. Drag the **shale point** to the lower right corner of the data points (about 0.36, 2.62). You will see the actual parameter values in the information window at the bottom of the crossplot.

8. Click **OK** to close the Pick Matrix points window and Zone Parameter Editor window.

9. Click **Shale Points**.

10. In the **GRCln** field, click **Log Display**. Move the red line **GRCln** equal to the lowest gamma ray reading in the sand at 6300 feet (60-65API).

11. Select **GRshl** and set its value near the average value in the shales below 6070 feet to **140-145 API**.

12. Click **Rwa Parameters** and set the values:
 a. **WCLP = 0.15**
 b. **A_ZP = 1**
13. Select **Hydrocarbon Parameters** and set the values:
 a. RHOLYD = 0.2
 b. LH_CORR = Off
 c. HTYP = Gas

14. Click **OK** to close the pop-up sub-windows (**Zone Parameter Editor**).

15. Click **Compute/Display/Shale/Porosity/Rwa**.
16. In the Shale/Porosity/Rwa window, select **File>Close**.

17. Click **OK** in the **ShalySand Shale/Porosity Picks** window.

Setting Rw in the Pickett Plot

1. Click **Rw Picks** to open the **ShalySand Rw Picks** window.

2. In the **ShalySand Rw Picks** window, click **Select Rw/Clay** to open the **Zone Parameter Editor** window.
3. Click in the \textbf{Rw} field, and then click \textbf{Crossplot} to open the \textbf{Pick Parameter Rw} window.

4. In the \textbf{Pick Parameter Rw} window, discriminate the clean sections.
5. Click to open the Change Plot Scales window.

6. In the VCL1 field, change the 0 to 0.25.

7. Click OK or Apply to see the change.

8. Click and change the Sw line to 30%. You can also change A, M, or N.

9. Click OK and observe the change on SW values on the lines.

10. Drag the red Sw line to the bottom left edge of the cloud of clean water zone data points (approx Rw = 0.075 ohm.m).

11. Click OK.

12. Click in the Rwb field, and then click Log Display. Set the red line on the shale water resistivity value (approx Rwb=0.085 ohm.m).

13. Click OK in the Log Display window and the Zone Parameter Editor to close them.

14. Click Rw Quality Control to display the wet resistivity (R0) overlaid on the total resistivity RT. There should be a reasonable overlay in 100% shale
and 100% clean water sands. If not, then Rwb and Rw will need to be adjusted.

15. Select File>Close to close the Rw Quality Control display.
16. Click OK in the ShalySand Rw Picks window.

Setting the Sw Computation

1. Click Sw Computations to open the Sw Computation window.
2. Click Compute/Display Sw to see the final display.
3. In the Compute/Display Sw window, select File>Close to close the Sw Display.
4. Click OK in the Sw Computations window.
5. Select menu **File-> Save Session File** in the **PetroView Plus** window to save your work to a session file.

6. In the light blue field, enter **stratton8b.qkv**. Your file will be saved to the **wa_petroview** set in your local user area (**wa_petroview/stratton8b.qkv**) and will be used in the MultiWell exercises.

7. Select **File>Save Output Results** to save zone parameters and output channels. If the program refuses to let you save the file in **wa_petroview**, it is because you do not have a subdirectory of that name. Go to the Geonet launcher and start a GeoFrame Xterm. Enter **mkdir wa_petroview** at the prompt.
Overview

The following are some of the major features in PetroView Plus Advanced

- **Model Zonation**: Allows you to switch between the “ShalySand” and “Carbonate” models
- **Computation of Sxo Saturation**: Allows you to compute Sxo (flushed zone) saturation needed for a light hydrocarbon correction or to produce a “moved-oil” plot that might be indicative of productive intervals
- **Coal, Anhydrite and Halite Detection**: Allows you to detect special minerals and flag these minerals for geological correlation
- **Light Hydrocarbon correction**: Allows you to compute a correction to porosity based on the density of the hydrocarbon in the flushed zone and get a more accurate porosity
- **User-defined Sw lines on Pickett Plots**: Allows you to define the Sw lines and cutoff on the data that is used in the Pickett plot and then get a good Rw determination
- **Non-linear shale volume calculation
- Support for Oil-Based Mud

For a detailed explanation of the features mentioned above and algorithms used in PetroView Plus, please refer to the online help documentation in the GeoFrame Bookshelf.

Advanced Single Well Petrophysical Interpretation

Loading Data

If the data has been loaded into your GeoFrame database, please skip this section and go to Processing Data.

1. In the GeoFrame Application Manager Window, click to open Data Management. In the Data Management window, select a data load module in the Loaders and Unloaders folder.
2. Click OK or Apply to open the Data Load window.
3. Click Input File to open the Select the File(s) to Load window.
4. In the Filter text field, enter the directory path given to you by the instructor.
Single Well PetroView Plus Advanced Features

5. Click Filter button to display files of the selected directory and select petro_updates.dlis.

6. Click OK to close the Select the File(s) to Load window. Do not assign a Field, Well, Borehole, or Producer name to the Data Load window.

7. Click Run in the Data Load window to start loading data.

8. Click Exit to close the Data Load window.

Processing Data

1. In the GeoFrame Application Manager window, click to open Process Manager.

2. In the Process Manager window, select File>New Activity.

3. Click to open the Product Catalog.

4. In the Product Catalog window, click the Petrophysics folder and select PetroView Plus.

5. Click OK to close the Product Catalog window.

6. Click Activity and name your activity.

7. Click to open the Data Focus window.

8. In the Data Focus window, change the Show menu to Borehole.

9. In the Complex-Sand-Carb field, highlight the Complex-Sand-Carb borehole and click OK.

10. In the PetroView Plus window, select Model>Zoned Sand/Carbonate.

Modeling Setup

Note: Before you open a new sub-window, please close the sub-window you opened by the previous clicking.

1. Click Setup to open the Zoned ShalySand Setup/Carbonate window.

2. Click Input Equations and set the input equations: (Click orange areas to view available options.)

 a. Main Porosity = **Density-Thermal-Neutron (CNL)**
 b. Badhole Porosity = **Sonic-Wyllie**
 c. Water Saturation = **Dual-Water**
 d. Flushed Zone Analysis = **Using-Flushed-Zone-Resistivity**
 e. Wet<>Dry Clay = **WCLP**
 f. Water Cut in the CMR = **None**
 g. Coal Detection = **OFF**
 h. Anhydrite Detection = **ON**
Single Well PetroView Plus Advanced Features

i. Halite Detection = ON

3. Click Shaly Sand Shale Indicators and set the Density-Thermal Neutron as Linear and Gamma Ray to Clavier.

4. Click Carbonate Shale Indicators and set Gamma Ray to Linear.

5. Click Badhole Indicator and set Differential Caliper and Hole Rugosity to ON and all other selectors to OFF.

6. Click OK.

7. Click Special Mineral Indicators. Set the following indicators to ON and all others to OFF:
 a. ANHYDRITE: Density = ON
 b. ANHYDRITE: Thermal Neutron = ON
 c. HALITE: Density = ON
 d. HALITE: Thermal Neutron = ObN

8. Click Binding Preference to define which enters of arrays (log curve) PetroView Plus will use and where it will start looking for them when it begins binding the arrays. Keep all the default settings and close the sub-window in this exercise.

9. Click Input Curves Binding to toggle all necessary input channels. You should have all necessary input channels (M_CH and N_CH are optional parameters in the core analysis) except for the Temperature TEMP_CH, which will be calculated by PetroView Plus. (If your data set has the temperature data, it will be bound automatically)

10. Click OK.

11. If no channels are bound or you wish to change the channel's binding, highlight the array

12. Click MB3

13. Click Log Curve Selector
14. Enter the array name and press **ENTER** on your keyboard, use the standard **Log Curve Selector** to select the curve.

15. Click **Processing Interval** and process the whole interval.
16. Click **General Parameters** and set the parameters as:
 a. RMF = 0.04 ohm.m
 b. MST = 85 DegF
 c. Rw = 0.047 ohm.m
 d. RWT = 85 DegF
 e. OBM switch = Off
 f. Surface Temperature = 75 DegF
 g. BHT = 85 DegF @ 2586 ft.

17. Click **Data Preparation** and change **Caliper** to **HRUG** to **YES**. The program will calculate hole rugosity.

18. Click **Display Input Curves** to view the input log curves and the newly calculated **HRUG**.

Note: When you view the plot, notice that there is an abrupt change in lithology at 2496 ft. This is the boundary between sand-shale and carbonate-evaporite. You can now go back to the **General Parameters** task to put in this zoning. Keep this display for future reference.
19. Go back to re-click **General Parameters**.

20. In the **General Parameters** window, click **Insert** and select the **FMODEL** parameter.

21. In the **At** field, enter **2496**.

22. In the **Carb** field, change the value of the **FMODEL** to **Carb**.

23. In the **Sand Carbonate** field, change the value of the **FMODEL** to **Sand**.
24. Click **OK** to close the General Parameter Editor window.

Setting the ShalySand Shale/Porosity Picks

1. Click Shale/Porosity Picks in the PetroView Plus window.
2. Click **Badhole Parameters**.
3. In the **MXHRUG** (Maximum Allowable Hole Rugosity) field, click Log Display to display a HRUG vs. depth plot.
4. Set the parameter as:
 a. **MXHRUG** = 0.167
 b. **PHIMAX** = 0.3
 c. **MDCS** = 4.8
 d. **RHGAMin** = 2.65
5. Click **OK**.
6. Click **Matrix Points** and set the values as:
 a. **RHOBShale** = 2.6
 b. **RHOBSand** = 2.65
 c. **NPHIShale** = 0.36
 d. **NPHISand** = -0.07
7. Use the crossplot to determine the endpoints for the zones in which the model enters has been set to Sand.

8. Click Shale Points.

9. In the GRcln field, click Log Display.

10. Move the red line to make GRcln to the lower part of the GR readings (about 6 Gapi).

11. Select GRshl and set it to 100 Gapi.

12. Click Badhole Porosity.

13. Click Calibrate to run an ELANPlus Parameter calibration (ParCal). This will show an estimate of the best Sonic parameters to match the neutron-density porosity. The calibrated values are displayed in a new window. The new values are displayed in green but if limited by threshold, they will be displayed in red.

14. Click OK in the ParCal Output Window to use these parameters. The calculated values should be approximately 47.5 us/ft for SonicCarb and 70 us/ft for SonicShale.

15. Click OK to use these values.

16. Click Special Mineral Parameters.

17. In the RHOBHalite parameter field, click Log Display. The threshold should be set to catch the salt in the upper interval above 2430 ft. so set the value to 2.23.

18. Set the other parameters as:
 a. RHOBHalite = 2.23
 b. RHOBAnhy = 2.834
 c. NPHIHalite = 0.024
 d. NPHIAnhy = 0.04
Note: These values are different in the default endpoints for the pure mineral. The objective is to properly detect the special mineral, allowing for impurities in the mineral and averaging effects in the logs (at bed boundaries, for example). These endpoints should also be selected so that the mineral is not detected in the reservoir sections. This is not a problem in this exercise because there is so much difference in log values between the sand/carbonate and evaporates when using both the density and the neutron.

19. Click Rwa Parameters and set the following values:
 a. WCLP = 0.15
 b. A_ZP = 1
 c. C_DWA = 0
 d. M_MWA = 2

20. Click Hydrocarbon Parameters.

21. Set the LH_CORR parameter in the lower zone (Sand/Carbonate) to ON and the RHOLHYD to 0.6.
22. Click **Compute/Display/Shale/Porosity/Rwa**. The program creates a display of the lithology and porosity for quality control. Check that the Sand/Shale model displays in the lower part of the Well and that it changes to the carbonate model above 2496 ft.

Setting Rw in the Pickett Plot

1. In the **ShalySand Rw Picks** window, click **Rw Picks**.
2. Click **Select Rw/Clay**.
3. In the **Rw** field (for the lower zone), click **Crossplot**.
4. In the **Pickett Parameter Rw** window, discriminate the clean sections.
5. In the **Rwb** field (for the lower zone), change the value to **0.1**.

6. Click **Constant** to apply this value to both zones (respecting the temperature difference in the zones).

7. Click **Rw Quality Control** to display the wet resistivity (**R0**) overlaid on the total resistivity (**RT**). Since there are no wet zones or shales, it is difficult to gauge the quality of the selections.
Setting the Sw Computation

1. Click **Sw Computations** to open the **Sw Computation** window.
2. Click **Compute/Display Sw** to see the final display.
3. Select **File>Close** to close the Sw Display.
4. Click **OK** in the **Sw Computations** window.
5. Save your work to a session file by clicking **File>Save Session File** in the **PetroView Plus** window.

6. In the light blue field, enter **sand-carb.qkv**. Your file will be saved to the **wa_petroview** set in your local user area (wa_petroview/stratton8b.qkv) and will be used in the MultiWell exercises.

7. Select **File>Save Output Results** to save zone parameters and output channels. If the program refuses to let you save the file in **wa_petroview**, it is because you do not have a subdirectory of that name.

8. Go to the Geonet launcher and start a **GeoFrame Xterm**.

9. Enter **mkdir wa_petroview** at the prompt.
10. Now go back to PVP and **File>Save Output Results**.
11. Re-run **PetroView Plus** with new parameters. Now that you have been through all the parameters once, it is not necessary to follow the full sequence of parameter setting.
12. Click **Shale/Porosity Picks**.
13. In the Special Mineral Parameters field, change **RHOBHalite** to 2.5 in the upper zone.
14. Click **Sw Computations**.
15. Click **Compute/Display Sw**. The display should now show more salt in the upper zone.

Single Well Petrophysical Interpretation Using Exclick Mode & Iterations

Processing Data

1. In the **GeoFrame Application Manager** window, click \[\] to open the **Process Manager**.
2. In the **Process Manager** window, select **File>New Activity**.
3. Click \[\] to open the **Product Catalog**.
4. Click the **Petrophysics** folder and select **PetroView Plus**.
5. Click **OK** to close the **Product Catalog** window.
6. Click **Activity** and name your activity.
7. Click \[\] to open the **Data Focus**.
8. In the **Data Focus** window, change the **Show** menu to **Borehole**.
9. In the **StrattonB** field, highlight the **Well 20B** borehole and click **OK**.
10. In the **PetroView Plus** window, click **Open File** and select **stratton8.qkv**.
11. Click **Compute/Display Sw**.
12. In the **General Parameter Editor** window, set the Bottom Hole Temperature (BHT) to **220 DegF @7400 ft**.
13. Click **OK** and the final display will appear when the computation is completed.
14. Click **Shale/Porosity Picks**.
15. Click **Shale Points**.
16. In the **GRshl** field, click **Log Display**.
17. Set the **GRsh** value to **98** and the **GRcln** value to **60**.
18. Click **OK**
19. Click **Compute/Display Sw**. Adjust the other parameters and re-run the computation as required.

20. Click **Shale/Porosity Picks** to add a zone to the model.

21. Click **Shale Points**.

22. Click **Insert** and change the zone from 7400 to 6225.

23. In the upper zone field, enter **Top**.

24. Click **OK** to insert the boundary.

25. In the **GRsh** field of the Top zone, set the parameter to 115 and click **OK**.

26. Click **Compute/Display Sw**.

27. Select **View>Scale** and adjust the vertical display scale to 1:1000 to see the results.

28. Select **User>Save Output Results** to set the controls to overwrite previous outputs or save as a different file.

29. Select **File>Save Session File** to save the session file.

30. In the Selection field, enter **wa_petroview/stratton20B.qkv**.

31. Click **OK**.
Chapter 5 MultiWell PetroView Plus

Overview

The functions of MultiWell PetroView Plus:

- MultiWell Parameter Management
- MultiWell Graphical Zonation
- MultiWell Normalization
- MultiWell Crossplots/Histograms/Regression Analysis
- MultiWell Data Function
- MultiWell Data Processing
- MultiWell Cross-Section
- Interactive Well Normalization

For a detailed explanation of the features mentioned above and algorithms used in PetroView Plus, please refer to the online help documentation in the GeoFrame Bookshelf.

Setting Parameters and Zones

The Zone Parameter Editor allows you to perform graphical zonation. The editor also allows creation of MultiWell parameters and provides user-controlled, multi-spreadsheet views of parameter.

Processing Data

1. In the GeoFrame Application Manager window, click to open the Process Manager.
2. In the Process Manager window, select File>New Activity.
3. Click to open the Product Catalog.
4. Click the Petrophysics folder and select PetroView Plus.
5. Click OK.
6. Click Activity and name your activity.
7. Click to open the Data Focus and change the Show menu to Field.
8. In the Data Focus window, highlight the StrattonB field.
9. Click OK.
10. Double click on the PetroView Plus module to open the PetroView Plus window.
11. Select User>MultiWell Mode to view the multiple wells. In case you set data focus on Borehole, it will open in single well mode.

12. In the Containing Fields, click StrattonB.

13. In the Available Wells field, highlight Well 7B, Well 8B, and Well 9B and move them to the Selected Wells field using the arrow buttons.

14. Selecting Utilities>Initialize Well Intervals and use the default settings to set the top and bottom well intervals based on the GR curve.

15. Click button Attributes… to check the well attributes and click OK to close it.
Setting Parameters

1. In the Multiwell PetroView Plus window, click [] to open the Zone Parameter Editor window.
2. Click **New** and highlight all of the Wells.
3. Toggle **Add the Parameters** to **OFF** (red=on, gray=off).
4. Click **Codes** to open the **Parameter Codes Directory** window.
5. In the **Search For** field, enter **RW** and press ENTER on your keyboard.
6. Select the **RW** parameter and click **OK**.
7. In the **Initial Value** field, enter **0.03** and click **Apply**.
8. Click **New** and highlight all of the Wells.
9. Set **Add the Parameters** to **OFF** (red=on, gray=off).
10. Click **Codes** to open the **Parameter Codes Directory** window.
11. In the **Search For** field, enter **RWT** and press ENTER on your keyboard.
12. Select the **RWT** parameter and click **OK**.
13. In the Initial Value field, enter **175 DegF** and click **Apply**.
14. Highlight **Wells 7B, 8B, and 9B** and the parameters **RW & RWT**.
15. Click **Redisplay** to check that all parameters/Wells are correctly initialized. Values for **RW** and **RWT** for selected Wells appear in the **Zone Parameter Editor** window.

Setting Zones

1. In the **Zone Parameter Editor** window, click **Zoning**.

Values for RW and RWT for selected Wells appear in the Zone Parameter Editor window.
2. In the **Display Setup** window, click **Up**, **Down**, **Top**, or **Bottom** to change the order in which the Wells are displayed. For this exercise, display them in numeric order.

![Display Setup Window](image)

3. Toggle the box next to **Presentation** so that it is red.
4. Click **Presentation** and set to `wa_elan/zoning_default.lgp`.
5. Click **Initial Scale** and set to **1:500**.
6. Click **OK** to open the **Graphical Zone Editor** window to create the MultiWell display.
7. Scroll up to 6300’.

8. Click in Graphical Zone Editor and place a zone marker in each Well for the Upper Stratton Zone at the following approximate depths:

<table>
<thead>
<tr>
<th>Zone</th>
<th>WELL 7B</th>
<th>WELL 8B</th>
<th>WELL 9B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Stratton</td>
<td>6290'</td>
<td>6287'</td>
<td>6282'</td>
</tr>
<tr>
<td>Middle Stratton</td>
<td>6597'</td>
<td>6585'</td>
<td>6599'</td>
</tr>
<tr>
<td>Lower Stratton</td>
<td>7294'</td>
<td>7346'</td>
<td>7342'</td>
</tr>
</tbody>
</table>

9. In the Graphical Zone Editor window, select Zone>Rename.

10. In the Zone Name field, enter Upper Stratton.
11. In the **Zone Name** field, enter **Middle Stratton**.
12. In the **Zone Name** field, enter **Lower Stratton**.
13. Select **File>Close**.
14. Highlight all the Wells in the Upper Stratton Zone, all the zones in the middle panel, and the parameter RW in the right panel.
15. Change the RW to 0.035 and click **Redisplay**.
16. Click **OK** to exit the **Zone Parameter Editor**.

MultiWell Crossplot (Normalization)

The MultiWell crossplot allows you to crossplot single or multiple Wells and histogram multiple Wells, you can also use this Window to define “Key Wells” vs. “Target Well” and normalize the Target Well in the histogram or crossplot Window.

Basic Functions of MultiWell CrossPlot

Continue with the same activity of previous exercise (Setting Parameters and Zones). If you forget the activity name, go to the Process Manager to select the activity you named by selecting **File>Open Activity**.

1. In the **MultiWell PetroView Plus** window, set the displays for cross-section and crossplot.
2. Select **Utilities>Set Module Displays**.
3. Change **CrossSection** to hostname: 0.1 or hostname: 0.0 (whichever is the opposite of what PetroView Plus started on).
4. Click **OK**.
5. In the **Containing Fields** section, select **StrattonB**.
6. In the **Available Wells** field, highlight **Well 7B, Well 8B, Well 9B** and move them to the **Selected Wells** section.

Crossplot Wells By Color

1. Click [] to open the **Crossplot Setup** window.
2. Click **Attributes** and select the following curves for display:

<table>
<thead>
<tr>
<th>Axis</th>
<th>Channel Code</th>
<th>Linear/Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>NPHI</td>
<td>Lin</td>
</tr>
<tr>
<td>Y</td>
<td>RHOB</td>
<td>Lin</td>
</tr>
<tr>
<td>Cutoff</td>
<td>GR</td>
<td>Linear</td>
</tr>
</tbody>
</table>

3. Toggle the **Scale Type** to **Lin** for the x and y-axis.

4. Toggle the **Axis Type** for each axis, enter the channel code, and press ENTER on your keyboard.

5. Click **OK**.

6. Click the button **Symbol/Color**.

7. Change the color for **Well 9B** to **Green** (green3 in RGB mode) and the symbol to a plus sign (+).

8. Click **OK**.

9. Click **Plot** to open the **Crossplot** window.
10. Click Scales \(\square \) and change the scales:

<table>
<thead>
<tr>
<th>Axis</th>
<th>Left/Bottom</th>
<th>Right/Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHOB</td>
<td>1.95</td>
<td>3.15</td>
</tr>
<tr>
<td>NPHI</td>
<td>-0.15</td>
<td>0.45</td>
</tr>
</tbody>
</table>

11. Click OK. The crossplot will be redrawn, based on corrected scales.

12. Select File > Save Plot Settings to save the scales and curve definitions.

13. Select File > Close to exit the plot.

Companion Plot Interactions

1. Select Utilities > Well Initialization to set the display intervals. Use the GR curve to define the intervals.

2. Click OK.

3. Select Options > Companion Plot to generate a cross-section of the Wells. If you have two screens and set the module display parameter
correctly, the cross-section should appear on the opposite screen. The RT curve is scaled linearly. Clicking on the curve and changing Scale Type to Logarithmic.

4. In the Companion Plot window, click Zone to activate the zone selection.

5. Scroll to approximately 6250 ft and select 6240 - 6250 ft in Well 7B. The relevant points will highlight in red on the crossplot.

6. In the Crossplot window, click Free Hand and select points in the crossplot by drawing a small circle around selected points. These selections will show up in the Cross-Section window.

7. Select View>Scale to change the vertical scale in the Cross-Section window.

8. Set the Vertical Scale to 1/1000 or a similar scale to see more of the data.

MultiWell Data Normalization Using MultiWell CrossPlot/Histogram

Continue with the same activity of previous exercise (MultiWell Crossplot). If you forget the activity name, go to the Process Manager to select the activity you named by selecting File>Open Activity.

1. In the Containing Fields field, click StrattonB.

3. If you have started a new session, select Utilities>Well Initialization.

4. Click to open MultiWell Crossplot Editor.

5. In the Selected Channels field, select X Axis.

6. Click Attributes.

7. Click Channel Code and select GR.

8. Click OK.

9. Click Apply.

10. Change the Axis Type to Y.

11. Set the Channel Code to RHOB.

12. Set the Cutoff1 to NPHI.

13. Click High Cut Point to adjust the NPHI cutoff interactively.

14. Move the red line to eliminate some of the more suspect data points (approximately 0.50).

15. Click OK.

16. Click Close.
17. Click **Target Well** to verify that Well 7B is selected. (If the Well is selected, it will have a > to the left of it.)

18. Click **Plot** to view two clouds of data that should overlap each other.

19. Click **GR Histogram**.

20. Verify that **Histogram Shift** has a turquoise halo indicating that it is active.

21. Click **Auto Shift**.

22. Toggle both of the boxes to red and click **OK** to align the histograms. The two clouds of data should now overlay each other.
23. Click **OK**.

24. Select **File>Save Target Data** to write this transform to the database.
 Experiment with the other activities in the crossplot window (such as **Log Curve Fit**).

25. Select **File>Close**.

26. Click **Close** in the **Crossplot Setup** Window to reset to the **MultiWell PetroView Plus** window.

Using MultiWell Data Functioning

Using the MultiWell data functioning window, you can apply equation functions on multiple Wells.

Continue with the same activity of previous exercise (**MultiWell Data Normalization**). If you forget the activity name, go to the **Process Manager** to select the activity you named by selecting **File>Open Activity**.
1. In the **Containing Fields** field, click **StrattonB**.

2. Move **Well 7B**, **Well 8B**, and **Well 9B** into the **Selected Wells** panel.

3. If you have started a new session, select **Utilities>Well Initialization**.

4. Click ![Invoke Data Functioning](image) to Invoke Data Functioning. This function computes values for Volume of Shale, Effective Porosity, and Water Saturation.

5. Select **File>Open** and enter `quickklook_mwelp.func` (your instructor will tell you the directory name).

6. Click **Parse** to verify that the functioning extensions will work and click **OK**.

7. Click **Bind** to verify the input curves are present and click **OK**.

8. Click **Compute** to compute new outputs. Note the zone messages in the main **Session Manager Message Field** at the bottom of the window.

9. Click **List Data** and highlight all Wells.
10. Click **Apply** to view the outputs. They will appear in the Computation Results section of the Data Functioning Window.

11. Click **Save Data** in the **Data Functioning** window.

12. Click **Save** in the **Save Data** window to output the results to the database. The saved items will be displayed in the **Data Functioning** window.

13. Click **Close**.

14. Select **File>Close**.

15. Click **General Data Manager** to query for the results computed above or uses **Log Curve Data Manager** to check in the database.

16. Use the template presentation file built in the exercise, MultiWell Cross-section, to display all Wells’ computed results.

Question: There is no **RW** parameter setting for the **quicklook_mwelp.func**, how can this exercise get the correct computation?

MultiWell Display

Using the **WellCompositePlus Presentation Builder**, you can generate user customized template files and make MultiWell cross section displays.

Continue with the same activity of previous exercise (**MultiWell Data Functioning**). If you forget the activity name, go to the Process Manager to select the activity you named by selecting **File>Open Activity**.

Building a Template

1. In the **GeoFrame Application Manager** window, click **Process Manager** to open the Process Manager.

2. In the **Process Manager** window, select **File>New Activity**.

3. Click **Product Catalog** to open the **Product Catalog**.

4. Click the **Petrophysics** folder and select **WellCompositePlus**.

5. Click **OK**.

6. Click **Activity** and name your activity.

7. Click **Data Focus** to set up **Data Focus**.

8. Change **Show** to **Field**.

9. In the **StrattonB** field, highlight the **Well 8B** borehole and click **OK**.

10. Double click on the **WellCompositePlus** module, open the **WellCompositePlus** window.

11. Change the template file to **blank.lgp**.

12. Click **Run** to open the main graphics window.
13. Click Presentation Editor.

14. In the Track Name field, enter Depth and change the Track Width to 0.5.

15. Click Add Track.

16. In the Track Name field, enter Shale Volume and change the Track Width to 1.5.

17. In the Track Name field, enter Free Fluid and change the Track Width to 1.5.
18. Click **Object Type**.
19. Select **General>Depth/Time Number**.
20. Click **Track** and select **Depth**.
21. Click and change the attributes of depth number.
22. Click **Object Type**.
23. Select **General>Log Curve**.
24. Click **Track** and select **Shale Volume**.
25. Click **Add Log Curve**.
26. In the **Code Selection** field, enter **VSH** and click **OK**.
27. Click and change the left scale to **0.1** and the right scale to **1.0**.
28. Change the foreground color to blue (you also can change the line thickness and texture).
29. Click **Object Type**.
30. Select **General/Area Shading**.
31. Click **Track** and select **Shale Volume**.
32. Click **Add Area Shading**.

33. Click and change the filling mode as Fill In the To.
34. Click **Boundary 1** and select **Left**.
35. Click **Boundary 2** and select **VSH**.
36. Select shale pattern with a gray background and click **OK**.
37. Click **Object Type**.
38. Select **General>Log Curve**.
39. Click **Track** and select **Free Fluid**.
40. Click **Add Log Curve**.
41. In the **Query by Code** field, enter **PHIE** and click **OK**.

42. Click and change the left scale to **0.5** and the right scale to **0**.
43. Change the foreground color to red (you can also change the line thickness and texture).
44. Click **Object Type**.
45. Select **General>Log Curve**.
46. Click **Track** and select **Free Fluid**.
47. Click **Add Log Curve**.
48. In the **Query By Code** field, enter **BVW** and click **OK**.
49. Click **Object Type**.
50. Select **General>Log Curve**.
51. Click **Track** and select **Free Fluid**.
52. Click **Add Area Shading**.
55. Click and change the filling mode as Fill In the To.

56. Click **Boundary 1** and select **PHIE**.

57. Click **Boundary 2** and select **BVW**.

58. Select sandstone pattern with a red background and click **OK**.

59. Click **OK** to close the **Presentation Editor** Window. The final display will look like this:
60. Select **File>Save Presentation As** and save the graphics as a template file (lgp_templates/quicklook.lgp).

61. Click **OK**.

62. Click **Cross Section Display**.

63. Toggle the box beside **Presentation** to red.

64. Click **Presentation** and select **quicklook.lgp** (change wa_petroview/*. lgp to lgp_templates/*. lgp)

65. Set the **Initial Scale** to 1/600.
66. Click OK and verify that the presentation is what you calculated in MultiWell Data Functioning.

67. Select File>Close.

Building a presentation file for MultiWell

1. In the **WellCompositePlus** Window, select File>Open>blank.lgp.
2. Click **Presentation Editor**.
3. In the **Track Name** field, enter **Depth** and change the **Track Width** to **0.5**.
4. Click **Add Track**.
5. In the **Track Name** field, enter **PVP Results** and change the **Track Width** to **2**.
6. In the **Track Name** field, enter **Free Fluid** and change the **Track Width** to **1.5**.
7. Click **Object Type**.
8. Select **General>Depth/Time Number**.
9. Click **Track** and select **Depth**.
10. Click **Add Area Shading**.
11. Click **Add Depth/Time Number**.
12. Click **Track** and select **Depth**.

13. Click ![Info](image) and change the attributes of depth number.
14. Click **Object Type**.
15. Select **Petrophysics>Elan Volume**.
16. Click **Track** and select PVP Results.
17. Click **Add Elan Volume** and select **PVP FINAL OUTPUTS ELAN_PVP_OUTPUTS**.
18. Click **OK**.

19. Click **OK** to close the **Presentation Editor** Window.
20. Select **File>Save Presentation As** to save the graphics as template file
 (lgp_templates/mwpvp.lgp).

21. Click **OK**.

MultiWell Processing Using the Key Well Session File

MultiWell Processing allows you to perform the computation of reservoir properties for several Wells at one time.

- Perform a dummy run validation before computing
- Compute Wells by zone
- Salinity Initialization logic for Rw/Rwt and Rmf/MST calculations MultiWell Processing
Processing Data

Continue with the same activity of previous exercise (WellCompositePlus Presentation Builder). If you forget the activity name, go to the Process Manager to select the activity you named by selecting **File>Open Activity**.

1. In the **Containing Fields** field, click **StrattonB**.
2. Move **Well 7B**, **Well 8B**, and **Well 9B** into the **Selected Wells** panel.
3. If you have started a new session, select **Utilities>Well Initialization**.
4. In the **Containing Fields** field, click **StrattonB**.
5. Click **Attributes**.
6. Click **Field Session** and select the **stratton8b.qkv** file.
7. Click **OK** in all the pop-up windows.
8. In the **Session Manager**, select **Edit>Salinity Initialization Editor**.
9. Toggle **Re-initialize** on and click **OK**.
10. Click **MultiWell Processing Tool** to open the Validation/Computation Window.

11. Click **Bind** to check the data binding Well by Well.
12. If the required data is not bound correctly, click **Browser** to change the data binding.
13. Click **Validate** to perform a dummy run to test that the Processing will work.

14. Click **Close**.

15. Click **Compute** and wait until finished.

16. Click **Close**. (Clicking Save puts the text of the report in an external file.)

17. Click **Close** to close the **Validation/Computation** Window.

18. Click **Cross Section Display** to display the results.

19. Toggle **Presentation File** to **ON**.

20. Click **Presentation File** and select the **mwpvp.lgp**.

21. Click **Close**.
22. Click **Zone Parameter Editor**. The zones and parameters (RW, RWT, etc.) you created in the previous exercise will be visible.

23. Click **New** and highlight all of the Wells.

24. Toggle **Add the Parameters** to OFF.

25. Click **Codes** to open the Parameter Codes Directory Window.

26. In the **Search For** field, enter **GR*** and press ENTER on your keyboard.

27. Select the **GR_CLA2** parameter and click **OK**.

28. In the **Initial Value** field, enter **200** and click **Apply**.

29. Click **New** and highlight all of the Wells.

30. Set **Add the Parameters** to OFF.

31. Click **Codes** to open the Parameter Codes Directory Window.

32. In the **Search For** field, enter **GR*** and press ENTER on your keyboard.

33. Select the **GR_SILT** parameter and click **OK**.
34. In the **Initial Value** field, enter **20** and click **Apply**.

35. Click **OK**.

36. Highlight **WELLS 7B, 8B, and 9B** and the parameters **GR_CLA2** and **GR_SILT** together with one of the zones (Middle Stratton).

37. Click **Redisplay** to check that all parameters/Wells are correctly initialized. Values for RW and RWT for selected Wells appear in the **Zone Parameter Editor Window**.

38. Click **Constant** to set **GR_CLA2=140** to all the zones in **WELL 7B**.

39. Click **OK** to exit the Zone Parameter Editor.

40. Click **Attributes**.

41. In the **Select for Existing Outputs** field, change Intact to **Overwrite**.

42. Click to re-run the **PetroView Plus** computation (repeat steps 11-18) for all three Wells, you will see that the new results for **WELL 7B** are more reasonable, but the Clay Computation for **WELL 8B** and **WELL 9B** maybe need to be adjusted. Use **Zone Parameter Editor** and Zoning to adjust new parameters for all Wells.

43. Select **File>Save As** and save the multiple Well sessions as **stratton.mw**.

44. Select **File>Save Data**.

45. Click on the **Zone Sets** and **Zone Parameters** to be saved.

46. Click **OK**.

Note: Saving the session file actually saves the zone sets and Well attributes to an ASCII file that can later be loaded to restore the status of the MultiWell session. The data save step saves the zone sets and parameters to the database so that the reservoir summation program can pick up the proper zone boundaries.

The next step is to create MultiWell LithoZone in the WellPix Lump. The MultiWell properties are in the ResSum and make a 2D distribution (contour/gridding) map for MultiWell properties in the BaseMapPlus.
Chapter 6 Reservoir Property Summation and Mapping (ResSum & Basemap Plus)

Overview

This chapter will describe a workflow for calculating and mapping reservoir properties based on the petrophysical logs and formation markers. This workflow will use the WellPix and ResSum to create LithoZones and compute reservoir properties and averages for the zones.

ResSum create sums and averages of log petrophysical properties by zone for one or multiple boreholes, these properties can then be output to a report, and they are also saved to the database as part of the zones associated with layers, these properties can then be gridded and mapped in Basemap or CPS3 products.

For a detailed explanation of WellPix, ResSum and Basemap, please refer to the online help documentation in the GeoFrame Bookshelf.

Data Requirements (Log Curve data and petrophysical analysis data):

- **LithoZone for specific Zone Version**: Created in the WellPix
- **Petrophysical analysis data (Porosity, Volume of shale/clay, Water Saturation, permeability etc.)**: Output in the petrophysical analysis products (GeoFrame PetroView Plus, GeoFrame, ELANPlus or third party applications)

Creating a LithoZone

1. In the Application Manager, click
2. In the Geology Catalog Window, click WellPix.

3. In the WellPix Window, select File>Template>Open.

4. In the Open Borehole Display Templates Window, select WellPix_gr.bdt and click OK.

5. In the Open Template Confirmation Window, click All.

6. In the WellPix Window, select File>Add Boreholes.

7. Select Well 7B, Well 8B and Well 9B (use Ctrl+MB1 to make multi-selection) and click OK.

8. Select View>Depth Scale.

9. In the Depth Scale Window, change Scale to 200 and major tick to 100.

10. Click OK.

11. Click Depth and enter 6000.

12. Click OK.

13. Select Well 7B.

14. Select Edit>Add UDC Template.

15. In the Open UDC Template field, enter the directory name given to you by your instructor (*.lgp) and press ENTER on your keyboard.

16. In the Files field, select petro.lgp and click OK.

17. Click Yes.

18. Click Zone Version.

19. Click Zone Version Data Manager.
20. In the Name field, enter **stratton_sands_zv**.

21. Click **OK** to create a new Zone Version and store the LithoZone, which will be created in WellPix.

22. Click **OK** to close the Select Zone Version Window.

23. Select **Well 7B** and click **Create Single Litho Zone**.
24. Click **Create Layer**.

25. In the **Layer name** field, enter **stratton_sands**.

26. Click **Upper Surface** and select the **Stratton Sands**.

27. Click **OK**.

28. Click **Lower Surface** and select the **Base Stratton Sands**.

29. Click **OK**.

30. Click **Layer Pattern** and select the sand pattern (column 6 row 3).

31. Click **OK**.

32. Click **Layer Color** and select gold.

33. **Click OK**.

34. Click **OK** to close the **Layer Creation** Window.

35. In the **Single Litho Zone Interpretation** Window, click **Boreholes**.

36. Select **Well 8B** and **Well 9B** and click **OK**.

37. Toggle the **Propagate zero-length zones** option to **ON**.

38. Click **OK** to create the **Litho Zone stratton_sands**.

Running BaseMapPlus on Your Secondary Screen

1. In the **Application Manager** Window, click .

GeoFrame Basic Petrophysical Interpretation using PrePlus and PetroView Plus 07/09/02 97
2. In the **Visualization** Window, select **Basemap**.

3. In the **Display** field, change the last 0 to 1.

4. Click **OK** to run the **Basemap Plus** on your secondary screen.

5. Select **Create Default Geological Map** and click **OK**. Manage the Basemap graphics appearance based on what you have learned about how to use Basemap.

Running ResSum On Your Primary Screen

1. In the **Geology Catalog** Window, click **ResSum**.
2. In the ResSum Window, click **Summation Model**.
3. In the **Summation Model** Window, enter `stratton_sands_model` and click **Create**.
4. Click Zone Version.
5. Select the stratton_sands_zv in the list panel and click OK.
6. Click Layers.
7. Select the stratton_sands in the list panel and click OK.
8. Click Boreholes.
9. Select Well 7B, Well 8B and Well 9B and click OK.
10. Click OK.
11. Click **Curve Selection**.

12. Click **Selected Log Curves** to open the **Input Curves** Window, check to see if Vol. of Shale, porosity and Water Saturation have been bound with the data in the database.

13. Click **OK** to close the **Input Curves** Window.
14. Click **OK** to close the Log Curve Selection Window

15. Click **Properties** and select the properties you wish to calculate.

16. Toggle **MD** and **TVD** to **ON**.

17. Set **Zone Property** to **Scatter**.
18. Click **OK** to close the **Summation Saved Properties** Window.

19. Click **Global Cutoff Set**.
20. Click **New**.

21. In the **ResSum Text Entry** field, enter `cutoff_set1` and click **OK**.

22. In the **Name** field, highlight `cutoff_set1` and change the **Minimum Porosity** to 0.15.
23. Toggle the **Maximum Gamma Ray** and **Minimum Permeability** option to **OFF**.

24. Toggle the **Curve 1 Code** and **Curve 2 Code** to **OFF**.

25. Click **OK** to close the **Cutoff Set for Summation Model** Window.

26. In the **Property Version** field, enter **stratton_sands_pv**.

27. In the **Boreholes** field, highlight all boreholes (Well 7B, Well 8B, Well 9B).

28. Click **Cutoff Set**.

29. Select **cuttof_set1** and click **OK**.
30. In the **Zones** field, highlight all zones in **ResSum** Window.

31. Click **Cutoff Set**.

32. Select **cuttof_set1** and click **OK**.

33. Click **Compute**.

34. Click **OK** to calculate the properties for lithozone.

35. Click **View** to check the results in the **Project Zone Data Manager**.

36. Select **Results>Print** to output the results to a text file or printer.
37. Click **Setup** to specify the properties you wish to post on the Basemap.

38. Drag the property from the **Zone Property Selection** panel and drop it to the **Selected Properties** panel. You can select 4 properties to post in Basemap Window each time.

39. Click **Layers** to select which layer you are going to work with.
40. Click **Map** to post the properties you selected in the **Basemap** Window.
41. Grid the properties you posted and map the results.

42. Select File>Exit.