Test-Driven Development
By Example

Kent Beck, Three Rivers Institute

Copyright (c) 2002, Kent Beck, All rights reserved
Draft July 14, 2002 1:31 pm
To Do:
Refactorings
Opening story
To do lists, cross outs and move them to the margin
Glossary definitions
Where does factorial example go?
Ref Fowler’s new book
Cross refs for patterns
Code paragraph style throughout
Gray keywords
Influence diagrams
Leading tabs in code
private class Pair keyword highlighting
Final code formatting
Reset to-do lists
Bold deltas in code
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Preface</td>
<td>viii</td>
</tr>
<tr>
<td>4</td>
<td>Acknowledgements</td>
<td>xiv</td>
</tr>
<tr>
<td>1</td>
<td>Story Time</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Section I: Money Example</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Money Example</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Degenerate Objects</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Equality for All</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>Privacy</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Franc-ly Speaking</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Equality for All, Redux</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>Apples and Oranges</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>Makin’ Objects</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>Times We’re Livin’ In</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>Interesting Times</td>
<td>49</td>
</tr>
</tbody>
</table>
Clean code that works, in Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons:

• Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.

• Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing.

• Clean code that works improves the lives of users of our software.

• Clean code that works lets your teammates count on you, and you on them.

• Writing clean code that works feels good.

But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you:

• Write new code only if you first have a failing automated test.

• Eliminate duplication.
Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:

- You must design organically, with running code providing feedback between decisions
- You must write your own tests, since you can’t wait twenty times a day for someone else to write a test
- Your development environment must provide rapid response to small changes
- Your designs must consist of many highly cohesive, loosely coupled components, just to make testing easy

The two rules imply an order to the tasks of programming:

1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first
2. Green—make the test work quickly, committing whatever sins necessary in the process
3. Refactor—eliminate all the duplication created in just getting the test to work

Red/green/refactor. The TDDs mantra.

Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications:

- If the defect density can be reduced enough, QA can shift from reactive to proactive work
- If the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily development
- If the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaboration
- Again, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers

So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage.
Courage

Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects:

- Makes you tentative
- Makes you want to communicate less
- Makes you shy from feedback
- Makes you grumpy

None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and:

- Instead of being tentative, begin learning concretely as quickly as possible.
- Instead of clamming up, communicate more clearly.
- Instead of avoiding feedback, search out helpful, concrete feedback.
 (You’ll have to work on grumpiness on your own.)

Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet.

The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test.

Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately.
That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress.

There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code.

Once you are finished reading this book, you should be ready to:

- Start simply
- Write automated tests
- Refactor to add design decisions one at a time

This book is organized into three sections.

- An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.

- An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.

- Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples.

I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples...
through and referring to the patterns when you want more detail about a technique, then using the patterns as a reference.

Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read.

A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions, to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.
Thanks to all my many brutal and opinionated reviewers. I take full responsibility for the contents, but this book would have been much less readable and useful without their help. In the order in which I typed them in, they were: Steve Freeman, Frank Westphal, Ron Jeffries, Dierk König, Edward Hieatt, Tammo Freese, Jim Newkirk, Johannes Link, Manfred Lange, Steve Hayes, Alan Francis, Jonathan Rasmusson, Shane Clauson, Simon Crase, Kay Pentecost, Murray Bishop, Ryan King, Bill Wake, Edmund Schweppe, Kevin Lawrence, John Carter, Philip, Peter Hansen, Ben Schroeder, Alex Chaffee, Peter van Rooijen, Rick Kawala, Mark van Hamersveld, Doug Swartz, Laurent Bossavit, Ilja Preuß, Daniel Le Berre, Frank Carver, Justin Sampson, Mike Clark, Christian Pekeler, Karl Scotland, Carl Manaster, J. B. Rainsberger, Peter Lindberg, Darach Ennis, Kyle Cordes, Justin Sampson, Patrick Logan, Darren Hobbs, Aaron Sansone, Darach Ennis, Syver Enstad, Shinobu Kawai, Erik Meade, Patrick Logan, Dan Rawsthorne, Bill Rutiser, Eric Herman, Paul Chisholm, Asim Jalis, Ivan Moore, Levi Purvis, Rick Mugridge, Anthony Adachi, Nigel Thorne, John Bley, Kari Hoijarvi, Manuel Amago, Kaoru Hosokawa, Pat Eyler, Ross Shaw, Sam Gentle, Jean Rajotte, Phillipe Antras, Jaime Nino.

To all of the programmers I’ve test-driven code with, I certainly appreciate your patience going along with what was a pretty crazy sounding idea, especially in the early years. I’ve learned far more from you all than I could ever think of myself. Not wishing to offend everyone else, but Massimo Arnoldi, Ralph Beattie, Ron Jef-
fries, Martin Fowler, and last but certainly not least Erich Gamma stand out in my memory as test drivers from whom I’ve learned much.

I would like to thank Martin Fowler for timely Framemaker help. He must be the highest-paid typesetting consultant on the planet, but fortunately he has let me (so far) run a tab.

My life as a real programmer started with patient mentoring from and continuing collaboration with Ward Cunningham. Sometimes I see TDD as an attempt to give any programmer, working in any environment, the sense of comfort and intimacy we had with our Smalltalk environment and our Smalltalk programs. There is no way to sort out the source of ideas once two people have shared a brain. If you assume all the good ideas here are Ward’s, you won’t be far wrong.

It is a bit of a cliché to recognize the sacrifices a family makes once one of its members catches the peculiar mental affliction that results in a book. It is a cliché because family sacrifices are as necessary to book writing as paper. To my children who waited breakfast until I could finish a chapter, and most of all to my wife who spent two months saying everything three times, my profoundest and least adequate thanks.

Finally, to the unknown author of the book which I read as a weird 12-year-old that suggested you type in the expected output tape from a real input tape, then code until the actual results matched the expected result, thank you, thank you, thank you.
Early one Friday the boss came to Ward to introduce him to Peter, a prospective customer for WyCash, the bond portfolio management system they were selling. Peter said, “I’m very impressed with the functionality I see. However, I notice you only handle US dollar denominated bonds. I’m starting a new bond fund and my strategy requires that I handle bonds in different currencies.” The boss turned to Ward, “Well, can we do it?”

Here is the nightmare scenario for any software designer. You have been cruising along happily and successfully with a set of assumptions. Suddenly, everything changes. And the nightmare wasn’t just for Ward. The boss, an experienced hand at directing software development, wasn’t sure what the answer was going to be.

WyCash had been developed over the course of a couple of years by a small team. It was able to handle most of the varieties of fixed income securities commonly found on the US market, and a few exotic new instruments, like Guaranteed Investment Contracts, that the competition couldn’t handle.

WyCash had been developed all along using objects and an object database. The fundamental abstraction of computation, Dollar, had been outsourced at the beginning to a clever group of programmers. The resulting object combined formatting and calculation responsibilities.
For the last six months, Ward and the rest of the team had been slowly divesting Dollar of its responsibilities. The Smalltalk numerical classes turned out to be just fine at calculation. All the tricky code for rounding to three decimal digits got in the way of producing precise answers. As the answers got more precise, the complicated mechanisms in the testing framework for comparing to within a certain tolerance were replaced by precise matching of expected and actual results.

Responsibility for formatting actually belonged in the user interface classes. As the tests were written at the level of the user interface classes, in particular the report framework\(^1\), these tests didn’t have to change to accommodate this refinement. After six months of careful paring, the resulting Dollar didn’t have much responsibility left.

One of the most complicated algorithms in the system, weighted average, had likewise been undergoing a slow transformation. At one time there had been many different variations of weighted average code scattered throughout the system. As the report framework coalesced from the primordial object soup, it was obvious that there could be one home for the algorithm, in AveragedColumn.

It was to AveragedColumn that Ward now turned. If weighted averages could be made multi-currency, the rest of the system should be possible. The heart of the algorithm was keeping a count of the money in the column. In fact, the algorithm had been abstracted enough to calculate the weighted average of any object that could act arithmetic. You could have weighted averages of dates, for example.

The weekend past in the usual weekend activities. Monday morning the boss was back. “Can we do it?” “Give me another day and I’ll tell you for sure.”

Since Dollar acted like a counter in weighted average, in order to calculate in multiple currencies they needed an object with a counter per currency, kind of like a polynomial. Instead of \(3x^2\) and \(4y^3\), though, the terms would be 15 USD and 200 CHF.

A quick experiment showed that it was possible to compute with a generic Currency object instead of a Dollar, and return a PolyCurrency when two un-alike currencies were added together. The trick now was to make space for the new functionality without breaking anything that already worked. What would happen if Ward just ran the tests?

1. For more on the report framework, see c2.com/doc/oopsla91.html
After adding a few un-implemented operations to Currency, the bulk of the tests passed. By the end of the day, all the tests were passing. Ward checked the code into the build and went to the boss. “We can do it,” he said confidently.

Let’s think a bit about this story. In two days, the potential market was multiplied several fold, multiplying the value of WyCash several fold. The ability to create so much business value so quickly was no accident though. Several factors came into play:

- **Method**—Ward and the WyCash team needed to have constant experience growing the design of the system little-by-little, so the mechanics of the transformation were well practiced.
- **Motive**—Ward and team had to understand clearly from the business the importance of making WyCash multi-currency, and to have the courage to start such a seemingly impossible task.
- **Opportunity**—The combination of comprehensive, confidence-generating tests; a well-factored program; and a programming language that made it possible to isolate design decisions meant that there were few sources of error, and those errors were easy to identify.

You can’t control whether you ever get the motive to multiply the value of your project by spinning technical magic. Method and opportunity, however, are entirely under your control. Ward and his team created method and opportunity by a combination of superior talent, experience, and discipline. Does this mean that if you are not one of the ten best software engineers on the planet and you don’t have a wad of cash in the bank so you can tell your boss to take a hike, you’re going to take the time to do this right, that such moments are forever beyond your reach?

No. You absolutely can place your projects in a position for you to work magic, even if you are a programmer with ordinary skills and you sometimes buckle under and take shortcuts when the pressure builds. Test-driven development is a set of techniques any programmer can follow, that encourage simple designs and test suites that inspire confidence. If you are a genius, you don’t need these rules. If you are a dolt, the rules won’t help. For the vast majority of us in between, though, following these two simple rules can lead us to work much closer to our potential:

- **Write a failing automated test before you write any code**
- **Remove duplication**
How exactly to do this, the subtle gradations in applying these rules, and the lengths to which you can push these two simple rules are the topic of this book. We’ll start with the object Ward created in his moment of inspiration—multi-currency money.
In this section we will develop typical model code completely driven by tests (except when we slip, purely for educational purposes). My goal is for you to see the rhythm of test-driven development:

1. Quickly add a test
2. Run all tests and see the new one fail
3. Make a little change
4. Run all tests and see them all succeed
5. Refactor to remove duplication

The surprises are likely to be:

- How each test can cover a small increment of functionality
- How small and ugly the changes can be to make the new tests run
- How often the tests are run
- How many teensy tiny steps make up the refactorings
We’ll start with the object Ward created at WyCash, multi-currency money. Suppose we have a report like this:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Shares</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>1000</td>
<td>25 USD</td>
<td>25000</td>
</tr>
<tr>
<td>GE</td>
<td>400</td>
<td>100</td>
<td>40000</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>65000</td>
</tr>
</tbody>
</table>

To make a multi-currency report, we need to add currencies:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Shares</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>1000</td>
<td>25 USD</td>
<td>25000 USD</td>
</tr>
<tr>
<td>Novartis</td>
<td>400</td>
<td>150 CHF</td>
<td>60000 CHF</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>65000 USD</td>
</tr>
</tbody>
</table>

We also need to specify exchange rates:
Money Example

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHF</td>
<td>USD</td>
<td>1.5</td>
</tr>
</tbody>
</table>

What behavior will we need to produce the revised report? Put another way, what is the set of tests which, when passed, will demonstrate the presence of code we are confident will compute the report correctly?

- We need to be able to add amounts in two different currencies and convert the result given a set of exchange rates.
- We need to be able to multiply an amount (price per share) by a number (number of shares) and receive an amount.

We’ll make a to-do list to remind us what all we need to do, keep us focused, and tell us when we are finished. When we start working on an item, we’ll make it bold, like this. When we finish an item we’ll cross it off, like this. When we think of another test to write, we’ll add it to the list.

As you can see from the list, we’ll work on multiplication first. So, what object do we need first? Trick question. We don’t start with objects, we start with tests (I keep having to remind myself of this, so I will pretend you are as dense as I am). Try again. What test do we need first? Looking at the list, that first test looks complicated. Start small or not at all. Multiplication, how hard could that be? We’ll work on that first.

When we write a test, we imagine the perfect interface for our operation. We are telling ourselves a story about how the operation will look from the outside. Our story won’t always come true, but better to start from the best possible API and work backwards than to make things complicated, ugly, and “realistic” from the get go.

Here’s a simple example of multiplication:

```java
public void testMultiplication() {
    Dollar five  = new Dollar(5);
    five.times(2);
    assertEquals(10, five.amount);
}
```
(I know, I know, public fields, side-effects, integers for monetary amounts and all that. Small steps. We’ll make a note of the stinkiness and move on. We have a failing test and we want it to go green as quickly as possible.)

The test we just typed in (I’ll explain where and how we type it in later, when we talk more about JUnit) doesn’t even compile. That’s easy enough to fix. What’s the least we can do to get it to compile, even if it doesn’t run? We have four compile errors:

- No class “Dollar”
- No constructor
- No method “times(int)”
- No field “amount”

Let’s take them one at a time (I always search for some numerical measure of progress). We can get rid of one error by defining the class Dollar:

```java
class Dollar
```

3 errors. Now we need the constructor, but it doesn’t have to do anything just to get the test to compile:

```java
Dollar
Dollar(int amount) {
}
```

2 errors. We need a stub implementation of times(). Again we’ll do the least work possible just to get the test to compile:

```java
Dollar
void times(int multiplier) {
}
```

1 error. Finally, we need an amount field:

```java
Dollar
int amount;
```
Bingo! Now we can run the test and watch it fail.

You are seeing the dreaded red bar. Our testing framework (JUnit, in this case) has run the little snippet of code we started with, and noticed that although we expected “10” as a result, we saw “0”. Sadness.

No, no. Failure is progress. Now we have a concrete measure of failure. That’s better than just vaguely knowing we are failing. Our programming problem has been transformed from “give me multi-currency” to “make this test work, and then make the rest of the tests work.” Much simpler. Much smaller scope for fear. We can make this test work.
You probably aren’t going to like the solution, but the goal right now is not to get the perfect answer, the goal is to pass the test. We’ll make our sacrifice at the altar of truth and beauty later.

Here’s the smallest change I could imagine that would cause our test to pass:

```java
Dollar
int amount = 10;
```

Now we get the green bar, fabled in song and story.

Oh joy, oh rapture! Not so fast, hacker boy (or girl). The cycle isn’t complete. There are very few inputs in the world that will cause such a limited, such a smelly,
such a naïve implementation to pass. We need to generalize before we move on. Remember, the cycle is:

1. Add a little test
2. Run all tests and fail
3. Make a little change
4. Run the tests and succeed
5. Refactor to remove duplication

Sidebar: Dependency and Duplication

Steve Freeman pointed out that the problem with the test and code as it sits is not duplication (which I have not yet pointed out to you, but I promise to as soon as this digression is over.) The problem is the dependency between the code and the test—you can’t change one without changing the other. Our goal is to be able to write another test that “makes sense’ to us, without having to change the code, something that is not possible with the current implementation.

Dependency is the key problem in software development at all scales. If you have details of one vendor’s implementation of SQL scattered throughout the code and you decide to change to another vendor, you will discover that your code is dependent on the database vendor. You can’t change the database without changing the code.

If dependency is the problem, duplication is the symptom. Duplication most often takes the form of duplicate logic—the same expression appearing in multiple places in the code. Objects are excellent for abstracting away the duplication of logic.

Unlike most problems in life, where eliminating the symptoms only makes the problem pop up elsewhere in worse form, eliminating duplication in programs eliminates dependency. That’s why the second rule appears in TDD. By eliminating duplication before we go on to the next test, we maximize our chance of being able to get the next test running with one and only one change.

Now back to your regularly scheduled puzzling example.

We have run items 1-4. Now we are ready to remove duplication. But where is the duplication? Usually you see duplication between two pieces of code. Here the duplication is between the data in the test and the data in the code. Don’t see it? How about if we write?
Dollar
int amount= 5 * 2;

That “10” had to come from somewhere. We did the multiplication in our heads so fast we didn’t even notice. The “5” and “2” are now in two places, and we must ruthlessly eliminate duplication before moving on. The rules say so.

There isn’t a single step that will eliminate the 5 and 2. However, what if we move the setting of the amount from object initialization to the times() method?

Dollar
int amount;

void times(int multiplier) {
 amount= 5 * 2;
}

The test still passes, the bar stays green. Happiness is still ours.

Do these steps seem too small to you? Remember, TDD is not about taking teensy tiny steps, it’s about being able to take teensy tiny steps. Would I code day-to-day with steps this small? No. But when things get the least bit weird, I’m glad I can. Try teensy tiny steps with an example of your own choosing. If you can make steps too small, you can certainly make steps the right size. If you only take larger steps, you’ll never know if smaller steps are appropriate.

Defensiveness aside, where were we? Ah, yes, we were getting rid of duplication between the test code and the working code. Where can we get a 5? That was the value passed to the constructor, so if we save it in the amount variable:

Dollar
Dollar(int amount) {
 this.amount= amount;
}

we can use it in times():

Dollar
void times(int multiplier) {
 amount= amount * 2;
}
The value of the parameter “multiplier” is 2, so we can substitute the parameter for the constant:

```java
dollar
void times(int multiplier) {
   amount= amount * multiplier;
}
```

To demonstrate our thorough-going knowledge of Java syntax, we will want to use the “*=” operator (which does, it must be said, reduce duplication):

```java
dollar
void times(int multiplier) {
   amount *= multiplier;
}
```

We can now mark off the first test as done. Next we’ll take care of those strange side effects. First, though, let’s review. We:

- Made a list of the tests we knew we needed to have working
- Told a story with a snippet of code about how we wanted to view one operation
- Ignored the details of JUnit for the moment
- Made the test compile with stubs
- Made the test run by committing horrible sins
- Gradually generalized the working code, replacing constants with variables
- Added items to our to-do list rather than addressing them all at once
The general TDD cycle is:

1. Write a test. Think about how you would like the operation in your mind to appear in your code. You are writing a story. Invent the interface you wish you had. Include all the elements in the story that you imagine will be necessary to calculate the right answers.

2. Make it run. Quickly getting that bar green dominates everything else. If a clean, simple solution is obvious, type it in. If the clean, simple solution is obvious but it will take you a minute, make a note of it and get back to the main problem, which is getting the bar green in seconds. This shift in aesthetics is hard for some experienced software engineers. They only know how to follow the rules of good engineering. Quick green excuses all sins. But only for a moment.

3. Make it right. Now that the system is behaving, put the sinful ways of the recent past behind you. Step back onto the straight and narrow path of software righteousness. Remove the duplication that you have introduced to get to quick green.

The goal is clean code that works (thanks to Ron Jeffries for this pithy summary). Clean code that works is out of the reach of even the best programmers some of the time, and out of the reach of most programmers (like me) most of the time. Divide and conquer, baby. First we’ll solve the “that works” part of the problem. Then we’ll solve the “clean code” part. (This is the opposite of architecture-driven deve-
Degenerate Objects

We got one test working, but in the process we noticed something strange—when we perform an operation on a Dollar, the Dollar changes. I would like to be able to write:

```java
public void testMultiplication() {
    Dollar five= new Dollar(5);
    five.times(2);
    assertEquals(10, five.amount);
    five.times(3);
    assertEquals(15, five.amount);
}
```

I can’t imagine a clean way to get this test working. After the first call to times(), five isn’t five any more, it’s really ten. If, however, we return a new object from times(), we can multiply our original five bucks all day and never have it change. We are changing the interface of Dollar when we make this change, so we have to change the test. That’s okay. Our guesses about the right interface are no more likely to be perfect than our guesses about the right implementation.

```java
public void testMultiplication() {
    Dollar five= new Dollar(5);
    Dollar product= five.times(2);
    assertEquals(10, product.amount);
    product= five.times(3);
    assertEquals(15, product.amount);
}
```

The new test won’t compile until we change the declaration of Dollar.times():

```java
Dollar
Dollar times(int multiplier) {
    amount *= multiplier;
    return null;
}
```

Now the test compiles, but it doesn’t run. Progress! Making it run requires that we return a new Dollar with the correct amount:
Dollar

Dollar times(int multiplier) {
 return new Dollar(amount * multiplier);
}

In the last chapter when we made a test work we started with a bogus implementation and gradually made it real. Here, we typed in what we thought was the right implementation and prayed while the tests ran (short prayers, to be sure, because running the test takes a few milliseconds.) Because we got lucky and the test ran, we can cross off another item.

These are two of the three strategies I know for quickly getting to green:

- Fake It—return a constant and gradually replace constants with variables until you have the real code
- Obvious Implementation—type in the real implementation

When I use TDD in practice, I commonly shift between these two modes of implementation. When everything is going smoothly and I know what to type, I put in obvious implementation after obvious implementation (running the tests all the time to ensure that what’s obvious to me is still obvious to the computer). As soon as I get an unexpected red bar, I back up, shift to faking implementations, and refactor to the right code. When my confidence is back, I go back to obvious implementations.

There is a third style of test-driving development, triangulation, which we will demonstrate in the next chapter. However, to review, we:

- Translated a design objection (side effects) into a test case that failed because of the objection
- Got the code to compile quickly with a stub implementation
- Made the test work by typing in what seemed like the right code

The translation of a feeling (disgust at side effects) into a test (multiply the same Dollar twice) is a common theme of TDD. The longer I do this, the better able I am to translate my aesthetic judgements into tests. When I can do this, my design discussions become much more interesting. First we can talk about whether the system should work like this or like that. Once we decide on the correct behavior, we can talk about the best way of achieving that behavior. We can speculate about truth
and beauty all we want over beers, but while we are programming we can leave airy-fairy discussions behind and talk cases.
If I have an integer and I add 1 to it, I don’t expect the original integer to change, I expect to use the new value. Objects usually don’t behave that way. If I have a Contract and I add one to its coverage, the Contract’s coverage should change (yes, yes, subject to all sorts of interesting business rules which do not concern us here.)

We can use objects as values, as we are using our Dollar now. The pattern for this is Value Object. One of the constraints on Value Objects is that the values of the instance variables of the object never change once they have been set in the constructor.

There is one huge advantage to using value objects—you don’t have to worry about aliasing problems. Say I have one Check and I set its amount to $5, and then I set another Check’s amount to the same $5. Some of the nastiest bugs in my career have come when changing the first Check’s value inadvertently changed the second Check’s value. This is aliasing.

When you have value objects, you don’t have to worry about aliasing. If I have $5, I am guaranteed that it will always and forever be $5. If someone wants $7, they have to make an entirely new object.

One implication of Value Object is all operations must return a new object, as we saw in the previous chapter. Another implication is that value objects should implement equals(), since one $5 is pretty much as good as another.
If you use Dollars as the key to a hash table, you have to implement `hashCode()` if you implement `equals()`. We’ll put that in the list, too, and get to it when it’s a problem.

You aren’t thinking about the implementation of `equals()`, are you? Good. Me neither. After snapping the back of my hand with a ruler, I’m thinking about how to test equality. First, $5 should equal $5:

```java
public void testEquality() {
    assertTrue(new Dollar(5).equals(new Dollar(5)));
}
```

The bar turns obligingly red. The fake implementation is to just return true:

```java
public boolean equals(Object object) {
    return true;
}
```

You and I both know that “true” is really “5 == 5” which is really “amount == 5” which is really “amount == dollar.amount”. If I went through these steps, though, I wouldn’t be able to demonstrate the third and most conservative implementation strategy, triangulation.

If two receiving stations at a known distance from each other can both measure the direction of a radio signal, there is enough information to calculate the range and bearing of the signal (if you remember more trigonometry than I do, anyway.) This calculation is called triangulation.

By analogy, when we Triangulate, we only generalize code when we have two or more examples. We briefly ignore the duplication between test and model code. When the second example demands a more general solution, then and only then do we generalize.

So, to triangulate we need a second example. How about $5 != $6?

```java
public void testEquality() {
    assertTrue(new Dollar(5).equals(new Dollar(5)));
    assertFalse(new Dollar(5).equals(new Dollar(6)));
}
```

Now we need to generalize equality:
public boolean equals(Object object) {
 Dollar dollar = (Dollar) object;
 return amount == dollar.amount;
}

We could have used triangulation to drive the generalization of times(), also. If we had $5 \times 2 = 10$ and $5 \times 3 = 15$ we would no longer have been able to return a constant.

Triangulation feels funny to me. I only use it when I am completely unsure of how to refactor. If I can see how to eliminate duplication between code and tests and create the general solution, I just do it. Why would I need to write another test to give me permission to write what I probably could have written the first time?

However, when the design thoughts just aren’t coming, triangulation gives you a chance to think about the problem from a slightly different direction. What axes of variability are you trying to support in your design? Make some of the them vary and the answer may become clearer.

So, equality is done for the moment. (What about comparing with null and comparing with other objects? These are commonly used operations, but not necessary at the moment, so we’ll them to the list.)

Now that we have equality, we can directly compare Dollars to Dollars. That will let us make amount private, as all good instance variables should be. Reviewing the above, though, we:

- Noticed that our design pattern (Value Object) implied an operation
- Tested for that operation
- Implemented it simply
- Didn’t refactor immediately, but instead tested further
- Refactored to capture the two cases at once
Now that we have defined equality, we can use it to make our tests more "speaking". Conceptually, the operation Dollar.times() should return a Dollar whose value is the value of the receiver times the multiplier. Our test doesn’t exactly say that:

```java
class DollarTest {
    public void testMultiplication() {
        Dollar five = new Dollar(5);
        Dollar product = five.times(2);
        assertEquals(10, product.amount);
        product = five.times(3);
        assertEquals(15, product.amount);
    }
}
```

We can rewrite the first assertion to compare Dollars to Dollars.

```java
class DollarTest {
    public void testMultiplication() {
        Dollar five = new Dollar(5);
        Dollar product = five.times(2);
        assertEquals(new Dollar(10), product);
        product = five.times(3);
        assertEquals(15, product.amount);
    }
}
```

That looks better, so we rewrite the second assertion, too:

```java
class DollarTest {
    public void testMultiplication() {
        Dollar five = new Dollar(5);
        Dollar product = five.times(2);
        assertEquals(new Dollar(10), product);
        product = five.times(3);
        assertEquals(15, product.amount);
    }
}
```
public void testMultiplication() {
 Dollar five = new Dollar(5);
 Dollar product = five.times(2);
 assertEquals(new Dollar(10), product);
 product = five.times(3);
 assertEquals(new Dollar(15), product);
}

Now the temporary variable “product” isn’t helping much, so we can inline it:

public void testMultiplication() {
 Dollar five = new Dollar(5);
 assertEquals(new Dollar(10), five.times(2));
 assertEquals(new Dollar(15), five.times(3));
}

This test speaks to us more clearly, as if it were an assertion of truth, not a sequence of operations.

With these changes to the test, Dollar is now the only class using its “amount” instance variable, so we can make it private:

Dollar
private int amount;

And we can cross another item off the list. Notice that we have opened ourselves up to a risk. If the test for equality fails to accurately check that equality is working, the test for multiplication could also fail to accurately check that multiplication is working. That is a risk you actively manage in TDD. We aren’t striving for perfection. By saying everything two ways, as both code and tests, we hope to reduce our defects enough to move forward with confidence. From time to time our reasoning will fail us and a defect will slip through. When that happens, we learn our lesson about the test we should have written and move on. The rest of the time we go forward boldly under our bravely flapping green bar (my bar doesn’t actually flap, but one can dream.)

Reviewing, we:

- Used functionality just developed to improve a test
- Noticed that if two tests fail at once we’re sunk
- Proceeded in spite of the risk
• Used new functionality in the object under test to reduce coupling between the tests and the code
How are we going to approach the first test on that list? That’s the test that’s most interesting. It still seems to be a big leap. I’m not sure I can write a test that I can implement in one little step. A pre-requisite seems to be having an object like Dollar, but to represent Francs. If we can get Francs working like Dollars work now, we’ll be closer to being able to write and run the mixed addition test.

We can copy and edit the Dollar test:

```java
public void testFrancMultiplication() {
    Franc five = new Franc(5);
    assertEquals(new Franc(10), five.times(2));
    assertEquals(new Franc(15), five.times(3));
}
```

(Aren’t you glad we simplified the test in the last chapter? That made our job here easier. Isn’t it amazing how often things work out like this in books? I didn’t actually plan it that way this time, but I won’t make promises for the future.)

What short step will get us to a green bar? Copying the Dollar code and replacing “Dollar” with “Franc”.

Stop. Hold on. I can hear the aesthetically inclined among you sneering and spitting. Copy and paste reuse? The death of abstraction? The killer of clean design?

\[
\begin{align*}
5 \text{ CHF} + 10 \text{ CHF} &= 15 \text{ CHF} \\
5 \times 2 &= 10
\end{align*}
\]
If you’re upset, take a cleansing breath. In through the nose…hold it 1 2 3…out through the mouth. There. Remember, our cycle has different phases (they go by quickly, often in seconds, but they are phases):

1. Write a test
2. Make it compile
3. Run it to see that it fails
4. Make it run
5. Remove duplication

The different phases have different purposes. They call for different styles of solution, different aesthetic viewpoints. The first three phases need to go by quickly, so we get to a known state with the new functionality. You can commit any number of sins to get there, because speed trumps design, just for that brief moment.

Now I’m worried. I’ve given you a license to abandon all the principles of good design. Off you go to your teams—“Kent says all that design stuff doesn’t matter.” Halt. The cycle is not complete. A four legged Aeron chair falls over. The first four steps of the cycle won’t work without the fifth. Good design at good times. Make it run, make it right.

There, I feel better. Now I’m sure you won’t show anyone except your partner your code until you’ve removed the duplication. Where were we? Ah, yes. Violating all the tenets of good design in the interest of speed (penance for our sin will occupy the next several chapters.)

```java
class Franc {
    private int amount;

    Franc(int amount) {
        this.amount = amount;
    }

    Franc times(int multiplier) {
        return new Franc(amount * multiplier);
    }

    public boolean equals(Object object) {
        Franc franc = (Franc) object;
        return amount == franc.amount;
    }
}
```
Because the step to running code was so short, we were even able to skip the “make it compile” step.

Now we have duplication galore, and we have to eliminate it before writing our next test. We’ll start by generalizing equals(). However, we can cross off an item, even though we have to add two more. Reviewing, we:

- Couldn’t tackle a big test, so we invented a small test that represented progress
- Wrote the test by shamelessly duplicating and editing
- Even worse, made the test work by copying and editing model code wholesale
- Promised ourselves we wouldn’t go home until the duplication was gone
There is a fabulous sequence in Wallace Stegner’s *Crossing to Safety* where he describes a character’s workshop. Every item is perfectly in place, the floor is spotless, all is order and cleanliness. The character, however, has never made anything. “Preparing has been his life’s work. He prepares, then he cleans up.” (This is also the book, the ending of which sent me audibly blubering in business class on a trans-Atlantic 747. Read with caution.)

We have avoided this trap in the last chapter. We actually got a new test case working. However, we sinned mightily in copying and pasting tons of code so we could do it quickly. Now it is time to clean up.

One possibility is to make one of our classes extend the other. I tried it, and it hardly saves any code at all. Instead, we are going to find a common superclass for the two classes (I tried this already, too, and it works out great, although it will take a while.)

```java
Dollar
  └── Franc

Money
  └── Dollar
  └── Franc
```

There is a fabulous sequence in Wallace Stegner’s *Crossing to Safety* where he describes a character’s workshop. Every item is perfectly in place, the floor is spotless, all is order and cleanliness. The character, however, has never made anything. “Preparing has been his life’s work. He prepares, then he cleans up.” (This is also the book, the ending of which sent me audibly blubering in business class on a trans-Atlantic 747. Read with caution.)

We have avoided this trap in the last chapter. We actually got a new test case working. However, we sinned mightily in copying and pasting tons of code so we could do it quickly. Now it is time to clean up.

One possibility is to make one of our classes extend the other. I tried it, and it hardly saves any code at all. Instead, we are going to find a common superclass for the two classes (I tried this already, too, and it works out great, although it will take a while.)

```java
Dollar
  └── Franc

Money
  └── Dollar
  └── Franc
```
Equality for All, Redux

What if we had a Money class to capture the common equals code? We can start small:

```java
Money
class Money
```

All the tests still run (not that we could possibly have broken anything, but that’s a good time to run the tests anyway.)

If Dollar extends Money, that can’t possibly break anything.

```java
Dollar
class Dollar extends Money {
    private int amount;
}
```

Can it? No, the tests still all run. Now we can move the “amount” instance variable up to Money:

```java
Money
class Money {
    protected int amount;
}
```

```java
Dollar
class Dollar extends Money {
}
```

The visibility has to change from private to protected so the subclass can still see it. (If we’d wanted to go even slower we could have declared the field in Money in one step, and then removed it from Dollar in a second step. I’m feeling bold.)

Now we can work on getting the equals() code ready to move up. First we change the declaration of the temporary variable:

```java
Dollar
class Dollar {
    public boolean equals(Object object) {
        Money dollar = (Dollar) object;
        return amount == dollar.amount;
    }
}
```

All the tests still run. Now we change the cast:
Dollar
public boolean equals(Object object) {
 Money dollar = (Money) object;
 return amount == dollar.amount;
}

To be communicative, we should also change the name of the temporary variable:

Dollar
public boolean equals(Object object) {
 Money money = (Money) object;
 return amount == money.amount;
}

Now we can move it from Dollar to Money:

Money
public boolean equals(Object object) {
 Money money = (Money) object;
 return amount == money.amount;
}

Now we need to eliminate Franc.equals(). First we notice that the tests for equality don’t cover comparing Francs to Francs. Our sins in copying code are catching up with us. Before we change the code, we’ll write the tests that should have been there in the first place.

You will often be TDDing in code that doesn’t have adequate tests (at least for the next decade or so). When you don’t have enough tests, you are bound to come across refactorings that aren’t supported by tests. You could make a refactoring mistake and the tests would all still run. What do you do?

Write the tests you wish you had. If you don’t, you will eventually break something while refactoring. Then you’ll get bad feelings about refactoring and stop doing it so much. Then your design will deteriorate. You’ll be fired. Your dog will leave you. You will stop paying attention to your nutrition. Your teeth will go bad. So, to keep your teeth healthy, retroactively test before refactoring.

Fortunately, here the tests are easy to write. We just copy the tests for Dollar:

 public void testEquality() {

assertTrue(new Dollar(5).equals(new Dollar(5)));
assertFalse(new Dollar(5).equals(new Dollar(6)));
assertTrue(new Franc(5).equals(new Franc(5)));
assertFalse(new Franc(5).equals(new Franc(6)));
}

More duplication, two lines more! We’ll atone for these sins, too.

Tests in place, we can have Franc extend Money:

Franc
class Franc extends Money {
 private int amount;
}

We can delete Franc’s field “amount” in favor of the one in Money:

Franc
class Franc extends Money {
}

Franc.equals() is almost the same as Money.equals(). If we make them precisely the same, we can delete the implementation in Franc without changing the meaning of the program. First we change the declaration of the temporary variable:

Franc
class Franc extends Money {
 public boolean equals(Object object) {
 Money franc = (Franc) object;
 return amount == franc.amount;
 }
}

Then we change the cast:

Franc
class Franc extends Money {
 public boolean equals(Object object) {
 Money franc = (Money) object;
 return amount == franc.amount;
 }
}

Do we really have to change the name of the temporary variable to match the superclass? I’ll leave it up to your conscience… Okay, we’ll do it:
Franc
public boolean equals(Object object) {
 Money money = (Money) object;
 return amount == money.amount;
}

Now there is no difference between Franc.equals() and Money.equals(), so we delete the redundant implementation in Franc. And run the tests. They run.

What happens when we compare Francs and Dollars? We’ll get to that in the next chapter. Reviewing what we did here, we:

- Stepwise moved common code from one class (Dollar) to a superclass (Money)
- Made a second class (Franc) also a subclass
- Reconciled two implementations (equals()) before eliminating the redundant one

$5 + 10 \text{ CHF} = $10 if rate is 2:1
$5 \times 2 = $10
Make "amount" private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
5 CHF + 2 = 10 CHF
Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
CHAPTER 9

Apples and Oranges

The thought struck us at the end of the last chapter—what happens when we compare Francs and Dollars? We dutifully turned our dreadful thought into an item on our to-do list. But we just can’t get it out of our heads. What does happen?

```java
public void testEquality() {
    assertTrue(new Dollar(5).equals(new Dollar(5)));
    assertFalse(new Dollar(5).equals(new Dollar(6)));
    assertTrue(new Franc(5).equals(new Franc(5)));
    assertFalse(new Franc(5).equals(new Franc(6)));
    assertFalse(new Franc(5).equals(new Dollar(5)));
}
```

It fails. Dollars are Francs. Before you Swiss shoppers get all excited, let’s try to fix the code. The equality code needs to check that it isn’t comparing Dollars and Francs. We can do this right now by comparing the class of the two objects—two Moneys are equal only if their amounts and classes are equal.

```java
public boolean equals(Object object) {
    Money money = (Money) object;
    return amount == money.amount
        && getClass().equals(money.getClass());
}
```
Using classes like this in model code is a bit smelly. We would like to use a criteria that made sense in the domain of finance, not the domain of Java objects. However, we don’t currently have anything like a currency, and this doesn’t seem like sufficient reason to introduce one, so this will have to do for the moment.

Now we really need to get rid of the common times() code, so we can get to mixed currency arithmetic. Before we do, though, we can review our grand accomplishments of this chapter:

- Took an objection that was bothering us and turned it into a test
- Made the test run a reasonable, but not perfect way (getClass())
- Decided not to introduce more design until we had a better motivation

\[\text{\$5} + 10 \text{ CHF} = \text{\$10 if rate is 2:1} \]
\[\text{\$5} + 2 = \text{\$10} \]

Make "amount" private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
5 CHF * 2 = 10 CHF
Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
Currency?
$5 + 10 \text{ CHF} = $10 \text{ if rate is } 2:1$
$5 + 2 = 10

Make "amount" private

Dollar side-effects?
Money rounding?

equals()
hashCode()
Equal null
Equal object

5 CHF + 2 = 10 CHF

Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
Currency?

The two implementations of times() are remarkably similar:

Dollar

Dollar times(int multiplier) {
 return new Dollar(amount * multiplier);
}

Franc

Franc times(int multiplier) {
 return new Franc(amount * multiplier);
}

We can take a step towards reconciling them by making them both return a Money:

Dollar

Dollar times(int multiplier) {
 return new Dollar(amount * multiplier);
}

Franc

Money times(int multiplier) {
 return new Franc(amount * multiplier);
}
The next step forward is not obvious. The two subclasses of Money aren’t doing enough work to justify their existence, so we would like to eliminate them. However, we can’t do it with one big step, because that wouldn’t make a very effective demonstration of TDD.

Okay, we would be one step closer to eliminating the subclasses if there were fewer references to the subclasses directly. We can introduce a Factory Method in Money that returns a Dollar. We would use it like this:

```java
public void testMultiplication() {
    Dollar five = Money.dollar(5);
    assertEquals(new Dollar(10), five.times(2));
    assertEquals(new Dollar(15), five.times(3));
}
```

The implementation creates and returns a Dollar:

```java
Money
static Dollar dollar(int amount) {
    return new Dollar(amount);
}
```

But we want references to Dollars to disappear, so we need to change the declaration in the test:

```java
public void testMultiplication() {
    Money five = Money.dollar(5);
    assertEquals(new Dollar(10), five.times(2));
    assertEquals(new Dollar(15), five.times(3));
}
```

Our compiler politely informs us that times() is not defined for Money. We aren’t ready to implement it just yet, so we make Money abstract (I suppose we should have done that to begin with, shouldn’t we?) and declare Money.times():

```java
Money
abstract class Money
abstract Money times(int multiplier);
```

Now we can change the declaration of the factory method:
Money
static Money dollar(int amount) {
 return new Dollar(amount);
}

The tests all run, so at least we haven’t broken anything. We can now use our factory method everywhere in the tests:

 public void testMultiplication() {
 Money five = Money.dollar(5);
 assertEquals(Money.dollar(10), five.times(2));
 assertEquals(Money.dollar(15), five.times(3));
 }

 public void testEquality() {
 assertTrue(Money.dollar(5).equals(Money.dollar(5)));
 assertFalse(Money.dollar(5).equals(Money.dollar(6)));
 assertTrue(Money.franc(5).equals(Money.franc(5)));
 assertFalse(Money.franc(5).equals(Money.franc(6)));
 assertFalse(Money.franc(5).equals(Money.dollar(5)));
 }

We are now in a slightly better position than before. No client code knows that there is a subclass called Dollar. By de-coupling the tests from the existence of the subclasses, we have given ourselves freedom to change inheritance without affecting any model code.

Before we go blindly changing the testFrancMultiplication, we notice that it isn’t testing any logic that isn’t tested by the test for Dollar multiplication. If we delete the test, will we lose any confidence in the code? Still a little, so we leave it there. But it’s suspicious.

 public void testEquality() {
 assertTrue(Money.dollar(5).equals(Money.dollar(5)));
 assertFalse(Money.dollar(5).equals(Money.dollar(6)));
 assertTrue(Money.franc(5).equals(Money.franc(5)));
 assertFalse(Money.franc(5).equals(Money.franc(6)));
 assertFalse(Money.franc(5).equals(Money.dollar(5)));
 }

 public void testFrancMultiplication() {
 Money five = Money.franc(5);
 assertEquals(Money.franc(10), five.times(2));
 }
Makin' Objects

```java
assertEquals(Money.franc(15), five.times(3));
}
```

The implementation is just like Money.dollar():

```java
Money
static Money franc(int amount) {
    return new Franc(amount);
}
```

We’ll get rid of the duplication of times() next. For now, reviewing, we:

- Took a step towards eliminating duplication by reconciling the signatures of two variants of the same method (times())
- Moved at least a declaration of the method to the common superclass
- Decoupled test code from the existence of concrete subclasses by introducing factory methods
- Noticed that when the subclasses disappear some tests will be redundant, but took no action

$5 + 10 \text{ CHF} = $10 if rate is 2:1
$5 \times 2 = $10

Make "amount" private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
$5 \text{ CHF} \times 2 = 10 \text{ CHF}
Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
Currency?
Delete testFrancMultiplication?
What is there on our list that might help us eliminate those pesky useless subclasses?

What about currency? What would happen if we introduced the notion of currency?

How do we want to implement currencies at the moment? I blew it, again. Before the ruler comes out, I’ll rephrase. How do we want to test for currencies at the moment? There. Knuckles saved. For the moment.

We may want to have complicated objects representing currencies, with flyweight factories to ensure we create no more objects than we really need. However, for the moment Strings will do:

```java
public void testCurrency() {
    assertEquals("USD", Money.dollar(1).currency());
    assertEquals("CHF", Money.franc(1).currency());
}
```

First we declare `currency()` in `Money`:

```java
Money
abstract String currency();
```
Then we implement it in both subclasses:

```java
Franc
String currency() {
    return "CHF";
}
```

```java
Dollar
String currency() {
    return "USD";
}
```

We want the same implementation to suffice for both classes. We could store the currency in an instance variable and just return the variable. (I’ll start going a little faster with the refactorings in the interest of time. If I go too fast, please tell me to slow down. Oh, wait, this is a book. Perhaps I just won’t speed up much.)

```java
Franc
private String currency;
Franc(int amount) {
    this.amount = amount;
    currency = "CHF";
}
String currency() {
    return currency;
}
```

```java
Dollar
private String currency;
Dollar(int amount) {
    this.amount = amount;
    currency = "USD";
}
String currency() {
    return currency;
}
```

We can do the same with Dollar:

```java
Dollar
private String currency;
Dollar(int amount) {
    this.amount = amount;
    currency = "USD";
}
String currency() {
    return currency;
}
```

Now we can push up the declaration of the variable and the implementation of currency(), since they are identical:
protected String currency;
String currency() {
 return currency;
}

If we move the constant strings “USD” and “CHF” to the static factory methods, the two constructors will be identical and we can create a common implementation.

First we’ll add a parameter to the constructor:

```
Franc( int amount, String currency) {
    this.amount = amount;
    this.currency = "CHF";
}
```

This breaks the two callers of the constructor:

```
Money
static Money franc(int amount) {
    return new Franc(amount, null);
}
```

```
Money
times(int multiplier) {
    return new Franc(amount * multiplier, null);
}
```

Wait a minute! Why is Franc.times() calling the constructor instead of the factory method? Do we want to make this change now, or will we wait? The dogmatic answer is that we’ll wait, not interrupting what we’re doing. The answer in my practice is that I will entertain a brief interruption, but only a brief one, and I will never interrupt an interruption (Jim Coplien taught me this rule). To be realistic, we’ll clean up times() before proceeding:

```
Franc
Money times(int multiplier) {
    return Money.franc(amount * multiplier);
}
```

Now the factory method can pass “CHF”:
Money
static Money franc(int amount) {
 return new Franc(amount, "CHF");
}

And finally we can assign the parameter to the instance variable:

Franc
Franc(int amount, String currency) {
 this.amount = amount;
 this.currency = currency;
}

I’m feeling defensive again about taking such teeny-tiny steps. Am I recommending that you actually work this way? No. I’m recommending that you be able to work this way. What I actually did just now was I worked in larger steps and made a stupid mistake halfway through. I unwound a minute’s worth of changes, shifted to a lower gear, and did it over with little steps. I’m feeling better now, so we’ll see if we can make the analogous change to Dollar in one swell foop:

Money
static Money dollar(int amount) {
 return new Dollar(amount, "USD");
}

Dollar
Dollar(int amount, String currency) {
 this.amount = amount;
 this.currency = currency;
}
Money times(int multiplier) {
 return Money.dollar(amount * multiplier);
}

And it worked first time. Whew!

This is the kind of tuning you will be doing constantly with TDD. Are the teeny-tiny steps feeling restrictive? Take bigger steps. Are you feeling a little unsure? Take smaller steps. TDD is a steering process—a little this way, a little that way. There is no right step size, now and forever.

The two constructors are now identical, so we can push up the implementation:
We’re almost ready to push up the implementation of times() and eliminate the subclasses, but first, to review, we:

- Were a little stuck on big design ideas, so we worked on something small we noticed earlier
- Reconciled the two constructors by moving the variation to the caller (the factory method)
- Interrupted a refactoring for a little twist (using the factory method in times())
- Repeated an analogous refactoring (doing to Dollar what we just did to Franc) in one big step
- Pushed up the identical constructors

```java
Money
Money(int amount, String currency) {
    this.amount = amount;
    this.currency = currency;
}

Franc
Franc(int amount, String currency) {
    super(amount, currency);
}

Dollar
Dollar(int amount, String currency) {
    super(amount, currency);
}
```
Times We're Livin' In
When we are done with this chapter we will have a single class to represent Money. The two implementations of times() are close, but not identical.

```java
Franc
Money times(int multiplier) {
    return Money.franc(amount * multiplier);
}
```

```java
Dollar
Money times(int multiplier) {
    return Money.dollar(amount * multiplier);
}
```

There’s not an obvious way to make them identical. Sometimes you have to go backwards to go forwards, a little like a Rubik’s Cube. What happens if we inline the factory methods? (I know, I know, we just called the factory method for the first time just one chapter ago. Frustrating, isn’t it?)

```java
Franc
Money times(int multiplier) {
    return new Franc(amount * multiplier, "CHF");
}
```
Dollar
Money times(int multiplier) {
 return new Dollar(amount * multiplier, "USD");
}

In Franc, though, we know that the currency instance variable is always “CHF”, so we can write:

Franc
Money times(int multiplier) {
 return new Franc(amount * multiplier, currency);
}

That works. The same trick works in Dollar:

Dollar
Money times(int multiplier) {
 return new Dollar(amount * multiplier, currency);
}

We’re almost there. Does it really matter whether we have a Franc or a Money? We could carefully reason about this given our knowledge of the system. However, we have clean code and we have tests that give us confidence that the clean code works. Rather than apply minutes of suspect reasoning, we can just ask the computer by making the change and running the tests. In teaching TDD I see this situation all the time—excellent programmers spending 5-10 minutes reasoning about a question that can be answered by the computer in 15 seconds. Without the tests you have no choice, you have to reason. With the tests you can decide whether an experiment would answer the question faster. Sometimes you should just ask the computer.

To run our experiment we change Franc.times() to return a Money:

Franc
Money times(int multiplier) {
 return new Money(amount * multiplier, currency);
}

The compiler tells us that Money must be a concrete class:
class Money

Money times(int amount) {
 return null;
}

And we get a red bar. The error message says, “expected:<Money.Franc@31aebf> but was: <Money.Money@478a43>.” Not as helpful as we would perhaps like. We can define toString() to give us a better error message:

public String toString() {
 return amount + " " + currency;
}

Whoa! Code without a test? Can you do that? We could certainly have written a test for toString() before we coded it. However:

- We are about to see the results on the screen
- Since toString() is only used for debug output, the risk of it failing is low
- We already have a red bar, and we’d prefer not to write a test when we have a red bar

Exception noted.

Now the error message says: “expected:<10 CHF> but was:<10 CHF>”. That’s a little better, but still confusing. We got the right data in the answer, but the class was wrong—Money instead of Franc. The problem is in our implementation of equals():

public boolean equals(Object object) {
 Money money = (Money) object;
 return amount == money.amount && getClass().equals(money.getClass());
}

We really should be checking to see that the currencies are the same, not that the classes are the same.

We’d prefer not to write a test when we have a red bar. However, we are about to change real model code, and we can’t change model code without a test. The con-
servative course is to back out the change that caused the red bar so we’re back to green. Then we can change the test for equals(), fix the implementation, and re-try the original change.

This time, we’ll be conservative (sometimes I plough ahead and write a test on a red, but not while the children are awake.)

```java
Franc
    Money times(int multiplier) {
        return new Franc(amount * multiplier, currency);
    }
```

That gets us back to green. The situation that we had was a Franc(10, “CHF”) and a Money(10, “CHF”) that were reported to be not equal, even though we would like them to be equal. We can use exactly this for our test:

```java
public void testDifferentClassEquality() {
    assertTrue(new Money(10, "CHF").equals(new Franc(10, "CHF")));
}
```

It fails, as expected. The equals() code should compare currencies, not classes:

```java
Money
    public boolean equals(Object object) {
        Money money = (Money) object;
        return amount == money.amount
            && currency().equals(money.currency());
    }
```

Now we can return a Money from Franc.times() and still pass the tests:

```java
Franc
    Money times(int multiplier) {
        return new Money(amount * multiplier, currency);
    }
```

Will the same will work for Dollar.times()?}

```java
Dollar
    Money times(int multiplier) {
        return new Money(amount * multiplier, currency);
    }
```
Yes! Now the two implementations are identical, so we can push them up.

```java
Money
times(int multiplier) {
    return new Money(amount * multiplier, currency);
}
```

Multiplication in place, we are ready to eliminate the stupid subclasses. Reviewing, we:

- Reconciled two methods (times()) by first inlining the methods they called and then replacing constants with variables
- Wrote a toString() without a test just to help us debug
- Tried a change (returning Money instead of Franc) and let the tests tell us whether it worked
- Backed out an experiment and wrote another test. Making the test work made the experiment work.

$\frac{5}{2} \text{ CHF} = \frac{10}{2} $ if rate is 2:1

$5 + 10 \text{ CHF} = 15 \text{ CHF}$

Make "amount" private
Dollar side effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
5 CHF + 2 = 10 CHF
Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
Currency?
Delete test Franc Multiplication?
The two subclasses, Dollar and Franc, have only their constructors. Only a constructor is not enough reason to have a subclass, so we want to delete the subclasses.

We can replace references to the subclasses by references to the superclass without changing the meaning of the code. First Franc:

```java
Franc
static Money franc(int amount) {
    return new Money(amount, "CHF");
}
```

Then Dollar:

```java
Dollar
static Money dollar(int amount) {
    return new Money(amount, "USD");
}
```

Now there are no references to Dollar, so we can delete it. Franc still has one reference, in the test we just wrote.

```java
public void testDifferentClassEquality() {
```
assertTrue(new Money(10, "CHF").equals(new Franc(10, "CHF")));
}

Is equality covered elsewhere well enough that we can delete this test? Looking at
the other equality test:

public void testEquality() {
 assertTrue(Money.dollar(5).equals(Money.dollar(5)));
 assertFalse(Money.dollar(5).equals(Money.dollar(6)));
 assertTrue(Money.franc(5).equals(Money.franc(5)));
 assertFalse(Money.franc(5).equals(Money.franc(6)));
 assertFalse(Money.franc(5).equals(Money.dollar(5)));
}

it looks like we have the cases for equality well covered, too well covered, actually.
We can delete the third and fourth assertions since they duplicate the exercise of the
first and second assertions:

public void testEquality() {
 assertTrue(Money.dollar(5).equals(Money.dollar(5)));
 assertFalse(Money.dollar(5).equals(Money.dollar(6)));
 assertFalse(Money.franc(5).equals(Money.dollar(5)));
}

Away testDifferentClassEquality() goes, and Franc goes with it.

Similarly, there are separate tests for dollar and franc multiplication. Looking at the
code, we can see there is no difference in the logic at the moment based on the cur-
rency (there was a difference when there were two classes). We can delete
testFrancMultiplication() without losing any confidence in the behavior of the sys-
tem.

Single class in place, we are ready to tackle addition. First, to review, we:

- Finished gutting subclasses and deleted them
- Eliminated tests that made sense with the old code structure but were redundant
 with the new code structure

\[$5 + 10 \text{ CHF} = $10 \text{ if rate is } 2:1 \]

$5 \times 2 = $10

\[\text{Make "amount" private} \]

\[\text{Dollar side-effects?} \]

\[\text{Money rounding?} \]

\[\text{equals()} \]

\[\text{hashCode()} \]

\[\text{Equal null} \]

\[\text{Equal object} \]

\[5 \text{ CHF} \times 2 = 10 \text{ CHF} \]

\[\text{Dollar/Franc duplication} \]

\[\text{Common equals} \]

\[\text{Common times} \]

\[\text{Compare Francs to Dollars} \]

\[\text{Currency?} \]

\[\text{Delete testFrancMultiplication?} \]

The test we wrote forcing us to compare currencies instead of classes only makes
sense if there are multiple classes. Since we are trying to eliminate the Franc class,
a test to ensure that the system works if there is a Franc class is a burden, not a help.
Away testDifferentClassEquality() goes, and Franc goes with it.

Similarly, there are separate tests for dollar and franc multiplication. Looking at the
code, we can see there is no difference in the logic at the moment based on the cur-
rency (there was a difference when there were two classes). We can delete
testFrancMultiplication() without losing any confidence in the behavior of the sys-
tem.

Single class in place, we are ready to tackle addition. First, to review, we:
It’s a new day, and our to-do list is getting a little cluttered, so we’ll copy the pending items to a fresh list. (I like physically copying to-do items to a new list. If there are lots of little items, I tend to just take care of them rather than copy them. Little stuff that otherwise might build up gets taken care of just because I’m lazy. Play to your strengths.)

I’m not sure how to write the story of the whole addition, so we’ll start with a simpler example—$5 + $5 = $10.

```java
public void testSimpleAddition() {
    Money sum = Money.dollar(5).plus(Money.dollar(5));
    assertEquals(Money.dollar(10), sum);
}
```

We could fake the implementation by just returning “Money.dollar(10)”, but the implementation seems obvious. We’ll try:

```java
Money Money plus(Money addend) {
    return new Money(amount + addend.amount, currency);
}
```
(In general, I will begin speeding up the implementations to save trees and keep your interest. Where the design isn’t obvious I will still fake the implementation and refactor. I hope you will see through this how TDD gives you control over the size of steps.)

Having said that I was going to go much faster, I will immediately go much slower, not in getting the tests working, but in writing the test itself. There are times and tests that call for careful thought. How are we going to represent multi-currency arithmetic? This is one of those times for careful thought.

The most difficult design constraint is that we would like most of the code in the system to be unaware that it is (potentially) dealing with multiple currencies. One possible strategy is to immediately convert all money values into a reference currency (I’ll let you guess which reference currency American imperialist pig programmers generally choose). However, this doesn’t allow exchange rates to vary easily.

Instead we would like a solution that lets us conveniently represent multiple exchange rates, and still allows most arithmetic-like expressions to look like, well, arithmetic.

Objects to the rescue. When the object you have doesn’t behave like you want, make another object with the same external protocol (an Imposter), but a different implementation.

This probably sounds a bit like magic. How do you know to think of creating an imposter here? I won’t kid you—there is no formula for flashes of design insight. Ward came up with the “trick” a decade ago and I haven’t seen it independently duplicated yet, so it must be a pretty tricky trick. TDD can’t guarantee that you will have flashes of insight at the right moment. However, confidence-giving tests and carefully factored code give you preparation for insight, and preparation for applying that insight when it comes.

The solution is to create an object that acts like a Money, but represents the sum of two Moneys. I’ve tried several different metaphors to explain this idea. One is to treat the sum like a Wallet—you can have several different notes of different denominations and currencies in the same wallet.

Another metaphor is “expressions”, as in “(2 + 3) * 5”, or in our case “($2 + 3 CHF) * 5”. A Money is the atomic form of an expression. Operations result in Expressions, one of which will be a Sum. Once the operation (like adding up the
value of a portfolio) is complete, the resulting Expression can be reduced back a single currency given a set of exchange rates.

Applying this metaphor to our test, we know what we end up with:

```java
public void testSimpleAddition() {
    …
    assertEquals(Money.dollar(10), reduced);
}
```

The reduced Expression is created by applying exchange rates to an Expression. What in the real world applies exchange rates? A bank. We would like to be able to write:

```java
public void testSimpleAddition() {
    …
    Money reduced= bank.reduce(sum, "USD");
    assertEquals(Money.dollar(10), reduced);
}
```

(It’s a little weird to be mixing the “bank” metaphor and the “expression” metaphor. We’ll get the whole story told first, and then we’ll see what we can do about literary value.)

We have made an important design decision here. We could just as easily have written “…reduce= sum.reduce("USD", bank)”. Why make the Bank responsible? One answer is “that’s the first thing that popped into my head,” but that’s not very informative. Why did it pop into my head that reduction should be the responsibility of the bank and not the expression? Here’s what I’m aware of at the moment:

- Expressions seem to be at the heart of what we are doing. I try to keep the objects at the heart as ignorant of the rest of the world as possible, so they stay flexible as long as possible (and remain easy to test, and reuse, and understand.)
- I can imagine there will be many operations involving Expressions. If we add every operation to Expression, Expression will grow without limit.

That doesn’t seem like enough reasons to tip the scales permanently, but it is enough for me to start in this direction. I’m also perfectly willing to move responsibility for reduction to Expression if it turns out Bank’s don’t need to be involved.

The Bank in our simple example doesn’t really need to do anything. As long as we have an object we’re okay:
public void testSimpleAddition() {
 ...
 Bank bank = new Bank();
 Money reduced = bank.reduce(sum, "USD");
 assertEquals(Money.dollar(10), reduced);
}

The sum of two Moneys should be an Expression:

public void testSimpleAddition() {
 ...
 Expression sum = five.plus(five);
 Bank bank = new Bank();
 Money reduced = bank.reduce(sum, "USD");
 assertEquals(Money.dollar(10), reduced);
}

At least we know for sure how to get five dollars:

public void testSimpleAddition() {
 Money five = Money.dollar(5);
 Expression sum = five.plus(five);
 Bank bank = new Bank();
 Money reduced = bank.reduce(sum, "USD");
 assertEquals(Money.dollar(10), reduced);
}

How do we get this to compile? We need an interface Expression (we could have a class, but an interface is even lighter weight):

interface Expression

Money.plus() needs to return an Expression:

Money
Expression plus(Money addend) {
 return new Money(amount + addend.amount, currency);
}

Which means that Money has to implement Expression (which is easy, since there are no operations yet):
Money
class Money implements Expression

We need an empty Bank class:

Bank
class Bank

Which stubs out reduce():

Bank
Money reduce(Expression source, String to) {
 return null;
}

Now it compiles, and fails miserably. Hooray! Progress! We can easily fake the implementation, though:

Bank
Money reduce(Expression source, String to) {
 return Money.dollar(10);
}

We’re back to a green bar, and ready to refactor. First, reviewing, we:

• Reduced a big test to a smaller test that represented progress ($5 + 10 CHF to $5 + $5)
• Thought carefully about the possible metaphors for our computation
• Re-wrote our previous test based on our new metaphor
• Got the test to compile quickly
• Made it run
• Looked forward with a bit of trepidation to the refactoring necessary to make the implementation real
CHAPTER 15

Make It

We can’t mark our test for $5 + $5 done until we’ve removed all the duplication. We don’t have code duplication, but we do have data duplication. The $10 in the fake implementation:

```java
Bank
    Money reduce(Expression source, String to) {
        return Money.dollar(10);
    }
```

is really the same as the “$5 + $5” in the test:

```java
public void testSimpleAddition() {
    Money five= Money.dollar(5);
    Expression sum= five.plus(five);
    Bank bank= new Bank();
    Money reduced= bank.reduce(sum, "USD");
    assertEquals(Money.dollar(10), reduced);
}
```

Before when we’ve had a fake implementation, it’s been obvious how to work backwards to the real implementation. It’s just been a matter of replacing constants with variables. This time, though, it’s not obvious to me how to work backwards. So, even though it feels a little speculative, we’ll work forwards.
First, Money.plus() needs to return a real Expression, a Sum, not just a Money (perhaps later we’ll optimize the special case of adding two identical currencies, but that’s later.)

The sum of two Moneys should be a Sum:

```java
public void testPlusReturnsSum() {
    Money five = Money.dollar(5);
    Expression result = five.plus(five);
    Sum sum = (Sum) result;
    assertEquals(five, sum.augend);
    assertEquals(five, sum.addend);
}
```

(Did you know that the first argument to addition is called the “augend”? I didn’t until I was writing this. Geek joy.)

The test above is not one I would expect to live a long time. It is deeply concerned with the implementation of our operation, not its externally visible behavior. However, if we make it work, we expect we’ve moved one step closer to our goal.

To get it to compile, all we need is a Sum class with two fields, augend and addend:

```java
class Sum {
    Money augend;
    Money addend;
}
```

This gives us a ClassCastException, because Money.plus() is returning a Money, not a Sum:

```java
Money
Expression plus(Money addend) {
    return new Sum(this, addend);
}
```

Sum needs a constructor:

```java
Sum(Money augend, Money addend) {
}
```
And Sum needs to be a kind of Expression:

```java
class Sum implements Expression
```

Now the system compiles again, but the test is still failing, this time because the Sum constructor is not setting the fields (we could fake the implementation by initializing the fields, but I said I’d start going faster):

```java
Sum(Money augend, Money addend) {
    this.augend = augend;
    this.addend = addend;
}
```

Now Bank.reduce() is being passed a Sum. If the currencies in the Sum are all the same, and the target currency is also the same, the result should be a Money whose amount is the sum of the amounts:

```java
public void testReduceSum() {
    Expression sum = new Sum(Money.dollar(3), Money.dollar(4));
    Bank bank = new Bank();
    Money result = bank.reduce(sum, "USD");
    assertEquals(Money.dollar(7), result);
}
```

I carefully chose parameters that would break the existing test. When we reduce a Sum, the result (under these simplified circumstances) should be a Money whose amount is the sum of the amounts of the two Moneys and whose currency is the currency to which we are reducing.

```java
Money reduce(Expression source, String to) {
    Sum sum = (Sum) source;
    int amount = sum.augend.amount + sum.addend.amount;
    return new Money(amount, to);
}
```

This is immediately ugly on two counts:

- The cast. This code should work with any Expression.
- The public fields, and two levels of references at that
Easy enough to fix. First, we can move the body of the method to Sum and get rid of some of the visible fields. We are “sure” we will need the Bank as a parameter in the future, but this is pure, simple refactoring, so we leave it out (actually, just now I put it in because I “knew” I would need it—shame, shame on me.)

```java
Bank
    Money reduce(Expression source, String to) {
        Sum sum = (Sum) source;
        return sum.reduce(to);
    }
Sum
    public Money reduce(String to) {
        int amount = augend.amount + addend.amount;
        return new Money(amount, to);
    }
```

(Which brings up the point of how we are going to implement, er... test, Bank.reduce() when the argument is a Money.)

Let’s write that test, since the bar is green and there is nothing else obvious to do with the code above:

```java
public void testReduceMoney() {
    Bank bank = new Bank();
    Money result = bank.reduce(Money.dollar(1), "USD");
    assertEquals(Money.dollar(1), result);
}
```

Bank
 Money reduce(Expression source, String to) {
 if (source instanceof Money) return (Money) source;
 Sum sum = (Sum) source;
 return sum.reduce(to);
 }

Ugly, ugly, ugly. However, we now have a green bar, and refactoring is possible. Any time you are checking classes explicitly, you should be using polymorphism instead. Since Sum implements reduce(String), if Money implemented it, too, we could then add it to the Expression interface.

```java
Bank
    Money reduce(Expression source, String to) {
```
if (source instanceof Money)
 return (Money) source.reduce(to);
Sum sum = (Sum) source;
return sum.reduce(to);
}
Money
public Money reduce(String to) {
 return this;
}

If we add reduce(String) to the Expression interface:

Expression
Money reduce(String to);

We can eliminate all those ugly casts and class checks:

Bank
Money reduce(Expression source, String to) {
 return source.reduce(to);
}

I'm not entirely happy with the name of the method being the same in Expression and in Bank, but having different parameter types. I've never found a satisfactory general solution to this problem in Java. In languages with keyword parameters, communicating the difference between Bank.reduce(Expression, String) and Expression.reduce(String) is well supported by the language syntax. With positional parameters, it's not so easy to make the code speak for you about how the two are different.

Next we'll actually exchange one currency for another. First, reviewing, we:

- Didn’t mark a test as done because the duplication had not been eliminated
- Worked forwards instead of backwards to realize the implementation
- Wrote a test to force the creation of an object we expected to need later (Sum)
- Started implementing faster (the Sum constructor)
- Implemented code with casts in one place, then moved the code where it belonged once the test were running
- Introduced polymorphism to eliminate explicit class checking
$5 + 10 \text{ CHF} = $10 \text{ if rate is } 2:1
$5 + $5 = 10
Return Money from $5 + 5
Bank.reduce(Money)
Reduce Money with conversion
$5 + 10 \text{ CHF} = $10 \text{ if rate is } 2:1

\$5 + \$5 = \$10

Return Money from $5 + $5

\text{Bank.reduce(Money)}

Reduce Money with conversion

$5 + 10 \text{ CHF} = $10 \text{ if rate is } 2:1

\$5 + \$5 = \$10

Return Money from $5 + $5

\text{Bank.reduce(Money)}

Reduce Money with conversion

\text{Reduce(Bank, String)}
Change is worth embracing (especially if you have a book out with “embrace change” in the title). Here, though, we are thinking about a much simpler form of change—we have 2 francs and we want a dollar. That sounds like a test case already:

```java
public void testReduceMoneyDifferentCurrency() {
    Bank bank = new Bank();
    bank.addRate("CHF", "USD", 2);
    Money result = bank.reduce(Money.franc(2), "USD");
    assertEquals(Money.dollar(1), result);
}
```

When I go from francs to dollars, I divide by two (we’re still studiously ignoring all those nasty numerical problems.) We can make the bar green in one piece of ugliness:

```java
Money reduce(String to) {
    int rate = (currency.equals("CHF") && to.equals("USD")) ? 2 : 1;
    return new Money(amount / rate, to);
}
```

$5 + 10 CHF = $10 if rate is 2:1

$5 + $5 = $10

Return Money from $5 + $5

Bank reduce(Money)

Reduce Money with conversion

Reduce(Bank, String)
Now, suddenly, Money knows about exchange rates. Yuck. The Bank should be the only place we care about exchange rates. We’ll have to pass the Bank as a parameter to Expression.reduce() (see, we knew we would need it, and we were right. In the words of the grandfather in *The Princess Bride*, “You’re very clever…”)

First the caller:

```java
Bank
Money reduce(Expression source, String to) {
    return source.reduce(this, to);
}
```

Then the implementors:

```java
Expression
Money reduce(Bank bank, String to);
```

```java
Sum
public Money reduce(Bank bank, String to) {
    int amount= augend.amount + addend.amount;
    return new Money(amount, to);
}
```

```java
Money
public Money reduce(Bank bank, String to) {
    int rate = (currency.equals("CHF") && to.equals("USD"))
        ? 2
        : 1;
    return new Money(amount / rate, to);
}
```

The methods have to be public because methods in interfaces have to be public (for some excellent reason, I’m sure.)

Now we can calculate the rate in the Bank:

```java
Bank
int rate(String from, String to) {
    return (from.equals("CHF") && to.equals("USD"))
        ? 2
        : 1;
}
```

And ask the bank for the right rate:
public Money reduce(Bank bank, String to) {
 int rate = bank.rate(currency, to);
 return new Money(amount / rate, to);
}

That pesky “2” still appears in both the test and the code. To get rid of it, we need to keep a table of rates in the Bank and look up a rate when we need it. We could use a Hashtable mapping pairs of currencies to rates. Can we use a two element array containing the two currencies as the key? Does Array.equals() check to see if the elements are equal?

public void testArrayEquals() {
 assertEquals(new Object[]{"abc"}, new Object[]{"abc");
}

Nope. The test fails, so we have to create a real object for the key:

private class Pair {
 private String from;
 private String to;

 Pair(String from, String to) {
 this.from = from;
 this.to = to;
 }
}

Because we are using Pairs as keys, we have to implement equals() and hash-Code(). I’m not going to write tests for these, because we are writing this code in the context of a refactoring. If we get to the payoff of the refactoring and all the tests run, we expect the code to have been exercised. If I was programming with someone who didn’t see exactly where we were going with this, or if the logic became the least bit complex, I would begin writing separate tests.

private boolean equals(Object object) {
 Pair pair = (Pair) object;
 return from.equals(pair.from) && to.equals(pair.to);
}
public int hashCode() {
 return 0;
}

“0” is a terrible hash value, but it has the advantage that it’s easy to implement and it will get us running quickly. Currency lookup will look like linear search. Later, when we get lots of currencies, we can do a more thorough job with real usage data.

We need somewhere to store the rates:

```java
Bank
private Hashtable rates = new Hashtable();
```

We need to set the rate when told:

```java
Bank
void addRate(String from, String to, int rate) {
    rates.put(new Pair(from, to), new Integer(rate));
}
```

And then we can look up the rate when asked:

```java
Bank
int rate(String from, String to) {
    Integer rate = (Integer) rates.get(new Pair(from, to));
    return rate.intValue();
}
```

Wait a minute!?! We got a red bar. What happened? A little snooping around tells us that if we ask for the rate from USD to USD, we expect the value to be 1. Since this was a surprise, let’s write a test to communicate what we discovered:

```java
public void testIdentityRate() {
    assertEquals(1, new Bank().rate( "USD", "USD" ));
}
```

Now we have three errors, but we expect them all to be fixed with one change:

```java
Bank
int rate(String from, String to) {
    if (from.equals(to)) return 1;
```
Green bar!

Next we'll implement our last big test, $5 + 10 CHF. Several significant techniques have slipped into this chapter:

- Added a parameter, in seconds, that we expected we would need
- Factored out the data duplication between code and tests
- Wrote a test (testArrayEquals) to check an assumption about the operation of Java
- Introduced a private helper class without distinct tests of its own
- Made a mistake in a refactoring and chose to forge ahead, writing another test to isolate the problem
$5 + 10 \, \text{CHF} = 10 \, \text{if rate is 2:1}

$5 + 5 = 10

Return Money from $5 + $5

Bank.reduce(Money)

Reduce.Money.with.conversion

Reduce(Bank,String)
CHAPTER 17

$5 + 10 \text{ CHF} = 10 $ if rate is 2:1
$5 + $5 = 10
Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)

Now we are finally ready to add the test that started it all, $5 + 10 \text{ CHF}:

```java
public void testMixedAddition() {
    Expression fiveBucks = Money.dollar(5);
    Expression tenFrancs = Money.franc(10);
    Bank bank = new Bank();
    bank.addRate("CHF", "USD", 2);
    Money result = bank.reduce(fiveBucks.plus(tenFrancs), "USD");
    assertEquals(Money.dollar(10), result);
}
```

This is what we’d like to write. Unfortunately, there are a host of compile errors. When we were generalizing from Money to Expression, we left a lot of loose ends laying around. I was worried about them, but I didn’t want to disturb you. It’s disturbing time, now.

We won’t be able to get the test above to compile quickly. We will make the first change that will ripple to the next and the next. We have two paths forward. We can make it work quickly by writing a more specific test and then generalizing, or we can trust our compiler not to let us make mistakes. I’m with you—let’s go slow (in practice I would probably just fix the rippling changes one at a time).

```java
public void testMixedAddition() {
    Money fiveBucks = Money.dollar(5);
```
Mixed Currencies

```java
Money tenFrancs = Money.franc(10);
Bank bank = new Bank();
bank.addRate("CHF", "USD", 2);
Money result = bank.reduce(fiveBucks.plus(tenFrancs), "USD");
assertEquals(Money.dollar(10), result);
```

The test doesn’t work. We get 15 USD instead of 10 USD. It’s as if Sum.reduce() isn’t reducing the arguments. It isn’t:

```java
Sum
public Money reduce(Bank bank, String to) {
    int amount = augend.amount + addend.amount;
    return new Money(amount, to);
}
```

If we reduce both of the arguments, the test should pass:

```java
Sum
public Money reduce(Bank bank, String to) {
    int amount = augend.reduce(bank, to).amount +
                 addend.reduce(bank, to).amount;
    return new Money(amount, to);
}
```

And it does. Now we can begin pecking away at Moneys that should be Expressions. To avoid the ripple effect, we’ll start at the edges and work our way back to the test case. For example, the augend and addend can now be Expressions:

```java
Sum
Expression augend;
Expression addend;
```

The arguments to the Sum constructor can also be Expressions:

```java
Sum(Expression augend, Expression addend) {
    this.augend = augend;
    this.addend = addend;
}
```
(Sum is starting to remind me of Composite, but not so much that I want to generalize. The moment we want a Sum with other than two parameters, though, I’m ready to transform it.) So much for Sum. How about Money?

The argument to plus() can be an Expression:

```java
Money
Expression plus(Expression addend) {
    return new Sum(this, addend);
}
```

Times() can return an Expression:

```java
Money
Expression times(int multiplier) {
    return new Money(amount * multiplier, currency);
}
```

This suggests that Expression should include the operations plus() and times(). That’s all for Money. We can now change the argument to plus() in our test case:

```java
public void testMixedAddition() {
    Money fiveBucks= Money.dollar(5);
    Expression tenFrancs= Money.franc(10);
    Bank bank= new Bank();
    bank.addRate("CHF", "USD", 2);
    Money result= bank.reduce(fiveBucks.plus(tenFrancs), "USD");
    assertEquals(Money.dollar(10), result);
}
```

When we change fiveBucks to an Expression, we have to make several changes. Fortunately we have the compiler’s to-do list to keep us focused. First we make the change:

```java
public void testMixedAddition() {
    Expression fiveBucks= Money.dollar(5);
    Expression tenFrancs= Money.franc(10);
    Bank bank= new Bank();
    bank.addRate("CHF", "USD", 2);
    Money result= bank.reduce(fiveBucks.plus(tenFrancs), "USD");
    assertEquals(Money.dollar(10), result);
}
```
We are politely told that plus() is not defined for Expressions. We define it:

```
Expression
Expression plus(Expression addend);
```

And then we have to add it to Money and Sum. Money? Yes, it has to be public in Money:

```
Money
public Expression plus(Expression addend) {
    return new Sum(this, addend);
}
```

We’ll just stub out the implementation in Sum, and add it to our list:

```
Sum
public Expression plus(Expression addend) {
    return null;
}
```

Now that the program compiles, the tests all run.

We are ready to finish generalizing Money to Expression, but first we’ll review. We:

- Wrote the test we wanted, then backed off to make it achievable in one step
- Generalized (used a more abstract declaration) from the leaves back to the root (the test case)
- Followed the compiler when we made a change (Expression fiveBucks) which caused changes to ripple (added plus() to Expression, etc.)
CHAPTER 18

Abstraction, Finally

We need to implement `Sum.plus()` to finish `Expression.plus`, and then we need `Expression.times()`, and then we’re finished with the whole example. Here’s the test for `Sum.plus()`:

```java
public void testSumPlusMoney() {
    Expression fiveBucks= Money.dollar(5);
    Expression tenFrancs= Money.franc(10);
    Bank bank=new Bank();
    bank.addRate("CHF", "USD", 2);
    Expression sum= new Sum(fiveBucks, tenFrancs).plus(fiveBucks);
    Bank.reduce(sum, "USD"));
    Money result= bank.reduce(sum, "USD");
    assertEquals(Money.dollar(15), result);
}
```

We could have created a `Sum` by adding `fiveBucks` and `tenFrancs`, but the form above, where we explicitly create the `Sum`, communicates more directly. You are writing these tests not just to make your experience of programming more fun and rewarding, but also as a Rosetta Stone for future generations to appreciate your genius. Think, oh think, of your readers.

The test, in this case, is longer than the code. The code is the same as the code in `Money` (do I hear an abstract class in the distance?):
Abstraction, Finally

public Expression plus(Expression addend) {
 return new Sum(this, addend);
}

You will likely end up with about the same number of lines of test code as model code when TDDing. For TDD to make economic sense, either you will have to be able to write twice as many lines per day as before, or write half as many lines for the same functionality. You'll have to measure and see what effect TDD has on your own practice. Be sure to factor debugging, integrating, and explaining time into your metrics, though.

If we can make Sum.times() work, then declaring Expression.times() will be one simple step. The test is:

public void testSumTimes() {
 Expression fiveBucks = Money.dollar(5);
 Expression tenFrancs = Money.franc(10);
 Bank bank = new Bank();
 bank.addRate("CHF", "USD", 2);
 Expression sum = new Sum(fiveBucks, tenFrancs).times(2);
 Money result = bank.reduce(sum, "USD");
 assertEquals(Money.dollar(20), result);
}

Again, the test is longer than the code (you JUnit geeks will know how to fix that—the rest of you will have to read Fixture):

public void testSumTimes() {
 Expression fiveBucks = Money.dollar(5);
 Expression tenFrancs = Money.franc(10);
 Bank bank = new Bank();
 bank.addRate("CHF", "USD", 2);
 Expression sum = new Sum(fiveBucks, tenFrancs).times(2);
 Money result = bank.reduce(sum, "USD");
 assertEquals(Money.dollar(20), result);
}

Since we abstracted augend and addend to Expressions in the last chapter, we now have to declare times() in Expression before the code will compile:

Expression times(int multiplier);

Which forces us to raise the visibility of Money.times() and Sum.times():

$5 + 10 \text{ CHF} = $10 \frac{\text{CHF}}{2} = \10
$5 + $5 = \$10$

Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)
Sum.plus
Expression.times

$5 + 10 \text{ CHF} = $10 \frac{\text{CHF}}{2} = \10
$5 + $5 = \$10$

Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)
Sum.plus
Expression.times
Su m
public Expression times(int multiplier) {
 return new Sum(augend.times(multiplier),
 addend.times(multiplier));
}

M oney
public Expression times(int multiplier) {
 return new Money(amount * multiplier, currency);
}

And it works.

The only loose end to tie up is to experiment with returning a Money when we add $5 + $5. The test would be:

public void testPlusSameCurrencyReturnsMoney() {
 Expression sum= Money.dollar(1).plus(Money.dollar(1));
 assertTrue(sum instanceof Money);
}

This test is a little ugly, because it is testing the guts of the implementation, not the externally visible behavior of the objects. However, it will drive us to make the changes we need to make, and this is only an experiment, after all. Here is the code we would have to modify to make it work:

Money
public Expression plus(Expression addend) {
 return new Sum(this, addend);
}

There is no obvious, clean way (not to me, anyway, I’m sure you could think of something) to check the currency of the argument if and only if it is a Money. The experiment fails, we delete the test (which we didn’t like much anyway), and away we go.

Reviewing, we:

- Wrote a test with future readers in mind
- Suggested an experiment comparing TDD with your current programming style
- Once again had changes of declarations ripple through the system, and once again followed the compiler’s advice to fix them
• Tried a brief experiment, then discarded it when it didn’t work out

\$5 + 10 \text{ CHF} = \$10 \text{ if rate is 2:1}
\$5 + \$5 = \$10
Return Money from \$5 + \$5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)
Sum.plus
Expression.times
Let’s take a look back at the Money example, both the process we used and the results. We will look at:

- What Next?
- Metaphor—the dramatic effect metaphor has on the structure of the design
- JUnit Usage—when we ran tests and how we used JUnit
- Code Metrics—a numerical abstract of the resulting code
- Process—we say red/green/refactor, but how much work goes into each step?
- Test Quality—how do TDD tests stack up by conventional test metrics?

What Next?

Is the code finished? No. There is that nasty duplication between Sum.plus() and Money.plus(). If we made Expression a class instead of an interface (not the usual direction, as classes more often become interfaces), we would have a natural home for the common code.

I don’t believe in “finished”. TDD can be used as a way to strive for perfection, but that isn’t its most effective use. If you have a big system, the parts that you touch all the time should be absolutely rock solid, so you can make daily changes confidently. As you drift out to the periphery of the system, to parts that don’t change...
often, the tests can be spottier and the design uglier without interfering with your confidence.

When I’ve done all of the obvious tasks, I like running a code critic, like SmallLint for Smalltalk. Many of the suggestions that come up I already know about, or I disagree with. Automated critics don’t forget, though, so if I don’t delete an obsolete implementation I don’t have to stress. The critic will point it out.

Another “what next?” question is, “What additional tests do I need?” Sometimes you think of a test that “shouldn’t” work, and it does. Then you need to find out why. Sometimes a test that shouldn’t work really doesn’t, and you can record it as a known limitation or as work to be done later.

Finally, when the list is empty is a good time to review the design. Do the words and concepts play together? Is there duplication that is difficult to eliminate given the current design (lingering duplication is a symptom of latent design.)

Metaphor

The biggest surprise for me in coding the Money example is how different it came out this time. I have programmed Money in production at least three times that I can think of. I have used it as an example in print another half dozen times. I have programmed it live on stage (relax, it’s not as exciting as it sounds…) another fifteen times. I coded another three or four times preparing for writing (I ripped out Section I and rewrote it based on early reviews.) Then, while I was writing this, I thought of using Expression as the metaphor and the design went in a completely different direction than it has gone before.

I really didn’t expect the metaphor to be so powerful. A metaphor should just be a source of names, shouldn’t it? Apparently not.

The metaphor Ward used for “several monies together with potentially different currencies” was a vector, like a mathematic vector where the coefficients were currencies instead of \(x^2 \). I used MoneySum for a while, then MoneyBag (which is nice and physical), and finally Wallet (which is commoner in most folks’ experience). All of these metaphors imply that the collection of Money’s is flat. For example, “2 USD + 5 CHF + 3 USD” would result in “5 USD + 5 CHF”. Two values with the same currency would be merged.
The Expression metaphor freed me from a bunch of nasty issues about merging duplicated currencies. The code came out cleaner and clearer than I’ve ever seen it before. I’m concerned about the performance of Expressions, but I’m happy to wait until I see some usage statistics before I start optimizing.

What if I got to rewrite everything I ever wrote 20 times? Would I keep finding insight and surprise every time? Is there some way to be more mindful as I program so I can squeeze all the insight out of the first three times? The first time?

JUnit Usage

I had JUnit keep a log while I was coding the Money example. I pressed the Run button precisely 125 times. Because I was writing at the same time as I was programming, the interval between runs isn’t representative, but during the times I was just programming I ran the tests about once a minute. Only once in that whole time was I surprised by either success or failure, and that was a refactoring done in haste.

Here is a histogram of the time interval between test runs. The large number of large intervals is most likely because of the time I spent writing:
Code Statistics

Here are some statistics on the code:

<table>
<thead>
<tr>
<th></th>
<th>Functional</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Functions (1)</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>Lines (2)</td>
<td>91</td>
<td>89</td>
</tr>
<tr>
<td>Cyclomatic complexity (3)</td>
<td>1.04</td>
<td>1</td>
</tr>
<tr>
<td>Lines/function (4)</td>
<td>4.1 (4)</td>
<td>5.9 (5)</td>
</tr>
</tbody>
</table>

1. Because we haven’t implemented the whole API, we can’t evaluate the absolute number of functions, or the number of functions per class, or lines per class. However, the ratios are instructive. There are roughly as many lines and functions in the test and functional code.

2. The number of lines of test code can be reduced by extracting common fixtures. The rough correspondence between lines of model code and lines of test code will remain, however.

3. Cyclomatic complexity is a measure of conventional flow complexity. Test complexity is 1 because there are no branches or loops in test code. Functional code complexity is low because of the heavy use of polymorphism as a substitute for explicit control flow.

4. This includes the function header and trailing brace.

5. Lines/function in the tests is inflated because we have not factored out common fixture-building code, as explained in the section on JUnit.

Process

The TDD cycle is:

- Write a test
- Make it compile, run it to see it fail
- Make it run
- Remove duplication
Assuming that writing a test is a single step, how many changes does it take to compile, run, and refactor? (By change, I mean changing a method or class definition.)

I expect that if we gathered data for a large project, the number of changes to compile and run would remain fairly small (they could be even smaller if the programming environment understood what the tests were trying to tell it—creating stubs automatically, for instance). However, (here’s at least a master’s thesis) the number of changes per refactoring should follow a “fat tail” or leptokurtotic profile, which is like a bell curve but with more extreme changes than predicted by a standard bell curve. Many measurements in nature follow this profile, like price changes in the stock market.\(^1\)

Test Quality

The tests that are a natural by-product of TDD are certainly useful enough to keep running as long as the system is running. Don’t expect them to replace the many other types of testing:

- Performance
- Stress
- Usability

However, if the defect density of test-driven code is low enough, the role of professional testing will inevitably change from “adult supervision” to something more closely resembling an amplifier for the communication between those who generally have a feeling for what the system should do and those who will make it do. As a stand-in for a long and interesting conversation about the future of professional testing, here are a couple of widely shared measurements of the tests written above.

Statement coverage is certainly not a sufficient measure of test quality, but it is a starting place. TDD followed religiously should result in 100% statement coverage. JProbe (www.sitraka.com/software/jprobe) reports only one line in one method not covered by the test cases, Money.toString(), which we added explicitly as a debugging aid, not real model code.

Another way of evaluating test quality is defect insertion. The idea is simple—change the meaning of a line of code and a test should break. You can do this manually, or with a tool like Jester (jester.sourceforge.net). Jester reports only one line it is able to change without breaking, Pair.hashCode(). We faked the implementation to just return 0. Returning a different constant doesn’t actually change the meaning of the program (one fake number is as good as another), so it isn’t really a defect that has been inserted.

Philip made a point about test coverage that bears repeating here. A gross measure of coverage is the number of tests testing different aspects of a program divided by the number of aspects that need testing (the complexity of the logic). One way to improve coverage is to write more tests, hence the dramatic difference in the number of tests a TDDer would write for code and the number of tests a professional tester would write (page ??? gives details of an example where I wrote 6 tests and a tester wrote 65 for the same problem). However, another way to improve coverage is to take a fixed set of tests and simplify the logic of the program. The refactoring step often has this effect—conditionals replaced by messages, or by nothing at all. In his words, “… instead of increasing the test coverage to walk all permutations of
input (more properly an efficiently reduced sample of all possible permutations), we just leave the same tests covering various permutations of code as it shrinks.”

One Last Review

The three items that come up time and again as surprises when teaching TDD are:

- The three approaches to making a test work cleanly—fake it, triangulate, and just typing in the right solution to begin with
- Removing duplication between test and code as a way to drive the design
- The ability to control the gap between tests to increase traction when the road gets slippery and cruise faster when conditions are clear
Money Retrospective
How, oh how, to talk about the implementation of a tool for test-driven development? Test-driven, naturally.

The xUnit architecture comes out very smoothly in Python, so I’ll switch to Python for this section. Don’t worry, I’ll give a little commentary on Python, for those of you who haven’t seen it before. When you’re done you’ll have an introduction to Python, you’ll be able to write your own testing framework, and you’ll have seen a trickier example of TDD—three for the price of one.

Writing a testing tool test-first using itself as the tool, may seem a bit like performing brain surgery on yourself (“Don’t touch those motor centers—oh, too bad, game over”). It will get weird from time to time. However, the logic of the testing framework is more complicated than the wimpy money example above. You can read this chapter as a step towards test-driven development of “real” software. You can read this chapter as a computer-sciency exercise in self-referential programming.

First, we need to be able to create a TestCase and run a test method. For example: testCase(“testMethod”).run(). We have a bootstrap problem. We are writing test cases to test a framework that we will be using to write the test cases. Since we don’t have a framework yet, we will have to verify the operation of the first tiny step by hand. Fortunately, we are well rested and relaxed and unlikely to make mis-
Section II: xUnit

takes, which is why we will go in teensy tiny steps, verifying everything six ways from Sunday. Here is the test list I can think of for a testing framework.

We are still working test-first, of course. For our first proto-test, we need a little program that will print out true if a test method gets called, and false otherwise. If we have a test case that sets a flag inside the test method, we can print the flag after we’re done and make sure it’s correct. Once we have verified it manually, we can automate the process.

Here’s the strategy for our bootstrap test—we will create a TestCase that contains a flag. Before the test method is run, the flag should be false. The test method will set the flag. After the test method is run, the flag should be true. We’ll call the TestCase class “WasRun”, because it’s a test case that reports whether a method was run. The flag (perhaps confusingly, but it’s such a good name) will also be called “wasRun”, so we can eventually write “assert test.wasRun” (assert is a built-in Python facility.)

Python executes statements as it reads a file, so we can start with invoking the test method manually:

```python
test = WasRun("testMethod")
print test.wasRun
test.testMethod()
print test.wasRun
```

We expect this to print “None” (None in Python is like null or nil, and stands for false, along with 0 and a few other objects) before the method was run, and “1” afterwards. It doesn’t, because we haven’t defined the class WasRun yet (test-first, test-first).

```
WasRun
class WasRun:
  pass
```

(The keyword “pass” is used when there is no implementation of a class or method.) Now we are told we need an attribute “wasRun”. We need to create the attribute when we create the instance is created (the constructor is called “__init__” for convenience). In it, we set the wasRun flag false.

```
WasRun
class WasRun:
  def __init__(self, name):
```

Invokes test method
- Invoke setUp first
- Invoke tearDown afterwards
- Invoke tearDown even if the test method fails
- Run multiple tests
- Report collected results
self.wasRun = None

Running the file faithfully prints out “None”, then tells us we need to define the method “testMethod” (wouldn’t it be great if your IDE noticed this, provided you with a stub, and opened up an editor on it? Nah, too useful… cf)

WasRun
def testMethod(self):
 pass

Now when we execute the file, we see “None” and “None”. We want to see “None” and “1”. We can get it by setting the flag in testMethod():

WasRun
def testMethod(self):
 self.wasRun = 1

Now we get the right answer (the green bar, hooray!). Now we have a bunch of refactoring to do, but as long as we maintain the green bar, we know we have made progress.

Next we need to use our real interface, run(), instead of calling the test method directly. The test changes to:

test = WasRun("testMethod")
print test.wasRun
test.run()
print test.wasRun

The implementation we can hardwire at the moment to:

WasRun
def run(self):
 self.testMethod()

And our test is back to printing the right values again. Lots of refactoring has this feel—separating two parts so you can work on them separately. If they go back together when you are finished, fine, if not, you can leave them separate. In this case, we expect to create a superclass TestCase, eventually, but first we have to differentiate the parts of our one example. There is probably some clever analogy with mitosis in here, but I don’t know enough cellular biology to explain it.
The next step is to dynamically invoke the testMethod. If the name attribute of the instance of WasRun is the string “testMethod”, then we can replace the direct call to “self.testMethod()” with “exec “self.” + self.name + "()”” (the dynamic invocation of methods is called Pluggable Selector, and should be used sparingly, and only if there are no reasonable alternatives).

```python
class WasRun:
    def __init__(self, name):
        self.wasRun = None
        self.name = name
    def run(self):
        exec "self." + self.name + "()"
```

Here is another general pattern of refactoring—take code that works in one instance and generalize it to work in many by replacing constants with variables. Here the constant was hardwired code, not a data value, but the principle is the same. TDD makes this work well by giving you running concrete examples from which to generalize, instead of having to generalize purely with reasoning.

Now our little WasRun class is doing two distinct jobs—one is keeping track of whether a method was invoked or not, the other is dynamically invoking the method. Time for a little of that mitosis action. First we create an empty TestCase superclass, and make WasRun a subclass:

```python
class TestCase:
    pass

class WasRun.TestCase: ...
```

Now we can move the “name” attribute up to the superclass:

```python
def __init__(self, name):
    self.name = name
```

```python
def __init__(self, name):
    self.wasRun = None
    TestCase.__init__(self, name)
```
Finally, the run() method only uses attributes from the superclass, so it probably belongs in the superclass (I’m always looking to put the operations near the data.)

```python
class TestCase:
    def __init__(self, name):
        self.name = name
    def run(self):
        exec "self." + self.name + "()"
```

(Between every one of these steps I run the tests to make sure I’m getting the same answer.)

We’re getting tired of looking to see that “None” and “1” are printed every time. Using the mechanism we just built, we can now write:

```python
class TestCaseTest(TestCase):
    def testRunning(self):
        test = WasRun("testMethod")
        assert(not test.wasRun)
        test.run()
        assert(test.wasRun)
TestCaseTest("testRunning").run()
```

The body of the test is just the print statements turned into assertions, so you could just see what we have done as a complicated form of Extract Method.

I’ll let you in on a little secret. I look at the size of the steps in the development above and it looks ridiculous. On the other hand, I tried it with bigger steps, probably six hours in all (I had to spend a lot of time looking up Python stuff), starting from scratch twice, and both times I thought I had the code working when I didn’t. This is about the worst possible case for TDD, because we are trying to get over the bootstrap step.

It is not necessary to work in such tiny steps as these. Once you’ve mastered TDD, you will be able to work in much bigger leaps of functionality between test cases. However, to master TDD you need to be able to work in such tiny steps when they are called for.

Next we will tackle calling setUp() before running the test. Reviewing first, we:
Section II: xUnit

- After a couple of hubris-fueled false starts, figured out how to begin with a tiny little step
- Implemented functionality, first by hardwiring it, then making it more general by replacing constants with variables
- Used Pluggable Adaptor, which we promise not to use again for four months, minimum, because it makes code hard to statically analyze
- Bootstrapped our testing framework, all in tiny steps

Invoke test method
- Invoke setUp first
- Invoke tearDown afterwards
- Invoke tearDown even if the test method fails
- Run multiple tests
- Report collected results
When you begin writing tests, you will discover a common pattern (Bill Wake coined the phrase 3A for this):

1. Arrange—create some objects
2. Act—stimulate them
3. Assert—check the results

The arrange step is often the same test-to-test, while the stimulation and checking steps are unique. I have a 7 and 9. If I add them, I expect 16. If I subtract them, I expect –2, if I multiply them, I expect 63. The stimulation and expected results are unique, the 7 and the 9 don’t change.

If this pattern repeats at different scales (and it does), then we’re faced with the question of how often do we want to create new objects to test. Looking back at our initial set of constraints, two constraints come into conflict:

- Performance—we would like our tests to run as quickly as possible, so if we use similar objects in several tests we would like to create them once for all tests
- Isolation—we would like the success or failure of one test to be irrelevant to other tests, and if one test changes the objects, following tests are likely to change their results
Test coupling has an obvious nasty effect, where breaking one test causes the next ten to fail even though the code is correct. Test coupling can have a subtle really nasty effect, where the order of tests matters. If I run A before B, they both work, but if I run B before A, then A fails. Or even nastier, the code exercised by B is wrong, but because A ran first, the test passes.

Test coupling—don’t go there. Let’s assume for the moment we can make object creation fast enough. In this case, we would like to create the objects for a test every time the test runs. We’ve already seen a disguised form of this in WasRun, where we wanted to have a flag set to false before we ran the test. Taking steps towards this, first we need a test:

```
TestCaseTest
def testSetUp(self):
    test = WasRun("testMethod")
    test.run()
    assert(test.wasSetUp)
```

Running this, (by adding the last line “TestCaseTest("testSetUp") run()” to our file) Python politely informs us that there is no “wasSetUp” attribute. Of course not. We haven’t set it. This method should do it.

```
WasRun
def setUp(self):
    self.wasSetUp = 1
```

It would if we were calling it. Calling setUp is the job of the TestCase, so we turn there:

```
TestCase
def setUp(self):
    pass
def run(self):
    self.setUp()
    exec "self." + self.name + "()"
```

That’s two steps to get a test case running, which is too many in such ticklish circumstances. We’ll see if it will work. Yes, it does pass. However, if you want to learn something, try to figure out how we could have gotten the test to pass by changing no more than one method at a time.
We can immediately use our new facility to shorten our tests. First, we can simplify WasRun by setting the wasRun flag in setUp:

```
WasRun
def setUp(self):
    self.wasRun= None
    self.wasSetUp= 1
```

We have to simplify testRunning not to check the flag before running the test. Are we willing to give up this much confidence in our code? Only if testSetUp is in place. This is a common pattern—one test can be simple if and only if another test is in place and running correctly.

```
TestCaseTest
def testRunning(self):
    test= WasRun("testMethod")
    test.run()
    assert(test.wasRun)
```

We can also simplify the tests themselves. In both cases we create an instance of WasRun, exactly that fixture we were talking about earlier. We can create the WasRun in setUp, and use it in the test methods. Each test method is run in a clean instance of TestCaseTest, so there is no way the two tests can be coupled (assuming the objects don’t interact in some incredibly ugly way, like setting global variables, but we wouldn’t do that, not with all those other readers watching.)

```
TestCaseTest
def setUp(self):
    self.test= WasRun("testMethod")
def testRunning(self):
    self.test.run()
    assert(self.test.wasRun)
def testSetUp(self):
    self.test.run()
    assert(self.test.wasSetUp)
```

Next we’ll run tearDown() after the test method. Reviewing this chapter, we:

- Decided simplicity of test writing was more important than performance for the moment
- Tested and implemented setUp()
• Used setUp() to simplify the example test case
• Used setUp() to simplify the test cases checking the example test case (I told you this would get like self-brain-surgery)
Tests will sometimes need to allocate external resources in setUp(). If we want the
tests to remain independent, a test that allocates external resources should release
them before it is done, perhaps in a tearDown() method.

The simple minded way to write the test for deallocation is to introduce yet another
flag. All those flags are starting to bug me, and they are missing an important aspect
of the methods—setUp() is called before the test method is run, and tearDown() is
called afterwards. I’m going to change the testing strategy to keep a little log of
what methods are called. By always appending to the log, we will preserve the
order in which the methods are called.

```python
WasRun
def setUp(self):
    self.wasRun= None
    self.wasSetUp= 1
    self.log= "setUp 
```

Now we can change testSetUp() to look at the log instead of the flag:

```python
TestCaseTest
def testSetUp(self):
    self.test.run()
    assert("setUp " == self.test.log)
```
Now we can delete the wasSetUp flag. We can record the running of the test method, too:

```python
WasRun
def testMethod(self):
    self.wasRun = 1
    self.log = self.log + "testMethod \\
```

This breaks testSetUp, because the actual log contains “setUp testMethod ”. We change the expected value:

```python
TestCaseTest
def testSetUp(self):
    self.test.run()
    assert("setUp testMethod " == self.test.log)
```

Now this test is doing the work of both tests, so we can delete testRunning and rename testSetUp:

```python
TestCaseTest
def setUp(self):
    test = WasRun("testMethod")
def testTemplateMethod(self):
    self.test.run()
    assert("setUp testMethod " == self.test.log)
```

Unfortunately, we are only using the instance if WasRun in one place, so we have to undo our clever setUp hack:

```python
TestCaseTest
def testTemplateMethod(self):
    test = WasRun("testMethod")
test.run()
    assert("setUp testMethod " == test.log)
```

(Doing a refactoring based on a couple of early uses, then having to undo it soon after is fairly common. Some folks wait until they have three or four uses before refactoring because they don’t like undoing work. I prefer to spend my thinking cycles on design, so I just reflexively do the refactorings without worrying about whether I will have to undo them immediately afterward.)
Now we are ready to implement tearDown(). Got you! We are ready to test for tear-
Down:

```python
testMethod
```

```python
def testTemplateMethod(self):
    test = WasRun("testMethod")
    test.run()
    assert("setUp testMethod tearDown " == test.log)
```

This fails. Making it work is simple:

```python
def run(self, result):
    result.testStarted()
    self.setUp()
    exec "self." + self.name + "()"
    self.tearDown()
```

```python
def setUp(self):
    self.log = "setUp ">
```

```python
def tearDown(self):
    self.log = self.log + "tearDown ">
```

Surprisingly, we get an error, not in WasRun, but in the TestCaseTest. We don’t
have a no-op implementation of tearDown() in TestCase:

```python
def tearDown(self):
    pass
```

This time we got value out of using the same testing framework we are developing.
Yippee…

No refactoring necessary. The Obvious Implementation, after that one glitch,
worked and was clean.

Next we’ll go on to report the results of running a test explicitly, instead of letting
Python’s native error handling and reporting system tell us when there is a problem
with an assertion. Reviewing, in this chapter we:
Cleaning Up After

- Restructured the testing strategy from flags to a log
- Tested and implemented tearDown() using the new log
- Found a problem and, daringly, fixed it instead of backing up (was that a good idea?)
I was going to implement making sure tearDown() is called regardless of exceptions during the test method. However, we have to catch exceptions to make the test work. I know, I just tried it, and backed it out.) If we make a mistake implementing this, we won’t be able to see the mistake because the exceptions won’t be reported.

In general, the order of implementing the tests is important. When I pick the next test to implement, I find a test that will teach me something but which I have confidence I can make work. If I get that test working but get stuck on the next one, I consider backing up two steps. It would be great if your programming environment helped me with this, checkpointing the code every time all the tests ran.

What we would like to see is the results of running any number of tests—“5 run, 2 failed, TestCaseTest.testFooBar—ZeroDivideException, MoneyTest.testNegative—AssertionError”. Then if the tests stop getting called, or results stop getting reported, at least we have a chance of catching the error. Having the framework automatically report all the test cases it knows nothing about seems a bit far-fetched, at least for the first test case.

We’ll have TestCase.run() return a TestResult object that records the results of running the test (singular for the moment, but we’ll get to that.)

```python
TestCaseTest
def testResult(self):
    test= WasRun("testMethod")
```
result = test.run()
assert("1 run, 0 failed" == result.summary())

We'll start with a fake implementation:

```python
class TestResult:
    def summary(self):
        return "1 run, 0 failed"
```

and return a TestResult as the result of TestCase.run()

```python
class TestCase:
    def run(self):
        self.setUp()
        exec "self." + self.name + ")"
        self.tearDown()
        return TestResult()
```

Now that the test runs, we can realize (as in “make real”) the implementation of summary() a little at a time. First, we can make the number of tests run a symbol constant:

```python
class TestResult:
    def __init__(self):
        self.runCount= 1
    def summary(self):
        return "%d run, 0 failed" % self.runCount
```

(The % operator is Python’s sprintf.) However, runCount shouldn’t be a constant, it should be computed by counting the number of tests run. We can initialize it to 0, then increment it every time a test is run.

```python
class TestResult:
    def __init__(self):
        self.runCount= 0
    def testStarted(self):
        self.runCount= self.runCount + 1
    def summary(self):
        return "%d run, 0 failed" % self.runCount
```

We have to actually call this groovy new method:
TestCase

def run(self):
 result = TestResult()
 result.testStarted()
 self.setUp()
 exec "self." + self.name + "()"
 self.tearDown()
 return result

We could turn the constant string “0” for the number of failed tests into a variable in the same way as we realized runCount. However, the tests don’t demand it. So, we write another test.

TestCaseTest

def testFailedResult(self):
 test = WasRun("testBrokenMethod")
 result = test.run()
 assert("1 run, 1 failed", result.summary)

Where:

WasRun

def testBrokenMethod(self):
 raise Exception

The first thing we notice is that we aren’t catching the exception thrown by WasRun.testBrokenMethod. We would like to catch the exception and make a note in the result that the test failed. We’ll put this test on the shelf for the moment.

Reviewing, we:

- Wrote a fake implementation, and gradually began making it real by replacing constants with variables
- Wrote another test
- When that test failed, we wrote yet another test, at a smaller scale, to support making the failing test work
Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the test method fails
Run multiple tests
Report collected results
Log string in WasRun
Report failed tests
Dealing with Failure

We’ll write a smaller grained test to be sure that if we note a failed test, we print out the right results.

```
TestCaseTest
def testFailedResultFormatting(self):
    result = TestResult()
    result.testStarted()
    result.testFailed()
    assert("1 run, 1 failed" == result.summary())
```

“testStarted()” and “testFailed()” are the messages we expect to send to the result when a test starts and when a test fails, respectively. If we can get the summary to print correctly when these messages are sent in this order, then our programming problem is reduced to how to get these messages sent. Once they are sent, we expect the whole thing to work.

The implementation is to keep a count of failures:

```
TestResult
def __init__(self):
    self.runCount = 0
    self.errorCount = 0
def testFailed(self):
```
Dealing with Failure

```python
self.errorCount = self.errorCount + 1
```

With the count correct (which I suppose we could have tested for, if we were taking
teeny, weeny, tiny steps, but I won’t bother, the coffee has kicked in now), we
can print correctly:

```python
def summary(self):
    return "%d run, %d failed" % (self.runCount, self.failureCount)
```

Now we expect if we call testFailed() correctly, we will get the expected answer.
When do we call it? When we catch an exception in the test method:

```python
def run(self):
    result = TestResult()
    result.testStarted()
    self.setUp()
    try:
        exec "self." + self.name + "()"
    except:
        result.testFailed()
    self.tearDown()
    return result
```

There is a subtlety hidden inside this method. The way it is written, if a disaster
happens during setUp(), the exception won’t be caught. That can’t be what we
mean—we want our tests to run independently of each other. However, we need
another test before we can change the code (I taught Bethany, my oldest daughter,
TDD as her first programming style around age 12. She thinks you can’t type in
code unless there is a broken test. The rest of us have to muddle through reminding
ourselves to write the tests.) That next test and its implementation are left as an
exercise for the reader (sore fingers, again.)

Next we will work on getting several tests to run together. Reviewing this chapter,
we:

- Made our small scale test work
- Reintroduced the larger scale test
- Made the larger test work quickly using the mechanism demonstrated by the
 smaller test
• Noticed a potential problem and noted it on the to do list instead of addressing it immediately

- Invoke test method
- Invoke setUp first
- Invoke tearDown afterwards
- Invoke tearDown even if the test method fails
- Run multiple tests
- Report collected results
- Log string in WasRun
- Report failed tests
- Catch and report setUp errors
We can’t leave xUnit without visiting TestSuite. The end of our file, where we invoke all the tests, is looking pretty ratty:

```
print TestCaseTest("testTemplateMethod").run().summary()
print TestCaseTest("testResult").run().summary()
print TestCaseTest("testFailedResultFormatting").run().summary()
print TestCaseTest("testFailedResult").run().summary()
```

Duplication is always a bad thing, unless you look at it as motivation to find the missing design element. What we would like here is the ability to compose tests and run them together (working hard to make them run in isolation doesn’t do us much good if we only ever run one at a time). Another good reason to implement TestSuite is that it gives us a pure example of Composite—we want to be able to treat single tests and groups of tests exactly the same.

We would like to be able to create a TestSuite, add a few tests to it, then get collective results from running it.

```

def testSuite(self):
    suite= TestSuite()
    suite.add(WasRun("testMethod"))
    suite.add(WasRun("testBrokenMethod"))
```
result = suite.run()
assert("2 run, 1 failed" == result.summary())

Implementing the add() method just adds tests to a list:

```python
class TestSuite:
    def __init__(self):
        self.tests = []
    def add(self, test):
        self.tests.append(test)
```

(Python note: "[]" creates an empty collection.) The run method is a bit of a problem. We want a single TestResult to be used by all the tests that run. Therefore, we should write:

```python
def run(self):
    result = TestResult()
    for test in tests:
        test.run(result)
    return result
```

(Python note: "for test in tests" iterates through the elements of "tests", assigning each one to "test" and evaluating the following code.) However, one of the main constraints on Composite is that the collection has to respond to the same messages as the individual items. If we add a parameter to TestCase.run(), we have to add the same parameter to TestSuite.run(). I can think of three alternatives:

- Use Python’s default parameter mechanism. Unfortunately, the default value is evaluated at compile time, not run time, and we don’t want to be reusing the same TestResult
- Split the method into two parts, one which allocates the TestResult and the other which runs the test given a TestResult. I can’t think of good names for the two parts of the method, which suggests that this isn’t a good strategy
- Allocate the TestResults in the caller

We will allocate the TestResults in the callers. This pattern is called Collecting Parameter.
def testSuite(self):
suite = TestSuite()
suite.add(WasRun("testMethod"))
suite.add(WasRun("testBrokenMethod"))
result = TestResult()
suite.run(result)
assert("2 run, 1 failed" == result.summary())

This solution has the advantage that run() now has no explicit return:

def run(self, result):
 for test in tests:
 test.run(result)

Now we can clean up the invocation of the tests at the end of the file:

suite = TestSuite()
suite.add(TestCaseTest("testTemplateMethod"))
suite.add(TestCaseTest("testResult"))
suite.add(TestCaseTest("testFailedResultFormatting"))
suite.add(TestCaseTest("testFailedResult"))
suite.add(TestCaseTest("testSuite"))
result = TestResult()
suite.run(result)
print result.summary()

There is substantial duplication here, which we could eliminate if we had a way of constructing a suite automatically given a test class.
However, first we have to fix the 4 failing tests (they use the old no-argument run interface):

```python
TestCaseTest
def testTemplateMethod(self):
    test = WasRun("testMethod")
    result = TestResult()
    test.run(result)
    assert("setUp testMethod tearDown " == test.log)

def testResult(self):
    test = WasRun("testMethod")
    result = TestResult()
    test.run(result)
    assert("1 run, 0 failed" == result.summary())

def testFailedResult(self):
    test = WasRun("testBrokenMethod")
    result = TestResult()
    test.run(result)
    assert("1 run, 1 failed" == result.summary())

def testFailedResultFormatting(self):
    result = TestResult()
    result.testStarted()
    result.testFailed()
    assert("1 run, 1 failed" == result.summary())
```

Notice that each test allocates a TestResult, exactly the problem solved by setUp(). We can simplify the tests (at the cost of making them a little more difficult to read), by creating the TestResult in setUp():

```python
TestCaseTest

def setUp(self):
    self.result = TestResult()

def testTemplateMethod(self):
    test = WasRun("testMethod")
    test.run(self.result)
    assert("setUp testMethod tearDown " == test.log)

def testResult(self):
    test = WasRun("testMethod")
    test.run(self.result)
    assert("1 run, 0 failed" == self.result.summary())

def testFailedResult(self):
```
test= WasRun("testBrokenMethod")
test.run(self.result)
assert("1 run, 1 failed" == self.result.summary())
def testFailedResultFormatting(self):
 self.result.testStarted()
 self.result.testFailed()
 assert("1 run, 1 failed" == self.result.summary())
def testSuite(self):
 suite= TestSuite()
 suite.add(WasRun("testMethod"))
 suite.add(WasRun("testBrokenMethod"))
 suite.run(self.result)
 assert("2 run, 1 failed" == self.result.summary())

All those extra “self.”’s are a bit ugly, but that’s Python. If it was an object language, the self would be assumed and references to global variables would require qualification. Instead, it is a scripting language with object support (excellent object support, to be sure) added, so global reference is implied and referring to self is explicit.

I will leave the rest of these items to you and your new-found TDD skills.

Reviewing, in this chapter we:

- Wrote a test for a TestSuite
- Wrote part of the implementation, but without making the test work. This was a violation of “da roolz”. If you spotted it at the time, take two test cases out of petty cash. I’m sure there is a simple fake implementation that would have made the test case work so we could refactor under the green bar, but I can’t think what it is at the moment.
- Changed the interface of the run method so the item and the composite of items could work identically, then finally got the test working
- Factored out the common set-up code
If the time comes for you to implement your own testing framework, the above sequence can serve as your guide. The details of the implementation are not nearly as important as the test cases. If you can support a set of test cases like the ones above, you can write tests that are isolated and composeable, and you will be on your way to being able to develop test-first.

xUnit has been ported to more than 30 languages at this writing. Your language is likely to already have an implementation. There are a couple of reasons for implementing it yourself even if there is a version already available:

- Mastery—The spirit of xUnit is simplicity. Martin Fowler said, “Never in the annals of software engineering was so much owed by so many to so few lines of code.” Some of the implementations have gotten a little complicated for my taste. Rolling your own will give you a tool over which you have a feeling of mastery.

- Exploration—When I’m faced with a new programming language, I implement xUnit. By the time I have the first 8-10 tests running, I have explored many of the facilities I will be using in daily programming.

When you begin using xUnit, you will discover a big difference between assertions that fail and other kinds of errors while running tests—assertion failures consistently take much longer to debug. Because of this, most implementations of xUnit
distinguish between failures—meaning assertion failures—and errors. The GUIs present them differently, often with the errors on top.

JUnit declares a simple Test interface that is implemented by both TestCase and TestSuite. If you want your tests to be runnable by JUnit tools, you can implement the Test interface, too.

```java
public interface Test {
    public abstract int countTestCases();
    public abstract void run(TestResult result);
}
```

Languages with optimistic (dynamic) typing don’t even have to declare their allegiance to an interface, they can just implement the operations. If you write a test scripting language, Script can implement countTestCases() to return 1 and run to notify the TestResult on failure and you can run your scripts along with the ordinary TestCases.
What follows are the “greatest hits” patterns for TDD. Some of the patterns are TDD tricks, some are design patterns, and some are refactorings.

If you are familiar with one of these topics, the patterns here will show you how the topics play with TDD. Otherwise, there is enough material here to get you through the book examples, and whet your appetite for the comprehensive treatments found elsewhere.
There are some basic strategic question we need to answer before we can talk about the details of how to test:

- What do we mean by testing?
- When do we test?
- How do we choose what logic to test?
- How do we choose what data to test?

Test n.

How do you test your software? Write an automated test.

Test is a verb meaning to evaluate. No programmers release even the tiniest change without testing, except the very confident and the very sloppy. I’ll assume that if you’ve gotten this far, you’re neither. While you may test your changes, testing changes is not the same as having tests. Test is also a noun, a procedure leading to acceptance or rejection. Why does “test” the noun, a procedure that runs automatically, feel different than “test” the verb, such as poking a few buttons and looking at answers on the screen?

(What follows in an influence diagram, *a la* Gerry Weinberg’s Quality Software Management. An arrow between nodes means an increase in the first node implies...
an increase in the second. An arrow with a circle means an increase in the first node implies a decrease in the second.)

What happens when the stress level rises?

Figure 1 has Stress negatively connected to Testing negatively connected to Errors positively connected to Stress.

This is a positive feedback loop. The more stress you feel, the less testing you will do. The less testing you do, the more errors you will make. The more errors you make, the more stress you feel. Rinse and repeat.

How do you get out of such a loop? Either introduce a new element, replace one of the elements, or change the arrows. In this case we’ll replace “testing” with “automated testing”.

Figure 2 has Stress positively connected to Automated Testing negatively connected to Errors and Stress, and Errors positively connected to Stress.

“Did I just break something else with that change?” With automated tests, when I start to feel stress I run the tests. Tests are the Programmer’s Stone, transmuting fear into boredom. “No, the tests are all still green.” The more stress I feel, the more I run the tests. Running the tests immediately gives me a good feeling, and reduces the number of errors I make, which further reduces the stress I feel.

“We don’t have time to run the tests. Just release it!” The second picture isn’t guaranteed. If the stress level rises high enough, it breaks down. However, with the automated tests you have a chance to choose your level of fear.

Should you run the test after you write it, even though you know it’s going to fail? No, don’t bother. For example, I was working with a couple of very sharp younger programmers on implementing in-memory transactions (a very cool technique every programming language should have). How were we going to implement rollback if we started a transaction, changed a few variables, then let the transaction be garbage collected? Simple enough to test, youngsters. Stand back and watch the master at work. Here is the test. Now how are we going to implement this?

Two hours later, hours marred with frustration because a mistake implementing such low-level features generally crashes the development environment, we rolled back to where we had started. Wrote the test. Ran it on a whim. It passed. Duh… The whole point of the transaction mechanism was that variables weren’t really
changed until the transaction was committed. Okay, I suppose you could go ahead and run that new test if you want to.

Isolated Test

How should the running of tests affect each other? Not at all.

When I was a young programmer, long long ago when we had to dig our own bits out of the snow and carry heavy buckets of them bare-footed back to our cubicles leaving bloody little footprints for the wolves to follow… Sorry, just reminiscing. My first experience of automated tests was having a set of long-running, overnight, GUI-based tests (you know, record the keystrokes and mouse events and play them back) for a debugger I was working on (hi Jothy, hi John!). Every morning when I came in there would be a neat stack of paper on my chair describing last night’s test runs (hi Al!). On good days there would be a single sheet summarizing that nothing broke. On bad days there would be many many sheets, one for each broken test. I began to dread days when I saw a pile of paper on my chair.

I took two lessons from this experience. First, make the tests so fast to run that I can run them myself, and run them often. That way I can catch errors before anyone else sees them, and I don’t have to dread coming in in the morning. Second, I noticed after a while that a huge stack of paper didn’t usually mean a huge list of problems. More often it meant that one test had broken early, leaving the system in an unpredictable state for the next test.

We tried to get around this problem by starting and stopping the system between each test, but it took too long, which taught me another lesson about seeking tests at a smaller scale than the whole application. But the main lesson I took was that tests should be able to ignore each other completely. If I had one test broken, I wanted one problem. If I had two tests broken, I wanted two problems.

One convenient implication of isolated tests is that the tests are order independent. If I want to grab a subset of tests and run them, I can do so without worrying that a test will break now because a prerequisite test is gone.

Performance is the usual reason cited for having tests share data. A second implication of isolated tests is that you have to work, sometimes work hard, to break your problem into little orthogonal dimensions, so setting up the environment for each test is easy and quick. Isolating tests encourages you to compose solutions out of many highly cohesive, loosely coupled objects. I always heard this was a good idea,
and I was happy when I achieved it, but I never knew exactly how to regularly achieve high cohesion and loose coupling until I started writing isolated tests.

Test List

What should you test? Before you begin, write a list of all the tests you know you will have to write.

The first part of our strategy for dealing with programming stress is to never take a step forward unless we know where our foot is going to land. When we sit down to a programming session, what is it we intend to accomplish?

One strategy for keeping track of what we’re trying to accomplish is to hold it all in our heads. I tried this for several years, and found I got into a positive feedback loop. The more experience I accumulated, the more things I knew that might need to be done. The more things I knew might need to be done, the less attention I had for what I was doing. The less attention I had for what I was doing, the less I accomplished. The less I accomplished, the more things I knew that needed to be done.

Just ignoring random items on the list and programming at whim did not appear to work to break this cycle.

I got in the habit of writing down everything I wanted to accomplish over the next few hours on a slip of paper next to my computer. I had a similar list, but with weekly or monthly scope pinned on the wall. As soon as I had all that written down, I knew I wasn’t going to forget something. When a new item came up, I would quickly and consciously decide whether it belonged on the “now” list, the “later” list, or it didn’t really need to be done at all.

Applied to test-driven development, what we put on the list are the tests we want to implement. First, put on the list examples of every operation that you know you need to implement. Next, for those operations that don’t already exist, put the null version of that operation on the list. Finally, list all the refactorings that you think you will have to do to have clean code at the end of this session.

Instead of outlining the tests, we could just go ahead and implement them all. There are a couple of reasons writing tests *en masse* hasn’t worked for me. First, every test you implement is a bit of inertia when you have to refactor. With automated refactoring tools (e.g. you have a menu item that renames the declaration and all uses of a variable) this is less of a problem, but when you’ve implemented ten tests
and then you discover the arguments need to be in the opposite order, you are just that much less likely to go clean up. Second, if you have ten tests broken, you are a long way from the green bar. If you want to get to green quickly, you have to throw all ten tests away. If you want to get all the tests working, you are going to be staring at a red bar for a long time. If you are sufficiently addicted to the green bar you can’t go to the bathroom if the bar is red, that can be an eternity.

Conservative mountain climbers have a rule that of your four hands and feet, three of them must be attached at any one time. Dynamic moves where you let go of two at once are much more dangerous. The pure form of TDD, where you are never more than one change away from a green bar, is like that three out of four rule.

As you make the tests run, the implementation will imply new tests. Write the new tests down on the list. Likewise with refactorings. “This is getting ugly.” “<sigh> Put it on the list. We’ll get to it before we check in.”

Items that are left on the list when the session is done need to be taken care of. If you are really half way through a piece of functionality, use the same list later. If you have discovered larger refactorings that are out of scope for the moment, move them to the “later” list. I can’t recall ever moving a test case to the “later” list. If I can think of a test that might not work, getting it to work is more important than releasing my code.

Test First

When should you write your tests? Before you write the code that is to be tested.

You won’t test after. Your goal as a programmer is running functionality. However, you need a way to think about design, you need a method for scope control.

Let’s look at the usual influence diagram relating stress and testing (but not stress testing, that’s different):

Stress above negatively connected to testing below negatively connected to stress.

The more stress you feel, the less likely you are to test enough. When you know you haven’t tested enough, you add to your stress. Positive feedback loop. Once again, there needs to be a way to break the loop.

What if we adopted the rule that we would always test first. Then we can invert the diagram and get a virtuous cycle:
Test-first above negatively connected to stress below negatively connected to test-first.

When we test first, we reduce the stress, which makes us more likely to test. There are lots of other elements feeding into stress, however, so the tests must live in other virtuous cycles or they will be abandoned when stress increases enough. However, the immediate payoff for testing—a design and scope control tool—suggests that we will be able to start doing it, and keep doing it even under moderate stress.

Assert First

When should you write the asserts? Try writing them first.

Don’t you just love self-similarity?

- Where should you start building a system? With stories you want to be able to tell about the finished system.
- Where should you start writing a bit of functionality? With the tests you want to pass with the finished code.
- Where should you start writing a test? With the asserts that will pass when it is done.

Jim Newkirk introduced me to this technique. When I test assert-first I find it has a powerful simplifying effect. When you are writing a test, you are solving several problems at once, even if you no longer have to think about the implementation.

- Where does the functionality belong? Is it a modification of an existing method, a new method on an existing class, an existing method name implemented in a new place, or a new class?
- What should the names be called?
- How are you going to check for the right answer?
- What is the right answer?
- What other tests does this test suggest?

Pea-sized brains like mine can’t possibly do a good job of solving all these problems at once. The two problems from the list that can easily separated from the rest are “what is the right answer?” and “how am I going to check?”
Here’s an example. Suppose we want to communicate with another system over a socket. When we’re done, the socket should be closed and we should have read the string "abc".

```java
testCompleteTransaction() {
    ...
    assertTrue(reader.isClosed());
    assertEquals("abc", reply.contents());
}
```

Where does the reply come from? The socket, of course:

```java
testCompleteTransaction() {
    ...
    Buffer reply= reader.contents();
    assertTrue(reader.isClosed());
    assertEquals("abc", reply.contents());
}
```

And the socket? We create it by connecting to a server:

```java
testCompleteTransaction() {
    ...
    Socket reader= Socket("localhost", defaultPort());
    Buffer reply= reader.contents();
    assertTrue(reader.isClosed());
    assertEquals("abc", reply.contents());
}
```

But before this, we need to open a server:

```java
testCompleteTransaction() {
    Server writer= Server(defaultPort(), "abc");
    Socket reader= Socket("localhost", defaultPort());
    Buffer reply= reader.contents();
    assertTrue(reader.isClosed());
    assertEquals("abc", reply.contents());
}
```

Now we may have to adjust the names based on actual usage, but we have created the outlines of the test in teensy tiny steps, informing each decision with feedback within seconds.
Test Data

What data do you use for test-first tests? Use data that makes the tests easy to read and follow.

You are writing tests to an audience. Don’t scatter data values around just to be scattering data values around. If there is a difference in the data, it should be meaningful. If there isn’t a conceptual difference between 1 and 2, use 1.

Test Data isn’t a license to stop short of full confidence. If your system has to handle multiple inputs, your tests should reflect multiple inputs. However, don’t have a list of 10 items as the input data if a list of 3 items will lead you to the same design and implementation decisions.

One trick in Test Data is to try to never use the same constant to mean more than one thing. If I am testing a plus() method, it is tempting to test 2 + 2, since that is the classic example of addition, or 1 + 1, since that is so simple. What if we got the arguments reversed in the implementation? (Okay, okay, that doesn’t matter in the case of plus(), but you get the idea.) If we use 2 for the first argument we should use 3, for example, for the second. (“3 + 4” was a watershed test case when bringing up a new Smalltalk virtual machine back in the olden days.)

The alternative to Test Data is Realistic Data, where you use data from the real world. Realistic Data is useful when:

- You are testing real-time systems using traces of external events gathered from the actual execution
- You are matching the output of the current system with the output of a previous system (Parallel Testing)
- You are refactoring a simulation and expect precisely the same answers when you are finished, particularly if floating point accuracy may be a problem

Evident Data

How do you represent the intent of the data? Include expected and actual results in the test itself, and try to make their relationship apparent.

You are writing tests for a reader, not just the computer. Someone in decades to come will be asking themselves the question, "What in the heck was this joker
thinking about?” You’d like to leave as many clues as possible, especially if that frustrated reader is going to be you.

Here’s an example. If we convert from one currency to another, we take a 1.5% commission on the transaction. If the exchange rate from USD to GBP is 2:1, then if we exchange $100, we should get 50 GBP - 1.5% = 49.25 GBP. We could write this test like this:

```java
Bank bank= new Bank().
    bank.addRate("USD", "GBP", STANDARD_RATE);
    bank.commission(STANDARD_COMMISSION);
    Money result= bank.convert(new Note(100, "USD"), "GBP");
    assertEquals(new Note(49.25, "GBP"), result);
```

or we could try to make the calculation obvious:

```java
Bank bank= new Bank();
    bank.addRate("USD", "GBP", 2);
    bank.commission(0.015);
    Money result= bank.convert(new Note(100, "USD"), "GBP");
    assertEquals(new Note(100 / 2 * (1 - 0.015), "GBP"), result);
```

I can read this test and see the connection between the numbers used in the input and the numbers used to calculate the expected result.

One beneficial side effect of Evident Data is that it makes programming easier. Once we’ve written the expression in the assertion, we know what we need to program. Somehow we have to get the program to evaluate a division and a multiplication. We can even use Fake It to discover where the operations belong incrementally.

Evident Data seems to be an exception to the rule that you don’t want magic numbers in your code. Within the scope of a single method, the relationship between the 5’s is obvious. If I had symbolic constants that were already defined, though, I would use the symbolic form.

Further Study

???others???
These patterns are about when you write tests, where you write tests, and when you stop writing tests.

One Step Test

Which test should you pick next from the list? Pick a test that will teach you something and that you are confident you can implement.

Each test should represent one step towards your overall goal. If we are looking at the following Test List, which test should we pick next?
Red Bar Patterns

Plus
Minus
Times
Divide
Plus like
Equals
Equals null
Null exchange
Exchange one currency
Exchange two currencies
Cross rate

There is no right answer. What is one step for me, never having implemented these objects before, will be one tenth of a step to you, with your vast experience.

When I look at a Test List, I think, “That’s obvious, that’s obvious, I have no idea, obvious, what was I thinking about with that one, ah, this one I can do.” That last test is the test I implement next. It didn’t strike me as obvious, but I’m also confident I can make it work.

If you don’t find any test on the list that represents one step, add some new tests that would represent progress towards the items there.

A program grown from tests like this can appear to be written top-down, because you can begin with a test that represents a simple case of the entire computation. A program grown from tests can also appear to be written bottom-up, because you start with small pieces and aggregate them larger and larger.

Neither top-down nor bottom-up really describes the process helpfully. First, a vertical metaphor is a simplistic visualization of how programs change over time. “Growth” implies a kind of self-similar feedback loop where the environment affects the program and the program affects the environment. Second, if we have to have a direction in our metaphor, “known-to-unknown” is a helpful description. Known-to-unknown implies that we have some knowledge and experience on which to draw, and that we expect to learn in the course of development. Put these two together and we have programs growing from known to unknown.

Starter Test

Which test should you start with? Start by testing a variant of an operation that doesn’t do anything.
The first question you have to ask with a new operation is "Where does it belong?" Until you’ve answered this question, you don’t know what to type for the test. In the spirit of solving one problem at a time, how can we answer just this question and no other?

If you write a “realistic” test first, you will find yourself solving a bunch of problems at once:

- Where does the operation belong?
- What are the correct inputs?
- What is the correct output given those inputs?

Beginning with a realistic test will leave you too long without feedback. Red/green/refactor, red/green/refactor. You want that loop to be minutes.

You can shorten the loop by choosing inputs and outputs that are trivially easy to discover. For example, a poster on the Extreme Programming newsgroup asked about how to write a polygon reducer test-first. The input is a mesh of polygons and the output is a mesh of polygons that describes precisely the same surface, but with the fewest possible polygons. “How can I test-drive this problem since getting a test to work requires reading Ph.D. theses?”

Starter Test provides an answer:

- The output should be the same as the input. Some configurations of polygons are already normalized, incapable of further reduction.
- The input should be as small as possible, like a single polygon, or even an empty list of polygons.

My Starter Test looked like this:

```java
Reducer r = new Reducer(new Polygon());
assertEquals(0, reducer.result().npoints);
```

Bing! First test is running. Now for all the rest of the tests on the list...

One Step Test applies. Pick a Starter Test that will teach you something but that you are certain you can get working quickly. If you are implementing something for the Nth time, pick a test that will require an operation or two. You will be justifiably confident you can get it working. If you are implementing something hairy and complicated for the first time, you need a little courage pill immediately.
I find that my Starter Test is often at a higher level, more like an application test, than the following tests. One example I often test-drive is a simple socket-based server. The first test looks like this:

```java
StartServer
Socket= new Socket
Message= “hello”
Socket.write(message)
AssertEquals(message, socket.read)
```

The rest of the tests are written in the server alone, “assuming we receive a string like this…”

Another Starter Test came from the game of Life. The folks discussing it were talking about tests for cells, and sizes, and two dimensional arrays vs. hash tables with points as keys. My Starter Test looked like this:

Explanation Test

How do you spread the use of automated testing? Ask for and give explanations in terms of tests.

It can be frustrating to be the only TDD on a team. Soon, you will notice fewer integration problems and defect reports in tested code, and the designs will be simpler and easier to explain. It has even happened before that folks get downright enthusiastic about testing, and testing first.

Beware the enthusiasm of the newly converted. Nothing will stop the spread of TDD faster than pushing it in people’s faces. If you’re a manager or leader, you can’t force anyone to change the way they work.

What can you do? A simple start is to start asking for explanations in terms of test cases. “Let me see if I understand what you’re saying. For example, if I have a Foo like this and a Bar like that then the answer should be 76?” A companion technique is to start giving explanations in terms of tests. “Here’s how it works now. When I have a Foo like this and a Bar like that, the answer is 76. If I have a Foo like that and a Bar like this, though, I would like the answer to be 67.”

You can do this at higher levels of abstraction. If someone is explaining a sequence diagram to you, you can ask for permission to convert it to a more familiar notation.
Then you type in a test case that contains all the externally visible objects and messages in the diagram.

Learning Test

When do you write tests for externally produced software? Before the first time you are going to use a new facility in the package.

Let’s say we are going to develop something on top of the Mobile Information Device Profile library for Java. We want to store some data in the RecordStore and retrieve it. Do we just write the code and expect it to work? That’s one way to develop.

An alternative is to notice that we are about to use a new method of a new class. Instead of just using it, we write a little test that verifies that the API works as expected. So, we might write:

```java
RecordStore store;

public void setUp() {
    store= RecordStore.openRecordStore("testing", true);
}

public void tearDown() {
   RecordStore.deleteRecordStore("testing");
}

public void testStore() {
    int id= store.addRecord(new byte[] {5, 6}, 0, 2);
    assertEquals(2, store.getRecordSize(id));
    byte[] buffer= new byte[2];
    assertEquals(2, store.getRecord(id, buffer, 0));
    assertEquals(5, buffer[0]);
    assertEquals(6, buffer[1]);
}
```

If our understanding of the API is correct, the test will pass first time.

1. Thanks to Jim Newkirk and Laurent Bossavit for independently suggesting this pattern.
Jim Newkirk reported on a project in which Learning Tests were routinely written. When new releases of the package arrived, first the tests were run (and fixed, if necessary.) If the tests didn’t run, there was no sense running the application because it certainly wouldn’t run. Once the tests ran, the application ran every time.

Another Test

How do you keep a technical discussion from straying off topic? When a tangential idea arises, add a test to the list and go back to the topic.

I love wandering discussions (you’ve read most of the book now, so you’ve probably reached that conclusion yourself). Keeping a conversation strictly on course is a great way to stifle brilliant ideas. You hop from here to there to there, and how did we get here? Who cares, this is cool!

Sometimes programming relies on breakthroughs. Most programming, though, is a bit more pedestrian. I have ten things to implement. I become an accomplished procrastinator about item number four. Retreating to hummingbird conversation is one of my ways of avoiding work (and maybe the fear that goes along with it.)

Whole unproductive days have taught me that at times it’s best to stay on track. When I’m feeling this way, new ideas are greeted with respect, but not allowed to divert my attention. I write them down on the list, and get back to what I was working on.

Regression Test

What’s the first thing you do when a defect is reported? Write the smallest possible test that fails, and that once it runs, the defect will be repaired.

Regression tests are tests that, with perfect foreknowledge, you would have written when coding originally. Every time you have to write a regression test, think about how you could have known to write the test in the first place.

You will also gain value by testing at the level of the whole application. Regression tests for the application give your users a chance to speak concretely to you about what is wrong and what they expect. Regression tests at the smaller scale are a way for you to improve your testing. The defect report will be about a bizarre large negative number in a report. The lesson for you is that you need to test for integer roll-over when you are writing your test list.
You may have to refactor the system before you can easily isolate the defect. The defect in this case was your system’s way of telling you, “You aren’t quite done designing me yet.”

Break

What do you do when you feel tired or stuck? Take a break.

Take a drink, take a walk, take a nap. Wash your hands clean of your emotional commitment to the decisions you just made and the characters you typed.

Often, this amount of distance is all it will take to break loose the idea you’ve been lacking. You’ll just be standing up when you realize, “I haven’t tried it with the parameters reversed!” Take the break anyway. Give yourself a couple of minutes. The idea won’t go away.

If you don’t get “the idea”, review your goals for the session. Are they still realistic or should you pick new goals? Is what you were trying to accomplish impossible? If so, what are the implications for the team?

Dave Ungar calls this his Shower Methodology. If you know what to type, type. If you don’t know what to type, take a shower. Many teams would be happier, more productive, and smell a whole lot better if they took his advice.

TDD is a refinement on the Ungar Shower Methodology. If you don’t know what to type, fake it. If the “right” design still isn’t clear, triangulate. If you still don’t know what to type, then you can take that shower.

Here is an influence diagram that shows the positive feedback loop at work:

Fatigue negatively affects judgement which negatively affects fatigue

You’re getting tired, so you’re less capable of realizing that you’re tired, so you keep going and get more tired.

The way out of this loop is to introduce an additional outside element.

- At the scale of hours, keep a water bottle by your keyboard so biology provides the motivation for regular breaks.
- At the scale of a day, commitments after regular work hours can help you stop when you need sleep before progress.
At the scale of a week, weekend commitments help get your conscious, energy-sucking thoughts off work. (My wife swears I get my best ideas Friday evening.)

At the scale of a year, mandatory vacation policies help you refresh yourself completely. The French do this right—two contiguous weeks of vacation aren’t enough. You spend the first week decompressing, and the second week getting ready to go back to work. Therefore three weeks, or better four, are necessary for you to be your most effective the rest of the year.

There is a flip side to taking breaks. Sometimes when faced with a tough problem what you need to do is press on, push through it. However, programming culture is so infected with macho, “I’ll ruin my health, alienate my family, and kill myself if necessary,” spirit that I don’t feel compelled to give any advice along these lines. If you find yourself caffeine-addicted and making no progress whatsoever, perhaps you shouldn’t take quite so many breaks. In the meantime, take a walk.

Do Over

What do you do when you are feeling lost? Throw away the code and start over.

You’re lost. You’ve taken the break, rinsed your hands in the brook, sounded the Tibetan temple bell, and still you’re lost. The code that was going so well an hour ago is now a mess, you can’t think of how to get the next test case working, and you’ve thought of 20 more tests that you really should implement.

This has happened to me several times in writing this book. I would get the code a bit twisted. “But I have to finish the book. The children are starving and the bill collectors are pounding on the door.” My gut reaction would be to untwist it just enough to move on. After a pause for reflection, starting over always made more sense. The one time I pressed on regardless, I had to throw away 25 pages of manuscript because it was based on an obviously stupid programming decision.

My favorite example of Do Over is a story Tim Mackinnon told me. He was interviewing someone by the simple expedient of asking her to pair program with him for an hour. At the end of the session, they’d implemented several new test cases and done some nice refactoring. It was the end of the day, though, and they felt tired when they were done, so they discarded their work.

If you pair program, switching partners is a good way to motivate productive Do Overs. You’ll try to explain the complicated mess you made for a few minutes
when your new partner, completely uninvested in the mistakes you’ve made, will gently take the keyboard and say, “I’m terribly sorry for being so dense, but what if we started like this…”

Cheap Desk, Nice Chair

What physical setup should you use for test-driven development? Get a really nice chair, skimping on the rest of the furniture if necessary.

You can’t program well if your back hurts. Yet, organizations that will spend a hundred thousand dollars a month on a team won’t spend ten thousand dollars on decent chairs.

My solution is to use cheap, ugly folding tables for my computers, but buy the best chairs I can find. I have plenty of desk space, and I can easily get more, and I am fresh and ready for programming in the afternoon and the morning.

Get comfortable when you’re pair programming. Clean off the desk surface enough that you can slide the keyboard back and forth. Each partner should be able to sit comfortably directly in front of the keyboard when they are driving. One of my favorite coaching tricks is to come up behind a pair that is hacking away and gently slide the keyboard so it is comfortably placed for the person typing.

Manfred Lange points out that careful resource allocation also applies to computer hardware. Get cheap/slow/old machines for individual email and surfing, and the hottest possible machines for shared development.

Further Study

Constantine, Peopleware Paper

Weinberg, Psychology of Computer Programming,
CHAPTER 30

Testing Patterns

Child Test

How do you get a test case running that turns out to be too big? Write a smaller test case that represents the broken part of the bigger test case. Get the smaller test case running. Reintroduce the larger test case.

The red/green/refactor rhythm is so important for continuous success that when you are at risk of losing it, it is worth extra effort to maintain it. This commonly happens to me when I write a test that accidentally requires several changes to make work. Even ten minutes with a red bar gives me the willies.

When I write a test that is too big, I first try to learn the lesson. Why was it too big? What could I have done differently that would have made it smaller? How am I feeling right now?

Metaphysical navel gazing accomplished, I delete the offending test and start over. “Well, getting these three things working at once was too much. If I had A, B, and C working, though, getting the whole thing working would be a cinch.” Sometimes I really delete the test, sometimes I just change the name to begin with an “x” so it won’t be run. (Can I tell you a secret? Sometimes I don’t even bother to delete the offending test. Shhhhh… I live with two, count ‘em two, broken tests for a matter of a couple of minutes while I get the child test working. I could be making a mis-
Testing Patterns

take when I do this. Two broken tests could easily be a holdover from my bad old test-last-if-ever days.)

Try it both ways yourself. See if you feel different, program different, when you have two tests broken. Respond as appropriate.

Mock Object

How do you test an object that relies on an expensive or complicated resource? Create a fake version of the resource that answers constants.

There is at least a book’s worth of material in Mock Object¹, but this will serve as an introduction.

The classic example is a database. Databases take a long time to start, they are difficult to keep clean, and if they are located on a remote server, they tie your tests to a physical location on a network. The database is also a fertile source of error in development.

The solution is not to use a real database most of the time. Most tests are written in terms of an object that acts like a database, but is really just sitting in memory.

```java
public void testOrderLookup() {
    Database db= new MockDatabase();
    db.expectQuery("select order_no from Order where cust_no is 123");
    db.returnResult(new String[] {"Order 2","Order 3");
    ...
}
```

If the MockDatabase does not get the query it expects, it throws an exception. If the query is correct, it returns something that looks like a result set constructed from the constant strings.

Another value of mocks, aside from performance and reliability, is readability. You can read the test above from one end to another. If you have a test database full of realistic data, when you see that a query should have resulted in 14 replies, you have no idea why 14 is the right answer.

¹ For example, see www.mockobjects.com.
If you want to use Mock Objects, you can’t easily store expensive resources in global variables (even if they masquerade as Singletons). If you do, you will have to set the global to a Mock Object, run the test, and be sure to reset the global when you are done.

There have been times when I was furious at this restriction. Massimo Arnoldi and I were working on some code relying on a set of exchange rates stored in a global variable. Each test needed different subsets of the data, and sometimes they needed different exchange rates. After a while of trying to get the global variable to work, we decided one morning (courageous design decisions come more often in the morning for me) to just pass the Exchange around wherever we needed it. We thought we would have to modify hundreds of methods. In the end, we added a parameter to ten or fifteen methods, and cleaned up other aspects of the design along the way.

Mocks will encourage you down the path of carefully considering the visibility of every object, reducing the coupling in your designs.

Mock Objects add a risk to the project—what if the mock doesn’t behave like the real object? You can reduce this strategy by having a set of tests for the mock that can also be applied to the real object when it becomes available.

Self Shunt

How do you test that one object communicates correctly with another? Have the object under test communicate with the test case instead of with the object it expects.

Suppose we wanted to dynamically update the green bar on the testing user interface. If we could connect an object to the TestResult, it could be notified when a test ran, when it failed, when a whole suite started and finished, and so on. Whenever we were notified that a test ran, we would update the interface. Here’s a test for this:

```python
class ResultListenerTest:
    def testNotification(self):
        result = TestResult()
        listener = ResultListener()
        result.addListener(listener)
        WasRun("testMethod").run(result)
        assert 1 == listener.count
```
The test needs an object to count the number of notifications:

```python
class ResultListener:
    def __init__(self):
        self.count = 0
    def startTest(self):
        self.count = self.count + 1
```

But wait. Why do we need a separate object for the listener? We can just use the test case itself. The TestCase itself becomes a kind of Mock Object.

```python
class ResultListenerTest:
    def testNotification(self):
        self.count = 0
        result = TestResult()
        result.addListener(self)
        WasRun("testMethod").run(result)
        assert 1 == self.count
    def startTest(self):
        self.count = self.count + 1
```

Tests written with Self Shunt tend to read better than tests written without. The test above is a good example. The count was 0, and then it was 1. How did it get to be 1? Someone must have called startTest(). How did startTest() get called? It must happen when running the test. This is another example of symmetry—the second version of the test method has the two values for count in one place, where in the first version the count is set to 0 in one class and expected to be 1 in another.

Self Shunt may require that you use Extract Interface to get an interface to implement. You will have to decide whether extracting the interface is easier or if testing the existing class as a black box is easier. I have noticed, though, that interfaces extracted for shunts tend to get their third and subsequent implementations soon thereafter.

As a result of using Self Shunt, you will see tests in Java implementing all sorts of bizarre interfaces. In optimistically typed languages, the test case class need only implement those operations that are actually used in the running of the test. In Java, however, you have to implement all the operations of the interface, even if most of the implementations are empty, so you would like interfaces to be as narrow as possible. The implementations should either return a reasonable value or throw an
exception, depending on whether you want to be notified if an unexpected operation is invoked.

Log String

How do you test that the sequence in which messages are called is correct? Keep a log in a string, and append to the string when a message is called.

The example from xUnit serves. We have a Template Method which we expect to call setUp(), a testing method, and tearDown(), in that order. By implementing the methods to record in a string that they were called, the test reads nicely:

```python
def testTemplateMethod(self):
    test= WasRun("testMethod")
    result= TestResult()
    test.run(result)
    assert("setUp testMethod tearDown " == test.log)
```

And the implementation is simple, too:

```python
WasRun

def setUp(self):
    self.log= "setUp 

def testMethod(self):
    self.log= self.log + "testMethod 

def tearDown(self):
    self.log= self.log + "tearDown 
```

Log Strings are particularly useful when you are implementing Observer and you expect notifications to come in a certain order. If you expected certain notifications but you didn’t care about the order, you could keep a set of strings, and use set comparison in the assertion.

Log String works well with Self Shunt. The test case implements the methods in the shunted interface by adding to the log and then returning reasonable values.

Crash Test Dummy

How do you test error code that is unlikely to be invoked? Invoke it anyway with a special object that throws an exception instead of doing real work.
Code that isn’t tested doesn’t work. This seems to be the safe assumption. What to do with all those odd error conditions, then? Do you have to test them, too? Only if you want them to work.

Let’s say we want to test what happens to our application when the file system is full. We could go to a lot of work to create many big files and fill the file system, or we could fake it. “Fake it” doesn’t sound dignified, does it? We’ll simulate it.

Here’s our crash test dummy for a file:

```java
private class FullFile extends File {
    public FullFile(String path) {
        super(path);
    }
    public boolean createNewFile() throws IOException {
        throw new IOException();
    }
}
```

Now we can write our Expected Exception test:

```java
public void testFileSystemError() {
    File f= new FullFile(“foo”);
    try {
        saveAs(f);
        fail();
    } catch (IOException e) {
    }
}
```

A Crash Test Dummy is like a Mock Object, except you don’t need to Mock up the whole object. Java’s anonymous inner classes work well for sabotaging just the right method to simulate the error we want to exercise. You can override just the one method you want, right there in your test case, making the the test case easier to read:

```java
public void testFileSystemError() {
    File f= new File(“foo”) {
        public boolean createNewFile() throws IOException {
            throw new IOException();
        }
    };
```
try {
 saveAs(f);
 fail();
} catch (IOException e) {
}

Broken Test

How do you leave a programming session when you’re programming alone? Leave the last test broken.

Richard Gabriel taught me the trick of finishing a writing session in mid-sentence. When you sit back down, you look at the half sentence and you have to figure out what you were thinking when you wrote it. Once you have the thought thread back, you finish the sentence and continue. Without the urge to finish the sentence, you can spend many minutes first sniffing around for what to work on next, then trying to remember your mental state, then finally getting back to typing.

I tried the analogous technique for my solo projects and I really like the effect. Finish a solo session by writing a test case and running it to be sure it doesn’t pass. When you come back to the code, you have an obvious place to start, you have an obvious, concrete bookmark to help you remember what you were thinking, and making that test work should be quick work, so you’ll quickly get your feet back on that victory road.

I thought it would bother me to have a test broken overnight. It doesn’t, I think because I know that the program isn’t finished. A broken test doesn’t make the program any less finished, it just makes the status of the program manifest. The ability to quickly pick up a thread of development after weeks of hiatus is worth that little twinge of walking away from a red bar.

Clean Check-in

How do you leave a programming session when you’re programming in a team? Leave all the tests running.

“Do I contradict myself? Tough.”

–Bubba Whitman, Walt’s stevedore brother
Testing Patterns

When you are responsible to your teammates, the picture changes completely. When you start programming on a team project, you don’t know in detail what has happened to the code since you saw it last. You need to start from a place of confidence and certainty. Therefore, always make sure all the tests are running before you check in your code (a bit like how each test case leaves the world in a known-good state, if you are prone to computer metaphors for human behavior, which I’m not (usually)).

The test suite you run when you check in may be more extensive than the one you are running every minute during development (don’t give up on running the whole suite all the time until it is slow enough to be annoying). You will occasionally find a test broken in the integration suite when you try to check in. What to do?

The simplest rule is to just throw away your work and start over. The broken test is pretty strong evidence that you didn’t know enough to program what you just programmed. If the team adopted this rule, there would be a tendency for folks to check in more often because the first person to check in doesn’t risk losing any work. Checking in more often is probably a good thing.

A slightly more libertine approach is to give you a chance to fix the defect and try again. To keep from dominating the integration resources, you should probably give up after a few minutes and start over. It goes without saying, so I’ll say it anyway, that commenting out tests to make the suite pass is strictly verboten, and grounds for some serious beer purchasing at that Friday late afternoon’s offsite planning meeting.

Further Study

??version control/configuration management???

www.mockobjects.com
Once you have a broken test, you need to fix it. If you treat a red bar as a condition to be fixed as quickly as possible, you will discover that you can get to green quickly. These patterns are how to make the code pass (even if the result isn’t something you want to live with for even an hour).

Fake It ('Til You Make It)

What is your first implementation once you have a broken test? Return a constant. Once you have the test running, gradually transform the constant into an expression using variables.

A simple example occurred in our implementation of xUnit.

```python
return "1 run, 0 failed"
```

became:

```python
return "%d run, 0 failed" % self.runCount
```

became:

```python
return "%d run, %d failed" % (self.runCount, self.failureCount)
```
Fake It is a bit like driving a piton above your head when you are climbing a rock. You haven’t really gotten there yet (the test is there but the code structure is wrong). However, when you do get there, you know you will be safe (the test will still run).

Fake It really rubs some people the wrong way. Why would you do something that you know you have to rip out? Because having something running is better than not having something running, especially if you have the tests to prove it. Peter Hansen submitted this story:

… something happened just yesterday where, as two newbies to TDD, my partner and I aggressively stuck to the letter of the law and committed sins to get a test working quickly. In the process, we realized we had not properly implemented the test so we went back and fixed that, then made the code work again. The first working code ended up not being anywhere in sight by the time it worked again and we sort of looked at each other and said, “Huh... would you look at that!” because that approach had taught us something we didn’t know.

How could a fake implementation have taught them their test was written wrong? I don’t know, but I’ll bet they were glad they didn’t invest in the real solution to find out.

There are a couple of effects that make Fake It powerful:

- Psychological—Having a green bar feels completely different than having a red bar. When the bar is green, you know where you stand. You can refactor from there with confidence.
- Scope control—Programmers are good at imagining all sorts of future problems. Starting with one concrete example and generalizing from there prevents you from prematurely confusing yourself with extraneous concerns. You can do a better job of solving the immediate problem because you are focused. When you go to implement the next test case, you can focus on that one, too, knowing that the previous test is guaranteed to work.

Does Fake It violate the rule that says you don’t write any code that isn’t needed? I don’t think so, because in the refactoring step you are eliminating duplication of data between the test case and the code. When I write:

```
assertEquals(new MyDate("28.2.02"), new MyDate("1.3.02").yesterday());
```

1. Thanks to Dierk König for the example.
MyDate
public MyDate yesterday() {
 return new MyDate("28.2.02");
}

There is duplication between the test and the code. I can shift it around by writing:

MyDate
public MyDate yesterday() {
 return new MyDate(new MyDate("31.3.02").days()-1);
}

But there is still duplication. However, I can eliminate the data duplication (because this = MyDate("31.1.02") for the purposes of my test) by writing:

MyDate
public MyDate yesterday() {
 return new MyDate(this.days()-1);
}

Not everyone is convinced by this bit of sophistry, which is why you can Triangulate, at least until you are tired of it and start using Fake It or even Obvious Implementation.

When I use Fake It, I’m reminded of long car trips with kids in the back. I write the first test, I make it work some ugly way, and then, “Don’t make me stop this car and write another test. If I have to pull over, you’ll be sorry.” “Okay, okay, Dad. I’ll clean the code up. You don’t have to get all huffy.”

Triangulate

How do you most conservatively drive abstraction with tests? Only abstract when you have two or more examples.

Here’s an example. Suppose we want to write a function that will return the sum of two integers. We write:

 public void testSum() {
 assertEquals(4, plus(3, 1));
 }
private int plus(int augend, int addend) {
 return 4;
}

If we are triangulating to the right design, we have to write:

 public void testSum() {
 assertEquals(4, plus(3, 1));
 assertEquals(7, plus(3,4));
 }

When we have the second example, we can abstract the implementation of plus():

 private int plus(int augend, int addend) {
 return augend + addend;
 }

Triangulation is attractive because the rules for it seem so clear. The rules for Fake It, where we are relying on our sense of duplication between the test case and the fake implementation to drive abstraction, seem a bit vague and subject to interpretation. While they seem simple, the rules for triangulation create an infinite loop. Once we have the two assertions and we have abstracted the correct implementation for plus, we can delete one of the assertions on the grounds that it is completely redundant with the other. If we do that, however, we can simplify the implementation of plus() to just return a constant, which requires us to add an assertion.

I only use triangulation when I’m really, really unsure about the correct abstraction for the calculation. Otherwise I rely on either Obvious Implementation or Fake It.

Obvious Implementation

How do you implement simple operations? Just implement them.

Fake It and Triangulation are teensy-weensy tiny steps. Sometimes you are sure you know how to implement an operation. Go ahead. For example, would I really use Fake It to implement something as simple as plus()? Not usually. I would just type in the obvious implementation. If I noticed I was getting surprised by red bars, I would go to smaller steps.

There’s no particular virtue in the halfway nature of Fake It and Triangulate. If you know what to type, and you can do it quickly, do it. However, by using only Obvi-
ous Implementation, you are demanding perfection of yourself. Psychologically, this can be a devastating move. What if what you write isn’t really the simplest change that could get the test to pass? What if your partner shows you an even simpler one? You’re a failure! Your world crumbles around you! You die. Freeze up.

Solving “clean code” at the same time you solve “that works” can be too much to do at once. As soon as it is, go back to solving “that works,” then “clean code” at leisure.

Keep track of how often you get surprised by red bars using Obvious Implementation. I’ll get stuck in these cycles where I’ll type in an Obvious Implementation. It won’t work. But now I’m sure I know what I should type, so I type that. It doesn’t work. So now… This especially happens with off by one errors and positive/negative errors.

You want to maintain that red/green/refactor rhythm. Obvious Implementation is second gear. Be prepared to downshift if your brain starts writing checks your fingers can’t cash.

One to Many

How do you implement an operation that works with collections of objects? Implement it without the collections first, then make it work with collections.

For example, suppose we are writing a function to sum an array of numbers. We can start with one:

```java
public void testSum() {
    assertEquals(5, sum(5));
}
private int sum(int value) {
    return value;
}
```

(I am implementing sum() in the TestCase class to avoid writing a new class just for one method.)

2. Thanks to Laurent Bossavit for this discussion.
We want to test `sum(new int[] {5, 7})` next. First we add a parameter to `sum()` taking an array of values:

```java
public void testSum() {
    assertEquals(5, sum(5, new int[]{5}));
}

private int sum(int value, int[] values) {
    return value;
}
```

You can look at this step as an example of Isolate Change. Once we add the parameter in the test case we are free to change the implementation without affecting the test case.

Now we can use the collection instead of the single value:

```java
private int sum(int value, int[] values) {
    int sum = 0;
    for (int i = 0; i < values.length; i++)
        sum += values[i];
    return sum;
}
```

Now we can delete the unused single parameter:

```java
public void testSum() {
    assertEquals(5, sum(new int[]{5}));
}

private int sum(int[] values) {
    int sum = 0;
    for (int i = 0; i < values.length; i++)
        sum += values[i];
    return sum;
}
```

The previous step is also an example of Isolate Change, where we change the code so we can change the test cases without affecting the code. Now we can enrich the test case as planned:

```java
public void testSum() {
    assertEquals(12, sum(new int[]{5, 7}));
}
```
Further Study

Pragmatic Programmer

Ritchie Elements of Style
Assertion

How do you check that tests worked correctly? Write boolean expressions that automate your judgment about whether the code worked.

If we are going to make the tests fully automated, every bit of human judgment has to be taken out of the evaluation of the results. We need to push a button and have all the decisions necessary to verify the correct working of the code run by the computer. This suggests that:

- The decisions have to be boolean—true generally means everything is okay and false means something unexpected happened
- The state of the booleans have to be checked by computer, by calling some variant of an “assert()” method

I’ve seen assertions like “assertTrue(rectangle.area() != 0)”. You could return anything not null and satisfy this test, so it isn’t very useful. Be specific. If the area should be 50, say that it should be 50—“assertTrue(rectangle.area() == 50)".
Many xUnit implementations have a special assertion for testing equality. Testing for equality is common, and if you know you are testing equality you can write an informative error message. The expected value generally goes first, so in JUnit we would write the above as “assertEquals(50, rectangle.area())”.

Thinking about objects as black boxed is hard. If I have a Contract with a Status that can either be an instance of Offered or Running, I might feel like writing a test based on my expected implementation:

```java
Contract contract = new Contract(); // Offered status by default
contract.begin(); // Changes status to Running
assertEquals(Running.class, contract.status.class);
```

This test is too dependent on the current implementation of status. The test should pass even if the representation of status changed to a boolean. Perhaps once the status changes to Running, it is possible to ask for the actual start date.

```java
assertEquals(…, contract.startDate()); // Throws an exception if the status is Offered
```

I’m aware that I am swimming against the tide in insisting that all tests be written using only public protocol. There is even a package that extends JUnit, JXUnit, that allows testing the value of variables, even those declared private.

Wishing for white box testing is not a testing problem, it is a design problem. Any time I want to use a variable as a way of checking to see whether code ran correctly or not, I have an opportunity to improve the design. If I give in to my fear and just check the variable, I lose that opportunity. That said, if the design idea doesn’t come, it doesn’t come. I’ll check the variable, shed a tear, make a note to come back on one of my smarter days, and move on.

The original SUnit (the first, Smalltalk, version of the testing framework) had simple assertions. If one broke, a debugger popped up, you fixed the code, and away you went. Because the IDEs for Java aren’t so sophisticated, and because building Java-based software often happens in a batch environment, it makes sense to add information about the assertion which will be printed if it ever fails.
In JUnit, this takes the form of an optional first parameter. If you write "assertTrue("Should be true", false)", when the test is run you will see an error message something like "Assertion failed: Should be true". This is often enough information to send you straight to the source of the error in the code. Some teams adopt the convention that all assertions must be accompanied by an informative error message. Try it both ways and see if the investment in the error messages pays off for you.

Fixture

How do you create common objects needed by several tests? Convert the local variables in the tests into instance variables. Override setUp() and initialize those variables.

If we want to remove duplication from our model code, do we want to remove it also from our test code? Maybe.

Here's the problem—often you write more code setting objects up in an interesting state than you write manipulating them and checking results. The code for setting up the objects is the same for several tests (these objects are the test’s fixture, also known as scaffolding.) This duplication is bad:

- It takes a while to write, even to copy-n-paste, and we’d like test writing to be fast
- If we need to change an interface by hand, we have to change it in several tests (exactly what we would expect of duplication)

The same duplication, however, is also good. Tests written with the set-up code right there with the assertions are readable top to bottom. If we factored the set-up code into a separate method we would have to remember that the method was called, and remember what the objects looked like, before we could write the rest of the test.

xUnit supports both styles of test writing. You can write the test-fixture-creating code with the test, if you expect readers not to be able to easily remember the fixture objects. However, you can also move common test-fixture-creating code into a

1. Optional parameters are supposed to come at the end, but for readability it helps to have the explanatory string at the beginning.
method called setUp(). In it, set instance variables to the objects that will be used in
the test.

Here is an example too simple to really motivate the value of factoring out common
set-up code, but short enough to fit in a book. We could write:

```java
EmptyRectangleTest
public void testEmpty() {
    Rectangle empty = new Rectangle(0,0,0,0);
    assertTrue(empty.isEmpty());
}

public void testWidth() {
    Rectangle empty = new Rectangle(0,0,0,0);
    assertEquals(0.0, empty.getWidth(), 0.0);
}
```

(This also demonstrates the floating point version of assertEquals(), which requires
a tolerance.) We could get rid of the duplication by writing:

```java
EmptyRectangleTest
private Rectangle empty;

public void setUp() {
    empty = new Rectangle(0,0,0,0);
}

public void testEmpty() {
    assertTrue(empty.isEmpty());
}

public void testWidth() {
    assertEquals(0.0, empty.getWidth(), 0.0);
}
```

We have extracted the common code as a method, one that the framework is guar-
anteed to call before our test method is called. The test methods are simpler, but we
have to remember what is in setUp() before we can understand them.
Which style should you use? Try them both. I nearly always factor common set-up code out, but I have a strong memory for detail. Readers of my tests sometimes complain that there is too much to remember, so maybe I should factor out less.

The relationship of subclasses of TestCase and instances of those subclasses is one of the most confusing parts of xUnit. Each new kind of fixture should be a new subclass of TestCase. Each new fixture is created in an instance of that subclass, used once, then discarded.

In our example above, if we wanted to write tests for a non-empty Rectangle, we would create a new class, perhaps NormalRectangleTest, and initialize a different variable to a different rectangle in setUp(). In general, if I find myself wanting a slightly different fixture, I start a new subclass of TestCase.

This implies that there is no simple relationship between test classes and model classes. Sometimes one fixture serves to test several classes (although this is rare). Sometimes two or three fixtures are needed for a single model class. In practice, you usually end up with roughly the same number of test classes as model classes, but not because for each and every model class you write one and only one test class.

External Fixture

How do you release external resources in the fixture? Override tearDown() and release the resources.

Remember that the goal of each test is to leave the world in exactly the same state as before it ran. For example, if you open a file in a test, you need to be sure to close it before the test completes. You could write:

```python
TestMethod(self):
    file = File("foobar").open()
    try:
        ...run the test...
    finally:
        file.close()
```

If the file was used in several tests, you could make it part of the common fixture:

```python
setUp(self):
    self.file = File("foobar").open()
TestMethod(self):
    file = File("foobar").open()
    ...run the test...
finally:
    file.close()
```
try:
 ...run the test...
finally:
 self.file.close()

First, there is that pesky duplication of the finally clause telling us that we are missing something in the design. Second, this method is error prone because it is easy to forget the finally clause, or forget to close the file altogether. Lastly, there are three lines of noise in the test—try, finally, and the close itself, which is not central to the running of the test.

xUnit guarantees that a method called tearDown() will be run after the test method. tearDown() will be called regardless of what happens in the test method (although if setUp() fails tearDown() won’t be called). We can transform the above to:

```python
setUp(self):
    self.file= File("foobar").open()
testMethod(self):
    ...run the test...
tearDown(self):
    self.file.close()
```

Test Method

How do you represent a single test case? As a method (whose name begins with “test” by convention.)

You are going to have hundreds, later thousands, of tests in your system. How are you going to keep track of them all?

Object programming languages have three levels of hierarchy for organization:

- Module (“package” in Java)
- Class
- Method

If we are writing tests as ordinary source code, we need to find a way to fit into this structure. If we are using classes to represent fixtures, then the natural home for tests is as methods. All the tests sharing a single fixture will be methods in the same class. Tests requiring a different fixture will be in a different class.
By convention, the name of the method begins with “test”. Tools can look for this pattern to automatically create suites of tests given a class. The remainder of the name of the method should suggest to a future clueless reader why this test was written. JUnit, for example has a test called “testAssertPosInfinityNotEqualsNegInfinity”. I can’t remember writing this test, but from the name I assume that at some point JUnit’s assertion code for floating point numbers didn’t distinguish between positive and negative infinity. From the test I can quickly find the code in JUnit that handles floating point comparison and see how we handled it (it’s kind of ugly—there’s a special conditional to handle infinity.)

Test methods should be easy to read, pretty much straightline code. If a test method is getting long and complicated, you need to play “Baby Steps”. The goal of the game is to write the smallest test method that represents real progress towards your end goal. Three lines appears to be about the minimum, without deliberate obfuscation (and remember, you are writing these tests for people, not just the computer or yourself.)

Patrick Logan contributed an idea I’m going to experiment with, also described by McConnell2 and Caine and Gordon3

For some reason I’ve been working with "outlines" in practically everything I do lately. Testing is no different. When I write tests, I first create a short outline of the tests I want to write, for example...

```c
/* Adding to tuple spaces. */
/* Taking from tuple spaces. */
/* Reading from tuple space. */
```

These are place holders until I add specific tests under each category. When I add tests, I add another level of comments to the outline...

```c
/* Adding to tuple spaces. */
/* Taking from tuple spaces. */
/** Taking a non-existant tuple. **/
/** Taking an existing tuple. **/
/** Taking multiple tuples. **/
/* Reading from tuple space. */
```

I usually only have two or three levels to the outline. I can’t think of when I had more. But the outline essentially becomes documentation of the contract for the

2\, Steve McConnell, \textit{Code Complete}, chapter 4, Microsoft Press, 19??, ISBN >???.
class being tested. The examples here are abbreviated, but they would be more specific in a contract-like language. (I don’t use any kind of add-on to Java for Eiffel-like automation.)

Immediately under the lowest level of the outline is the test case code.

Exception Test

How do you test for expected exceptions? Catch expected exceptions and ignore them, failing only if the exception isn’t thrown.

Let’s say we’re writing some code to look up a value. If the value isn’t found, we want to throw an exception. Testing the lookup is easy enough.

```java
public void testRate() {
    exchange.addRate("USD", "GBP", 2);
    int rate = exchange.findRate("USD", "GBP");
    assertEquals(2, rate);
}
```

Testing the exception may not be so obvious. Here’s how we do it:

```java
public void testMissingRate() {
    try {
        exchange.findRate("USD", "GBP");
        fail();
    } catch (IllegalArgumentException expected) {
    }
}
```

If findRate() doesn’t throw an exception, we will call fail(), an xUnit method which reports that the test failed. Notice that we are careful only to catch the particular exception we expect, so if the wrong kind of exception is thrown, we will also be notified (including assertion failures.)

AllTests

How do you run all tests together? Make a suite of all the suites, one for each package and one aggregating the package tests for the whole application.

Suppose you add a TestCase subclass to a package and you add a test method to that class. The next time all the tests run that test method should run, too (there’s
that test-driven stuff—the preceding is the outline for a test that I would probably just go and implement if I wasn’t busy writing a book.) Because this isn’t supported in most xUnit implementations or IDEs, each package should declare a class AllTests that implements a static method suite() that returns a TestSuite. Here is AllTests for the Money example:

```java
public class AllTests {
    public static void main(String[] args) {
        junit.swingui.TestRunner.run(AllTests.class);
    }

    public static Test suite() {
        TestSuite result = new TestSuite("TFD tests");
        result.addTestSuite(MoneyTest.class);
        result.addTestSuite(ExchangeTest.class);
        result.addTestSuite(IdentityRateTest.class);
        return result;
    }
}
```

You can also give AllTests a main() method so the class can be run directly from the IDE or a command line.

Further Study

The official site for JUnit is www.junit.org. There is also an active mailing list at http://groups.yahoo.com/group/junit.

You can find a complete list of xUnit implementations at www.xprogramming.com/software.htm (38 languages at the time I’m writing).
One of the primary insights of patterns1 is that although it may seem like we solve completely different problems all the time, most of the problems we solve are generated by the tools we use, not by the external problem at hand. Because of this, we can expect to find (and actually do find) common problems with common solutions even in the midst of an incredible diversity of external problem solving contexts.

Applying objects to organizing computation is one of the best examples of common internally generated sub-problems being solved in common, predictable ways. The enormous success of design patterns2 is a testimonial to the commonality seen by object programmers. The success of the design patterns book, however, has stifled any diversity in expressing these patterns.

The design patterns book seems to have a subtle bias towards design as a phase. It certainly makes no nod towards refactoring as a design activity. Design in TDD requires a slightly different look at design patterns.

\begin{itemize}
\item One of the primary insights of patterns1 is that although it may seem like we solve completely different problems all the time, most of the problems we solve are generated by the tools we use, not by the external problem at hand. Because of this, we can expect to find (and actually do find) common problems with common solutions even in the midst of an incredible diversity of external problem solving contexts.
\item Applying objects to organizing computation is one of the best examples of common internally generated sub-problems being solved in common, predictable ways. The enormous success of design patterns2 is a testimonial to the commonality seen by object programmers. The success of the design patterns book, however, has stifled any diversity in expressing these patterns.
\item The design patterns book seems to have a subtle bias towards design as a phase. It certainly makes no nod towards refactoring as a design activity. Design in TDD requires a slightly different look at design patterns.
\end{itemize}

2 *Design Patterns: Elements of Reusable Object Oriented Software*, Dr. Erich Gamma, et. al, Addison-Wesley, 1997, ISBN: ???
The design patterns covered here are not intended to be comprehensive. They are just enough design to get us through the examples. Here they are in summary:

- **Command**—represent the invocation of a computation as an object, not just a message
- **Value Object**—avoid aliasing problems by making objects whose values never change once created
- **Null Object**—represent the base case of a computation by an object
- **Template Method**—represent invariant sequences of computation with an abstract method intended to be specialized through inheritance
- **Pluggable Object**—represent variation by invoking another object with two or more implementations
- **Pluggable Selector**—avoid gratuitous subclasses by dynamically invoking different methods for different instances
- **Factory Method**—create an object by calling a method instead of a constructor.
- **Composite**—represent the composition of the behavior of a list of objects with an object
- **Collecting Parameter**—pass around a parameter to be used to aggregate the results of computation in many different objects
- **Imposter**—introduce variation by introducing a new implementation of existing protocol

The design patterns cluster based on where they are used in TDD:

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Test Writing</th>
<th>Refactoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Value Object</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Null Object</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Template Method</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pluggable Object</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pluggable Selector</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Factory Method</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Command

What do you do when you need the invocation of a computation to be more complicated than a simple method call? Make an object for the computation and invoke it.

Sending messages is wonderful. Programming languages make sending messages syntactically easy. Programming environments make manipulating messages easy (e.g. refactorings to automatically rename a message). However, sometimes just sending a message isn’t enough.

For example, suppose you want to log the fact that a message got sent. We could add language features (wrapper methods) to do this, but logging is rare enough, and the value of simple languages is high enough, that we’d rather not do that. Or suppose we want to invoke a computation, but later. We could start a thread, immediately suspend it, and re-start it later, but then we’d have all the joys of concurrency to deal with.

Complicated invocations of computation require expensive mechanisms. However, most of the time we don’t need all the complexity, and we’d rather not pay the cost. When we need invocation to be just a little more concrete and manipulable than a message, objects give us the answer. Make an object representing the invocation. Seed it with all the parameters the computation will need. When we’re ready to invoke it, use generic protocol, like “run()”.

The Java interface Runnable is an excellent example of this.

```
Runnable
interface Runnable
    public abstract void run();
```

In the implementation of run(), you can do anything you’d like. Unfortunately, Java has no syntactically lightweight way to create and invoke Runnables, so they aren’t used as much as the equivalent—blocks or lambda in Smalltalk/Ruby or LISP—in other languages.

<table>
<thead>
<tr>
<th>Composite</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collecting Parameter</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Imposter</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Value Object

How do you design objects that will be widely shared, but for whom identity is unimportant? Set their state when they are created and never change it. Operations on the object always return a new object.

Objects are wonderful. I can say that here, can’t I? Objects are a great way to organize logic for later understanding and growth. However, there is one little problem (okay, more than one, but this one will do for now.)

Suppose I (an object) have a Rectangle. I compute some value based on the Rectangle, like its area. Later, someone politely asks me for my Rectangle, and I, not wanting to appear uncooperative, give it to them. Moments later, lo and behold, the Rectangle has been changed behind my back. The area I computed earlier is out of date, and there is no way for me to know.

This is the classic aliasing problem. If two objects share a reference to a third, if one object changes the referred object, the other object better not rely on the state of the shared object.

There are several ways out of the aliasing problem. One solution is never to give out the objects that you rely on, but instead to always make copies. This can get expensive in time and space, and ignores those times when you want to share changes to a shared object. Another solution is Observer, where you explicit register with objects on which you rely and expect to be notified when they change. Observer can make control flows difficult to follow, and the logic for setting up and removing the dependencies gets ugly.

Another solution is to treat the object as less than an object. Objects have state that change over time. We can, if we choose, eliminate the “that change over time”. If I have an object and I know it won’t change, I can pass around references to it all I want, knowing that aliasing won’t be a problem. There can be no hidden changes to a shared object if there are no changes.

I remember puzzling over Integers when I was first learning Smalltalk. If I change bit 2 to a 1, why don’t all 2’s become 6’s?

```plaintext
a := 2.
b := a.
a := a bitAt: 2 put: 1.
a => 6
```
Because Integers are really values masquerading as objects. In Smalltalk this is literally true of small integers, and simulated in the case of integers that don’t fit in a single machine word. When I set that bit, what I get back is a new object with the bit set, not the old one with the bit changed.

When implementing a Value Object, every operation has to return a fresh object, leaving the original unchanged. Users have to be aware they are using a Value Object and store the result (as in the example above.) All of these object allocations can create performance problems, which should be handled like all performance problems, when you have realistic data sets, realistic usage patterns, profiling data, and complaints about performance.

I have a tendency to use Value Object whenever I have a situation that looks like algebra—geometric shapes being intersected and unioned, unit values where units are carried around with a number, symbolic arithmetic. Any time Value Object makes the least sense I try it, because it makes reading and debugging so much easier.

All Value Objects have to implement equality (and in many languages by implication they have to implement hashing.) If I have this Contract and that Contract and they aren’t the same object, then they are different, not equal. However, if I have this five francs and that five francs, it doesn’t matter if they are the same five francs, five francs are five francs and they should be equal.

Null Object

How do you represent special cases using objects? Create an object representing the special case. Give it the same protocol as the regular objects.

```java
public boolean setReadOnly() {
    SecurityManager security = System.getSecurityManager();
    if (security != null) {
        security.checkWrite(path);
    }
    return fs.setReadOnly(this);
}
```
There are 18 places where the same “security != null” check takes place in java.io.File. While I appreciate their diligence in making files safe for the world, I’m also a bit nervous. Are they careful to always check for a null as the result of getSecurityManager()?

The alternative is to create a new class, LaxSecurity, which doesn’t throw exceptions ever.

```java
public void checkWrite(String path) {
}
```

If someone asks for a SecurityManager and there isn’t one available, we send back a LaxSecurity instead:

```java
public static SecurityManager getSecurityManager() {
    return security != null ? security : new LaxSecurity();
}
```

Now we don’t have to worry about someone forgetting to check for null. The original code cleans up considerably:

```java
public boolean setReadOnly() {
    SecurityManager security = System.getSecurityManager();
    security.checkWrite(path);
    return fs.setReadOnly(this);
}
```

Erich Gamma and I once got in an argument at an OOPSLA tutorial about whether a Null Object was appropriate somewhere in JHotDraw. I was ahead on points when he calculated the cost of introducing the Null Object as 10 lines of code, for which we would get to eliminate 1 conditional. I hate those late round TKOs. (We also got extremely bad marks from the audience for not being organized. Apparently they weren’t aware that having productive design discussions is a difficult but learnable skill.)
Template Method

How do you represent the invariant sequence of a computation while providing for future refinement? Write a method that is implemented entirely in terms of other methods.

Programming is full of classic sequences:
- Input/process/output
- Send message/receive reply
- Read command/return result

We would like to be able to clearly communicate the universality of these sequences, while at the same time providing for variation in the implementation of the steps.

In inheritance, object languages provide a simple, if limited, mechanism for communicating universal sequences. A superclass can contain a method written entirely in terms of other methods, and subclasses can implement those methods in different ways. For example, JUnit implements the basic sequence of running a test as

```java
public void runBare() throws Throwable {
    setUp();
    try {
        runTest();
    } finally {
        tearDown();
    }
}
```

Subclasses can implement setUp(), runTest(), and tearDown() however they want.

One question when writing a Template Method is whether to write a default implementation of the sub-methods. In TestCase.runBare(), all three sub-methods have default implementations:
- setUp() and tearDown() are no-ops
- runTest() dynamically finds and invokes a testing method based on the name of the test case
If the computation makes no sense without a sub-step being filled in, you should note this in whatever way your programming language provides:

- Java—declare the sub-method abstract
- Smalltalk—implement the method by throwing a SubclassResponsibility error

Template methods are best found through experience instead of designed that way from the beginning. Whenever I say to myself, “Ah, this is the sequence and here are the details,” I always find myself inlining the detail methods later and re-extracting the truly variant parts.

When you find two variants of a sequence in two subclasses, you need to gradually move them closer together. Once you’ve extracted the parts that are different to other methods, what you are left with is the template method. Then you can move the template method to the superclass and eliminate the duplication.

Pluggable Object

The simplest way to express variation is with explicit conditionals:

```java
if (circle) then {
  …circley stuff…
} else {
  …non circley stuff
}
```

You will quickly find that such explicit decision making begins to spread. If you represent the distinction between circles and non-circles as an explicit conditional in one place, the conditional is likely to spread.

Since the second imperative of TDD is the elimination of duplication, you must nip the plague of explicit conditionals in the bud. The second time you see a conditional, it is time to pull out the most basic of object design moves, the pluggable object.

The pluggable objects revealed by simply eliminating duplication are sometimes counter-intuitive. Erich Gamma and I found this, one of my favorite examples of an unpredictable pluggable object. When writing a graphics editor, selection is actually a bit complicated. If you’re over a figure when the button is pressed, then subsequent moves of the mouse move that figure and releasing the button leaves the figure selected. If you’re not over a figure, then you are selecting a group of figures,
and subsequent moves of the mouse typically resize a rectangle used to select several figures. Releasing the button causes the figures inside the rectangle to be selected. The initial code looks something like this:

```java
SelectionTool
Figure selected;
public void mouseDown() {
    selected = findFigure();
    if (selected != null)
        select(selected);
}
public void mouseMove() {
    if (selected != null)
        move(selected);
    else
        moveSelectionRectangle();
}
public void mouseUp() {
    if (selected == null)
        selectAll();
}
```

There’s that ugly duplicated conditional (I told you they spread like a disease). The answer in this case is to create a Pluggable Object, a SelectionMode, with two implementations, SingleSelection and MultipleSelection.

```java
SelectionTool
SelectionMode mode;
public void mouseDown() {
    selected = findFigure();
    if (selected != null)
        mode = SingleSelection(selected);
    else
        mode = MultipleSelection();
}
public void mouseMove() {
    mode.mouseMove();
}
public void mouseUp() {
    mode.mouseUp();
}
```
In languages with explicit interfaces, you will have to implement an interface along with the two (or more) pluggable objects.

Pluggable Selector

How do you invoke different behavior for different instances? Store the name of a method, and dynamically invoke the method.

What do you do when you have ten subclasses of a class, each implementing only one method? Subclassing is a heavyweight mechanism for capturing such a small amount of variation.

```java
abstract class Report {
    abstract void print();
}

class HTMLReport extends Report {
    void print() { ... }
}

class XMLReport extends Report {
    void print() { ... }
}
```

One alternative is to have a single class with a switch statement. Depending on the value of a field, you invoke different methods. However, the name of the method appears in three places:

- The creation of the instance
- The switch statement
- The method itself

```java
abstract class Report {
    String printMessage;
}
```

Every time you add a new kind of printing you have to be sure to add the printing method and change the switch statement.

The Pluggable Selector solution is to dynamically invoke the method using reflection:

```java
void print() {
    Method runMethod= getClass().getMethod(printMessage, null);
    runMethod.invoke(this, new Class[0]);
}
```

Now there is still an ugly dependency between creators of Reports and the names of the print methods, but at least you don’t have the case statement in there, too.

Pluggable Selector can definitely be overused. The biggest problem with it is tracing code to see whether a method is invoked. Only use Pluggable Selector when you are cleaning up a fairly straightforward situation in which a bunch of subclasses each have only one method.
Factory Method

How do you create an object when you want flexibility in creating new object? Create the object in a method instead of using a constructor.

Constructors are expressive. You can see that you are definitely creating an object when you use one. However, constructors, particularly in Java, lack expressiveness and flexibility.

One axis of flexibility that we wanted in our Money example was to be able to return an object of a different class when we created an object. We had tests like:

```java
public void testMultiplication() {
    Dollar five = new Dollar(5);
    assertEquals(new Dollar(10), five.times(2));
    assertEquals(new Dollar(15), five.times(3));
}
```

We wanted to introduce the Money class, but we couldn’t as long as we were locked into creating an instance of Dollar. By introducing a level of indirection, through a method, we gained the flexibility of returning an instance of a different class without changing the test.

```java
public void testMultiplication() {
    Dollar five = Money.dollar(5);
    assertEquals(new Dollar(10), five.times(2));
    assertEquals(new Dollar(15), five.times(3));
}
```

Money

```java
static Dollar dollar(int amount) {
    return new Dollar(amount);
}
```

This method is called a Factory Method, because it makes objects.

The downside of using Factory Method is precisely its indirection. You have to remember that the method is really creating an object, even though it doesn’t look like a constructor. Use Factory Method only when you need the flexibility it creates. Otherwise, constructors work just fine for creating objects.
Imposter

How do you introduce a new variation into a computation? Introduce a new object with the same protocol as an existing object but a different implementation.

Introducing variation in a procedural program involves adding conditional logic. As we saw in Pluggable Object, such logic tends to proliferate, and a healthy dose of polymorphic messages are required to cure the duplication.

Suppose you have a structure in place already. There’s an object already. Now you need the system to do something different. If there’s an obvious place to insert an if statement and you’re not duplication logic from elsewhere, go ahead. Often however, the variation would obviously require changes to several methods.

This moment of decision comes up in two ways in TDD. Sometimes you are writing a test case and you need to represent a new scenario. None of the existing objects expresses what you want to express. Suppose we are testing a graphics editor and we already have rectangles drawing correctly:

```java
    testRectangle() {
        Drawing d = new Drawing();
        d.addFigure(new RectangleFigure(0, 10, 50, 100));
        RecordingMedium brush = new RecordingMedium();
        d.display(brush);
        assertEquals("rectangle 0 10 50 100\n", brush.log());
    }
```

Now we want to display ovals. In this case, the Imposter is easy to spot—replace a RectangleFigure with an OvalFigure.

```java
    testOval() {
        Drawing d = new Drawing();
        d.addFigure(new OvalFigure(0, 10, 50, 100));
        RecordingMedium brush = new RecordingMedium();
        d.display(brush);
        assertEquals("oval 0 10 50 100\n", brush.log());
    }
```

Generally, spotting the possibility of an Imposter the first time requires insight. Ward’s insight that a vector of Moneys could act like a Money is just such a moment. You thought they were different, and now you see that you can see them as being the same.
Following are two examples of Imposters that come up during refactoring:

- Null Object—you can treat the absence of data the same as the presence of data
- Composite—you can treat a collection of objects the same as a single object

Finding Imposters during refactoring is driven by eliminating duplication, just as all refactoring is driven by eliminating duplication.

Composite

How do you implement an object whose behavior is the composition of the behavior of a list of other objects? Make it an Imposter for the component objects.

My favorite example is also an example of the contradiction of composites: Account and Transaction. Transactions store an increment of value (they are really a lot more complex and interesting, but for now…):

```java
Transaction
Transaction(Money value) {
    this.value = value;
}
```

Accounts compute their balance by summing the values of their Transactions:

```java
Account
Transaction transactions[];
Money balance() {
    Money sum = Money.zero();
    for (int i = 0; i < transactions.length; i++)
        sum = sum.plus(transactions[i].value);
    return sum;
}
```

Seems simple enough:

- Transactions have a value
- Accounts have a balance

Then comes the interesting part. A customer has a bunch of Accounts, and would like to see an overall balance. The obvious way to implement this is as a new class,
OverallAccount, that sums the balances of a list of Accounts. Duplication! Duplication!

What if Account and Balance both implemented the same interface, call it “Holding” because I can’t think of anything better at the moment?

```java
interface Holding
    Money balance();
```

Transactions can implement balance() by returning their value:

```java
Transaction
    Money balance() {
        return value;
    }
```

Now Accounts can be composed of Holdings, not Transactions:

```java
Account
    Holding holdings[];
    Money balance() {
        Money sum= Money.zero();
        for (int i= 0; i < holdings.length; i++)
            sum= sum.plus(holdings[i].balance());
        return sum;
    }
```

Now our problem with OverallAccounts disappears. An OverallAccount is just an Account containing Accounts.

The smell of Composite is illustrated by the above. Transactions don’t have balances, not in the real world. Applying Composite is a programmer’s trick, not generally appreciated by the rest of the world. However, the benefits to program design are enormous, so the conceptual disconnect is often worth it. Folders containing Folders, TestSuites containing TestSuites, Drawings containing Drawings, none of these translate well from the world, but they all make the code so much simpler.

I had to play with Composite for a long time before I found where to use it and where not to use it. As will be obvious from the discussion above, I’m still not able to articulate how to guess when a collection of objects is just a collection of objects
and when you really have a Composite. The good news is, since you’re getting good at refactoring, the moment the duplication appears, you can introduce Composite and watch program complexity disappear.

Collecting Parameter

How do you collect the results of an operation that is spread over several objects? Add a parameter to the operation in which the results will be collected.

A simple example is the `java.io.Externalizable` interface. The `writeExternal` method writes an object and all the objects it references. Since the objects all have to cooperate loosely to get written out, the method is passed a parameter, an `ObjectOutput`, as the collecting parameter:

```java
public interface Externalizable extends java.io.Serializable {
    void writeExternal(ObjectOutput out) throws IOException;
}
```

Adding a Collecting Parameter is a common consequence of Composite. In developing JUnit, we didn’t need the TestResult to collate the results of several tests until we had several tests.

As the sophistication of expected results grows, you may find the need to introduce a Collecting Parameter. For example, suppose we are printing Expressions. If all we want is a flat string, concatenation is sufficient:

```java
testSumPrinting() {
    Sum sum = new Sum(Money.dollar(5), Money.franc(7));
    assertEquals("5 USD + 7 CHF", sum.toString());
}
```

```java
String toString() {
    return augend + " + " + addend;
}
```

If we want the indented tree form of the expression however:

```java
testSumPrinting() {
    Sum sum = new Sum(Money.dollar(5), Money.franc(7));
    assertEquals("+\n\t5 USD\n\t7 CHF", sum.toString());
}
```
We will have to introduce a Collecting Parameter, something like this:

```java
String toString() {
    IndentingStream writer = new IndentingStream();
    toString(writer);
    return writer.contents();
}

void toString(IndentingWriter writer) {
    writer.println("+");
    writer.indent();
    augend.toString(writer);
    writer.println();
    addend.toString(writer);
    writer.exdent();
}
```

Singleton

How do you provide global variables in languages without global variables? Don’t. Your programs will thank you for taking the time to think about design instead.

Further Study

DP

POSA

Nature of Order

Grudin, Grace of Great Things

D’Arcy Thompson
There is a brief description of how to accomplish each refactoring in small steps. More importantly, each refactoring discusses why you might want to use it.

In TDD we use “refactoring” in an interesting way. Usually, a refactoring cannot change the semantics of the program under any circumstances. In TDD, the circumstances we care about are the tests that are already passing. So, for example, we can replace constants with variables in TDD and call this operation, in good conscience, a refactoring, because it doesn’t change the set of tests that pass. The only circumstance under which semantics are preserved may actually be our one test case. Any other test case that was passing would fail. However, we don’t have those tests yet, so we don’t worry about them.

This “observational equivalence” places a burden on you to have enough tests so as far as you know, a refactoring with respect to the tests is the same as a refactoring with respect to all possible tests, at least by the time you’re done. It’s no excuse to say, “I knew there was a problem, but the tests all passed so I checked the code in.” Write more tests.

Reconcile Differences

How do you unify two similar looking pieces of code? Gradually bring them closer. Unify them only when they are absolutely identical.
Refactoring can be a nerve-wracking experience. The easy ones are obvious. If I extract a method, as long as I do it mechanically correctly, there is very little chance of changing the system’s behavior. Some refactorings push you to examine the control flows and data values carefully. A long chain of reasoning leads you to believe that the change you are about to make won’t change any answers. Those are the refactorings that enhance your hairline.

Such a leap of faith refactoring is exactly what we’re trying to avoid with our strategy of small steps and concrete feedback. While you can’t always avoid leapy refactorings, you can reduce their incidence.

This refactoring occurs at all levels of scale:

- Two loops structures are similar. By making them identical, you can merge them.
- Two branches of a conditional are similar. By making the identical, you can eliminate the conditional.
- Two methods are similar. By making them identical, you can eliminate one.
- Two classes are similar. By making them identical, you can eliminate one.

Sometimes you need to approach reconciling differences backwards—think about how the last step of the change could be trivial, then work backwards. For example, if you want to remove several subclasses, the trivial last step is if a subclass contains nothing. Then the subclass can be replaced by the superclass without changing the behavior of the system. To empty out this subclass, this method needs to be made identical to the one in the superclass. One by one, empty out the subclasses and, when they are empty, replace references to them by references to the superclass.

Isolate Change

How do you change one part of a multi-part method or object? First, isolate the part that has to change.

The picture that comes to my mind is surgery, where all of the patient except the part to be operated on is draped. The draping leaves the surgeon with only a fixed set of variables. Now, we could have long arguments over whether this abstraction of a person to a lower left quadrant abdomen leads to good health care, but at the moment of surgery, I’m kind of glad the surgeon can focus.
You may find that once you’ve isolated the change and then made the change, that the result is so trivial that you can undo the isolation. If we found that really all we needed was to return the instance variable in findRate(), we should consider inlining findRate() everywhere it is used and deleting it. Don’t make these changes automatically, however. Balance the cost of an additional method with the value of having an additional concept explicit in the code.

Some possible ways to Isolate Change are Extract Method (the most common), Extract Object, and Method Object.

Migrate Data

How do you move from one representation? Temporarily duplicate the data.

How:

Here is the internal-to-external version, where you change the representation internally and then change the externally visible interface:

- Add an instance variable in the new format
- Set the new format variable everywhere you set the old format
- Use the new format variable everywhere you use the old format
- Delete the old format
- Change the external interface to reflect the new format

Sometimes, though, you want to change the API first. Then you should:

- Add a parameter in the new format
- Translate from the new format parameter to the old format internal representation
- Delete the old format parameter
- Replace uses of the old format with the new format
- Delete the old format

Why:

One to Many creates a data migration problem every time. Suppose we wanted to implement TestSuite using One to Many. We would start with:
def testSuite(self):
 suite = TestSuite()
 suite.add(WasRun("testMethod"))
 suite.run(self.result)
 assert("1 run, 0 failed" == self.result.summary())

Which is implemented (in the “One” part of One to Many) by:

class TestSuite:
 def add(self, test):
 self.test = test
 def run(self, result):
 self.test.run(result)

Now we begin duplicating data. First we initialize the collection of tests:

 TestSuite
 def __init__(self):
 self.tests = []

Everywhere “test” is set, we add to the collection, too:

 TestSuite
 def add(self, test):
 self.test = test
 self.tests.append(test)

Now we use the list of tests instead of the single test. For purposes of the current
 TestSuite
test cases this is a refactoring (it preserves semantics) because there is only ever one
 def run(self, result):
 for test in self.tests:
 test.run(result)

We delete the now-unused instance variable “test”:

 TestSuite
 def add(self, test):
 self.tests.append(test)
You can also use stepwise data migration when moving between equivalent formats with different protocols, as in moving from Java’s Vector/Enumerator to Collection/Iterator.

Extract Method

How do you make a long, complicated method easier to read? Turn a small part of it into a separate method and call the new method.

How

Extract Method is actually one of the more complicated atomic refactorings. I’ll describe the typical case here. Fortunately, it is also the most commonly implemented automatic refactoring, so you likely won’t have to do it by hand.

1. Find a region of the method that would make sense as its own method. Bodies of loop, whole loops, and branches of conditionals are common candidates for extraction.

2. Make sure there are no assignments to temporary variables declared outside the scope of the region to be extracted.

3. Copy the code from the old method to the new method. Compile it.

4. For each temporary variable or parameter of the original method used in the new method, add a parameter to the new method.

5. Call the new method from the original method

Why

I use Extract Method when I’m trying to understand complicated code. “Here, this bit here is doing something. What shall we call that?” After half an hour the code is looking better, your partner realizes that really are there to help, and you understand much better what is going on.

I use Extract Method to eliminate duplication when I see that two methods have some parts the same and some parts different. I extract out the similar bits as methods (the Smalltalk Refactoring Browser even goes and checks to see if you are extracting a method that is equivalent to one you already have, and offers to use the existing method instead of creating a new one.)
Breaking methods into tiny bits can sometimes go too far. When I can no longer see a way forward, I often use Inline Method (conveniently, the next refactoring) to get all the code in one place so I can see what should be extracted anew.

Inline Method

How do you simplify control flows that have gotten too twisted or scattered? Replace a method invocation with the method itself.

How

1. Copy the method.
2. Paste the method over the method invocation.
3. Replace all formal parameters with actual parameters. If you pass, for example, reader.getNext() (an expression causing side effects), be careful to assign it to a local variable.

Why

A reviewer complained about the sequence in section I where a Bank is asked to reduce an Expression to a single Money.

```java
public void testSimpleAddition() {
    Money five = Money.dollar(5);
    Expression sum = five.plus(five);
    Bank bank = new Bank();
    Money reduced = bank.reduce(sum, "USD");
    assertEquals(Money.dollar(10), reduced);
}
```

“This is too complicated. Why don’t you just ask the Money to reduce itself?” How do we experiment? Inline the implementation of Bank.reduce() and see what it looks like.

```java
public void testSimpleAddition() {
    Money five = Money.dollar(5);
    Expression sum = five.plus(five);
    Bank bank = new Bank();
    Money reduced = sum.reduce(bank, "USD");
    assertEquals(Money.dollar(10), reduced);
}
```
You might like second version better or not. The point to note here is you can use Inline Method to play around with the flow of control. When I’m refactoring, I have a mental picture of the system with bits of logic and control flow sloshing around between the objects. When I think I see something promising, I use the refactorings to try it out and see the result.

In the heat of battle I’ll occasionally get caught up in my own cleverness (I’m not going to say how often those occasions come.) When I do, Inline Method is a way for me to reel myself back in. “I have this sending to that sending to that... Whoa, Nelly. What’s going on here?” I inline a few layers of abstraction, see what’s really going on, and then I can re-abstract the code according to its actual needs, not my preconceptions.

Extract Interface

How do you introduce a second implementation of operations in Java? Create an interface containing the shared operations.

How:

1. Declare an interface. Sometimes the name of the existing class should be the name of the interface, in which case you should first rename the class.

2. Have the existing class implement the interface.

3. Add the necessary methods to the interface, expanding the visibility of the methods in the class if necessary.

4. Change type declarations from the class to the interface where possible.

Why:

Sometimes when you need to extract an interface, you are genuinely moving from the first implementation to the second. You have a Rectangle and you want to add an Oval, so you create a Shape interface. Finding names for the interfaces in this case is generally easy, although sometimes you have to struggle to find the right metaphor.
Sometimes you are introducing a Crash Test Dummy or other Mock Object when you need to extract an interface. Naming is generally tougher in this case, because you still only have one real example. These are the times I’m most tempted to cop out and name the interface IFile and leave the class named File. I’ve schooled myself to stop a moment and see if I don’t understand something deeper about what is going on. Perhaps the interface should be called File and the class DiskFile, because the class assumes that the bits are on a disk.

Move Method

How do you move a method to where it belongs? Add it to the class where it belongs, then invoke it.

How:

1. Copy the method.

2. Paste the method, suitably named, into the target class. Compile it.

3. If the original object is referenced in the method, add a parameter to pass the original object. If variables of the original object are referenced, pass them as parameters. If variables of the original object are set, you should like give up.

4. Replace the body of the original method with an invocation of the new method.

How:

This is one of my favorite consulting refactorings, because it is so good at uncovering unwarranted preconceptions. Calculating areas is the responsibility of the Shape:

```java
Shape
...
int width= bounds.right() - bounds.left();
int height= bounds.bottom() - bounds.top();
int area= width * height;
...
```

Any time I see more than one message sent to another object in a method, I get suspicious. In this case, I see that bounds (a Rectangle) is being sent four messages. Time to move this part of the method:
Rectangle
public int area() {
 int width = this.right() - this.left();
 int height = this.bottom() - this.top();
 return width * height;
}
Shape
...
int area = bounds.area();
...

The three great properties of Move Method are:

- It’s easy to see the need for it without deep understanding of the meaning of the logic. You see two or more messages to a different object and away you go.
- The mechanics are quick and safe.
- The results are often enlightening. “But Rectangles don’t do any calculation...
 Oh, I see. That is better.”

Sometimes you will want to move only part of a method. You can first extract a method, move the whole method, then inline the (now one line) method in the original class. Or you can figure out the mechanics for doing it in one go.

Method Object

How do you represent a complicated method that requires several parameters and local variables? Make an object out of the method.

How:
- Create an object with the same parameters as the method.
- Make the local variables also instance variables of the object.
- Create one method called "run()", whose body is the same as the body of the original method.
- In the original method, create a new object and invoke run().

Why:
Method Objects are useful in preparation for adding a whole new kind of logic to the system. For example, you might have several methods involved in computing the cash flow from component cash flows. When you want to start computing the net present value of the cash flows, you can first create a Method Object out of the first style of computation. Then you can write the new style of computation with its own, smaller-scale, tests. Then plugging in the new style will be a single step.

Method Objects are also good for simplifying code that doesn’t yield to Extract Method. Sometimes you’ll find a block of code that has a bunch of temporary variables and parameters, and every time you try to extract a piece of it you have to carry along five or six temps and parameters. The resulting extracted method doesn’t look any better than the original code, because the method signature is so long. Creating a Method Object gives you a new namespace in which you can extract methods without having to pass anything.

Add Parameter

How do you add a parameter to a method?

How:

- If the method is in an interface, add the parameter to the interface first
- Use the compiler errors to tell you what other code you need to change

Why:

Adding a parameter is often an extension step. You got the first test case running without needing the parameter, but in this new circumstance you have to take more information into account in order to compute correctly.

Adding a parameter can also be part of migrating from one data representation to another. First you add the parameter, then you delete all uses of the old parameter, then you delete the old parameter.

Method Parameter to Constructor Parameter

How do you move a parameter from a method or methods to the constructor?

How:

- Add a parameter to the constructor
• Add an instance variable with the same name as the parameter
• Set the variable in the constructor
• One by one, convert references to “parameter” to “this.parameter”
• When no more references exist to the parameter, delete the parameter from the method and all caller
• Remove the now-superfluous “this.” from references
• Rename the variable correctly

Why:

If you pass the same parameter to several different methods in the same object, you can simplify the API by passing the parameter once (eliminating duplication). You can run this refactoring in reverse if you find that an instance variable is only used in one method.

Further Study

Fowler, Refactoring

Alexander, Timeless Way of Building
I hope to raise questions here for you to ponder as you integrate TDD into your own practice. Some of the questions are small, and some are large. Sometimes the answers are here, or at least hinted at here, and sometimes the questions are left for you to explore.

How large should your steps be?

There are really two questions lurking here:

- How much ground should each test cover?
- How many intermediate stages should you go through as you refactor?

You could write the tests so they each encouraged the addition of a single line of logic and a handful of refactorings. You could write the tests so they each encouraged the addition of hundreds of lines of logic and hours of refactoring. Which should you do?

Part of the answer is that you should be able to do either. The tendency of TDDers over time is clear, though—smaller steps. However, folks are experimenting with driving development from application-level tests, either alone or in conjunction with the programmer-level tests we’ve been writing.
At first when you refactor, you should be prepared to take lots of little tiny steps. Manual refactoring is prone to error, and the more errors you make and only catch later, the less likely you are to refactor. Once you’ve done a refactoring 20 times by hand in little tiny steps, experiment with leaving out some of the steps.

Automated refactoring accelerates refactoring enormously. What would have taken you 20 manual steps now becomes a single menu item. An order of magnitude change in quantity generally constitute a change in quality, and this is true of automated refactoring. When you know you are supported by an excellent tool, you become much more aggressive in your refactorings, trying many more experiments to see how the code wants to be structured.

The Refactoring Browser for Smalltalk is as I write still the best refactoring tool available. Java refactoring support is appearing in many Java IDEs, and refactoring support is sure to spread quickly to other languages and environments.

What don’t you have to test?

The simple answer, supplied by Philip is, “write tests until fear is transformed into boredom.” This is a feedback loop, though, and requires that you find the answer yourself. Since you came to this book for answers, not questions (in which case you’re already reading the wrong section, but enough of the self-referential literary recursion stuff…), try this list. You should test:

- Conditionals
- Loops
- Operations
- Polymorphism

But only those that you write. Unless you have reason to distrust it, don’t test code from others. Sometimes, the precise specification of (by which I mean “bugs in”) external code requires you to write more logic of your own. See above for whether you have to test this. Sometimes, just to be extra careful, I will document the presence of, um, unusual behavior in external code with a test that will fail if the bug is ever fixed, er, the behavior is ever refined.

How do you know if you have good tests?

The tests are a canary in a coal mine revealing by their distress the presence of evil design vapors. Here are some attributes of tests suggesting a design in trouble:

- Long setup code—If you have to spend a hundred lines creating the objects for one simple assertion, something is wrong. Your objects are too big and need to be split.
- Setup duplication—If you can’t easily find a common place for common setup code, there are too many objects too tightly intertwined.
- Long running tests—TDD tests that run a long time won’t be run often, and often haven’t been run for a while, and probably don’t work. Worse than this, though, they suggest that testing the bits and pieces of the application is hard. Difficulty testing bits and pieces is a design problem, and needs to be addressed with design. (The equivalent of 9.8 m/s2 is the ten minute test suite. Suites that take longer than 10 minutes inevitably get trimmed, or the application tuned up, so the suite takes 10 minutes again.)
- Fragile tests—Tests that break unexpectedly suggest that one part of the application is surprisingly effecting another part. You need to design until the effect at a distance is eliminated, either by breaking the connection or by bringing the two parts together.

How does TDD lead to frameworks?

Paradox: by not considering the future of your code you make your code much more likely to be able to adapt in the future.

I learned exactly the opposite from books. “Code for today, design for tomorrow.” TDD appears to stand this advice on its head. “Code for tomorrow, design for today.”

Here’s what happens in practice.

- The first feature goes in. It is implemented simply and straightforwardly, so it is done quickly and with few defects.
- The second feature, a variation on the first, goes in. The duplication between the two features is put in one place, while the differences tend to go in different places (different methods or even different classes).
• The third feature, a variation on the first two, goes in. The common logic is likely to be reusable as is, perhaps with a few tweaks. The unique logic tends to have an obvious home, either in a different method or different class.

The Open/Closed Principle (objects should be open for use and closed to further modification) is gradually satisfied, and for precisely those kinds of variation that occur in practice. Test driving development leaves you with frameworks that are good at expressing exactly the kind of variation that occurs, even though they might not be good at expressing the kind of variation that doesn’t occur (or hasn’t occurred yet.)

So, what happens when an unusual variation pops up three years later? The design undergoes rapid evolution in exactly the necessary spots to accommodate the variation. The Open/Closed Principle is violated, just for a moment, but the violation is not all that costly because you have all those tests to give you confidence you aren’t breaking anything.

At the limit, where you introduce the variations very quickly, TDD is indistinguishable from designing ahead. I grew a reporting framework once over the course of a few hours, and observers were absolutely certain it was a trick. I must have started with the resulting framework in mind. No, sorry. I’ve just been test driving development long enough that I can recover from most of my mistakes faster than you can recognize I’ve made them.

How much feedback do you need?

How many tests should you write? Here’s a simple problem—given three integers representing the length of the sides of a triangle, return:

• 1 if the triangle is equilateral
• 2 if the triangle is isosceles
• 3 if the triangle is scalene

and throw an exception if the triangle is not well formed.

Go ahead, try the problem (my Smalltalk solution is listed at the end of this question).

I wrote 6 tests (kind of like Name That Tune, “I can code that problem in four tests.” “Code that problem.”) Bob Binder, in his comprehensive book *Testing*
Object-Oriented Software, wrote 65 for the same problem. You’ll have to decide, from experience and reflection, about how many tests you want to write.

I think about Mean Time Between Failure (MTBF) when I think about how many tests to write. For example, Smalltalk integers act like integers, not like a 32-bit counter, so it doesn’t make sense to test MAXINT. Well, there is a maximum size for an integer, but it has to do with how much memory you have. Do I need to write a test that fills up memory with extremely large integers? How will that affect the MTBF of my program? If I’m never going to get anywhere close to that size of triangle, my program is not measurably more robust with such a test than without it.

Whether a test makes sense to write depends on how carefully you measure MTBF. If you are trying to get from an MTBF of 10 years to an MTBF of 100 years in your pacemaker, tests for extremely unlikely conditions and combinations of conditions make sense, unless you can demonstrate in some other way that the conditions cannot arise.

TDD’s view of testing is pragmatic. In TDD, the tests are a means to an end, the end being code in which we have great confidence. If our knowledge of the implementation gives us confidence even without a test, we will not write that test. Black box testing, where we deliberately choose to ignore the implementation, has some advantages. By ignoring the code, it demonstrates a different value system—the tests are valuable alone. It’s an appropriate attitude to take in some circumstances. However, it is different than TDD.

TriangleTest
testEquilateral
 self assert: (self evaluate: 2 side: 2 side: 2) = 1

testIsosceles
 self assert: (self evaluate: 1 side: 2 side: 2) = 2

testScalene
 self assert: (self evaluate: 2 side: 3 side: 4) = 3

testIrrational
 [self evaluate: 1 side: 2 side: 3]
 on: Exception
 do: [:ex | ^self].
 self fail

testNegative
[self evaluate: -1 side: 2 side: 2]
on: Exception
do: [:ex | ^self].
self fail

testStrings
[self evaluate: 'a' side: 'b' side: 'c']
on: Exception
do: [:ex | ^self].
self fail

evaluate: aNumber1 side: aNumber2 side: aNumber3
| sides |
sides := SortedCollection
 with: aNumber1
 with: aNumber2
 with: aNumber3.
sides first <= 0 ifTrue: [self fail].
(sides at: 1) + (sides at: 2) <= (sides at: 3) ifTrue: [self fail].
^sides asSet size

When should you delete tests?

More tests is better, but if two tests are redundant with respect to each other, should you keep them both around?

The first criterion for your tests is confidence. Never delete a test if it reduces your confidence in the behavior of the system.

The second criterion is communication. If you have two tests that exercise the same path through the code, but they speak to different scenarios for a reader, leave them alone.

That said, if you have two tests that are redundant with respect to confidence and communication, delete the least useful of the two.
How does the programming language and environment influence TDD?

Try TDD in Smalltalk with the Refactoring Browser. Try it in C++ with vi. How
does your experience differ?

In programming languages and environments where TDD cycles (test/compile/run/
refactor) are harder to come by, you will likely be tempted to take larger steps:

- Cover more ground with each test
- Refactor with fewer intermediate steps

Does this make you go faster or slower?

In programming languages and environments where TDD cycles are plentiful, you
will likely be tempted to try lots more experiments. Does this help you go faster or
reach better solutions, or would you be better off institutionalizing some kind of
time for pure reflection (reviews or literate programs)7?

Can you test-drive enormous systems?

Does TDD scale to extremely large systems? What new tests would you have to
write? What new kinds of refactorings would you need?

The largest system I’ve been involved with that is totally test-driven is at LifeWare
(www.lifeware.ch). After four years and 40 person/years, the system contains about
250,000 lines of functional code and 250,000 lines of test code in Smalltalk. There
are 4,000 tests, executing in under 20 minutes. The full suite is run several times
each day. The amount of functionality in the system seems to have no bearing on
the effectiveness of TDD. By eliminating duplication you tend to create more
smaller objects, and those objects can be tested in isolation independent of the size
of the application.

Can you drive development with application-level tests?

The problem with driving development with small scale tests (I call them “unit
tests”, but they don’t match the accepted definition of unit tests very well) is that
you run the risk of implementing what you think a user wants, but having it turn out
to be not what they wanted at all. What if we wrote the tests at the level of the appli-
cation? Then the users (with help) could write tests themselves for what exactly they wanted the system to do next.

There is a technical problem—fixturing. How can you write and run a test for a feature that doesn’t exist yet? There always seems to be some way out of this problem, typically by introducing an interpreter which gracefully signals an error when it comes across a test that it doesn’t know how to interpret yet.

There is also a social problem with application test driven development. Writing tests is a new responsibility for users (by which I really mean a team that includes users), and that responsibility comes at a new place in the development cycle, namely before implementation begins. Organizations resist this kind of shift of responsibility. It will require concerted effort (that is, the effort of many people on the team working in concert) to get application tests written first.

TDD as described in this book is a technique that is entirely under your control. You can pick it up and start using it today if you so choose. Mixing up the rhythm of red/green/refactor, the technical issues of application fixturing, and the organizational change issues surrounding user-written tests is unlikely to be successful. The One Step Test rule applies. Get red/green/refactor going in your own practice, then spread the message.

Another aspect of ATDD is the length of the cycle between test and feedback. If a customer wrote a test and ten days later it finally worked, you would be staring at a red bar most of the time. I think I would want to still do programmer-level TDD so:

- I got immediate green bars
- I simplified the internal design

How do you switch to TDD mid-stream?

You have a bunch of code which more or less works. You want to test drive your new code. What do you do next?

There is a whole book (or books) to be written about switching to TDD when you have lots of code. What follows is necessarily only a teaser.
The biggest problem is that code that isn’t written with tests in mind typically isn’t very testable. The interfaces aren’t designed so it is easy for you to isolate a little piece of logic, run it, and check its results.

“Fix it,” you say. Yes, well, but refactoring (without automated tools) is likely to result in errors, errors that you won’t catch because you don’t have the tests. Chickens and eggs. Catch-22. Mutually assured destruction. What do you do?

What you don’t do is go write tests for the whole thing and refactor the whole thing. That would take months, months in which no new functionality would appear. Spending money without making it is generally speaking not a sustainable process.

So first we have to decide to limit the scope of our changes. If we see parts of the system that could be dramatically simplified, but that don’t demand change at the moment, we will leave them alone. Shed a tear, perhaps, for the sins of the past, but leave them alone.

Second, we have to break the deadlock between tests and refactoring. We can get feedback other ways than with tests, like working very carefully and with a partner. We can get feedback at a gross level, like system level tests that we know aren’t adequate, but give us some confidence. With this feedback, we can make the areas we have to change more accepting of change.

Over time, the parts of the system that change all the time will come to look test-driven. Occassionally we will wander into an unlit back alley and get mugged for our troubles, reminding us how slow things used to be. Then we will slow down, break the deadlock, and get going again.

Who is TDD intended for?

Every programming practice encodes a value system, explicitly or implicitly. TDD is no different. If you’re happy slamming some code together that more or less works and never looking at the result again, TDD is not for you. TDD rests on a charmingly naïve geekoid assumption that if you write better code, you’ll be more successful. TDD helps you pay attention to the right issues at the right time so you can make your designs cleaner, you can refine your designs as you learn.

I say “naïve”, but that’s perhaps overstating. What’s naïve is assuming that clean code is all there is to success. Good engineering is maybe 20% of a project’s success. Bad engineering will certainly sink projects, but modest engineering can
enable project success as long as the other 80% lines up right. From this perspective, TDD is overkill. It lets you write code with far fewer defects and a much cleaner design than is common in the industry. However, those whose souls are healed by the balm of elegance can find in TDD a way to do well by doing good.

TDD is also good for geeks who form emotional attachments to code. One of the great frustrations of my young engineer’s life was starting a project with great excitement, then watching the code base decay over time. A year later I wanted nothing more than to dump the now-smelly code and get on to the next project. TDD enables you to gain confidence in the code over time. As tests accumulate (and your testing improves), you gain confidence in the behavior of the system. As you refine the design, more and more changes become possible. My goal is to feel better about a project after a year than I did in the starry-eyed beginning, and TDD helps me achieve this.

Is TDD sensitive to initial conditions?

Some orders in which you take the tests seem to work very smoothly. Red/green/refactor/red/green/refactor. You can take the same tests and implement them in a different order, and it seems like there is not a way to advance in small steps. Is it really true that one sequence of tests is an order of magnitude faster/easier to implement than another? Is this just because my implementation technique is not up to the challenge? Is there something about the tests that should tell me to tackle them in a certain order? If TDD is sensitive to initial conditions in the small, is it predictable in the large? (In the same way that little eddies in the Mississippi are unpredictable, but you can count on 2,000,000 cfs. more or less at the river mouth.)

How does TDD relate to patterns?

All of my technical writings have been about trying to find fundamental rules that generate behavior similar to experts. Partly this is because this is how I learn—I find an expert to act like, then gradually figure out what is really going on. I’m certainly not looking for rules to be followed mechanically, although that is how the mechanically minded have interpreted them.

My oldest daughter (hi Bethany! I told you I would get you in here—be glad it isn’t more embarassing) spent several years learning to do multiplication fast. My wife and I both prided ourselves on doing multiplication fast, and learned very quickly. What was going on? Turns out that every time Bethany was faced with 6 x 9, she
would add 6 9 times (or 9 6 times, I suppose). Far from being a slow multiplier, she was a really fast adder.

The effect that I have noticed, and that I hope others find, is that by reducing repeatable behavior to rules, applying the rules becomes rote and mechanical. This is quicker than re-debating everything from first principles all the time. When along comes an exception, or a problem that just doesn’t fit any of the rules, you have more time and energy to generate and apply creativity.

This happened to me when writing the Smalltalk Best Practice Patterns. At some point I decided to just follow the rules I was writing. It was much slower at first, to be looking up the rules, or to be stopping to write a new rule. After a week, though, I discovered that code was ripping off my fingertips that would have required a pause for thought before. This gave me more time and attention for bigger thoughts about design and analysis.

Another relationship between TDD and patterns is TDD as an implementation method for pattern-driven design. Say we decide we want a Strategy for something. We write a test for the first variant and implement it as a method. Then we consciously write a test for the second variant, expecting the refactoring phase to drive us to a Strategy. Robert Martin and I did some research into this style of TDD. The problem is the design keeps surprising you. Perfectly sensible design ideas turn out to be wrong. Better to just think about what you want the system to do, and let the design sort itself out later.

Why does TDD work?

I saved the weirdest for last. Let’s assume for the moment that TDD helps teams productively build loosely coupled, highly cohesive systems with low defect rates and low cost maintenance profiles. (I’m claiming no such thing in general, but I trust you to imagine impossible things.) How could such a thing happen?

Part of the effect certainly comes from reducing defects. The sooner you find and fix a defect, the cheaper it is, often dramatically so (just ask the Mars Lander.) There are plenty of secondary psychological and social effects from reduced defects. My own practice of programming became much less stressful with I started TDD. No longer did I have to worry about everything at once. I could make this test run, and then all the rest. Relationships with my teammates became more positive. I stopped breaking builds, and people could rely on my software to work. Customers of my systems became more positive, too. A new release of the system just meant
more functionality, not a host of new defects to identify among all of their old favorite bugs.

I’ve said “reduced defects.” Where do I get off claiming such a thing? Do I have scientific proof?

No. No studies have categorically demonstrated the difference between TDD and any of the many alternatives in quality, productivity, or fun. However, the anecdotal evidence is overwhelming, and the secondary effects are unmistakable. Programmers really do relax, teams really do develop trust, and customers really do learn to look forward to new releases. “By and large,” I will say, although I haven’t seen the opposite effect. You mileage may vary, but you’ll have to try it to find out.

Another advantage of TDD that may explain its effect is the way it shortens the feedback loop on design decisions. The feedback loop for implementation decisions is obviously short—seconds or minutes, followed by re-running the tests tens or hundreds of times a day. The loop for design decisions goes between the design thought—perhaps the API should like this, or perhaps the metaphor should be that—and the first example, a test that embodies that thought. Rather than designing and then waiting weeks or months for someone else to feel the pain or glory, feedback comes in seconds or minutes as you try to translate your ideas into a plausible interface.

A weirder answer to “why does TDD work?” comes from the fevered imagination of complex systems. The inimitable Phlip says:

Adopt programming practices that “attract” correct code as a limit function, not as an absolute value. If you write unit tests for every feature, and if you refactor to simplify code between each step, and if you add features one at a time and only after all the unit tests pass, you will create what mathematicians call an “attractor.” This is a point in a state space that all flows converge on. Code is more likely to change for the better over time instead of for the worse; the attractor approaches correctness as a limit function.

This is the “correctness” that nearly all programmers get by with (except, of course, for medical or aerospace software). But it’s better to explicitly understand the attractor concept than deny it or disregard its importance.

What’s with the name?

- Development—The old phasist way of thinking about software development is weakened because feedback between decisions is difficult if they are separated in time. Development in this sense means a complex dance of analysis, logical
design, physical design, implementation, testing, review, integration and deployment.

- Driven—I used to call TDD “test-first programming”. However, the opposite of “first” is “last”, and lots of people test after they have programmed. There is a naming rule that the opposite of a name should be at least vaguely unsatisfactory (part of the appeal of structured programming is that no one wants to be unstructured.) If you don’t drive development with tests, what do you drive it with? Speculation? Specifications (ever notice that those two words come from the same root?)

- Test—Automated, reified, concrete tests. Push a button and they run. One of the ironies of TDD is that it isn’t a testing technique (the Cunningham Koan). It’s an analysis technique, a design technique, really a technique for all the activities of development.

How does TDD relate to the practices of Extreme Programming?

Some reviewers have been concerned that by my writing a book exclusively about TDD, folks will take it as an excuse to ignore the rest of the advice in XP. For example, if you test-drive, do you still need to pair? Here is a brief summary of how the rest of XP enhances TDD and TDD enhances the rest of XP.

- Pairing—The tests you write in TDD are excellent conversation pieces when you are pairing. The problem you avoid is that of the partners not agreeing on what problem they are solving, even though they are trying to work on the same code. This sounds crazy, but it happens all the time, especially when you are learning to pair with someone. Pairing enhances TDD by giving you a fresh mind to take over when you get tired. TDD’s rhythm can suck you in, and lead you to continue program even when you’re tired. Your partner, though, is ready to take the keyboard when you flag.

- Work fresh—On a related note, XP advises you to work when you are fresh and stop when you are tired. When you can’t get that next test to work, or those two tests to work together, it’s time for a break. Uncle Bob Martin and I were working on a line break algorithm once and we just couldn’t get it to work. We struggled in frustration for a few minutes, but it was obvious we weren’t making progress so we stopped.

- Continuous integration—The tests make an excellent resource enabling you to integrate more often. You get another test working and the duplication removed, you check in. The cycle can be 15-30 minutes instead of the 1-2 hours that I usually shoot for. This may be part of the key to having larger teams of pro-
grammers on the same code base. As Bill Wake says, “An n^2 problem is not a problem if n is always 1.”

- Simple design—By coding only what you need for the tests and removing all duplication, you automatically get a design that is perfectly adapted to the current requirements and equally prepared for all future stories. The mindset that you are looking for just enough design to have the perfect architecture for the current system also makes writing the tests easier.

- Refactoring—The “Remove Duplication” rule is another way of saying “refactoring.” The tests, though, give you confidence that your larger refactorings haven’t changed the behavior of the system. The higher your confidence, the more aggressive you will be in trying large-scale refactorings that extend the life of your system. By refactoring, you make writing the next round of tests that much easier.

- Continuous delivery—If TDD tests really do improve the MTBF of your system (a contention you will have to verify for yourself), you can put code into production much more often without disrupting customers. Gareth Reeves makes the analogy to day trading. In day trading, you close out your positions every night, because you don’t risk around that you aren’t managing. In programming, you like all of your changes in production because you don’t want code around that you aren’t receiving concrete feedback on.

Darach’s Challenge

Darach Ennis has thrown down a gauntlet for extending the reach of TDD. He says:

> For example, there are a lot of fallacies blowing around various engineering organizations and amongst various engineers that this book could help to dispel and some of these are:

- You can’t test GUIs automatically (eg: Swing, CGI, JSP/Servlets/Struts)
- You can’t unit test distributed objects automatically (eg: RPC and Messaging style, or CORBA/EJB and JMS)
- You can’t test-first develop your database schema (eg: JDBC?)
- There is no need to test third party or code generated by external tools
- You can’t test first develop a language compiler / interpreter from BNF to production quality implementation

I’m not sure he’s right, but I’m also not sure he’s wrong. He’s given me something to chew on as I think about how far to push TDD.
I tend to use technical terms without defining them. If we were talking together, that glazed look in your eyes would tell me I’d wandered off into jargon land. In the absence of your inestimable feedback, here are the terms reviewers have huh’d.

SBPP

value object

hashCode

inline

model code

method signature

green bar

red bar

TKO
exception A way of transferring control to a method deeper in the call stack. Used to allow normal processing to be written simply and centralize handling of strange paths through the code (generally error conditions).

leptokurtotic

scalene

isoceles

equilateral

failure

error

transitive closure
You will find many examples of influence diagrams in the text. The idea of influence diagrams is taken from Gerald Weinberg’s excellent Quality Software Management series, particularly book 1 *Systems Thinking* (Dorset House, 1992). The purpose of an influence diagram is to see how the elements of a system affect each other.

Influence diagrams have three elements:

- Activities, notated as a word or short phrase
- Positive connections, notated as a directed arrow between two activities, meaning that more of the source activity tends to create more of the destination activity or less of the source activity tends to create less of the destination activity
- Negative connections, notated as a directed arrow between two activities with a circle over it, meaning that more of the source activity tends to create less of the destination activity or less of the source activity tends to create more of the destination activity

That’s lots of words for a simple concept. Here are some examples:

Circus attendance and hedge trimming

Figure N: Two seemingly unrelated activites
Eating positively connected to weight

Figure N: Positively connected activities

The more I eat, the more I weigh. The less I eat, the less I weigh. (Personal weight is a far more complicated system than this, of course. Influence diagrams are models to help you understand some aspect of the system, not understand and control it perfectly.)

Exercise negatively connected to weight

Figure N: Negatively connected activities

Feedback

Influence doesn’t just work one way. Often the effects of an activity come back around to change the activity itself, either positively or negatively. For example:

Weight negatively connected to self esteem negatively connected to eating positively connected to weight.

Figure N: Feedback

If my weight rises, my self-esteem drops, which makes we want to eat more, which makes my weight rise, and so on. Any time you have a cycle in an influence diagram, you have feedback.

There are two kinds of feedback:

- Positive
- Negative

Positive feedback causes systems to encourage more and more of an activity. You can find positive feedback loops by counting the number of negative connections in a cycle. If there are an even number of negative connections, you have a positive feedback loop. The loop above is a positive feedback loop. It will cause you to keep gaining weight until the influence of some other activity kicks in.

Negative feedback damps or reduces an activity. Cycles with an odd number of negative connections are negative feedback loops.
The key to system design is

- Creating virtuous cycles, where positive feedback loops encourage the growth of good activities
- Avoiding death spirals, where positive feedback loops encourage the growth of unproductive or destructive activities
- Creating negative feedback cycles to prevent overuse of good activities

System Control

When choosing a system of software development practices, you’d like the practices to support each other so that you tend to do about the right amount of any activity, even under stress. Here’s an example of a system of practices that leads to insufficient testing:

\[Time \text{ pressure neg testing neg errors pos time pressure} \]

Figure N: Not enough time to test reduces the available time

Under the pressure of time, you reduce the amount of testing, which increases the number of errors, which increases the time pressure. Eventually some outside activity (like “Cash Flow Panic”) steps in to ship the software regardless.

When you have a system that isn’t behaving, you have a host of options:

- Drive a positive feedback loop the other directions. If you have a loop between tests and confidence, and tests have been failing thus reducing confidence, you can make more tests work to increase confidence in your ability to get more test working.
- Introduce a negative feedback loop to control an activity which has grown too large.
- Create or break connections to eliminate loops that are not helping.
In answer to a reviewer’s question, I posted a test-driven Fibonacci. Several reviewers commented that this example turned on their light about how test-driven development works. However, it is not long enough, nor does it demonstrate enough of TDD techniques, to replace the existing examples. If your lights are still dark after reading the main examples, take a look here and see.

The first test shows that fib(0) = 0. The implementation returns a constant.

```java
public void testFibonacci() {
    assertEquals(0, fib(0));
}
int fib(int n) {
    return 0;
}
```

(I am just using the TestCase class as a home for the code, since it is only a single function.)

The second test shows that fib(1) = 1.

```java
public void testFibonacci() {
    assertEquals(0, fib(0));
    assertEquals(1, fib(1));
}
```
I just put the second assert in the same method because there didn’t seem to be any substantial communication value to writing “testFibonacciOfOneIsOne”.

There are several ways I could go to making this run. I’ll choose to treat 0 as a special case:

```java
int fib(int n) {
    if (n == 0) return 0;
    return 1;
}
```

The duplication in the test case is starting to bug me, and it will only get worse as we add new cases. We can factor out the common structure of the assertions by driving the test from a table of input and expected values.

```java
public void testFibonacci() {
    int cases[][] = {{0,0},{1,1}};
    for (int i= 0; i < cases.length; i++)
        assertEquals(cases[i][1], fib(cases[i][0]));
}
```

Now adding the next case requires 6 keystrokes and no additional lines:

```java
public void testFibonacci() {
    int cases[][] = {{0,0},{1,1},{2,1}};
    for (int i= 0; i < cases.length; i++)
        assertEquals(cases[i][1], fib(cases[i][0]));
}
```

Disconcertingly, the test works. It just so happens that our constant “1” is right for this case as well. On to the next test:

```java
public void testFibonacci() {
    int cases[][] = {{0,0},{1,1},{2,1},{3,2}};
    for (int i= 0; i < cases.length; i++)
        assertEquals(cases[i][1], fib(cases[i][0]));
}
```

Hooray, it fails. Applying the same strategy as before (treating smaller inputs as special cases), we write:
int fib(int n) {
 if (n == 0) return 0;
 if (n <= 2) return 1;
 return 2;
}

Now we are ready to generalize. We wrote “2”, but we don’t really mean “2”, we mean “1 + 1”.

int fib(int n) {
 if (n == 0) return 0;
 if (n <= 2) return 1;
 return 1 + 1;
}

That first “1” is an example of fib(n-1):

int fib(int n) {
 if (n == 0) return 0;
 if (n <= 2) return 1;
 return fib(n-1) + 1;
}

The second “1” is an example of fib(n-2):

int fib(int n) {
 if (n == 0) return 0;
 if (n <= 2) return 1;
 return fib(n-1) + fib(n-2);
}

Cleaning up now, the same structure should work for fib(2), so we can tighten up the second condition:

int fib(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 return fib(n-1) + fib(n-2);
}

And there we have fibonacci, derived totally from the tests.
Fibonacci